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Homotopy groups of the moduli space of metrics of positive
scalar curvature
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THOMAS SCHICK

MARK WALSH

We show by explicit examples that in many degrees in a stable range the homotopy
groups of the moduli spaces of Riemannian metrics of positive scalar curvature on
closed smooth manifolds can be non-trivial. This is achieved by further developing
and then applying a family version of the surgery construction of Gromov–Lawson to
certain nonlinear smooth sphere bundles constructed by Hatcher.

53-02; 55-02

1 Introduction

1.1 Motivation

Let M be a closed smooth manifold. In this article we study the topology of the
space of metrics of positive scalar curvature RiemC.M / and of corresponding moduli
spaces. We abbreviate “metric of positive scalar curvature” by “psc-metric”.

It has been known for a long time that there are quite a few obstructions to the existence
of psc-metrics. This starts in dimension 2, where the Gauß–Bonnet theorem tells
us that only the sphere and RP2 admit such a metric. In general the Lichnerowicz
formula in combination with the Atiyah–Singer index theorem implies that if M is a
spin manifold and admits a psc-metric, then the yA–genus of M is zero. The Gromov–
Lawson–Rosenberg conjecture (see Rosenberg [25]) was an attempt to completely
characterize those spin manifolds admitting psc-metrics. It was later disproved by
Schick [26].

In spite of the complicated picture for general manifolds, the existence question has
been resolved completely for simply connected manifolds M of dimension at least five.
Gromov and Lawson proved in [12] that if M is not spin, then there is no obstruction
and M admits a psc-metric. Assuming that M is spin, Stolz [27] proved that the only
obstruction is the KO –valued index of the Dirac operator on M .
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If M admits a psc-metric, one can go on and investigate the topology of RiemC.M /,
the space of psc-metrics on M equipped with the the C1–topology. Note that
Diff.M /, the diffeomorphism group of M , acts on RiemC.M / via pull-back, and so
it is even more natural to study the moduli space RiemC.M /=Diff.M /.

In the spin case index theoretic methods were used to show that the spaces RiemC.M /

and RiemC.M /=Diff.M / have infinitely many components in many cases. See, for
example, the work of Gromov–Lawson [13] or Lawson–Michelsohn [20] or, for more
refined versions, the papers of Botvinnik and Gilkey [5], Leichtnam and Piazza [21],
and Piazza and Schick [24]. If M is simply connected, this applies to the case when
dim.M /� 1 .mod 4/.

Hitchin observed in his thesis [15, Theorem 4.7] that sometimes, in the spin case, non-
zero elements in the homotopy groups of Diff.M / yield, via the action of Diff.M /

on RiemC.M /, non-zero elements in the homotopy groups of RiemC.M /. More
precisely, he proves this way that �0.RiemC.M n// is non-trivial for n � �1; 0; 1

.mod 8/ and �1.RiemC.M n// is non-trivial for n��1; 0 .mod 8/.

Contrasting these positive results, it has been an open problem to decide whether
the groups �k.RiemC.M // for k > 1 or �k.RiemC.M /=Diff.M // for k > 0 can
be non-trivial. Note that, by construction, Hitchin’s elements in �k.RiemC.Sn//,
k D 0; 1, are mapped to zero in the moduli space RiemC.M /=Diff.M /. Some
experts even raised the suspicion that the components of this moduli space are always
contractible.

1.2 Moduli spaces of psc-merics

In this paper we will construct many examples of non-zero elements in higher homotopy
groups of moduli spaces of psc-metrics on closed smooth manifolds M . We denote
by Riem.M / the space of all Riemannian metrics with the C1–topology. The
group of diffeomorphisms Diff.M / acts from the right on the space Riem.M / by
pull-back: .g; �/ 7! ��.g/. The orbit space of this action is the moduli space of
Riemannian metrics on M and written M.M /. The orbit space MC.M / of the
restricted Diff.M /–action on the subspace RiemC.M / of psc-metrics, the moduli
space of Riemannian metrics of positive scalar curvature on M , is our principal object
of interest.

In general the action of the full diffeomorphism group is not free on Riem.M /: For
example, if a finite group G acts effectively on M (that is, if G occurs as a finite
subgroup of Diff.M /), then any metric on M can be averaged over G , and the resulting
metric will be fixed by G . Therefore we also consider the moduli spaces with observer
as proposed by Akutagawa and Botvinnik [1].
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Definition 1.1 Let .M;x0/ be a connected closed smooth manifold with some base-
point x0 . Let Diffx0

.M / be the subgroup of Diff.M / of those diffeomorphisms
which fix x0 and induce the identity on the tangent space Tx0

M . This is the group of
diffeomorphisms which preserve an observer based at x0 .

