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1. Introduction

This paper is one in a series [8—11] exploring the algéigt¥ , the centralizer in the
group algebraG of the subalgebr& H, wherek is a field of characteristic not zero,
G is a finite group, andd is a subgroup ofG. All these papers search for theorems
similar to Alperin’s weight conjecture [2]. The immediate goal is to find results that relate
information about blocks 0EG* or simple modules ovetG* to p-local information.
The ultimate goal is to gain insight into Alpa’s conjecture. See the introductions to [10]
and [11] for a detailed description of the program.

In this paper, we obtain fairly complete information about the algélsrd whenG is
the symmetric groug,, H is S,—1 identified with the subgroup af, consisting of all
permutations fixing:, andk is a field of characteristip with p # 0.

For comparison, first consider the algelsta& , whereG is any finite groupH is any
subgroup oG, andF is a field of characteristic O that is a splitting field for b@trand H .
For any irreducible character of G, lete(x) be the primitive central idempotent ¢fG
corresponding tg . For any irreducible charactér of H, let f () be the primitive central
idempotent of FH corresponding tay. A straightforward application of the Jacobson
density theorem shows that

FG'= @ efWFGT= D Maty,.(F)

xelrr(G),yrelrr(H) X T (G),yelrr(H)
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where(—, —) is the usual inner product of charactersf and for anyi, Mat; (F) is the
algebra ofl by I matrices with entries irF. (See 2.1 in [11].) When we specialize to the
case withG = S,, andH = S,,_1, the classical branching rule gives us two further pieces of
information. First, it provides a combinatorial way to determine whetlig)y 1 (v) is 0O;
second, it tells us that whet(x) f(¥) # 0, (xu, V) = 1 so thate(x) f(y) FG? = F.
Thus FS,f”‘1 is isomorphic to the direct sum @i copies of F, wherem is equal to the
sum over all partitions. of n of the number of distinct parts af.

Much of this paper is devoted to developing a similar understanding of the algebra
ka”‘l whenk has characteristip. In Theorem 2.2, we show thatdfis a primitive central
idempotent ofkS, and f is a primitive central idempotent dfS,,_1 with ef # 0, then
eka,f”‘1 is a commutative local ring. Thus the decomposition

kS,fn_l — @ eka;,g"_l
e.f

is the block decomposition of the algebcr&f”‘l, wheree and f run through all primitive
central idempotents ofS, andksS,_1, respectively. This result follows easily from the
surprising fact thakS,f"‘l is generated as an algebra by the centerkSpfand kS, _1.
Since the aIgebrhS,f"‘1 is commutative, there is a bijection between its simple modules
and its blocks.

We prove analogs of both consequences of the classical branching rule. In 3.2, we give
a combinatorial way to determine whether the prodyfds 0. As a consequence, we find a
combinatorial parametrization of the blockskcst,y"‘l. (See Corollary 3.3.) In Theorem 6.1,
we prove an analog of the second consequence of the classical branching rule. We show
that, whenef = 0, the isomorphism type of the algeberﬁkS,‘f"‘l depends only on the
unordered paifw., wr}, wherew, is the weight ofe andw is the weight of f. This
result is similar to the well-known fact that if two blocks of group algebras for symmetric
groups have the same weight then their centers are isomorphic. The proof depends on a
theorem of Enguehard [12], which states that there is a perfect isometry between any pair
of blocks of symmetric groups that have equal weights.

In Sections 3 and 4, we explore the relationship between the bIookS‘bel and the
p-local structure ofS,,. Green’s theory gives a definition of defect groupsSjn.1 for
each block oﬂcS,fH. In Corollary 3.4, we find these defect groups. In Theorem 3.5, we
show that an analog of Brauer’s first main theorem holds; & S,,, H = S,,_1, andD
is a p-subgroup ofH, then there is a bijection between the blocksc6f with defect
group D and the blocks ok Ng(D)N# P with defect groupD. Since both algebras are
commutative, this theorem can be interpreted as a theorem counting si@Pknodules,
a theorem that looks similar to the weight conjecture. These results rely on the fact that
whene and f both have defect greater than zero, then it is possible to deteprioeally
whetheref = 0. (See Proposition 3.1.)

In Section 4, we present a sort of lop-sided analog okfliex G]-module approach to
block theory. Th&[S,_1 x S,]-modulefkS, e is indecomposable, since its endomorphism
ring is isomorphic to the local ringfks,f”*l. We show that ifD is a defect group ir§,,_1
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of ef, then the diagonal grouqi D) is a vertex off kS, e, and the Green correspondent of
fkSye with respecttdS,—1 x S,, Ns,_,(D) x Ns, (D), 8(D)) is Brp(f)kNs, (D) Brp(e),
where Bip denotes the Brauer map with respecito

Finally in Section 7, we obtain some results regarding the support of the block
idempotents okS,f”*l. We show that whet has characteristic 2, then each idempotent
in ka”*l lies in thek-span of the 2-regulas,, _1-orbit sums. The analogous result is false
when the characteristic @fis odd. Section 7 builds on work in [17].

We will use several well known combinatorial notions. Letbe a partition of a
positive integetz. So A is a nonincreasing sequenge} of nonnegative integers whose
sum isn. We letl(r) denote the number of nonzero termsiinLet ¢+ be an integer
at least as big as(r). The g-set of sizer for A is the strictly decreasing sequence
MAt—1>do+t—2>---> A

It is sometimes useful to represent a partitiomsing an abacus with-runners (for
somep > 0) and ag-set of sizer. The runners are labelled (left to right) by.0., p — 1.
The positions in théth row of the abacus are labelled, left to right, frenfi — 1) to pi — 1,
fori =1,2,.... The abacus of is obtained by placing a bead at each position given by
a g-number. The shape of the abacus is determined(lnod p). Conversely each abacus
with p-runners represents tifleset of a partition.

Identify A with the corresponding abacus wighrunners. Thejth runner ofd can be
thought of as a partition, labelled, represented by an abacus with one runner. g~heple
(A9, ..., a7~ 1) of such partitions is called the-quotientof 1. The p-core ofi is another
partition associated with. It is represented by the abacus wjikrunners that is obtained
by moving the beads oh as far up as possible. So tipecore of A depends only on the
numbers of beads on each of the runners.df is clear that. is determined by itg-core
and p-quotient.

2. Blocks

Finding the blocks of the algebkaG ¥, whenG = S, andH = S,_1, will be easy after
we have established that tEealgebraZ G is generated as an algebra by the center of
ZG and the center o H, whereZ represents the rational integers. This will be proved in
Proposition 2.1.

We need a standai@-basis forzG. Let A = ((A1)™, ..., (A,)"") be a partition of,
wherery > --- > A, > 0and)_;_; n;A; = n. Suppose that is an element o8, of cycle
type A, and that: occurs in a cycle of length; wheno is written as a product of disjoint
cycles. Consider the conjugation action$pf 1 on S,,. The orbit containing: consists of
all elements of S, such thatr has cycle type. andr occurs int in a cycle of length.
Thus the orbits are labelled by pails A,), wherex is a partition ofz and; is one of the
distinct parts ofs. For any such orbit, lefi (x; A;) be the sum irZS,, of all its elements.
For example, inZS3)52 we haveA((2, 1); 1) = (12) and A((2, 1); 2) = (13) + (23). The
setofallA(x; &,) is a basis foZ S;"~* as aZ-module. It follows that th@-rank ofZ.S;"*
is >, d(x), wherea runs through all partitions of andd () is the number of distinct
parts ofA. Since there aré(1) + 1 ways of incrementing some part biby one, in order
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to produce a partition of + 1, induction shows that thé-rank onS,‘f"‘1 is also given as
Z?;&p(i), wherep(i) is the number of partitions af

We will useN,, to denote the set containing the firspositive integers. For > 0, we
let V; be theZ-submodule oZ G that is generated by all permutations thatifigr more
elements oN,,, and set; := V; N ZGH . We then have

OzUn—i—lg Uy C---CULC UO:ZGH~
Proposition 2.1. LetZ be the ring of rational integers. L&t = S,, and letH = S,_1. The
Z-algebraZzG" is generated by G¢ andZH" .

