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1. Introduction

This paper is one in a series [8–11] exploring the algebrakGH , the centralizer in the
group algebrakG of the subalgebrakH , wherek is a field of characteristic not zer
G is a finite group, andH is a subgroup ofG. All these papers search for theore
similar to Alperin’s weight conjecture [2]. The immediate goal is to find results that r
information about blocks ofkGH or simple modules overkGH to p-local information.
The ultimate goal is to gain insight into Alperin’s conjecture. See the introductions to [1
and [11] for a detailed description of the program.

In this paper, we obtain fairly complete information about the algebrakGH whenG is
the symmetric groupSn, H is Sn−1 identified with the subgroup ofSn consisting of all
permutations fixingn, andk is a field of characteristicp with p �= 0.

For comparison, first consider the algebraFGH , whereG is any finite group,H is any
subgroup ofG, andF is a field of characteristic 0 that is a splitting field for bothG andH .
For any irreducible characterχ of G, let e(χ) be the primitive central idempotent ofFG

corresponding toχ . For any irreducible characterψ of H , letf (ψ) be the primitive centra
idempotent ofFH corresponding toψ . A straightforward application of the Jacobs
density theorem shows that

FGH =
⊕

χ∈Irr(G),ψ∈Irr(H)

e(χ)f (ψ)FGH ∼=
⊕

χ∈Irr(G),ψ∈Irr(H)

Mat(χH ,ψ)(F ),
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where(−,−) is the usual inner product of characters ofH , and for anyl, Matl (F ) is the
algebra ofl by l matrices with entries inF . (See 2.1 in [11].) When we specialize to t
case withG = Sn andH = Sn−1, the classical branching rule gives us two further piece
information. First, it provides a combinatorial way to determine whethere(χ)f (ψ) is 0;
second, it tells us that whene(χ)f (ψ) �= 0, (χH ,ψ) = 1 so thate(χ)f (ψ)FGH ∼= F .
ThusFS

Sn−1
n is isomorphic to the direct sum ofm copies ofF , wherem is equal to the

sum over all partitionsλ of n of the number of distinct parts ofλ.
Much of this paper is devoted to developing a similar understanding of the al

kS
Sn−1
n whenk has characteristicp. In Theorem 2.2, we show that ife is a primitive central

idempotent ofkSn andf is a primitive central idempotent ofkSn−1 with ef �= 0, then
ef kS

Sn−1
n is a commutative local ring. Thus the decomposition

kS
Sn−1
n =

⊕
e,f

ef kS
Sn−1
n

is the block decomposition of the algebrakS
Sn−1
n , wheree andf run through all primitive

central idempotents ofkSn and kSn−1, respectively. This result follows easily from th
surprising fact thatkS

Sn−1
n is generated as an algebra by the centers ofkSn andkSn−1.

Since the algebrakS
Sn−1
n is commutative, there is a bijection between its simple mod

and its blocks.
We prove analogs of both consequences of the classical branching rule. In 3.2, w

a combinatorial way to determine whether the productef is 0. As a consequence, we find
combinatorial parametrization of the blocks ofkS

Sn−1
n . (See Corollary 3.3.) In Theorem 6.

we prove an analog of the second consequence of the classical branching rule. W
that, whenef �= 0, the isomorphism type of the algebraef kS

Sn−1
n depends only on th

unordered pair{we,wf }, wherewe is the weight ofe andwf is the weight off . This
result is similar to the well-known fact that if two blocks of group algebras for symm
groups have the same weight then their centers are isomorphic. The proof depen
theorem of Enguehard [12], which states that there is a perfect isometry between a
of blocks of symmetric groups that have equal weights.

In Sections 3 and 4, we explore the relationship between the blocks ofkS
Sn−1
n and the

p-local structure ofSn. Green’s theory gives a definition of defect groups inSn−1 for
each block ofkS

Sn−1
n . In Corollary 3.4, we find these defect groups. In Theorem 3.5

show that an analog of Brauer’s first main theorem holds; ifG = Sn, H = Sn−1, andD

is a p-subgroup ofH , then there is a bijection between the blocks ofkGH with defect
groupD and the blocks ofkNG(D)NH (D) with defect groupD. Since both algebras a
commutative, this theorem can be interpreted as a theorem counting simplekGH -modules,
a theorem that looks similar to the weight conjecture. These results rely on the fa
whene andf both have defect greater than zero, then it is possible to determinep-locally
whetheref = 0. (See Proposition 3.1.)

In Section 4, we present a sort of lop-sided analog of thek[G×G]-module approach to
block theory. Thek[Sn−1×Sn]-modulef kSne is indecomposable, since its endomorph
ring is isomorphic to the local ringef kS

Sn−1
n . We show that ifD is a defect group inSn−1
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of ef , then the diagonal groupδ(D) is a vertex off kSne, and the Green correspondent
f kSne with respect to(Sn−1×Sn,NSn−1(D)×NSn(D), δ(D)) is BrD(f )kNSn(D)BrD(e),
where BrD denotes the Brauer map with respect toD.

Finally in Section 7, we obtain some results regarding the support of the
idempotents ofkS

Sn−1
n . We show that whenk has characteristic 2, then each idempot

in kS
Sn−1
n lies in thek-span of the 2-regularSn−1-orbit sums. The analogous result is fa

when the characteristic ofk is odd. Section 7 builds on work in [17].
We will use several well known combinatorial notions. Letλ be a partition of a

positive integern. Soλ is a nonincreasing sequence{λi} of nonnegative integers whos
sum is n. We let l(λ) denote the number of nonzero terms inλ. Let t be an integer
at least as big asl(λ). The β-set of sizet for λ is the strictly decreasing sequen
λ1 + t − 1> λ2 + t − 2 > · · · > λt .

It is sometimes useful to represent a partitionλ using an abacus withp-runners (for
somep > 0) and aβ-set of sizet . The runners are labelled (left to right) by 0, . . . , p − 1.
The positions in theith row of the abacus are labelled, left to right, fromp(i −1) to pi −1,
for i = 1,2, . . . . The abacus ofλ is obtained by placing a bead at each position given
aβ-number. The shape of the abacus is determined byt (modp). Conversely each abacu
with p-runners represents theβ-set of a partition.

Identify λ with the corresponding abacus withp-runners. Thej th runner ofλ can be
thought of as a partition, labelledλj , represented by an abacus with one runner. Thep-tuple
(λ0, . . . , λp−1) of such partitions is called thep-quotientof λ. Thep-core ofλ is another
partition associated withλ. It is represented by the abacus withp-runners that is obtaine
by moving the beads onλ as far up as possible. So thep-core ofλ depends only on th
numbers of beads on each of the runners ofλ. It is clear thatλ is determined by itsp-core
andp-quotient.

2. Blocks

Finding the blocks of the algebrakGH , whenG = Sn andH = Sn−1, will be easy after
we have established that theZ-algebraZGH is generated as an algebra by the cente
ZG and the center ofZH , whereZ represents the rational integers. This will be prove
Proposition 2.1.

We need a standardZ-basis forZGH . Let λ = ((λ1)
n1, . . . , (λr )

nr ) be a partition ofn,
whereλ1 > · · · > λr > 0 and

∑r
i=1 niλi = n. Suppose thatσ is an element ofSn of cycle

typeλ, and thatn occurs in a cycle of lengthλs whenσ is written as a product of disjoin
cycles. Consider the conjugation action ofSn−1 on Sn. The orbit containingσ consists of
all elementsτ of Sn such thatτ has cycle typeλ andn occurs inτ in a cycle of lengthλs .
Thus the orbits are labelled by pairs(λ;λs), whereλ is a partition ofn andλs is one of the
distinct parts ofλ. For any such orbit, letA(λ;λs) be the sum inZSn of all its elements
For example, in(ZS3)

S2 we haveA((2,1);1) = (12) andA((2,1);2) = (13) + (23). The
set of allA(λ;λs) is a basis forZS

Sn−1
n as aZ-module. It follows that theZ-rank ofZS

Sn−1
n

is
∑

λ d(λ), whereλ runs through all partitions ofn andd(λ) is the number of distinc
parts ofλ. Since there ared(λ) + 1 ways of incrementing some part ofλ by one, in order
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to produce a partition ofn + 1, induction shows that theZ-rank ofZS
Sn−1
n is also given as∑n−1

i=0 p(i), wherep(i) is the number of partitions ofi.
We will useNn to denote the set containing the firstn positive integers. Fori � 0, we

let Vi be theZ-submodule ofZG that is generated by all permutations that fixi or more
elements ofNn, and setUi := Vi ∩ ZGH . We then have

0= Un+1 ⊆ Un ⊆ · · · ⊆ U1 ⊆ U0 = ZGH.

