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In response to stimulation, B lymphocytes pursue a large 
number of distinct fates important for immune regulation. 
Whether each cell’s fate is determined by external 
direction, internal stochastic processes, or directed 
asymmetric division is unknown. Measurement of times to 
isotype switch, to develop into a plasmablast, and to 
divide or to die for thousands of cells indicated that each 
fate is pursued autonomously and stochastically. As a 
consequence of competition between these processes, 
censorship of alternative outcomes predicts intricate 
correlations that are observed in the data. Stochastic 
competition can explain how the allocation of a 
proportion of B cells to each cell fate is achieved. The B 
cell may exemplify how other complex cell differentiation 
systems are controlled. 

Production of antibody by B cell–derived plasma cells is 
critical for an effective immune response (1), but B cell 
activation mechanisms leading to the formation of plasma 
cells are numerous and poorly understood. One known 
mechanism is for the B cell to use its surface receptor to 
capture and internalize antigen, which leads to presentation of 
T cell epitopes on its cell surface (2). Upon detection, a T cell 
delivers cell contact– and cytokine-mediated signals (3) that 
lead to B cell proliferation or changes in antibody type 
(isotype switching) (4), as well as differentiation into dividing 
plasmablasts (PBs) and sessile, long-lived plasma cells, both 
of which secrete antibody (5, 6). The heterogeneous B cell 
fates resulting from isotype switching and development into 
PBs can be replicated in vitro by stimulating naïve B cells 
through CD40 in addition to the cytokines interleukin 4 (IL-
4) and IL-5 to simulate T cell interaction (7, 8), a method we 
used. As Blimp1 is a transcription factor that is selectively 
required for differentiation to PB, we used a Blimp1-GFP 
reporter mouse (9) to identify PBs by green fluorescent 
protein (GFP) expression and fluorescently labeled antibody 

against immunoglobulin G1 (IgG1) to identify cells switched 
to IgG1. After an initial 3-day culture, single-cell video 
microscopy was used to observe cells sorted from generations 
1, 3, 5, and 7 that do not express Blimp1 or IgG1 and to 
optically track their times to isotype switch to IgG1, to 
differentiate to PBs, and ultimately to division or death (Fig. 
1A and fig. S1) (10). Only one division round was followed 
because of the strong homotypic adhesion of B lymphoblasts, 
which leads to a loss of identity. 

As found previously (11–15), division and death times 
were highly variable, and this was also true for times to 
isotype switching and commitment to become a PB (Fig. 1, B 
and C). Consistent with earlier population studies (11, 16), 
the dependence of frequency of isotype switching, as well as 
other parameters, on generation is apparent (Fig. 1, D and E). 
Despite the diverse range of experience of individual cells, 
the population-level response is insensitive to this variability 
(12, 13, 17–20), which presents the conundrum of how to 
reconcile the single-cell and population-level responses. 
Furthermore, these data have complex correlation structures, 
both within single cells (intracellular) and between siblings 
(intercellular), which pose an additional challenge to any 
paradigm of understanding. 

As a representative of intracellular correlation, for all cells 
that differentiate and go on to divide, Fig. 2A presents a 
scatter plot of times to these events, as well as estimates of 
Pearson’s correlation coefficient (ρ). The latter reveals 
positive correlation coefficients for cells of each generation 
(ρ: 0.54, 0.59, 0.56, and 0.80). Analysis of other 
combinations shows that time to differentiate to PBs is 
positively correlated with time to death (fig. S2A) (ρ: 0.70, 
0.54, 0.81, and 0.54), and with time to isotype switch (Fig. 
2C) (ρ: –, 0.34, 0.29, and 0.51), where a dash indicates an 
insufficient number of observations to form an estimate. 
There is little evidence for correlation in time to isotype 
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switch and time to division (Fig. 2B) (ρ: –, 0.17, –0.05, and –
0.08) or death (fig. S2B) (ρ: –, 0.15, 0.08, and 0.11). 