Proof. Let A be theZ-algebra generated BGY andZ H. We will prove by induction
onn — i thatU; is in A. SinceU, contains only integer multiples of the identity, the start
of the induction is trivial. For the rest of the proof, assume that:, and thaty; < A for

all j > i. TheZ-moduleU; is generated by/; 1 and the set of alA(A; As) such that the
multiplicity of 1 as a part oh is i. We must show thatl contains all such basis elements
A As).

First, consider a partitiop of n of the formu = ((u1)"1, 1*~"1#1), The basis element
A(n; 1)isin ZHH, since it is the sum of all permutations # of cycle typeuw. The sum
A(u; 1)+ A(; 1) isin ZGY, since it is the sum of all permutationsé@hof cycle typey.

It follows that A(u; nw1) andA(u; 1) are inA.

Let A = ((A)™, ..., (A»)") be a partition ofr; assume that the multiplicity of 1 as a
part of A is i. We will show that for any < r, the basis elemem(1; ;) is in A. Define
partitionsu®, u@, ..., u=1 as follows.

I’L(l) — (()\'l)nla 1}1—n1A1)’
I’L(Z) — (()\'2)”2’ 111—n2A2)’

M(r) — (()Lr)n,, 1n—n,)nr).

(When, =1, which happens if > 0, this last partition should really be written &)
instead of(1"7, 1"~") as it is here.) Let be the following product

a:(EA(MU);1)>A(M(S>;AS)( ]_[ A(M(j);1)>.

Jj=s+1

The element is in A since each factor in the product is.ih

In the following paragraph, we will carefully examine the expansioa td show that
a= A(\; Ag) + b, whereb € U; 1. Sincea € A and by induction assumptidiy 11 C A, it
follows thatA(x; Ay) € A.

Lett be a term in the expansion of The termy has the fornryt, - - - 1,, wheret; is a
term fromA(u; 1) whenj # s and is a term fromA (1 *); ;) when j = s. Each factor
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tj is a product ofz; disjoint A ;-cycles. If the cycles appearing in throughr, are not all
disjoint from each other, then the permutatianust fix more thai elements oN,;; in this
caser € V1. On the other hand, consider the surof all the termg in the expansion of
a such that the cycles appearingrirnthroughz, are all disjoint; the terms in: are exactly
the terms inA(}; A). It follows thata — A(x; Ay) isin V;y1. Sincea — A(x; Ay) is alsoin
ZGH, we haver — A(); As) € U; 41, as we wanted. O

Next, we find the blocks of the algebta,, S-1 for any fieldk. In Corollary 3.3 we will
present a parametrization of these blocks by certain pairs of cores.

Theorem 2.2. Let G = S, and let H = §,_1. Letk be any field. Let be a primitive
central idempotent ofG and let f be a primitive central idempotent &fH. If ef # 0,
thenefkG™ is a block ofk G . Every block okG ! arises in this way.

Proof. Let e, ..., e, be the primitive central idempotents b ; let f1,..., f; be the
primitive central idempotents @&fH . Then

kGC =ke1® -+ @ ke, ® J (kGY)
and
kHY =kfie® - @ kfs® J(kH").

By Proposition 2.1kG* is the generated askaalgebra bycG® andk H . It follows that
kGH = (@ké,’fj) &1,
iJ

where] is the ideal ofkG" generated by (kG°) andJ(kH'). The ideall is nilpotent
andkG* /I is semisimple. It follows thak = J (kG) and that every primitive idempotent
of the commutative algebreG# is equal toe; f; for some choice of andj. O

In Section 6, we will show ifef # 0, then the isomorphism type of the algebra
efksS,Sn—1 depends only on the unordered péis., wr}, wherew, is the weight ofe
andw ¢ is the weight off. In Section 5, we will obtain information about the dimension
of efkS,%1 as a vector space over

Proposition 2.1 could also have been proved using Jucys—Murphy elements. For any
i with 2<i <n, let L; be the sum irZS,, of all the transpositions it§; that are not in
S;_1. G.E. Murphy has shown that every element of the cent&%fcan be written as a
symmetric polynomial in_.p, L3, ..., L, with coefficients inZ.

Proposition 2.3. Let G = S, and letH = S,_1. ThenZG* coincides with th&-polyno-
mialsinLo, L3, ..., L, that are symmetric Lo, L3, ..., L,—_1.
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Proof. Let 2<u < n — 1. The transpositiotu — 1, u) commutes with allL; for which
2<i<nandi #£u—1,u.Also,itis easy to see thét — 1, u) commuteswith_,_1+ L,
andL,_1L,. These two polynomials generate the ring of symmetric polynomidlg isnd
L,+1 over any commutative ring. Moreover, the transpositich®), ..., (n — 2,n — 1)
generate the groufd . It follows that anyZ-polynomial inL,, ..., L, that is symmetric in
Lo, ...,L,_1liesinzZG*H.

For the reverse inclusion, we modify the proof of Theorem 1.9 of [16]. Recallhiat
the Z-submodule oZ G that is generated by all permutations thatifiar more elements
of N, :={1,...,n}, and thaty; = V, N ZG*H.

SetX ([1"]; 1) := 1. Let(A; As) be aH -orbittype, withi £ [1"]. Then there is a positive
integerr such that,; > 1 ifand only if 1< i <r. SetX(A; Ay) as the sum, i G, of all
distinct products of the form

(Lip" N L)t (L),

whereiy, i2, ..., i, runs over sets of distinct elements of 2. ., n, subject toi; = n, if
As happens to be greater than 1. Note tha®; i) is an element oZG?, by the first
paragraph.

Now A(A; As) € Ui\U;+1, Wwherei =n — Z;zlkj. We claim thatAd (A; Ay) = X (A Ay)
moduloU; 1. The proof is by reverse induction @nThe base case=n is trivial. So we
may assume that< n.

We need the notion of graphs associated with products of transpositions. heta
permutation ofV,. Suppose that =112 - - - 1y, where the; are transpositions. The graph
associated with this factorization has vertidés, and one (undirected) edge— k, for
each(j, k) that occurs as one of the Note that the numbér of transpositions is at least
n — I, wherel is the number of orbits o on N,,. We call the factorizatiominimal if
k =n — 1. Clearly the factorization is minimal &nd only if the graph is a tree. Moreover,
in the minimal case the connected components of the graph correspond to the asbits of

Consider now the occurrence of a partitierin the expansion of a terr(‘L,»l)M*l« ..
(L,-,)Ar*l of X (1; Ay). This represents a factorization®finto a product of

Z(x, —D=n—1(})

j=1

transpositions (of a given kind). The number of elementdlpfthat are not fixed by

is at mostz;zlkj =n —1i.S0oc is an element oV;. Suppose that ¢ V; ;1. Then the
connected components of the associated graph consisisofated vertices, and star-
shaped graphs, whose central vertiges. ., i, have degrees;, ..., A,, respectively. This
graph is a tree. So the cycle lengthscoftoincide with the sizes of the components. It
follows thato is of cycle typei. Moreover, thejth cycle ofo has largest symbal;.