Proposition 2.1. Let Z be the ring of rational integers. LetG = Sn and letH = Sn−1. The
Z-algebraZGH is generated byZGG andZHH .

Proof. Let A be theZ-algebra generated byZGG andZHH . We will prove by induction
on n − i thatUi is in A. SinceUn contains only integer multiples of the identity, the st
of the induction is trivial. For the rest of the proof, assume thati < n, and thatUj ⊆A for
all j > i. TheZ-moduleUi is generated byUi+1 and the set of allA(λ;λs) such that the
multiplicity of 1 as a part ofλ is i. We must show thatA contains all such basis elemen
A(λ;λs).

First, consider a partitionµ of n of the formµ = ((µ1)
n1,1n−n1µ1). The basis elemen

A(µ;1) is in ZHH , since it is the sum of all permutations inH of cycle typeµ. The sum
A(µ;µ1)+A(µ;1) is in ZGG, since it is the sum of all permutations inG of cycle typeµ.
It follows thatA(µ;µ1) andA(µ;1) are inA.

Let λ = ((λ1)
n1, . . . , (λr )

nr ) be a partition ofn; assume that the multiplicity of 1 as
part ofλ is i. We will show that for anys � r, the basis elementA(λ;λs) is in A. Define
partitionsµ(1),µ(2), . . . ,µ(r−1) as follows.

µ(1) = (
(λ1)

n1,1n−n1λ1
)
,

µ(2) = (
(λ2)

n2,1n−n2λ2
)
,

...

µ(r) = (
(λr )

nr ,1n−nrλr
)
.

(Whenλr = 1, which happens ifi > 0, this last partition should really be written as(1n)

instead of(1nr ,1n−nr ) as it is here.) Leta be the following product

a =
(

s−1∏
j=1

A
(
µ(j);1

))
A

(
µ(s);λs

)( r∏
j=s+1

A
(
µ(j);1

))
.

The elementa is in A since each factor in the product is inA.
In the following paragraph, we will carefully examine the expansion ofa to show that

a = A(λ;λs) + b, whereb ∈ Ui+1. Sincea ∈ A and by induction assumptionUi+1 ⊆A, it
follows thatA(λ;λs) ∈ A.

Let t be a term in the expansion ofa. The termt has the formt1t2 · · · tr , wheretj is a
term fromA(µ(j);1) whenj �= s and is a term fromA(µ(s);λs) whenj = s. Each factor
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tj is a product ofnj disjoint λj -cycles. If the cycles appearing int1 throughtr are not all
disjoint from each other, then the permutationt must fix more thani elements ofNn; in this
caset ∈ Vi+1. On the other hand, consider the sumu of all the termst in the expansion o
a such that the cycles appearing int1 throughtr are all disjoint; the terms inu are exactly
the terms inA(λ;λs). It follows thata − A(λ;λs) is in Vi+1. Sincea − A(λ;λs) is also in
ZGH , we havea − A(λ;λs) ∈ Ui+1, as we wanted. �

Next, we find the blocks of the algebrakSn
Sn−1 for any fieldk. In Corollary 3.3 we will

present a parametrization of these blocks by certain pairs of cores.

Theorem 2.2. Let G = Sn and let H = Sn−1. Let k be any field. Lete be a primitive
central idempotent ofkG and letf be a primitive central idempotent ofkH . If ef �= 0,
thenef kGH is a block ofkGH . Every block ofkGH arises in this way.

Proof. Let e1, . . . , er be the primitive central idempotents ofkG; let f1, . . . , fs be the
primitive central idempotents ofkH . Then

kGG = ke1 ⊕ · · · ⊕ ker ⊕ J
(
kGG

)
and

kHH = kf1 ⊕ · · · ⊕ kfs ⊕ J
(
kHH

)
.

By Proposition 2.1,kGH is the generated as ak-algebra bykGG andkHH . It follows that

kGH =
(⊕

i,j

keifj

)
⊕ I,

whereI is the ideal ofkGH generated byJ (kGG) andJ (kHH). The idealI is nilpotent
andkGH/I is semisimple. It follows thatI = J (kGH) and that every primitive idempote
of the commutative algebrakGH is equal toeifj for some choice ofi andj . �

In Section 6, we will show ifef �= 0, then the isomorphism type of the algeb
ef kSn

Sn−1 depends only on the unordered pair{we,wf }, wherewe is the weight ofe
andwf is the weight off . In Section 5, we will obtain information about the dimens
of ef kSn

Sn−1 as a vector space overk.
Proposition 2.1 could also have been proved using Jucys–Murphy elements. F

i with 2 � i � n, let Li be the sum inZSn of all the transpositions inSi that are not in
Si−1. G.E. Murphy has shown that every element of the center ofZSn can be written as a
symmetric polynomial inL2,L3, . . . ,Ln with coefficients inZ.

Proposition 2.3. Let G = Sn and letH = Sn−1. ThenZGH coincides with theZ-polyno-
mials inL2,L3, . . . ,Ln that are symmetric inL2,L3, . . . ,Ln−1.
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Proof. Let 2� u � n − 1. The transposition(u − 1, u) commutes with allLi for which
2 � i � n andi �= u−1, u. Also, it is easy to see that(u−1, u) commutes withLu−1 +Lu

andLu−1Lu. These two polynomials generate the ring of symmetric polynomials inLu and
Lu+1 over any commutative ring. Moreover, the transpositions(1,2), . . . , (n − 2, n − 1)

generate the groupH . It follows that anyZ-polynomial inL2, . . . ,Ln that is symmetric in
L2, . . . ,Ln−1 lies in ZGH .

For the reverse inclusion, we modify the proof of Theorem 1.9 of [16]. Recall thatVi is
theZ-submodule ofZG that is generated by all permutations that fixi or more elements
of Nn := {1, . . . , n}, and thatUi = Vi ∩ ZGH .

SetX([1n];1) := 1. Let(λ;λs) be aH -orbit type, withλ �= [1n]. Then there is a positiv
integerr such thatλi > 1 if and only if 1� i � r. SetX(λ;λs) as the sum, inZG, of all
distinct products of the form

(Li1)
λ1−1(Li2)

λ2−1 · · · (Lir )
λr−1,

wherei1, i2, . . . , ir runs over sets ofr distinct elements of 2, . . . , n, subject tois = n, if
λs happens to be greater than 1. Note thatX(λ;λs) is an element ofZGH , by the first
paragraph.

Now A(λ;λs) ∈ Ui\Ui+1, wherei = n − ∑r
j=1 λj . We claim thatA(λ;λs) ≡ X(λ;λs)

moduloUi+1. The proof is by reverse induction oni. The base casei = n is trivial. So we
may assume thati < n.

We need the notion of graphs associated with products of transpositions. Letσ be a
permutation ofNn. Suppose thatσ = t1t2 · · · tk , where theti are transpositions. The grap
associated with this factorization has verticesNn, and one (undirected) edgej − k, for
each(j, k) that occurs as one of theti . Note that the numberk of transpositions is at leas
n − l, wherel is the number of orbits ofσ on Nn. We call the factorizationminimal if
k = n − l. Clearly the factorization is minimal ifand only if the graph is a tree. Moreove
in the minimal case the connected components of the graph correspond to the orbitσ .