For intercellular dependencies, we can investigate the 
existence of concordance in sibling fates. Visual inspection of 
Fig. 1B suggests strong positive relatedness between siblings. 
To quantify the strength of concordance in opposing fates of 
siblings, we use Yule’s Q (21). It takes a value in [−1, 1], 
with 1 corresponding to perfect positive correlation, and 0 
corresponding to no correlation in sibling fate (10). For our 
system, the opposing fates of siblings are death versus 
division, differentiation to PBs versus no differentiation to 
PBs, and isotype switching versus no isotype switching. 
Figure 2D plots Yule’s Q for the division versus death 
outcome of siblings. It is high for all generations (Q: 0.97, 
0.93, 0.90, and 0.96), which confirms strong sibling 
concordance in division or death fates: If a cell dies or 
divides, the likelihood that its sibling experiences the same 
fate is substantially higher than the likelihood of a cell chosen 
uniformly at random from the population at large has the 
same fate. All other fates display similar evidence of strong 
concordance: differentiate to PB versus not (Fig. 2E) (Q: 
0.98, 0.98, 0.92, and 0.93) and isotype switch versus not (Fig. 
2E) (Q: –, 0.98, 0.99, and 0.94). 

This strong concordance justifies investigating correlations 
within the times to fates of siblings. We found strong 
correlation in time to fate between siblings (Fig. 2, F and G): 
ρ of 0.90, 0.93, 0.84, and 0.82 for division and ρ of 0.85, 
0.79, 0.72, and 0.77 for death. For differentiation to PB and 
isotype switching, the former exhibits strong correlation (fig. 
S2C) (ρ: 0.75, 0.88, 0.92, and 0.94), whereas the latter is the 
exception and does not (fig. S2D) (ρ: –, 0.18, 0.29, and 0.28). 
Unexpectedly, correlation structure is also found in the 
nonconcordant fates of siblings (Fig. 2, H to J, and fig. S2, E 
to G). 

These numerous sibling correlation structures would 
appear challenging for any simple mechanistic theory to 
explain them, as they suggest involved sharing of molecular 
machinery regulating features of isotype switching, 
development into a PB, division, and death. We challenged 
this deduction by questioning whether all of these features 
could be explained by a simple hypothesis of autonomous 
functional units in cells that are subject to competition. Such 
a hypothesis was proposed for division and death of 
lymphocytes in the cyton model (11, 13, 22–25), whose 
fundamental tenet is that each cell’s death or division fate is a 
consequence of competition between independent times for 
division and death. It posits the existence of two independent 
random variables in each cell determining times from division 
to fates: a time to division, Tdiv, and a time to death, Tdeath. We 
postulate the existence of two additional independent random 
variables per cell. One, Tdiff, determines a time to differentiate 
to PB, and the other, Tswitch, determines time to isotype 

switching. Consistent with observations of Tdiv (13, 14, 20), 
with the exception of death, the corresponding process may 
not be in operation in every cell. This is encapsulated 
mathematically by assuming that the associated random 
variables can have a positive probability of being infinite. 

These times are subject to competition and censorship. If 
Tdeath < Tdiv, then the cell’s fate is death at Tdeath, and the value 
Tdiv is not observed and vice versa. Thus, the larger value is 
censored. If Tdiff < min(Tdiv, Tdeath), then the cell is observed to 
differentiate to PB at time Tdiff from birth, and otherwise the 
time is censored. If Tswitch < min(Tdiff, Tdiv, Tdeath), then isotype 
switching is observed at Tswitch, and otherwise its value is 
censored. Even though the random variables {Tswitch, Tdiff, Tdiv, 
Tdeath} are independent, it is of fundamental importance that 
the distributions of the observed variables 
{ obs obs obs obs

switch diff div death, , ,T T T T } are distinct and correlated, as they 
have been altered by competition and censorship (10). 