In particular, the cycle of that contains has length;. Soo is of H-orbit type(i; Ay).
Furthermoreg does not occur in the expansion of any other summand(®f 1). Finally,

a givena ;-cycle occurs at most once in the expansior(ij)Af‘l. We conclude that
occurs exactly once in the expansion(df, )1~ 1(L;,)*2~1. .. (L; ) L.
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Partially order the settA (1; A4)} according to where the elemts occur in the filtration
Ups1 S U, C --- C Ug = ZG*. Apply the same partial order to the sgt(x; A)}.
The previous paragraph shows that the transition matrix between these ordered sets is
unitriangular. Sinc& G is freely generated aszrmodule by the elements ¢ (1; A,)},
it is also freely generated by the element§¥{A; A;)}. This completes the proof.

Propositions 2.1 and 2.3 overlap with earlier work of Olshanski [20]. A convenient
reference for Olshanski’'s theorem is the paper [19] of Okounkov and Vershik. Theorem 4.1
of [19] states that, ifC denotes the complex numbers ahds any positive integer
less thann, the algebra(Cs,)% is generated by the center @fS,_;, the group that
permutes the numberds — 1 + 1,n — [ + 2,...,n}, and the Jucys—Murphy elements
Ly—i+1, Ly—i142, ..., L,. The proof they indicate seems to work whers replaced with
any commutative ring.

3. Afirst main theorem

As we saw in Theorem 2.2, the bIocksl«;ﬁf,f”’l are in bijection with pairge, f), where
e is a primitive central idempotent &fS,,, f is a primitive central idempotent @&fS,,_1,
andef # 0. We will see that it is possible to recognigdocally whether such a product
is 0. This leads to a version of Brauer's first main theorem for the algeifr“al, andto a
branching rule for blocks.

The Brauer map applied to block idempotents of the symmetric group has a very simple
combinatorial interpretation, which we now describe. Any result about the symmetric
group for which we do not give a precise reference may be found in [14].

Recall that irreducible complex charactersSyfare parameterized by partitions of
represented by Young diagrams. Thaudtters corresponding to partitionandu belong
to the same block if and only if the Young diagrams correspondirigand . have the
samep-core. The number of rinp-hooks removed to obtain the-core is theweightof
the block. Of coursevp < n, wherew is the weight of a block.

Now letw be any positive integer witp < n. Let D,, be a Sylowp-subgroup ofS,,,
identified with a subgroup aof,, in the obvious way. The group,, is a defect group of
any block ofSs,, of weightw.

Let 2 be the sefwp + 1, wp + 2, ..., n}, and letS;, be the subgroup af,, consisting
of all permutations that act as the identity outsidesaf Of courseSp = S,_y,,. The
centralizer ofD,, is a direct product

CS,, (Dy) = CSwp (Dy) x S = CSwp (Dy) x Sn—pw-

The groupCs,, (Dy) contains a normap-subgroupP such thathSW(Dw)(P) C P.
(See (2.6) in [6].) Hence the algebt&’s,, (D,,) has just one block. SindeCs, (Dy) =
kCs,, (Dw) ® kSy—puw, it follows that the blocks ok Cs, (D,) correspond one-to-one with
the blocks ok S, — .
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Similarly,
NS,, (Dy) = NSwp (Dy) x S = NSwp (Dy) x Sn—pwa

the aIgebrekNSwp(Dw) has just one block, and the blocksid¥s, (D,,) correspond one-
to-one with the blocks okS,_,,. The central idempotés of the algebrag N, (D),
kCs,(Dy), andkS, are the same and may be identifieith the block idempotents of
Sn—pw- Thus the blocks ot Ns, (Dy,) andkCs, (D,,) are parametrized by cores of Young
diagrams corresponding to partitionsof- pw.
Now we turn to the Brauer map. Let BJ be thek-linear mapkS, — kCs, (D,,) such
that for anyo € S,,, Brp, (¢) =0 if 0 € Cs,(Dy) and Bip, (¢) =0if o ¢ Cs,(D,,). Let
e be a block idempotent of,, with weightv. If v < w, then Bip, (e) = 0; if v > w, then
Brp, (e) is the block idempotent ofCs, (D,,) (or of kNs, (D,,)) that corresponds to the
samep-core as. When Bip,, (e) is identified with a block ok S, _ ., its weight isv — w.
The next proposition shows how to determipdocally whether a productf is O,
wheree and f are block idempotents @fS,, andkS,_1, respectively.

Proposition 3.1. Let G = S, and letH = §,,_1. Lete be a primitive central idempotent
of kG with defect groupP. Let f be a primitive central idempotent &fHf with defect
group Q. Assume thatP and Q have been chosen so th& C Q or Q € P. (The
description of defect groups above shows that this is always po34ibté) be the smaller
of P or Q. Thenef # 0if and only ifBrp(e) Brp(f) # 0.

Proof. Since Bip(ef) = Brp(e) Brp(f), one direction is trivial. We only need to prove
thatifef # 0, then Bp(e) Brp(f) #0.

Assume thatef £ 0. Let w be the smaller of the weights of these blocks, so that
D = D,,. Sinceef # 0, there are irreducible charactersand6 belonging to the blocks
corresponding te and f such thab is a constituent of . As above, Bp(e) and Bip (f)
correspond to blocks df,— ., andsS,— -1, blocks that have the same coresasd f.
We will exhibit irreducible characters andy belonging to these blocks such thatis a
constituent otps, ,, ;.

Let A be the partition ofn corresponding toy and letu be the partition ofn — 1
corresponding t@. So the Young digram fogr is obtained fromk by removing a node.

It will be convenient to represent a partition using an abacus pdthnners, labelled
from O to p — 1. We will use the same letter to represent the abacus diagram as we use
to represent the partition. Assume that the number of beads has been choseniso that
is obtained fromh by moving one bead, labelled, one position left, from runner to
runneri — 1. Consider the abacus representingOn runneri, let x be the number of
beads above:, let v be the number of empty positions aboxeand letr be the number
of beads belows; on runneri — 1, let y be the number of beads above the empty space
left of m, letu be the number of empty positions above that space, arlethe number
of beads below that space. Then

weight(u) =weight(A) +1 — s +u — v,
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as we now show. The weight is the number of times a bead must be moved up one position
to obtain a core. Whem has been moved left, the beadsiahat were below it can each
move up one more position, increasing the weight bn the other hand, the beads on
i — 1 belowm are now blocked by: and can move one position less; this decreases the
weight bys. The other changes are accounted for by the lsead/hen a core is obtained
from ., m movesu spaces; when a core is obtained framn movesv spaces.

Sincey + u = v 4+ x (both are the number of filled and empty positions abayeit
follows that

weightd) — weight(w) = (y +s) — (x +1). Q)

There are two cases we must consider. First, assumgtkaD. Then the idempotent
Brp(f) corresponds to a block ¢f,_ ,,,—1 of defect zero. Lets be the unique irreducible
character in this block, and Iétbe the corresponding-core ofn — pw — 1. Now 3§ is
also thep-core of u. So itsi — 1th runner containg + s + 1 beads, and itsth runner
containsx + ¢ beads. But weiglit) > weight(w), as Q = D. It follows from (1) that
y+ s+ 1> x +¢. In other words, in the abacus representéngunneri; — 1 has more
beads than runner Since all the beads are as far up as they can go, there is an empty
space to the right of the lowest bead on runher 1. Moving that bead right gives an
abacus representing a partitiorvof pw. Let6 be the corresponding irreducible character
of S,—pw. Then by constructiony is a constituent of the restriction éfto S,—pu—1.
Also, 6 has the samg-core as.. So6 belongs to the block corresponding tojRe). This
completes the first case of the proof.