Consider now the occurrence of a partitionσ in the expansion of a term(Li1)
λ1−1 · · ·

(Lir )
λr−1 of X(λ;λs). This represents a factorization ofσ into a product of

r∑
j=1

(λj − 1) = n − l(λ)

transpositions (of a given kind). The number of elements ofNn that are not fixed byσ
is at most

∑r
j=1 λj = n − i. Soσ is an element ofVi . Suppose thatσ /∈ Vi+1. Then the

connected components of the associated graph consist ofi isolated vertices, andr star-
shaped graphs, whose central verticesi1, . . . , ir have degreesλ1, . . . , λr , respectively. This
graph is a tree. So the cycle lengths ofσ coincide with the sizes of the components
follows that σ is of cycle typeλ. Moreover, thej th cycle of σ has largest symbolij .
In particular, the cycle ofσ that containsn has lengthλs . Soσ is of H -orbit type(λ;λs).
Furthermore,σ does not occur in the expansion of any other summand ofX(λ;λs). Finally,
a givenλj -cycle occurs at most once in the expansion of(Lij )

λj−1. We conclude thatσ
occurs exactly once in the expansion of(Li1)

λ1−1(Li2)
λ2−1 · · · (Lir )

λr−1.
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Partially order the set{A(λ;λs)} according to where the elements occur in the filtration
Un+1 ⊆ Un ⊆ · · · ⊆ U0 = ZGH . Apply the same partial order to the set{X(λ;λs)}.
The previous paragraph shows that the transition matrix between these ordered
unitriangular. SinceZGH is freely generated as aZ-module by the elements of{A(λ;λs)},
it is also freely generated by the elements of{X(λ;λs)}. This completes the proof.�

Propositions 2.1 and 2.3 overlap with earlier work of Olshanski [20]. A conven
reference for Olshanski’s theorem is the paper [19] of Okounkov and Vershik. Theore
of [19] states that, ifC denotes the complex numbers andl is any positive intege
less thann, the algebra(CSn)

Sl is generated by the center ofCSn−l , the group tha
permutes the numbers{n − l + 1, n − l + 2, . . . , n}, and the Jucys–Murphy elemen
Ln−l+1,Ln−l+2, . . . ,Ln. The proof they indicate seems to work whenC is replaced with
any commutative ring.

3. A first main theorem

As we saw in Theorem 2.2, the blocks ofkS
Sn−1
n are in bijection with pairs(e, f ), where

e is a primitive central idempotent ofkSn, f is a primitive central idempotent ofkSn−1,
andef �= 0. We will see that it is possible to recognizep-locally whether such a produ
is 0. This leads to a version of Brauer’s first main theorem for the algebrakS

Sn−1
n , and to a

branching rule for blocks.
The Brauer map applied to block idempotents of the symmetric group has a very s

combinatorial interpretation, which we now describe. Any result about the symm
group for which we do not give a precise reference may be found in [14].

Recall that irreducible complex characters ofSn are parameterized by partitions ofn

represented by Young diagrams. The characters corresponding to partitionsλ andµ belong
to the same block if and only if the Young diagrams corresponding toλ andµ have the
samep-core. The number of rimp-hooks removed to obtain thep-core is theweightof
the block. Of coursewp � n, wherew is the weight of a block.

Now letw be any positive integer withwp � n. LetDw be a Sylowp-subgroup ofSwp ,
identified with a subgroup ofSn in the obvious way. The groupDw is a defect group o
any block ofSn of weightw.

Let Ω be the set{wp + 1,wp + 2, . . . , n}, and letSΩ be the subgroup ofSn consisting
of all permutations that act as the identity outside ofΩ . Of courseSΩ

∼= Sn−wp . The
centralizer ofDw is a direct product

CSn(Dw) = CSwp(Dw) × SΩ
∼= CSwp(Dw) × Sn−pw.

The groupCSwp(Dw) contains a normalp-subgroupP such thatCCSwp(Dw)(P ) ⊆ P .
(See (2.6) in [6].) Hence the algebrakCSwp(Dw) has just one block. SincekCSn(Dw) ∼=
kCSwp(Dw)⊗ kSn−pw , it follows that the blocks ofkCSn(Dw) correspond one-to-one wit
the blocks ofkSn−pw .
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Similarly,

NSn(Dw) = NSwp(Dw) × SΩ
∼= NSwp (Dw) × Sn−pw,

the algebrakNSwp(Dw) has just one block, and the blocks ofkNSn(Dw) correspond one
to-one with the blocks ofkSn−pw . The central idempotents of the algebraskNSn(Dw),
kCSn(Dw), andkSΩ are the same and may be identifiedwith the block idempotents o
Sn−pw . Thus the blocks ofkNSn(Dw) andkCSn(Dw) are parametrized by cores of You
diagrams corresponding to partitions ofn − pw.

Now we turn to the Brauer map. Let BrDw be thek-linear mapkSn → kCSn(Dw) such
that for anyσ ∈ Sn, BrDw(σ) = σ if σ ∈ CSn(Dw) and BrDw(σ) = 0 if σ /∈ CSn(Dw). Let
e be a block idempotent ofSn with weightv. If v < w, then BrDw(e) = 0; if v � w, then
BrDw(e) is the block idempotent ofkCSn(Dw) (or of kNSn(Dw)) that corresponds to th
samep-core ase. When BrDw(e) is identified with a block ofkSn−pw , its weight isv −w.

The next proposition shows how to determinep-locally whether a productef is 0,
wheree andf are block idempotents ofkSn andkSn−1, respectively.

Proposition 3.1. Let G = Sn and letH = Sn−1. Let e be a primitive central idempoten
of kG with defect groupP . Let f be a primitive central idempotent ofkH with defect
group Q. Assume thatP and Q have been chosen so thatP ⊆ Q or Q ⊆ P . (The
description of defect groups above shows that this is always possible.) LetD be the smaller
of P or Q. Thenef �= 0 if and only ifBrD(e)BrD(f ) �= 0.

Proof. Since BrD(ef ) = BrD(e)BrD(f ), one direction is trivial. We only need to prov
that if ef �= 0, then BrD(e)BrD(f ) �= 0.

Assume thatef �= 0. Let w be the smaller of the weights of these blocks, so
D = Dw . Sinceef �= 0, there are irreducible charactersχ andθ belonging to the block
corresponding toe andf such thatθ is a constituent ofχH . As above, BrD(e) and BrD(f )

correspond to blocks ofSn−pw andSn−pw−1, blocks that have the same cores ase andf .
We will exhibit irreducible charactersφ andψ belonging to these blocks such thatψ is a
constituent ofφSn−pw−1.

Let λ be the partition ofn corresponding toχ and letµ be the partition ofn − 1
corresponding toθ . So the Young digram forµ is obtained fromλ by removing a node.

It will be convenient to represent a partition using an abacus withp-runners, labelled
from 0 to p − 1. We will use the same letter to represent the abacus diagram as w
to represent the partition. Assume that the number of beads has been chosen soµ

is obtained fromλ by moving one bead, labelledm, one position left, from runneri to
runneri − 1. Consider the abacus representingλ. On runneri, let x be the number o
beads abovem, let v be the number of empty positions abovem, and lett be the numbe
of beads belowm; on runneri − 1, let y be the number of beads above the empty sp
left of m, let u be the number of empty positions above that space, and lets be the numbe
of beads below that space. Then

weight(µ) = weight(λ) + t − s + u − v,



244 H. Ellers, J. Murray / Journal of Algebra 276 (2004) 236–258

osition
h
on

the
d

t
e

mpty
n
ter

re

e

t

as we now show. The weight is the number of times a bead must be moved up one p
to obtain a core. Whenm has been moved left, the beads oni that were below it can eac
move up one more position, increasing the weight byt . On the other hand, the beads
i − 1 belowm are now blocked bym and can move one position less; this decreases
weight bys. The other changes are accounted for by the beadm. When a core is obtaine
from µ, m movesu spaces; when a core is obtained fromλ, m movesv spaces.

Sincey + u = v + x (both are the number of filled and empty positions abovem), it
follows that

weight(λ) − weight(µ) = (y + s) − (x + t). (1)

There are two cases we must consider. First, assume thatQ = D. Then the idempoten
BrD(f ) corresponds to a block ofSn−pw−1 of defect zero. Letψ be the unique irreducibl
character in this block, and letδ be the correspondingp-core ofn − pw − 1. Now δ is
also thep-core ofµ. So its i − 1th runner containsy + s + 1 beads, and itsith runner
containsx + t beads. But weight(λ) � weight(µ), asQ = D. It follows from (1) that
y + s + 1 > x + t . In other words, in the abacus representingδ, runneri − 1 has more
beads than runneri. Since all the beads are as far up as they can go, there is an e
space to the right of the lowest bead on runneri − 1. Moving that bead right gives a
abacus representing a partition ofn−pw. Let θ be the corresponding irreducible charac
of Sn−pw . Then by construction,ψ is a constituent of the restriction ofθ to Sn−pw−1.
Also, θ has the samep-core asλ. Soθ belongs to the block corresponding to BrD(e). This
completes the first case of the proof.