Lemma 1.2 If .M;x0/ is a connected smooth closed manifold with a basepoint x0

then Diffx0
.M / acts freely on the space Riem.M / of Riemannian metrics on M .

Proof This lemma is well known, compare, for example, Bourguignon [6, Proposition
IV.5]. For convenience we recall the proof. Assume g is a Riemannian metric on M ,
� 2 Diffx0

.M / and ��g D g . This means that the map � is an isometry of .M;g/.
As x0 and Tx0

M are fixed by � , so are all geodesics emenating from x0 (pointwise).
Since M is closed and connected, every point lies on such a geodesic, so � is the
identity.

In the following we equip Diff.M / and Diffx0
.M / with the C1–topologies. Let

Mx0
.M /DRiem.M /=Diffx0

.M /. We call Mx0
.M / the observer moduli space of

Riemannian metrics on M . Since the space Riem.M / is contractible and the action
of Diffx0

.M / on Riem.M / is proper (see Ebin [8]), Lemma 1.2 implies that the orbit
space Mx0

.M / is homotopy equivalent to the classifying space B Diffx0
.M / of the

group Diffx0
.M /. In particular one obtains a Diffx0

.M /–principal fiber bundle

(1) Diffx0
.M /!Riem.M /!Mx0

.M /:

This yields isomorphisms of homotopy groups

�qMx0
.M /D �qB Diffx0

.M /Š �q�1 Diffx0
.M /; q � 1:

Now we restrict the action of Diffx0
.M / to the subspace RiemC.M / of psc-metrics.

Clearly this action is free as well. We call the orbit space

MC
x0
.M / WDRiemC.M /=Diffx0

.M /

the observer moduli space of psc-metrics. Again we obtain a Diffx0
.M /–principal

fiber bundle

(2) Diffx0
.M /!RiemC.M /!MC

x0
.M /:

The inclusion RiemC.M / ,!Riem.M / induces inclusions of moduli spaces

MC.M / ,!M.M / and MC
x0
.M / ,!Mx0

.M /:

We collect our observations in the following lemma.
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Lemma 1.3 Let M be a connected closed manifold and x0 2M . Then

(a) there is the following commutative diagram of principal Diffx0
.M /–fibrations

(3)

RiemC.M / Riem.M /

MC
x0
.M / Mx0

.M /

?

-

?
-

(b) the observer moduli space Mx0
.M / of Riemannian metrics on M is homotopy

equivalent to the classifying space B Diffx0
.M /;

(c) there is a homotopy fibration

(4) RiemC.M /!MC
x0
.M /!Mx0

.M /:

The constructions of Hitchin [15] use certain non-zero elements in �k Diff.M / and
push them forward to the space RiemC.M / via the first map in (2). It is then shown
that these elements are non-zero in �kRiemC.M / (for k D 0; 1).

Our main method will be similar, but starting from the fiber sequence (4). We will
show that certain non-zero elements of �kB Diffx0

.M /D �kMx0
.M / can be lifted

to MC
x0
.M /. Once such lifts have been constructed, it is immediate that they represent

non-zero elements in �kMC
x0
.M / as their images are non-zero in �kMx0

.M /.

1.3 The results

We start from the particular manifold M D Sn . Let x0 2 Sn be a base point. Then
the group Diffx0

.Sn/ is homotopy equivalent to the group Diff.Dn; @Dn/ of diffeo-
morphisms of the disk Dn which restrict to the identity on the boundary @Dn . These
groups and their classifying spaces have been studied extensively. In particular the
rational homotopy groups �qB Diffx0

.Sn/˝Q are known from algebraic K–theory
computations and Waldhausen K–theory in a stable range.

Theorem 1.4 (Farrell and Hsiang [9]) Let 0< k� n. Then

�kB Diffx0
.Sn/˝QD

�
Q if n odd; k D 4q;

0 else:

Here and in later places the shorthand notation k� n means that for fixed k there is
an N 2N so that the statement is true for all n�N .
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Consider the inclusion map �WMC
x0
.Sn/!Mx0

.Sn/D B Diffx0
.Sn/ and the corre-

sponding homomorphism of homotopy groups:

��W �kMC
x0
.Sn/! �kMx0

.Sn/:

Here is our first main result.

Theorem 1.5 The homomorphism

��˝QW �kMC
x0
.Sn/˝Q! �kMx0

.Sn/˝Q

is an epimorphism for 0< k� n. In particular, the groups �kMC
x0
.Sn/ are non-trivial

for odd n and 0< k D 4q� n.