The proof in the second case, whén= D, is similar. All the abacus diagrams are
mirror images of the abacus diagrams in the first case.

Proposition 3.1 has the following combinatdrinterpretation. As mentioned in the
introduction, this should be thought of as part of a branching rule for blocks.

Corollary 3.2. Letk be a field of characteristip. Lete be a primitive central idempotent
of kS,, corresponding to thep-core y. Let f be a primitive central idempotent &f,,_1,
corresponding to thep-core §. Thenef # 0 if and only if § is the core of a partition
obtained fromy by removing a node oy is the core of a partition obtained fro by
adding a node.

Combining Theorem 2.2 and Proposition 3.% @btain a parameation of the blocks
of kSom1t,

Corollary 3.3. Let G = S, and letH = S,_1. Letk be a field of characteristip. The
blocks ofkG are in bijection with the set of all pairgy, §) of p-cores that satisfy the
following three conditiorns

(1) v is a partition of a non-negative integésuch that <» and/ =n (mod p).
(2) 8§ is a partition of a non-negative integer such thatm <n — 1 and m =
(n—1) (modp).
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(3) § is the core of a partition obtained from by removing a node, oy is the core of
a partition obtained frond by adding a node.

Whenevek is a field of characteristip, G is a finite group, and{ is a subgroup o,
Green'’s theory defines defect groupshnfor primitive idempotents of the algebkaG .
The defect groups of the primitive idempotenare the minimal subgroupd of H such
thate = Trg(a) for some elemenk € kGP?. Since the defect groups efare also the
maximal p-subgroupsD of H such that Bp(¢) # 0, Proposition 3.1 can be used to find
the defect groups of the primitive idempotentskcst,g"‘l. (Section 2 of [4] gives a good
approach to Green'’s thgoin the form we need it.)

Corollary 3.4.LetG = S, and letH = S,,_1. Lete be a primitive central idempotent b&;
with defect groupP. Let f be a primitive central idempotent & with defect groupQ.
Assume thaP and Q have been chosen so thAtC Q or Q C P. Let D be the smaller
of P or Q. Assume thatf = 0. Then the groupD is a defect group i of the primitive
idempotentf of kG

Proof. Let E be a defect group itf of ef. By (2.6) in [4], since Bp(ef) # 0, we have
D Cy E. We will be finished when we have shown thaf < |D|.

First, assume thab = Q. There is an element € kH? such thatf = Tri («). Then
ef =eTri(a) =Tri(ea). SOE €y D.

Next, assume thab = P. There is an elememnt € kG” such thate = Trg(ﬁ). So
e=), Trgme (B%), wherex runs through representatives {d@», H)-double cosets .
It follows thatef € 3", Trh, ,, (kGP*"H). Sinceef is primitive, Rosenberg’s lemma
implies that there is an such thatf € Tri, . (kGP""#). Therefore there is an such
thatE Cy D* N H. HencelE| < |D|, as we wanted. O

Proposition 3.1 also allows us to obtain an analog of Brauer's First Main Theorem.
(Compare this to Theorem 6.2 in [11].)

Theorem 35. Let G = S, and letH = S,,_1. Let k be a field of characteristip. Let
D be a p-subgroup ofH. The Brauer maBrp gives a bijection from the set of all
primitive idempotents dfG* with defect groupD to the set of all primitive idempotents
of kNG (D)N# (D) with defect groupD.

Proof. This follows easily from 3.1, 3.4, the description &f;(D) before 3.1 and
the combinatorial interpretation of thBrauer map from the discussion preceding
Proposition 3.1. O

4. Modulesover k[H x G]

One approach to blocks of group algebras views blocksoés right modules over the
algebrak[G x G], with the actioru(x, y) = x "lay for all x andy in G. For example, the
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book [3] takes this point of view throughout. In this section, we explore a similar approach
to blocks ofkGH .

Let ¢ be a primitive central idempotent dfG, and let f be a primitive central
idempotent ofk H. Consider the righk[H x G]-module fkGe. If a € efkG*, then
multiplication from the left bya is a k[H x G]-module endomorphism ofkGe that
sendsfe to a. Since anyk[H x G]-module endomorphism ofkGe is determined by
the image offe, and since the image ofe must be an element affkG", it follows
that every element of Engh«c1(fkGe) arises in this way. If we write endomorphisms
of right modules on the left, then the resulting mafkG? — Endyy«c (fkGe) is an
algebra isomorphism. Whe@ = S, and H = S,,_1, Theorem 2.2 shows thafkG* has
just one idempotent, spkGe is an indecomposabld H x G]-module. The next theorem
determines the vertex and Green correspondent of this module. Together with results from
Section 6 of [11], it suggests that there may be a sort of lopsided block theory similar to
the usual symmetric one.

Theorem 4.1. LetG = S, and letH = S,,_1. Letk be a field of characteristip. Lete be

a primitive central idempotent &G with defect groupP and let f be a primitive central
idempotent ok H with defect groupQ. Assume thaP and Q have been chosen so that
P C QorQCP.LetD bethe smaller o or Q. Assume thatf £ 0.

(1) The diagonal grou@ (D) is a vertex of the indecomposable right? x G]-module
fkGe.

(2) LetF denote the Green correspondence with respec¢Hox G, Ny (D) x Ng (D),
8(D)). Then

F(fkGe)=Brp(f)kNg(D)Brp(e).

Before we can give a proof of Theorem 4.1, we need the following result. It holds quite
generally, not just for the symmetric group. The proofis similar to the proof in the classical
case wherHH = G, but some care must be taken.

Proposition 4.2. Let G be any finite group, letd be a subgroup ofG, and letk be

a field of characteristicp. Assume thatD is a p-subgroup ofH. Let e and f be
primitive central idempotents &G andk H, respectively. Then thg Ny (D) x Ng(D)]-
module Brp (f)kNg (D) Brp(e) is isomorphic to a direct summand of the restriction
(fkGE)k[Ny (D)x NG (D)]-

Note that this proposition does not say thapBf )k Ng (D) Brp(e) is nonzero.

For the proof of Proposition 4.2, we will nee¢le following lemma. It has appeared
implicitly in the literature. See [1], for instance. §fis a subset of the grou@, thenS™
denotes the sum in the group algebta of all the elements of.

Lemma 4.3. Let P be a normalp-subgroup of a finite grougs and letH be a subgroup
of G that containsP. Suppose thaf is an H-orbitin G \ Cg(P). ThenC*t € J(kG™).
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Proof. Let x be an element of; that is not inCs(P). Let X be the orbit ofx under the
conjugation action o. Assume thaiV is a simplekG-module. SinceP <1 G andk has
characteristigp, every element oP acts as the identity oM. It follows that if x andy are
in X andm isin M, thenxm = ym. Sincex ¢ Cg(P), p divides the order ok . Therefore
X+ acts as 0 oM. This holds for every simpleG-moduleM, soX* € J (kG).