The proof in the second case, whenP = D, is similar. All the abacus diagrams a
mirror images of the abacus diagrams in the first case.�

Proposition 3.1 has the following combinatorial interpretation. As mentioned in th
introduction, this should be thought of as part of a branching rule for blocks.

Corollary 3.2. Let k be a field of characteristicp. Lete be a primitive central idempoten
of kSn, corresponding to thep-coreγ . Letf be a primitive central idempotent ofkSn−1,
corresponding to thep-core δ. Thenef �= 0 if and only if δ is the core of a partition
obtained fromγ by removing a node orγ is the core of a partition obtained fromδ by
adding a node.

Combining Theorem 2.2 and Proposition 3.1, we obtain a parametrization of the blocks
of kS

Sn−1
n .

Corollary 3.3. Let G = Sn and letH = Sn−1. Let k be a field of characteristicp. The
blocks ofkGH are in bijection with the set of all pairs(γ, δ) of p-cores that satisfy the
following three conditions:

(1) γ is a partition of a non-negative integerl such thatl � n andl ≡ n (modp).
(2) δ is a partition of a non-negative integerm such that m � n − 1 and m ≡

(n − 1) (modp).
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(3) δ is the core of a partition obtained fromγ by removing a node, orγ is the core of
a partition obtained fromδ by adding a node.

Wheneverk is a field of characteristicp, G is a finite group, andH is a subgroup ofG,
Green’s theory defines defect groups inH for primitive idempotents of the algebrakGH .
The defect groups of the primitive idempotentε are the minimal subgroupsD of H such
that ε = TrHD(α) for some elementα ∈ kGD . Since the defect groups ofε are also the
maximalp-subgroupsD of H such that BrD(ε) �= 0, Proposition 3.1 can be used to fi
the defect groups of the primitive idempotents ofkS

Sn−1
n . (Section 2 of [4] gives a goo

approach to Green’s theory in the form we need it.)

Corollary 3.4. LetG = Sn and letH = Sn−1. Lete be a primitive central idempotent ofkG

with defect groupP . Letf be a primitive central idempotent ofkH with defect groupQ.
Assume thatP andQ have been chosen so thatP ⊆ Q or Q ⊆ P . Let D be the smaller
of P or Q. Assume thatef �= 0. Then the groupD is a defect group inH of the primitive
idempotentef of kGH .

Proof. Let E be a defect group inH of ef . By (2.6) in [4], since BrD(ef ) �= 0, we have
D ⊆H E. We will be finished when we have shown that|E| � |D|.

First, assume thatD = Q. There is an elementα ∈ kHD such thatf = TrHD(α). Then
ef = e TrHD(α) = TrHD(eα). SoE ⊆H D.

Next, assume thatD = P . There is an elementβ ∈ kGD such thate = TrGD(β). So
e = ∑

x TrHDx∩H (βx), wherex runs through representatives for(D,H)-double cosets inG.
It follows that ef ∈ ∑

x TrHDx∩H (kGDx∩H ). Sinceef is primitive, Rosenberg’s lemm
implies that there is anx such thatef ∈ TrHDx∩H(kGDx∩H). Therefore there is anx such
thatE ⊆H Dx ∩ H . Hence|E| � |D|, as we wanted. �

Proposition 3.1 also allows us to obtain an analog of Brauer’s First Main Theo
(Compare this to Theorem 6.2 in [11].)

Theorem 3.5. Let G = Sn and let H = Sn−1. Let k be a field of characteristicp. Let
D be a p-subgroup ofH . The Brauer mapBrD gives a bijection from the set of a
primitive idempotents ofkGH with defect groupD to the set of all primitive idempoten
of kNG(D)NH (D) with defect groupD.

Proof. This follows easily from 3.1, 3.4, the description ofNG(D) before 3.1 and
the combinatorial interpretation of theBrauer map from the discussion preced
Proposition 3.1. �

4. Modules over k[H × G]

One approach to blocks of group algebras views blocks ofkG as right modules over th
algebrak[G × G], with the actiona(x, y) = x−1ay for all x andy in G. For example, the
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book [3] takes this point of view throughout. In this section, we explore a similar appr
to blocks ofkGH .

Let e be a primitive central idempotent ofkG, and let f be a primitive centra
idempotent ofkH . Consider the rightk[H × G]-modulef kGe. If a ∈ ef kGH , then
multiplication from the left bya is a k[H × G]-module endomorphism off kGe that
sendsf e to a. Since anyk[H × G]-module endomorphism off kGe is determined by
the image off e, and since the image off e must be an element ofef kGH , it follows
that every element of Endk[H×G](f kGe) arises in this way. If we write endomorphism
of right modules on the left, then the resulting mapef kGH → Endk[H×G](f kGe) is an
algebra isomorphism. WhenG = Sn andH = Sn−1, Theorem 2.2 shows thatef kGH has
just one idempotent, sof kGe is an indecomposablek[H × G]-module. The next theorem
determines the vertex and Green correspondent of this module. Together with resul
Section 6 of [11], it suggests that there may be a sort of lopsided block theory sim
the usual symmetric one.

Theorem 4.1. Let G = Sn and letH = Sn−1. Letk be a field of characteristicp. Let e be
a primitive central idempotent ofkG with defect groupP and letf be a primitive central
idempotent ofkH with defect groupQ. Assume thatP andQ have been chosen so th
P ⊆ Q or Q ⊆ P . LetD be the smaller ofP or Q. Assume thatef �= 0.

(1) The diagonal groupδ(D) is a vertex of the indecomposable rightk[H × G]-module
f kGe.

(2) Let F denote the Green correspondence with respect to(H × G,NH(D) × NG(D),

δ(D)). Then

F(f kGe) = BrD(f )kNG(D)BrD(e).

Before we can give a proof of Theorem 4.1, we need the following result. It holds
generally, not just for the symmetric group. The proof is similar to the proof in the clas
case whenH = G, but some care must be taken.

Proposition 4.2. Let G be any finite group, letH be a subgroup ofG, and let k be
a field of characteristicp. Assume thatD is a p-subgroup ofH . Let e and f be
primitive central idempotents ofkG andkH , respectively. Then thek[NH(D) × NG(D)]-
moduleBrD(f )kNG(D)BrD(e) is isomorphic to a direct summand of the restricti
(f kGe)k[NH (D)×NG(D)].

Note that this proposition does not say that BrD(f )kNG(D)BrD(e) is nonzero.
For the proof of Proposition 4.2, we will needthe following lemma. It has appeare

implicitly in the literature. See [1], for instance. IfS is a subset of the groupG, thenS+
denotes the sum in the group algebrakG of all the elements ofS.

Lemma 4.3. Let P be a normalp-subgroup of a finite groupG and letH be a subgroup
of G that containsP . Suppose thatC is anH -orbit in G \ CG(P). ThenC+ ∈ J (kGH).
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Proof. Let x be an element ofG that is not inCG(P). Let X be the orbit ofx under the
conjugation action ofP . Assume thatM is a simplekG-module. SinceP � G andk has
characteristicp, every element ofP acts as the identity onM. It follows that ifx andy are
in X andm is in M, thenxm = ym. Sincex /∈ CG(P), p divides the order ofX. Therefore
X+ acts as 0 onM. This holds for every simplekG-moduleM, soX+ ∈ J (kG).

It follows that if C is as in the statement of the lemma, thenC+ ∈ J (kG). Since
J (kG)∩kGH is a nilpotent two-sided ideal ofkGH , J (kG)∩kGH ⊆ J (kGH). The result
follows. �
Proof of Proposition 4.2. Let e1 := BrD(e) and letf1 := BrD(f ). The Brauer map BrD
restricts to ak-algebra homomorphismkGD → kCG(D). It follows that BrD(f e) = f1e1.
So we may write

f e = f1e1 + a + b,

wherea ∈ k[NG(D) \ CG(D)] andb ∈ k[G \ NG(D)]. Sincee, f, e1, f1 ∈ kGNH (D), and
k[G \ NG(D)] is stable underNH (D)-conjugation,a lies in kNG(D)NH (D).