Because the times to concordant fate of siblings are related 
(Fig. 2, F and G, and fig. S2, C and D), although the model 
assumes that uncensored times within a cell are independent, 
we must allow for correlations between times to concordant 
fate in siblings. With a superscript 1 indicating times for one 
sibling and 2 for the other, we posit the existence of pairs 
( 1 2

switch switch,T T ), ( 1 2
diff diff,T T ), ( 1 2

div div,T T ) and ( 1 2
death death,T T ), where 

the two random variables within each pair may be correlated, 
but they are independent across pairs. For each pair, we adopt 
the class of bivariate log-normal distributions with symmetric 
marginal distributions whose correlation structure is defined 
through a correlated Gaussian exponent (10). The model has 
15 parameters, four means, four variances, four cross-
correlations, and three probabilities of finiteness: 

2 2 2 2
switch diff div death switch diff div death switch diff

div death switch diff div

μ ,μ ,μ ,μ ,σ ,σ ,σ ,σ ,ρ ,ρ ,
θ

ρ ,ρ , , ,p p p
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

Consider a parameterization, θ, defining the model. For a set 
of data, D, consisting of the times of fates of sibling cells, we 
calculate the likelihood that the model would generate the 
data L(D|θ) (10) and then determine θ MAP = arg sup L(D|θ), 
where “arg sup” reads “arguments of the supremum,” the 
maximum a posteriori parameterization defining our best-fit 
model. For each generation, we fit to a data set D, consisting 
of all siblings that share the same fate. This gives us sufficient 
data (382, 458, 330, and 254 observations in generations 1, 3, 
5, and 7, respectively) to estimate all components of θMAP, but 
it means that the model’s cross-fate predictions of the 
remaining data (145, 193, 234, and 131 cells, respectively) 
are extrapolations. 

For generation 5, we plotted the uncensored marginal 
distributions for the independent random variables within a 
single sibling, as well as its censored match to observed data 
(Fig. 3A). The impact of competition is apparent in the 
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substantially reduced mean and variance in the latter graphs 
and also in the reshaping of the distributions (see other 
generations in fig. S3). One indicator of whether the model’s 
structure can capture key features of the data is comparison of 
average time to fate with the best-fit model. This is shown in 
Fig. 3, B to E, along with the measured and modeled 
proportion of cells that undergo division and isotype 
switching (death and differentiation to PB) (fig. S4). A 
second indicator is its ability to capture the correlation 
observed in the times to concordant sibling fate (Fig. 3, H and 
I, and fig. S5). These good fits suggest that this simple model 
with four pairs of independent random variables has sufficient 
flexibility to mimic the data. 

Although intercellular concordant fate correlations are to 
be expected because of the cross-correlation parameters in 
our model, perhaps counterintuitively, it also predicts 
correlations within cells and between siblings. The 
uncensored variables are uncorrelated, so these correlations 
arise in the model exclusively, as a consequence of its 
postulated competition and censorship (Fig. 3, F and G). With 
the exception of generation 7 (Fig. 3F), the predictions all lie 
within the 95% confidence intervals (CIs) of the measured 
values. Other fate combinations are shown in fig. S5, all of 
which also fall within 95% CIs of the measured values, with 
the exception of generation 5 death and differentiation to PB 
(10). 

For asymmetric intercellular correlations (where one 
sibling divides and the other dies), division times across 
siblings are positively correlated, as are death times. Thus, the 
model predicts that one only observes asymmetric fates when 
time to division and time to death are close to each other, and 
hence, these are predicted to be positively correlated when 
observed (Fig. 3J). The model predicts that the correlations 
between time to division of one sibling and to isotype switch 
of the other are less correlated, as these two processes are 
typically separated in time and so do not strongly influence 
each other (Fig. 3K and fig. S5). Remarkably, with the 
exception of generation 5 death versus differentiation to PB, 
the model’s predicted correlations lie within the 95% CIs for 
Pearson’s ρ as measured in the data. Thus, not only is this 
simple mechanistic model of competing independent random 
variables capable of fitting the heterogeneous times, its 
predicted nontrivial cross-correlation structures that arise as a 
consequence of competition and censorship quantitatively 
match observed phenomena. 