It follows that if C is as in the statement of the lemma, thém e J(kG). Since
J(kG)NkG™ is a nilpotent two-sided ideal &iG ", J (kG) NkG < J(kG™). The result
follows. O

Proof of Proposition 4.2. Let e := Brp(e) and let f1 := Brp(f). The Brauer map By
restricts to a&-algebra homomorphistiG? — kCg (D). It follows that Bip (fe) = fie1.
So we may write

fe= fies+a+b,

wherea € k[Ng(D) \ Cg(D)] andb € k[G \ Ng(D)]. Sincee, f, e1, f1 € kGV#P) and
k[G \ Ng(D)] is stable undeNy (D)-conjugationg lies inkNg(D)N# (D),

Now Lemma 4.3 implies thai € J (kNg(D)V#(P). It follows that fie1 + afier is a
unitin fie1tkNg(D)NeP) | Letu be its inverse. Note thate kNg (D)N# (D),

Let¢: fikNg(D)e1 — fkGe be the map given by (x) = fxe = fex. Letn kG —
kN¢ (D) be the projection onté Ng (D) with kernelk[G \ Ng(D)]. Let v :kNg(D) —
kN¢ (D) be the map given by (y) = uy. All three of these maps aké Ny (D) x NG (D)]-
module homomorphisms. Lete f1kNg(D)e1 = fie1tNg(D). Thenm¢(x) = n(fex) =
(fie1 + a)x = (fie1 + afier)x. It follows that Yo (x) = u(fier + afier)x = x.
Therefore f1kNg (D)e1 is isomorphic to a direct summand of the restriction f&Ge
toNg(D) x Ng(D). O

Proof of Theorem 4.1. First, we will show that§(D) is a vertex of the module
Brp(f)kNG(D)Brp(e). Let ex = Brp(e), f1 = Brp(f), G1 = Ng(D), and H; =
Ny (D). Let P, be a defect group of; and letQ; be a defect group of. Note that
D= QjandD < P1,or D= Py andD < Q1. By 1118.7 in [13] (a result due to Green), the
k[H1 x G1]-modulefikG1es is Q1 x P1-projective. Thereforeiere is an indecomposable
summand of the restrictiofy1kG1e1) g, x p, that shares a vertex wittY1kG1e1) u; xG, - By
[118.3 and 1118.1 in [13], it follows that there is a € G1 such thaB(Q] N P1) is a vertex
of (f1kG1e1) n,xG,- Conjugating this vertex bgz 1, z~1), we see thak(Q1NzP1z7Y) is
also a vertex. Recall thd = Q1 or D = P;. In the case withD = Q1, we haveQ; <1 G1
and Q1 C P1; hences(Q] N P1) =8(D). In the case withD = Py, we haveP; <t G1 and
P1 C Q1; hences(Q1NzP1z~ 1) = 8(D). Thuss(D) is a vertex of th&[ Q1 x P1]-module
f1kGer.

By Proposition 4.2, th&[H; x Gi]-module f1kGie1 is a direct summand of the
restriction(fkGe) g, xg,. Sinces(D) is a vertex off1kG ey, it follows from the Burry—
Carlson—Puig theorem (3.12.3 in [5]) th&D) is a vertex of (fkGe)yxc and that
F(fkGe) = f1kG1e1. O
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5. Thedimension of a block

We will prove in this section that the dimension of a bIockchtf"*1 depends only on
the unordered pair of weights of the associated blockkSef 1 andkS,. This result is
an immediate consequence of Theorem 6.1, which shows that the isomorphism type of a

block oka,f"*1 depends only on the unordered pair of weights of the associated blocks
of kS,_1 andksS,. We give a direct proof here, as it is conceptually simpler, and also as it
allows us to derive a formula for the dimension of a block.

We begin by recalling some facts about the blocksSif. It is known that the dimension
k,(w) of a p-block of a symmetric group depends only on its weighdnd on the prime.
Let p(n) denote the number of partitions @f The partition generating function is

P(x)= Zp(n)x" = 1_[(1 - x")fl. (2)

i=0 i>0

For any positive integdt let K (; x) be the power serieB(x)’. J.B. Olsson showed in [21]
that the dimension of @-block of a symmetric group that has weightis the coefficient
k,(w) of x* in the power serieX (p; x). For convenience, we sét,(w) = 0, for all
w < 0.

Lemma 5.1. Let (w1, wp) be a pair of nonnegative integers, and letbe a field of
characteristic2. Then there is a unique positive integersuch thatks, has a block
idempotent of weightwi, kS, —1 has a block idempotent of weightw,, andef # 0.

Proof. Setn; =t(r + 1)/2, fort > 0. Let A, be the partitionz,r — 1,...,2, 1] of n,.
ThenA, is a 2-core, every 2-core has this form, and Nakayama’s conjecture shows that the
2-blocks ofS,, are indexed by

{A+ |t > 0,n — n, is positive and even

Setn =ty —wy,—2 + 2W1 = ty,—uwy+1 + 2w1, and notice that — 1= t,,, .y, + 2w2 =
twy—wi—1+ 2w. It follows thatk S, has a block idempotertof weightw; andk S, —1 has a
block idempoteny of weightws. If w; — w2 — 1> 0, thenf has core.,,, —,,. Removing
anode fromk,,;, —,, and take cores, we obtain the carg _,,2 of e. If wg —w2—1<0,
thene has core,,_, +1. Removing a node frormy.,,,—,, and take cores, we obtain the
COreAy,—uw,—1 Of e. So in all casesf # 0.

Now suppose that is any positive integer such thatS,, has a primitive central
idempotente of weight wi, k£S,,—1 has a primitive central idempotert of weight wo,
andef # 0. Lety be the core ot. Equation (1) shows that can be represented on an
abacus with two runners, such that the difference in the number of beads on runners 0 and
liswi —wy—1.If wy—wz2—1> 0, theny = Ay, —y,—1, While if wy — w2 —1<0, then
Y = Aw,—wy+1. IN all cases:, and hence and f, are determined by = |y| +2w;. O

We let B(w1, w2) denote the bIocleka,f"‘1 given by the above lemma, and we let
k2(w1, 12) denote the dimension of this block as a vector spaceiver
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Let e be a central primitive idempotent ikS,. The irreducible characters in the
corresponding block of,, are indexed by the partitions af that have the samg-core
ase. We shall say that any such partition belongs to (or isenfs each partition is
determined by itg-core andp-quotient, the partitions belonging ¢care indexed by their
p-quotients.

Now suppose thaf is a central primitive idempotent iaS,_1, with ef #0.If A isa
partition ine, andu is a partition inf, andu can be obtained by removing a node fram
we shall say thati, ) belongs toef, or to the blockekaf”*l. By the discussion in

Section 1, the dimension @j‘kS,f”‘l equals the number of paits, 1) that belong teef.

Lemma 5.2. For all integerswi, wa, the blocksB (w1, w2) and B(wz, w1) have the same
dimension.

Proof. Let (A, 1) be a pair of partitions belonging t8(w1, w2). Represent. and . on
abacus diagrams with two runners anteads, for some > 0. Let i be the partition
obtained by transposing the runners.pfind letii be the partition obtained by transposing
the runners ofe. Now 4 belongs to a block of weight1, and/i belongs to a block of
weightwo. Sinceu is obtained by removing a node, say nadérom A, theith S-number
of u is one less than thieh g-number ofd. The construction ensures that thie 3-number
of 2 is one more than thih B-number ofi. So i is obtained by adding a node o It
follows that(ji, 1) belongs toB(w2, w1). The association

(s ) < (2, 2)

is involutary. We conclude that the dimension®fw1, wy) is equal to the dimension of
B(w2, w1). O

We can now prove the main result of this section.

Theorem 5.3. LetG = S,,, H = S,,—1 and letk be a field of characteristip. Lete be a
block idempotent ot G, of weightw,, and let f be a block idempotent &fH, of weight
wyr. Assume thatf # 0. Then the dimension of the bloefkG* depends only on the
unordered pair of weightsw,, ws}.