Now Lemma 4.3 implies thata ∈ J (kNG(D)NH (D)). It follows thatf1e1 + af1e1 is a
unit in f1e1kNG(D)NH (D). Let u be its inverse. Note thatu ∈ kNG(D)NH (D).

Let φ :f1kNG(D)e1 → f kGe be the map given byφ(x) = f xe = f ex. Let π : kG →
kNG(D) be the projection ontokNG(D) with kernelk[G \ NG(D)]. Let ψ : kNG(D) →
kNG(D) be the map given byψ(y) = uy. All three of these maps arek[NH(D)×NG(D)]-
module homomorphisms. Letx ∈ f1kNG(D)e1 = f1e1NG(D). Thenπφ(x) = π(f ex) =
(f1e1 + a)x = (f1e1 + af1e1)x. It follows that ψπφ(x) = u(f1e1 + af1e1)x = x.
Thereforef1kNG(D)e1 is isomorphic to a direct summand of the restriction off kGe

to NH (D) × NG(D). �
Proof of Theorem 4.1. First, we will show thatδ(D) is a vertex of the modul
BrD(f )kNG(D)BrD(e). Let e1 = BrD(e), f1 = BrD(f ), G1 = NG(D), and H1 =
NH (D). Let P1 be a defect group ofe1 and letQ1 be a defect group off1. Note that
D = Q1 andD � P1, orD = P1 andD � Q1. By III8.7 in [13] (a result due to Green), th
k[H1×G1]-modulef1kG1e1 is Q1 ×P1-projective. Therefore there is an indecomposab
summand of the restriction(f1kG1e1)Q1×P1 that shares a vertex with(f1kG1e1)H1×G1. By
III8.3 and III8.1 in [13], it follows that there is az ∈ G1 such thatδ(Qz

1 ∩ P1) is a vertex
of (f1kG1e1)H1×G1. Conjugating this vertex by(z−1, z−1), we see thatδ(Q1 ∩ zP1z

−1) is
also a vertex. Recall thatD = Q1 or D = P1. In the case withD = Q1, we haveQ1 � G1

andQ1 ⊆ P1; henceδ(Qz
1 ∩ P1) = δ(D). In the case withD = P1, we haveP1 � G1 and

P1 ⊆ Q1; henceδ(Q1 ∩ zP1z
−1) = δ(D). Thusδ(D) is a vertex of thek[Q1 ×P1]-module

f1kG1e1.
By Proposition 4.2, thek[H1 × G1]-modulef1kG1e1 is a direct summand of th

restriction(f kGe)H1×G1. Sinceδ(D) is a vertex off1kG1e1, it follows from the Burry–
Carlson–Puig theorem (3.12.3 in [5]) thatδ(D) is a vertex of(f kGe)H×G and that
F(f kGe) = f1kG1e1. �
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5. The dimension of a block

We will prove in this section that the dimension of a block ofkS
Sn−1
n depends only on

the unordered pair of weights of the associated blocks ofkSn−1 andkSn. This result is
an immediate consequence of Theorem 6.1, which shows that the isomorphism ty
block of kS

Sn−1
n depends only on the unordered pair of weights of the associated b

of kSn−1 andkSn. We give a direct proof here, as it is conceptually simpler, and also
allows us to derive a formula for the dimension of a block.

We begin by recalling some facts about the blocks ofkSn. It is known that the dimensio
kp(w) of ap-block of a symmetric group depends only on its weightw and on the primep.
Let p(n) denote the number of partitions ofn. The partition generating function is

P(x) =
∞∑
i=0

p(n)xn =
∏
i�0

(
1− xi

)−1
. (2)

For any positive integerl, letK(l;x) be the power seriesP(x)l . J.B. Olsson showed in [21
that the dimension of ap-block of a symmetric group that has weightw is the coefficient
kp(w) of xw in the power seriesK(p;x). For convenience, we setkp(w) = 0, for all
w < 0.

Lemma 5.1. Let (w1,w2) be a pair of nonnegative integers, and letk be a field of
characteristic2. Then there is a unique positive integern such thatkSn has a block
idempotente of weightw1, kSn−1 has a block idempotentf of weightw2, andef �= 0.

Proof. Set nt = t (t + 1)/2, for t � 0. Let λt be the partition[t, t − 1, . . . ,2,1] of nt .
Thenλt is a 2-core, every 2-core has this form, and Nakayama’s conjecture shows th
2-blocks ofSn are indexed by

{λt | t � 0, n − nt is positive and even}.
Setn = tw1−w2−2 + 2w1 = tw2−w1+1 + 2w1, and notice thatn − 1 = tw1−w2 + 2w2 =

tw2−w1−1+2w2. It follows thatkSn has a block idempotente of weightw1 andkSn−1 has a
block idempotentf of weightw2. If w1 −w2 − 1 > 0, thenf has coreλw1−w2. Removing
a node fromλw1−w2 and take cores, we obtain the coreλw1−w2−2 of e. If w1 −w2 −1 � 0,
thene has coreλw2−w1+1. Removing a node fromλ1+w2−w1 and take cores, we obtain th
coreλw2−w1−1 of e. So in all casesef �= 0.

Now suppose thatn is any positive integer such thatkSn has a primitive centra
idempotente of weight w1, kSn−1 has a primitive central idempotentf of weight w2,
andef �= 0. Let γ be the core ofe. Equation (1) shows thatγ can be represented on a
abacus with two runners, such that the difference in the number of beads on runner
1 isw1 −w2 − 1. If w1 − w2 − 1 > 0, thenγ = λw1−w2−1, while if w1 − w2 − 1 � 0, then
γ = λw2−w1+1. In all casesn, and hencee andf , are determined byn = |γ | + 2w1. �

We let B(w1,w2) denote the blockef kS
Sn−1
n given by the above lemma, and we

k2(w1,12) denote the dimension of this block as a vector space overk.
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Let e be a central primitive idempotent inkSn. The irreducible characters in th
corresponding block ofSn are indexed by the partitions ofn that have the samep-core
as e. We shall say that any such partition belongs to (or is in)e. As each partition is
determined by itsp-core andp-quotient, the partitions belonging toe are indexed by thei
p-quotients.

Now suppose thatf is a central primitive idempotent inkSn−1, with ef �= 0. If λ is a
partition ine, andµ is a partition inf , andµ can be obtained by removing a node fromλ,
we shall say that(λ,µ) belongs toef , or to the blockef kS

Sn−1
n . By the discussion in

Section 1, the dimension ofef kS
Sn−1
n equals the number of pairs(λ,µ) that belong toef .

Lemma 5.2. For all integersw1,w2, the blocksB(w1,w2) andB(w2,w1) have the same
dimension.

Proof. Let (λ,µ) be a pair of partitions belonging toB(w1,w2). Representλ andµ on
abacus diagrams with two runners andt beads, for somet > 0. Let λ̂ be the partition
obtained by transposing the runners ofλ, and letµ̂ be the partition obtained by transposi
the runners ofµ. Now λ̂ belongs to a block of weightw1, andµ̂ belongs to a block o
weightw2. Sinceµ is obtained by removing a node, say nodei, from λ, theith β-number
of µ is one less than theith β-number ofλ. The construction ensures that theith β-number
of µ̂ is one more than theith β-number ofλ̂. So µ̂ is obtained by adding a node toλ̂. It
follows that(µ̂, λ̂) belongs toB(w2,w1). The association

(λ,µ) ↔ (
µ̂, λ̂

)
is involutary. We conclude that the dimension ofB(w1,w2) is equal to the dimension o
B(w2,w1). �

We can now prove the main result of this section.

Theorem 5.3. Let G = Sn, H = Sn−1 and letk be a field of characteristicp. Let e be a
block idempotent ofkG, of weightwe, and letf be a block idempotent ofkH , of weight
wf . Assume thatef �= 0. Then the dimension of the blockef kGH depends only on th
unordered pair of weights{we,wf }.

Proof. Chooset > 0, such that if partitions are represented on abacus diagrams wp

runners andt beads, and(λ,µ) is a pair of partitions inef , thenµ is obtained fromλ by
moving a bead on runner 1 into an empty position due left on runner 0.