This analysis offers a mechanism to explain how 
lymphocytes reliably allocate a consistent proportion of cells 
to various populations even in the absence of specific signals, 
such as antigen, which may induce asymmetric cell division 
(26). This inherent randomness provides robustness to loss of 
cells of a given class, which seems desirable in a system 
experiencing decentralized control. High-level order then 

appears not by explicit individual instructions to each cell, but 
by chemical signaling that shapes probability distributions 
and influences resultant laws of large numbers. As a 
consequence, this study draws attention to the stochastic 
epigenetic processes that influence the expression levels of 
the many molecular regulators of division, death, and 
differentiation within each cell (27–29), as it is likely that 
these quantitative differences will ultimately explain this 
shaping of distributions. Competing intracellular processes 
may also underlie the robust allocation of multiple fates 
during proliferation and differentiation in other cell systems 
from the embryonic to hematopoietic. 
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Fig. 1. Individual B cell fate. (A and B) Cells were observed 
to divide, and times to subsequent events (division, death, 
switch to IgG1, and expression of Blimp1) were recorded for 
both siblings (sib) (2127 cells pooled from four cultures 
tracked to final death or division fate). Illustrated cell 
becomes IgG1+ at 5 hours, GFP+ at 10.67 hours, and divides 
at 14.67 hours. (B) Collection of all sibling pairs illustrating 
fates. Sib 1 is chosen as the first in a pair to divide or die. Sib 
1’s are sorted into fate categories and then rank-ordered in 
increasing time within their category, with each cell shown as 
a column. Sib 2’s are not ranked but plotted in the same order 
as paired sibling to illustrate the close relation between fate 
and times to fate of siblings. Black line shows time spent 
unswitched or undifferentiated. Green line in the column 
shows time as Blimp1+ PB, blue as IgG1+ switched cells. 
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The fate categories: divide only; become PB and divide; 
isotype switch and divide; switch, then become PB, then 
divide. Sequence repeated for cells that die. ‘As’ shows 
asymmetric siblings (one died and one divided). (C) Times to 
fate. Number of cells (N), mean (μ), and standard deviation 
(σ) are shown. (D) Average time to divide (black), die (red), 
differentiate to PB (green), and switch (blue) per generation. 
(E) Proportion of cells undergoing each fate. 

Fig. 2. Fate concordance and correlations. (A to C) 
Intracellular correlations (correlations in times to distinct 
fates within individuals) for each generation. Pearson’s ρ is 
shown per generation and for cohort inclusive of all 
generations. (D) Measure of concordance of siblings in 
division versus death fate (red) shown as Yule’s Q with 95% 
CIs. (E) Measure of concordance of siblings in isotype switch 
versus no isotype switch (blue) and development to PB versus 
no development to PB fate (green). (F and G) Times to 
intercellular concordant fates (siblings that share the same 
fate) and their correlation. (H to J) Times to intercellular 
nonconcordant fates and their correlation. 

Fig. 3. Model of four independent fate times. (A) Fit of model 
to generation 5 data. (Top) Predicted uncensored distribution 
for each fate (lognormal mean, μ; variance, σ; likelihood of 
being finite, p). (Bottom) Predicted censored distribution 
overlaid on data. (B to K) Calculated model values (red) to 
data (blue). (B) Average time to divide. (C) Proportion of 
cells dividing per generation. (D) Time to switch. (E) 
Proportion switch per generation. (F and G) Intracellular 
nonconcordant fates. (H and I) Intercellular concordant 
correlations. (J and K) Intercellular fates. 
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