Proof. Chooser > 0, such that if partitions are represented on abacus diagramgwith
runners and beads, andx, w) is a pair of partitions iref, thenyu is obtained from by
moving a bead on runner 1 into an empty position due left on runner 0.

Let i be an integer with & i < w,. Fix a(p — 2)-tuple (02, ..., p?~1) of partitions
with Zf;21|pf| =w, —i. Let (A, u) be a pair of partitions iref such thatr/ = p/,
for j=2,..., p— 1. Then|A® + |A1| =i. The first two runners of represent a certain
partition, call itA, on an abacus with two runners. Similarly the first two runnerg. of
represent a partitiofl. Now A has weight. Soji has weight — (w, — w ), using Eq. (1)
from the proof of Proposition 3.1. Itis clear that@s ) range over all such pairg}., i)
range over all pairs of partitions belonging to the bl&k, i — (w. —wy)).
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The number of p — 2)-tuples(p?, ..., p?~1) equalsk,_»(w. —i). Each(p — 2)-tuple
givesrise tcko(i, i — (w. —wy)) different pairg(x, u) belonging teef . Asi varies between
0 andw,, we obtain every pair of partitions &y exactly once. It follows that

dim(efkG™) = "kp 2w, — i)ka(i. i — (we — wy)). ©)
i=0

Substituting; =i — (w. — wy) in these equations, and using Lemma 5.2, we see that we
can transpose, andw ¢, without changing the dimension. The theorem follows;

Equation (3) in the proof of Theorem 5.3 can be interpreted in terms of power series.
Definek,(n, m) := dim(efkG*"), whenever has weight and f has weightn. Form the
following power series in the variablesandy.

K(p;x,y):= Z kp(n, m)x"y™.
n>0,m>0

Now recall (from Eg. (2) at the beginning of this section) tiRat; x) is the power series
P(x)!. Let K (I; xy) be its evaluation aty. Then Eq. (3) can be interpreted as showing
that, as power series inandy,

K(p;x,y)=K(p—2;xy) x K(2;x,y).

Note that there is no comma betweeandy in K (p — 2; xy).

We end the section by giving a precise formula f@tw1, w2). This, together with
Theorem 5.3, can be used to complitgw1, w), for any pair of nonnegative integers
w1, wp, and any primep.

Proposition 5.4. Suppose thatv; > w2. Then the dimensiokz(w1, w2) of the block
B(w1, wy) is given by(the finite sum

e¢]

ko(w1, w2) =Y (w1 —w2) + (2 + 1))ka(wz — i (w1 — w2) — i(i + 1)).
i=0

Proof. Let B(w1, w2) = eleszf"‘l, wherek is a field of characteristic 2, is a central
primitive idempotent inkS,, of weight w1, andez is a central primitive idempotent in
kS,—1, of weightw,. Proposition 3.1 shows that the coreaafis the core of a partition
obtained by adding a node to the core @f Let (A1,A2) be a pair of partitions in
B(w1, wp). Represent; on an abacus with two runners, with the numbefbeads chosen
so thath; is obtained fromi1 by moving one bead on runner 1 into an empty space to its
left on runner 0. Lew, respectivelyp, denote the number of beads on runners 0 and 1
of A2. Then (1) shows that; — wp=a — b — 1.

Suppose that there exists a central primitive idempoterit kS,+1, different toes,
such thatezez # 0. Let (A3, A4) be a pair of partitions irezeps. Representiz on an
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abacus with two runners andbeads. Using Proposition 3.1, we see thais obtained

from A3 by moving a bead on runner 0 into an empty position one space up and to its
right on runner 1. In particulat,z hasa + 1 beads on runner O anfd— 1 beads on
runner 1. Letws be the weight ofez. Modifying the proof of (1), it can be shown that

w3z —w2=(b—1) — (a+ 1) +2=>b—a. Combining this with the equality at the end of
the previous paragraph, we see that= wy — (w1 — w2) — 1. Notice thatwsz < w>.

The 2-core ok is the 2-core of a block idempotesfin kS, > that has weightv; — 1,
while the 2-core of3 is the 2-core of a block idempotess in kS,_» that has weight
w3 — 1 (if the idempotents exist). Moreover, we hayes # 0 andezes # 0, andey, es are
the only block idempotents ikS,_» that do not annihilate,.

We now count irreducible characters. There/an@v,) partitions that belong te,. Let
u be one such. The previous paragraphs show that adding a npdertmluces a partition
A such thaii, u) belongs toB(w1, w2) or to B(wz — (w1 — w2) — 1, wp), while removing
a node fromu produces a partitiop such that(u, o) belongs toB(wz, wy — 1) or to
B(w2, w2 — (w1 — wz) — 2). But (as is well known). has one more addable node than
removable node. It follows (on using Lemma 5.2) that

k2(w1, w2) = ka(w2) + ka(w1 — 1, w2) + k2(w2, w2 — (w1 — w2) — 2)

— kz(wz, wo — (w1 — w2) — 1).

If we apply this formula to th&w1 — w2) + 1 numberskz(w1 — i, wa), fori =0,...,
(w1 — wy), then add and cancel equal terms of opposite sign, we obtain

k2(w1, w2) = (w1 — w2 + Dk2(w2) + k(w2, w2 — (w1 — w2) — 2).

Applying this formula repeatedly to the summand on the extreme right, we obtain the
statement of the proposition.c

6. Theisomorphism type of a block

We show in this section that the isomorphism type of the bloclk§ifﬁ*1 depends only
on the unordered pair of weights of the associated blocksSpf; andks,,. In fact, we
prove the corresponding statement over a suitable valuation ring of characteristic zero.

We need the notion of perfect isometries between blocks of finite groups. Our primary
reference is [7]. For this discussion, 164 and G2 be arbitrary finite groups, and let
(F, O, k) be a splittingp-modular system for botliz; and G2. So F = Fraq©) has
characteristic 0Q is a discrete valuation ring with maximal idgal), andO®/ () = k. For
i =12, lete; be anidempotentiZ OG;. We useR (G, ¢;) to denote the Grothendieck
group of the abelian category of ledff FG; modules. The elements ®r(G;, e;) are
formal Z-linear combinations of # irreducible characters of; FG;, and the group
operation is formal addition of characters.
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LetI:Rr(G1,e1) > Rr(G2,e2) be a group homomorphism, altt R (Ga, e2) —
Rr(G1,e1) be its adjoint, with respect to the usual inner productsZmF G, and
ZeoFGo. Set

p= Y x®I.

xelrr(er FG1)

Thenu is aZ-linear combinatia of characters ofe1 FG1, e2 F G2)-bimodules. The map
I is an isometry if, for eacly € Irr(e1FG1), there is a sigre(x) € {£1}, such that

e(x)I(x) €lrr(e2F G2). Broué calls such an isometperfectif the associateg: satisfies,

forall g1 € G1 andgs € G2

o (1(g1,82)/1Cc (g1 € O and(u(g1, 82)/1Cc (g2)]) € O.
o If u(g1, g2) # 0, thengy is p-regular if and only ifgs is p-regular.

Let 1:Rr(G1,e1) —> Rr(Ga,e2) be a perfect isometry. The sd¢e(x) | x an
irreducible character oé1FG1} form a basis forZe1 FGi. It follows from [7, 1.5]
that the F-algebra isomorphisi@e1 FG1 = Zex FG2, induced bye(x) — e(e(x)1(x)),
restricts to ar0-algebra isomorphism, denote] from Ze1OG1 to Ze2OGo. Explicitly,
if z€ Z(e10G1), we havez =), w, (z)e(x), wherew, (z) = x(z)/x (1) is the central
character associated wijh Then

X

AR) =)0y (@De(sC0T (X))
X

M. Enguehard [12] has shown that there are many perfect isometries between blocks
of finite symmetric groups which have the same weight. We will need some detailed
information about how these isometries arise.