Let i be an integer with 0� i � we. Fix a (p − 2)-tuple (ρ2, . . . , ρp−1) of partitions
with

∑p−1
j=2 |ρj | = we − i. Let (λ,µ) be a pair of partitions inef such thatλj = ρj ,

for j = 2, . . . , p − 1. Then|λ0| + |λ1| = i. The first two runners ofλ represent a certai
partition, call it λ̃, on an abacus with two runners. Similarly the first two runners oµ

represent a partitioñµ. Now λ̃ has weighti. Soµ̃ has weighti − (we − wf ), using Eq. (1)
from the proof of Proposition 3.1. It is clear that as(λ,µ) range over all such pairs,(λ̃, µ̃)

range over all pairs of partitions belonging to the blockB(i, i − (we − wf )).
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The number of(p − 2)-tuples(ρ2, . . . , ρp−1) equalskp−2(we − i). Each(p − 2)-tuple
gives rise tok2(i, i−(we −wf )) different pairs(λ,µ) belonging toef . As i varies between
0 andwe , we obtain every pair of partitions inef exactly once. It follows that

dim
(
ef kGH

) =
we∑
i=0

kp−2(we − i)k2
(
i, i − (we − wf )

)
. (3)

Substitutingj = i − (we − wf ) in these equations, and using Lemma 5.2, we see tha
can transposewe andwf , without changing the dimension. The theorem follows.�

Equation (3) in the proof of Theorem 5.3 can be interpreted in terms of power s
Definekp(n,m) := dim(ef kGH), whenevere has weightn andf has weightm. Form the
following power series in the variablesx andy.

K(p;x, y) :=
∑

n�0,m�0

kp(n,m)xnym.

Now recall (from Eq. (2) at the beginning of this section) thatK(l;x) is the power serie
P(x)l . Let K(l;xy) be its evaluation atxy. Then Eq. (3) can be interpreted as show
that, as power series inx andy,

K(p;x, y) = K(p − 2;xy)× K(2;x, y).

Note that there is no comma betweenx andy in K(p − 2;xy).
We end the section by giving a precise formula fork2(w1,w2). This, together with

Theorem 5.3, can be used to computekp(w1,w2), for any pair of nonnegative intege
w1,w2, and any primep.

Proposition 5.4. Suppose thatw1 � w2. Then the dimensionk2(w1,w2) of the block
B(w1,w2) is given by(the finite sum)

k2(w1,w2) =
∞∑
i=0

(
(w1 − w2) + (2i + 1)

)
k2

(
w2 − i(w1 − w2) − i(i + 1)

)
.

Proof. Let B(w1,w2) = e1e2kS
Sn−1
n , wherek is a field of characteristic 2,e1 is a central

primitive idempotent inkSn, of weight w1, ande2 is a central primitive idempotent i
kSn−1, of weightw2. Proposition 3.1 shows that the core ofe1 is the core of a partition
obtained by adding a node to the core ofe2. Let (λ1, λ2) be a pair of partitions in
B(w1,w2). Representλ1 on an abacus with two runners, with the numbert of beads chose
so thatλ2 is obtained fromλ1 by moving one bead on runner 1 into an empty space t
left on runner 0. Leta, respectively,b, denote the number of beads on runners 0 an
of λ2. Then (1) shows thatw1 − w2 = a − b − 1.

Suppose that there exists a central primitive idempotente3 in kSn+1, different toe1,
such thate3e2 �= 0. Let (λ3, λ4) be a pair of partitions ine3e2. Representλ3 on an
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abacus with two runners andt beads. Using Proposition 3.1, we see thatλ4 is obtained
from λ3 by moving a bead on runner 0 into an empty position one space up and
right on runner 1. In particular,λ3 hasa + 1 beads on runner 0 andb − 1 beads on
runner 1. Letw3 be the weight ofe3. Modifying the proof of (1), it can be shown th
w3 − w2 = (b − 1) − (a + 1) + 2 = b − a. Combining this with the equality at the end
the previous paragraph, we see thatw3 = w2 − (w1 − w2) − 1. Notice thatw3 < w2.

The 2-core ofe1 is the 2-core of a block idempotente4 in kSn−2 that has weightw1 −1,
while the 2-core ofe3 is the 2-core of a block idempotente5 in kSn−2 that has weigh
w3 − 1 (if the idempotents exist). Moreover, we havee2e4 �= 0 ande2e5 �= 0, ande4, e5 are
the only block idempotents inkSn−2 that do not annihilatee2.

We now count irreducible characters. There arek2(w2) partitions that belong toe2. Let
µ be one such. The previous paragraphs show that adding a node toµ produces a partition
λ such that(λ,µ) belongs toB(w1,w2) or toB(w2 − (w1 −w2)−1,w2), while removing
a node fromµ produces a partitionρ such that(µ,ρ) belongs toB(w2,w1 − 1) or to
B(w2,w2 − (w1 − w2) − 2). But (as is well known)µ has one more addable node th
removable node. It follows (on using Lemma 5.2) that

k2(w1,w2) = k2(w2) + k2(w1 − 1,w2) + k2
(
w2,w2 − (w1 − w2) − 2

)
− k2

(
w2,w2 − (w1 − w2) − 1

)
.

If we apply this formula to the(w1 − w2) + 1 numbersk2(w1 − i,w2), for i = 0, . . . ,

(w1 − w2), then add and cancel equal terms of opposite sign, we obtain

k2(w1,w2) = (w1 − w2 + 1)k2(w2) + k
(
w2,w2 − (w1 − w2) − 2

)
.

Applying this formula repeatedly to the summand on the extreme right, we obtai
statement of the proposition.�

6. The isomorphism type of a block

We show in this section that the isomorphism type of the blocks ofkS
Sn−1
n depends only

on the unordered pair of weights of the associated blocks ofkSn−1 andkSn. In fact, we
prove the corresponding statement over a suitable valuation ring of characteristic ze

We need the notion of perfect isometries between blocks of finite groups. Our pr
reference is [7]. For this discussion, letG1 and G2 be arbitrary finite groups, and le
(F,O, k) be a splittingp-modular system for bothG1 and G2. So F = Frac(O) has
characteristic 0,O is a discrete valuation ring with maximal ideal(π), andO/(π) = k. For
i = 1,2, letei be an idempotent inZOGi . We useRF (Gi, ei) to denote the Grothendiec
group of the abelian category of lefteiFGi modules. The elements ofRF (Gi, ei) are
formal Z-linear combinations of the irreducible characters ofeiFGi , and the group
operation is formal addition of characters.
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Let I :RF (G1, e1) → RF (G2, e2) be a group homomorphism, andR :RF (G2, e2) →
RF (G1, e1) be its adjoint, with respect to the usual inner products onZe1FG1 and
Ze2FG2. Set

µ =
∑

χ∈Irr(e1FG1)

χ ⊗ I (χ).

Thenµ is aZ-linear combination of characters of(e1FG1, e2FG2)-bimodules. The map
I is an isometry if, for eachχ ∈ Irr(e1FG1), there is a signε(χ) ∈ {±1}, such that
ε(χ)I (χ) ∈ Irr(e2FG2). Broué calls such an isometryperfectif the associatedµ satisfies,
for all g1 ∈ G1 andg2 ∈ G2

• (µ(g1, g2)/|CG(g1)|) ∈O and(µ(g1, g2)/|CG(g2)|) ∈O.
• If µ(g1, g2) �= 0, theng1 is p-regular if and only ifg2 is p-regular.

Let I :RF (G1, e1) → RF (G2, e2) be a perfect isometry. The set{e(χ) | χ an
irreducible character ofe1FG1} form a basis forZe1FG1. It follows from [7, 1.5]
that theF -algebra isomorphismZe1FG1 ∼= Ze2FG2, induced bye(χ) → e(ε(χ)I (χ)),
restricts to anO-algebra isomorphism, denotedΛ, from Ze1OG1 to Ze2OG2. Explicitly,
if z ∈ Z(e1OG1), we havez = ∑

χ ωχ (z)e(χ), whereωχ(z) = χ(z)/χ(1) is the central
character associated withχ . Then

Λ(z) =
∑
χ

ωχ (z)e
(
ε(χ)I (χ)

)
.