Letx andu be the cores of twg-blocks A and B of symmetric groups that have the
same weights. Enguehard shows that there is a perfect isometryfton® induced by

A= oM (L),

wherea runs through all partitions associated wilh whenevek and¥ are maps with
the following properties:

(1) ¥ maps all partitions with core bijectively onto all partitions with corg.

(2) Associated with each partitionwith corex, there is a bijective mag, between the
hooks ofA whose length is divisible by and the corresponding hooksf(}).

(3) @, preserves hook lengths.

(4) ¥ sends the partition obtaéd by removing a hook from A to the partition obtained
by removing®;, (h) from ¥ (1). Hereh is any hook of length divisible by.

(5) «a(a) is a sign{+1, —1} such that, for each hoadkof length divisible byp,

LegPath) LegPal®; (h)) = a(t)a(h — h),
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where LegP4d(y) is the parity of the leg length of the hogkanda — 4 is the partition
obtained by removing from A.

Represent they-coresx and p on abacus diagrams with runners. Represent all
partitions withp-corex or u on abacus diagrams, so that the diagramfor w is obtained
when the beads are pushed up as far as possible on all runners.

Morris and Olsson [15] define a sign= §, associated with each abacus diagram. Its
main property is that if. is obtained from. by moving a bead up on@osition on a runner,
then

LegPath) = 8(1)8(L).

Each partition withp-corex, respectivelys, is represented by the-quotient associated
to its abacus diagram. Identify partitions apequotients. Letoc be any permutation
of {0,1,...,p — 1}. Theno acts on the partitions wittp-core ¥ by permuting the
corresponding-quotients. Fon a partition withp-corex, define

¥ (1) = the partition withp-coreu and p-quotiento (1),
and
a(h) =8()3(¥0)).

For eachy, let @, be the obvious identification of the hooksxbf length divisible byp
with the corresponding hooks @f(1).

It is easily checked tha¥, @,, and« satisfy all the requirements of Enguehard. In
particular, this givesp! different perfect isometriebetween two blocks of symmetric
groups of the same weight.

Theorem 6.1. Let Gy = S,,, H1 = S,—1 and let(F, O, k) be a p-modular system. Lety
be a block idempotent i®G1, of weightw,, and let f1 be a block idempotent i® Hy,
of weightw . Assume that; f1 # 0. Then the isomorphism type of the bI@qIﬁOGfl
depends only on the unordered pair of weights, w r}.

Proof. Let G2 = S, H2 = Sp—1, Wherem is any positive integer. Let¢> be a block
idempotent inOG2, and let f> be a block idempotent iK Ho. Assume thatks f> # 0.
Suppose that the ordered pair of weightspfand f is (w., wy) or (wy, we). We will
show tha'relflOGf1 = ezszng. First we consider the case thathas weightw,, and
f2 has weightw 7.

Leti =1, 2. TheO-algebra

T :=ZeiOG; ®p Zf; OF H;
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is embedded in the semisimple algelftapn F = Ze; FG; ®fF Zf; FH;. Let I; be the
ideal of T; ® » F that is generated by the primitive idempotents

{e) ®e) | x €lrr(e; FGy), ¥ € Irr(f; FH;), ande(x)e(y) =0}.

It follows from Proposition 2.1 that, a8-algebras,
H; ~
ei ;0G" = T;/I; N T;.

Represent the partitions i3 and f; on abacus diagrams with runners and; beads,
wheret; is chosen so that ifs, 1) is a pair of partitions ire; f;, thenu is obtained from
by moving a bead on runner 1 into an empty position due left on runner 0.

As described in the paragraphs precgdthis theorem, Enguehard has shown that
we can choose isomorphismat, : Ze1FG1 — ZeaFGo and Ay : Zf1 FH1 — ZfoFH>
such thatA.(Ze1OG1) = Ze2OG2 and A.(Zf1OH1) = Zf2OH. These maps induce
an isomorphismi, ® Ay :T1 ® F — T»> ® F that restricts to aiQ-algebra isomorphism
Ty — T. To show thatey f1OGE" = ¢, ,0G2, it is now only necessary to show that
Enguehard’s isomorphisms can be chosen sotha A ¢ (I1) = b.

ChooseA, so that at the level of partitions it sends a partitignin e; to the unique
partitionAz in ez that has the samg-quotient as\. (In terms of the discussion preceding
this theorem, choose the permutatiorio be the identity.) Similarly, choosa ; so that
it induces ap-quotient preserving bijection between the partitiongirand the partitions
in fo.

Let A1 < A2 be corresponding partitions i, respectivelyez, and letu1 < u2 be
corresponding partitions iy, respectively,f>. Leti =1 or 2. The first two runners of;
represent a certain partitionon an abacus with two runners. By Eq. (1) in the proof of
Proposition 3.1w, — w s determines the relative number of beads on the first two runners
of A;; thereforei does not depend on Similarly the first two runners oft; determine
a partitionx. Now (%;, u;) belongs toe; f; if and only if ;i can be obtained from by
deleting a node. It follows that, ® A ¢ (I1) = I>. HenceT1/Ta N I1 = T2/ To N 1.

Now we turn to the other case, whep has weightw ; and f> has weightw,.. Only
a small modification must be made to the proof. IsomorphigmsZe1 FG1 — Zf>F H;
andAy:Zf1FHy — ZeaF G2 must be chosen so that on the level of partitians,and
Ay exchange the first two permutations in egefguotient. (In terms of the discussion
preceding this theorem, the permutatiois the transpositio0, 1).) These isomorphisms
induce an isomorphism

Ze10G1Q® ZAOH, — Zf>OH> ® ZeoOG2
that sends the kernel of the epimorphism
Ze10G1® Zf1OH1 — e1 fLOG
to the kernel of the epimorphism

ZfoOHy ® Ze2OGo — ezszng.
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Thereforees f10GI = e, L0GY2. O

7. Blocksand p-regular orbits

We end the paper with some results on the support of the block idempotends’of
Many of these are analogues of results in [17].

If x is an element okG and if g is an element ofG, then (x | g) will denote the
coefficient with whichg occurs inx. Call a H-orbit in G a p-regular orbit if its elements
have orders coprime tp.

Proposition 7.1. Let G = S,,, H = S,,_1 and letk be a field of characteristi@. Then the
2-regular H-orbit sums form a unital subalgebra b& 7.

Proof. Let K andL be 2-regularH -orbits in G and letg € G be 2-singular. We need to
showthat( KLt | g) =0.

Now g has at least one even length orBiton N,,. We letS(O) and S(N,,\O) be the
pointwise stabilizers oN,\O, respectivelyO, in G. So S(O) x S(N,\O) is a Young
subgroup ofG.

Sinceg € S(O) x S(N,\O), we may write, uniquelyg = c¢d, wherec € S(O) and
d € S(N,\O). Letu be the 2-part of, and lets ands be the 2-part, respectively,-part,
of |O|. Asc is an|O|-cycle,u is a product of cycles, each of length Thus

Co(u) =228 x S(N,\O).

It is not hard to show that, asandr are coprimeZ;: S; = A(Z;) x W, where A(Z;)
is the diagonal subgroup (see Proposition 22 of [17]). It follows thathas a normal
complementW¥ x S(N,\O) in Cg (u).