M. Enguehard [12] has shown that there are many perfect isometries between
of finite symmetric groups which have the same weight. We will need some de
information about how these isometries arise.

Let κ andµ be the cores of twop-blocksA andB of symmetric groups that have th
same weights. Enguehard shows that there is a perfect isometry fromA to B induced by

λ → α(λ)Ψ (λ),

whereλ runs through all partitions associated withA, wheneverα andΨ are maps with
the following properties:

(1) Ψ maps all partitions with coreκ bijectively onto all partitions with coreµ.
(2) Associated with each partitionλ with coreκ , there is a bijective mapΦλ between the

hooks ofλ whose length is divisible byp and the corresponding hooks ofΨ (λ).
(3) Φλ preserves hook lengths.
(4) Ψ sends the partition obtained by removing a hookh from λ to the partition obtained

by removingΦλ(h) from Ψ (λ). Hereh is any hook of length divisible byp.
(5) α(λ) is a sign{+1,−1} such that, for each hookh of length divisible byp,

LegPar(h)LegPar
(
Φλ(h)

) = α(λ)α(λ − h),



H. Ellers, J. Murray / Journal of Algebra 276 (2004) 236–258 253

ll

. Its
,

d

In
ic
where LegPar(j) is the parity of the leg length of the hookj , andλ−h is the partition
obtained by removingh from λ.

Represent thep-coresκ and µ on abacus diagrams withp runners. Represent a
partitions withp-coreκ or µ on abacus diagrams, so that the diagram forκ or µ is obtained
when the beads are pushed up as far as possible on all runners.

Morris and Olsson [15] define a signδ = δp associated with each abacus diagram
main property is that ifµ is obtained fromλ by moving a bead up oneposition on a runner
then

LegPar(h) = δ(µ)δ(λ).

Each partition withp-coreκ , respectivelyµ, is represented by thep-quotient associate
to its abacus diagram. Identify partitions andp-quotients. Letσ be any permutation
of {0,1, . . . , p − 1}. Then σ acts on the partitions withp-core κ by permuting the
correspondingp-quotients. Forλ a partition withp-coreκ , define

Ψ (λ) = the partition withp-coreµ andp-quotientσ(λ),

and

α(λ) = δ(λ)δ
(
Ψ (λ)

)
.

For eachλ, let Φλ be the obvious identification of the hooks ofλ of length divisible byp
with the corresponding hooks ofΨ (λ).

It is easily checked thatΨ , Φλ, andα satisfy all the requirements of Enguehard.
particular, this givesp! different perfect isometriesbetween two blocks of symmetr
groups of the same weight.

Theorem 6.1. Let G1 = Sn, H1 = Sn−1 and let(F,O, k) be ap-modular system. Lete1
be a block idempotent inOG1, of weightwe, and letf1 be a block idempotent inOH1,
of weightwf . Assume thate1f1 �= 0. Then the isomorphism type of the blocke1f1OG

H1
1

depends only on the unordered pair of weights{we,wf }.

Proof. Let G2 = Sm, H2 = Sm−1, wherem is any positive integer. Lete2 be a block
idempotent inOG2, and letf2 be a block idempotent inOH2. Assume thate2f2 �= 0.
Suppose that the ordered pair of weights ofe2 andf2 is (we,wf ) or (wf ,we). We will

show thate1f1OG
H1
1

∼= e2f2OG
H2
2 . First we consider the case thate2 has weightwe, and

f2 has weightwf .
Let i = 1,2. TheO-algebra

Ti := ZeiOGi ⊗O ZfiOFHi
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is embedded in the semisimple algebraTi ⊗O F ∼= ZeiFGi ⊗F ZfiFHi . Let Ii be the
ideal ofTi ⊗O F that is generated by the primitive idempotents{

e(χ) ⊗ e(ψ) | χ ∈ Irr(eiFGi),ψ ∈ Irr(fiFHi), ande(χ)e(ψ) = 0
}
.

It follows from Proposition 2.1 that, asO-algebras,

eifiOG
Hi

i
∼= Ti/Ii ∩ Ti .

Represent the partitions inei andfi on abacus diagrams withp runners andti beads,
whereti is chosen so that if(λ,µ) is a pair of partitions ineifi , thenµ is obtained fromλ

by moving a bead on runner 1 into an empty position due left on runner 0.
As described in the paragraphs preceding this theorem, Enguehard has shown t

we can choose isomorphismsΛe :Ze1FG1 → Ze2FG2 and Λf :Zf1FH1 → Zf2FH2
such thatΛe(Ze1OG1) = Ze2OG2 and Λe(Zf1OH1) = Zf2OH2. These maps induc
an isomorphismΛe ⊗ Λf :T1 ⊗ F → T2 ⊗ F that restricts to anO-algebra isomorphism

T1 → T2. To show thate1f1OG
H1
1

∼= e2f2OG
H2
2 , it is now only necessary to show th

Enguehard’s isomorphisms can be chosen so thatΛe ⊗ Λf (I1) = I2.
ChooseΛe so that at the level of partitions it sends a partitionλ1 in e1 to the unique

partitionλ2 in e2 that has the samep-quotient asλ1. (In terms of the discussion precedi
this theorem, choose the permutationσ to be the identity.) Similarly, chooseΛf so that
it induces ap-quotient preserving bijection between the partitions inf1 and the partitions
in f2.

Let λ1 ↔ λ2 be corresponding partitions ine1, respectively,e2, and letµ1 ↔ µ2 be
corresponding partitions inf1, respectively,f2. Let i = 1 or 2. The first two runners ofλi

represent a certain partition̂λ on an abacus with two runners. By Eq. (1) in the proo
Proposition 3.1,we − wf determines the relative number of beads on the first two run
of λi ; thereforeλ̂ does not depend oni. Similarly the first two runners ofµi determine
a partitionµ̂. Now (λi,µi) belongs toeifi if and only if µ̂ can be obtained from̂λ by
deleting a node. It follows thatΛe ⊗ Λf (I1) = I2. HenceT1/T1 ∩ I1 ∼= T2/T2 ∩ I2.

Now we turn to the other case, whene2 has weightwf andf2 has weightwe. Only
a small modification must be made to the proof. IsomorphismsΛe :Ze1FG1 → Zf2FH2
andΛf :Zf1FH1 → Ze2FG2 must be chosen so that on the level of partitions,Λe and
Λf exchange the first two permutations in eachp-quotient. (In terms of the discussio
preceding this theorem, the permutationσ is the transposition(0,1).) These isomorphism
induce an isomorphism

Ze1OG1 ⊗ Zf1OH1 → Zf2OH2 ⊗ Ze2OG2

that sends the kernel of the epimorphism

Ze1OG1 ⊗ Zf1OH1 → e1f1OG
H1
1

to the kernel of the epimorphism

Zf2OH2 ⊗ Ze2OG2 → e2f2OG
H2.
2
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7. Blocks and p-regular orbits

We end the paper with some results on the support of the block idempotents ofkGH .
Many of these are analogues of results in [17].

If x is an element ofkG and if g is an element ofG, then (x | g) will denote the
coefficient with whichg occurs inx. Call aH -orbit in G a p-regular orbit if its elements
have orders coprime top.

Proposition 7.1. Let G = Sn, H = Sn−1 and letk be a field of characteristic2. Then the
2-regularH -orbit sums form a unital subalgebra ofkGH .

Proof. Let K andL be 2-regularH -orbits inG and letg ∈ G be 2-singular. We need t
show that(K+L+ | g) = 0.

Now g has at least one even length orbitO on Nn. We letS(O) andS(Nn\O) be the
pointwise stabilizers ofNn\O, respectivelyO, in G. So S(O) × S(Nn\O) is a Young
subgroup ofG.

Sinceg ∈ S(O) × S(Nn\O), we may write, uniquely,g = cd , wherec ∈ S(O) and
d ∈ S(Nn\O). Let u be the 2-part ofc, and lets andt be the 2-part, respectively, 2′-part,
of |O|. As c is an|O|-cycle,u is a product oft cycles, each of lengths. Thus

CG(u) = Zs � St × S(Nn\O).