Suppose thaD can be chosen so that¢ O. The Brauer homomorphism By is
the algebra morphishG“) — kCg (u), such that Bg, (K ) = (K N Cg(u)) T, for each
(u)-orbit K in G. Sincen ¢ O, we have: and hence are elements off . SokGH € kG,
It follows that

(KTL¥ 1 g) = (Bruy (K ) Br (L) 18) = (K N Cow) (LN Cow) ™ | g).

But K N Cg(u) andL N Cg (u) consist ofp-regular elements. So they are contained in the
normal complement tu) in Cg (1). We conclude thatK L™ | g) = 0 in this case.

We may suppose then thgt has a single even length orbit dx,. All 2-regular
permutations have sighl, while each even length cycle has sigf. It follows that each
product inK L™ has sign+1, while g has sign—1. We conclude thatK *L™ | g) = 0.
This completes the proof.O

The proposition is false ifp is odd. In fact, G = S3 and p = 3 furnishes a
counterexample. Let be a field of characteristic 3. NoWw(1, 2)}, {(1, 3), (2,3)} are
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3-regular orbits ofS> on S3, while {(1, 2, 3), (1, 3, 2)} is an orbit whose elements have
order 3. However the following equality holdskrsgz:

(1.2 x ((1,3+(2,3)=(1,23+(13,2).

Corollary 7.2. Let G = S,, H = S,—1 and letk be a field of characteristiQ. Then the
k-span of the2-regular H-orbit sums coincides with the set of squares of elements of
kGH.

Proof. Recall thatkG# is the subalgebra dfG that is generated b¥ (kG) and Z(kH).
The binomial theorem modulo 2 shows that every square of an elemen bfis a
k-linear sum of terms of the fork +)2(L*)2, whereK is a conjugacy class af andL
is a conjugacy class df. Now [17, Corollary 6] shows thatk +)2 and (L*)? are sums
of 2-regularH -orbits. It then followsfrom Proposition 7.1 thatk *)2(L™)? lies in the
k-span of the 2-regulaif -orbit sums.

Now suppose thatr; A,) is a 2-regularH -orbit type. Then from its definition, and the
binomial theorem modulo 2X (x; As) = X (i, is)?, Wherey is the partition ofn with
wi=0; +1)/2,fori=1,...,1(), and withu; =1 or 0, fori > I(A). The X (); A5) are
linearly independent. It follows that the dimension of the subspace of squake’iris
greater than or equal to the number of 2-regéfaorbits. The result now follows from the
previous paragraph.C

Corollary 7.3. Let G = S,, H = S,,—1 and letk be a field of characteristi@. Then each
idempotent irkG# lies in thek-span of the-regular H -orbit sums.

Proof. By Theorem 2.2, the primitive idempotentsiaf” have the formef, wheree is

a block idempotent ofG, and f is a block idempotent of H. Now e lies in the span of
the 2-regular conjugacy class sumgafandf lies in the span of the 2-regular conjugacy
class sums of, by a well known result of Osima (see [18, 3.6.22]). The corollary is then
an immediate consequence of Proposition 7..

The analogous result is false whens odd. Letk be a field of characteristic 3. Then
the support of each primitive idempotenthcti‘ss4 includes 3-singulabs-orbit sums.
Our final theorem can be used to lift Corollary 7.3 to characteristic zero.

Theorem 7.4. Let (F, O, k) be a2-modular system, and |ét = S,,, andH = S,_1. Then
each primitive idempotent i®G# is of the forme — f, wheree is an idempotent in
Z(OG) and f is an idempotent itz (OH).

Proof. Lete, denote the block idempotent, 651G or of OH, if it exists, that corresponds
to the 2-corer; = [t,t — 1,...,2,1]. Recall thatn; = 7(+ + 1)/2. Lets be the integer
determined byn; < n < nsy1. FOr notational convenience, set- 2 to be 1, ifi =0.
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It follows from the branching theorem for blocks, Corollary 3.2, that the primitive
idempotents oG are

{ej_2e; |i=0,...,s}.

Now e; = e5_pes andes_1 = es_3e5_1 ande; = e;_2e; + ejej2, fori =0,...,s — 2.
We can use these equations to expegsse; in terms of thee;, fori =0,...,s:

= |s=i=2 ]

ej_2¢; = Z €it+4j — Z Cit+4j+2-
j=0 j=0

Depending on the parity of and the parity of, this shows that;_se; is of the form
e— for f —e,wheree is an idempotent itZ (0S,,) and f is an idempotent itZ (OS,,—1).
However, we can change between these forms using the eqfiality= (1—¢) — (1— f).
This completes the proof.O0

References

[1] J.L. Alperin, On the Brauer correspondence, J. Algebra 47 (1977) 197-200.

[2] J.L. Alperin, Weights for finite groups, in: P. Fong (zdlhe Arcata Conference on Representations of Finite
Group (Arcata, CA, 1986), in: Proc. Symp. Pure Mathol. 47, part 1, Amer. Math. Soc., Providence, RI,
1987, pp. 369-379.

[3] J.L. Alperin, Local Representation Ttwy, Cambridge Univ. Ress, Cambridge, 1986.

[4] J.L. Alperin, M. Broué, Local methods in block theory, Ann. of Math. 110 (1979) 143-157.

[5] D.J. Benson, Representations and Cohagyll, Cambridge Univ. Ress, Cambridge, 1991.

[6] M. Broué, Les!-blocs des groupes Gk, q) et U(n, ¢) et leurs structures locales, Astérisque 133-134
(1986) 159-188.

[7] M. Broué, Isométries parfaites, Types deddpCatégories dérivées, Astérisque 181-182 (1990) 61-92.

[8] H. Ellers, Cliques of irreducible representationspe$olvable groups and a themn analogous to Alperin’s
conjecture, Math. Z. 217 (4) (1994) 607—-634.

[9] H. Ellers, Cliques of irreducible representations, Gt groups, and Brauer’s theorems on blocks, Canad.
J. Math. 47 (5) (1995) 929-945.

[10] H. Ellers, The defect groups of a cliqug;solvable groups, and Alpers conjecture, J. Reine Angew.
Math. 468 (1995) 1-48.

[11] H. Ellers, Searching for more general weighinfectures, using the symmetric group as an example,
J. Algebra 225 (2000) 602—629.

[12] M. Enguehard, Isométries parfaites entredsl de groupes symétriqaieAstérisque 181-182 (1990) 157—
171.

[13] W. Feit, The Representation Theory ahfe Groups, North-Holland, Amsterdam, 1982.

[14] G. James, A. Kerber, The Representation Thedth® Symmetric Group, Addison—Wesley, Reading, MA,
1981.

[15] A.O. Morris, J.B. Olsson, Op-quotients for spin characters, J. Algebra 119 (1988) 51-82.

[16] G.E. Murphy, The idempotents of the symmegioup and Nakayama’s conjecture, J. Algebra 81 (1983)
258-265.

[17] J. Murray, Squares in the centre of the modgesup algebra of a finite symmetric group, Bull. London
Math. Soc. 34 (2002) 155-164.

[18] H. Nagao, Y. Tsushima, Represeidas of Finite Groups, Academic Press, 1989.



258 H. Ellers, J. Murray / Journal of Algebra 276 (2004) 236—-258

[19] A. Okounkov, A. Vershik, A new approach to repeesation theory of symmetric groups, Selecta Math.
(N.S.) 2 (4) (1996) 581-605.

[20] G.I. Olshanski, Extension of the algebt&(g) for infinite-dimensional classical Lie algebrgsand the
YangiansY (g/(m)), Soviet Math. Dokl. 36 (1988) 569-573.

[21] J.B. Olsson, Lower defect groups in symmetric groups, J. Algebra 104 (1986) 37-56.