It is not hard to show that, ass and t are coprime,Zs � St = ∆(Zs) × W , where∆(Zs)

is the diagonal subgroup (see Proposition 22 of [17]). It follows that〈u〉 has a norma
complement,W × S(Nn\O) in CG(u).

Suppose thatO can be chosen so thatn /∈ O. The Brauer homomorphism Br〈u〉 is
the algebra morphismkG〈u〉 → kCG(u), such that Br〈u〉(K+) = (K ∩ CG(u))+, for each
〈u〉-orbitK in G. Sincen /∈ O, we havec and henceu are elements ofH . SokGH ⊆ kG〈u〉.
It follows that

(
K+L+ | g) = (

Br〈u〉
(
K+)

Br〈u〉
(
L+) | g) = (

(K ∩ CG(u)
)+(

L ∩ CG(u)
)+ | g)

.

But K ∩ CG(u) andL ∩CG(u) consist ofp-regular elements. So they are contained in
normal complement to〈u〉 in CG(u). We conclude that(K+L+ | g) = 0 in this case.

We may suppose then thatg has a single even length orbit onNn. All 2-regular
permutations have sign+1, while each even length cycle has sign−1. It follows that each
product inK+L+ has sign+1, whileg has sign−1. We conclude that(K+L+ | g) = 0.
This completes the proof.�

The proposition is false ifp is odd. In fact, G = S3 and p = 3 furnishes a
counterexample. Letk be a field of characteristic 3. Now{(1,2)}, {(1,3), (2,3)} are
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3-regular orbits ofS2 on S3, while {(1,2,3), (1,3,2)} is an orbit whose elements ha
order 3. However the following equality holds inkS

S2
3 :

(1,2) × (
(1,3) + (2,3)

) = (1,2,3) + (1,3,2).

Corollary 7.2. Let G = Sn, H = Sn−1 and letk be a field of characteristic2. Then the
k-span of the2-regular H -orbit sums coincides with the set of squares of elemen
kGH .

Proof. Recall thatkGH is the subalgebra ofkG that is generated byZ(kG) andZ(kH).
The binomial theorem modulo 2 shows that every square of an element ofkGH is a
k-linear sum of terms of the form(K+)2(L+)2, whereK is a conjugacy class ofG andL

is a conjugacy class ofH . Now [17, Corollary 6] shows that(K+)2 and(L+)2 are sums
of 2-regularH -orbits. It then followsfrom Proposition 7.1 that(K+)2(L+)2 lies in the
k-span of the 2-regularH -orbit sums.

Now suppose that(λ;λs) is a 2-regularH -orbit type. Then from its definition, and th
binomial theorem modulo 2,X(λ;λs) = X(µ,µs)

2, whereµ is the partition ofn with
µi = (λi + 1)/2, for i = 1, . . . , l(λ), and withµi = 1 or 0, fori > l(λ). TheX(λ;λs) are
linearly independent. It follows that the dimension of the subspace of squares inkGH is
greater than or equal to the number of 2-regularH -orbits. The result now follows from th
previous paragraph.�
Corollary 7.3. Let G = Sn, H = Sn−1 and letk be a field of characteristic2. Then each
idempotent inkGH lies in thek-span of the2-regularH -orbit sums.

Proof. By Theorem 2.2, the primitive idempotents ofkGH have the formef , wheree is
a block idempotent ofkG, andf is a block idempotent ofkH . Now e lies in the span o
the 2-regular conjugacy class sums ofG, andf lies in the span of the 2-regular conjuga
class sums ofH , by a well known result of Osima (see [18, 3.6.22]). The corollary is t
an immediate consequence of Proposition 7.1.�

The analogous result is false whenp is odd. Letk be a field of characteristic 3. The
the support of each primitive idempotent ofkS

S4
5 includes 3-singularS4-orbit sums.

Our final theorem can be used to lift Corollary 7.3 to characteristic zero.

Theorem 7.4. Let (F,O, k) be a2-modular system, and letG = Sn, andH = Sn−1. Then
each primitive idempotent inOGH is of the forme − f , wheree is an idempotent in
Z(OG) andf is an idempotent inZ(OH).

Proof. Let et denote the block idempotent, ofOG or of OH , if it exists, that correspond
to the 2-coreλt = [t, t − 1, . . . ,2,1]. Recall thatnt = t (t + 1)/2. Let s be the integer
determined byns � n < ns+1. For notational convenience, seti − 2 to be 1, if i = 0.
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It follows from the branching theorem for blocks, Corollary 3.2, that the primi
idempotents ofOGH are

{ei−2ei | i = 0, . . . , s}.

Now es = es−2es andes−1 = es−3es−1 andei = ei−2ei + eiei+2, for i = 0, . . . , s − 2.
We can use these equations to expressei−2ei in terms of theej , for i = 0, . . . , s:

ei−2ei =
� s−i

4 �∑
j=0

ei+4j −
� s−i−2

4 �∑
j=0

ei+4j+2.

Depending on the parity ofn and the parity ofi, this shows thatei−2ei is of the form
e −f or f − e, wheree is an idempotent inZ(OSn) andf is an idempotent inZ(OSn−1).
However, we can change between these forms using the equalityf −e = (1−e)− (1−f ).
This completes the proof.�

References

[1] J.L. Alperin, On the Brauer correspondence, J. Algebra 47 (1977) 197–200.
[2] J.L. Alperin, Weights for finite groups, in: P. Fong (Ed.), The Arcata Conference on Representations of Fi

Group (Arcata, CA, 1986), in: Proc. Symp. Pure Math.,vol. 47, part 1, Amer. Math. Soc., Providence, R
1987, pp. 369–379.

[3] J.L. Alperin, Local Representation Theory, Cambridge Univ. Press, Cambridge, 1986.
[4] J.L. Alperin, M. Broué, Local methods in block theory, Ann. of Math. 110 (1979) 143–157.
[5] D.J. Benson, Representations and Cohomology I, Cambridge Univ. Press, Cambridge, 1991.
[6] M. Broué, Lesl-blocs des groupes GL(n, q) et U(n, q) et leurs structures locales, Astérisque 133–1

(1986) 159–188.
[7] M. Broué, Isométries parfaites, Types de blocs, Catégories dérivées, Astérisque 181–182 (1990) 61–92
[8] H. Ellers, Cliques of irreducible representations ofp-solvable groups and a theorem analogous to Alperin’s

conjecture, Math. Z. 217 (4) (1994) 607–634.
[9] H. Ellers, Cliques of irreducible representations, quotient groups, and Brauer’s theorems on blocks, Can

J. Math. 47 (5) (1995) 929–945.
[10] H. Ellers, The defect groups of a clique,p-solvable groups, and Alperin’s conjecture, J. Reine Angew

Math. 468 (1995) 1–48.
[11] H. Ellers, Searching for more general weight conjectures, using the symmetric group as an exam

J. Algebra 225 (2000) 602–629.
[12] M. Enguehard, Isométries parfaites entre blocs de groupes symétriques, Astérisque 181–182 (1990) 157

171.
[13] W. Feit, The Representation Theory of Finite Groups, North-Holland, Amsterdam, 1982.
[14] G. James, A. Kerber, The Representation Theory of the Symmetric Group, Addison–Wesley, Reading, M

1981.
[15] A.O. Morris, J.B. Olsson, Onp-quotients for spin characters, J. Algebra 119 (1988) 51–82.
[16] G.E. Murphy, The idempotents of the symmetricgroup and Nakayama’s conjecture, J. Algebra 81 (19

258–265.
[17] J. Murray, Squares in the centre of the modulargroup algebra of a finite symmetric group, Bull. Lond

Math. Soc. 34 (2002) 155–164.
[18] H. Nagao, Y. Tsushima, Representations of Finite Groups, Academic Press, 1989.



258 H. Ellers, J. Murray / Journal of Algebra 276 (2004) 236–258

th.
[19] A. Okounkov, A. Vershik, A new approach to representation theory of symmetric groups, Selecta Ma
(N.S.) 2 (4) (1996) 581–605.

[20] G.I. Olshanski, Extension of the algebraU(g) for infinite-dimensional classical Lie algebrasg and the
YangiansY(gl(m)), Soviet Math. Dokl. 36 (1988) 569–573.

[21] J.B. Olsson, Lower defect groups in symmetric groups, J. Algebra 104 (1986) 37–56.