Theorem 1.4 is essentially an existence theorem and does not directly lead to a geometric
interpretation of the generators of �kB Diffx0

.Sn/˝Q. This was achieved later in
the work of Bökstedt [4] and Igusa [16; 18] based on a construction of certain smooth
nonlinear disk and sphere bundles over Sk due to Hatcher. The nontriviality of some of
these bundles is detected by the non-vanishing of a higher Franz–Reidemeister torsion
invariant.

Recall from Igusa [16; 17; 18] that for any closed smooth manifold M there are
universal higher Franz–Reidemeister torsion classes �2q 2H 4q.B Torr.M /IQ/, where
Torr.M / � Diff.M / is the subgroup of diffeomorphisms of M that act trivially on
H�.M IQ/. Note that Diffx0

.Sn/ � Torr.Sn/ and that Torr.Sn/ is the subgroup of
Diff.Sn/ consisting of orientation preserving diffeomorphisms. In particular, these
classes define characteristic classes for smooth fiber bundles M !E! B over path
connected closed smooth manifolds B with �1.B/ acting trivially on H�.M IQ/. (The
last condition can be weakened to H�.M IQ/ being a unipotent �1.M /–module [18],
but this is not needed here).

The relevant class �2q 2H 4q.S4qIQ/ of the Hatcher bundles over S4q with fiber Sn

was computed by Goette [11] and Igusa [16; 18] and shown to be non-zero, if n is odd.
The generators of �kB Diffx0

.Sn/ appearing in Theorem 1.4 can be represented by
classifying maps Sk ! B Diffx0

.Sn/ of these Hatcher bundles in this way. In order
to prove Theorem 1.5 we construct families of psc-metrics on these bundles.

Therefore, in Section 2, we will first study how and under which conditions such
constructions can be carried out. Assuming that a given smooth bundle admits a
fiberwise Morse function, we use the surgery technique developed by Walsh [28], which
generalizes the Gromov–Lawson construction of psc-metrics via handle decompositions
(see Gajer [10] and Gromov and Lawson [12]), to families of Morse functions, in order
to construct families of psc-metrics on this bundle, see Theorem 2.9. This is the
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technical heart of the paper at hand. Compared to Walsh [28] the novel point is the
generalization of the relevant steps of this construction to nontrivial fiber bundles.

Then, we will study particular generators of �kB Diffx0
.Sn/˝Q for suitable k and

n, as in Theorem 1.4. To give a better idea how we are going to proceed, recall that
the observer moduli space Mx0

.Sn/D B Diffx0
.Sn/ serves as a classifying space of

smooth fiber bundles with fiber Sn and structure group Diffx0
.Sn/. We obtain the

universal smooth fiber bundle

Sn
!Riem.Sn/�Diffx0

.Sn/ Sn
!Riem.Sn/=Diffx0

.Sn/ :

In particular, a map f W Sk!B Diffx0
.Sn/ representing an element ˛2�kB Diffx0

.Sn/

gives rise to a commutative diagram of smooth fiber bundles

(5)

E Riem.Sn/�Diffx0
.Sn/ Sn

Sk B Diffx0
.Sn/

?

-

?
-f

This shows that a lift of the class ˛ 2 B Diffx0
.Sn/ to �kMC

x0
.Sn/ is nothing but

a family of psc-metrics on the fibers Ex of the Hatcher bundle Sn ! E ! Sk ,
parameterized by x 2 Sk , so as to give a smooth family of fiberwise psc-metrics on E .

We will explain the precise relationship in Section 3 and show that the construction
described in Section 2 applies to Hatcher’s Sn –bundles. Here we make use of a familiy
of Morse functions on these bundles as described by Goette [11, Section 5.b]. This
will finish the proof of Theorem 1.5.

Given a closed smooth manifold M of dimension n, we can take the fiberwise connected
sum of the trivial bundle Sk �M ! Sk and Hatcher’s exotic Sn –bundle. Using
additivity of higher torsion invariants (see Igusa [18, Section 3]) we obtain non-trivial
elements in �kMx0

.M / for given k for any manifold M of odd dimension n as long
as k� n.

If in addition M admits a psc-metric, this can be combined with the fiberwise psc-
metric on Hatcher’s Sn –bundle constructed earlier to obtain a fiberwise psc-metric on
the resulting nontrivial M –bundle over Sk . This shows:

Theorem 1.6 Let M be a closed smooth manifold admitting a metric h of positive
scalar curvature. If dim M is odd, then the homotopy groups �k.MC

x0
.M /; Œh�/ are

non-trivial for 0< k D 4q� dim M .

Geometry & Topology, Volume 14 (2010)
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In order to study the homotopy type of the classical moduli space of psc-metrics it
remains to construct examples of manifolds M for which the non-zero elements in
�kMC

x0
.M / constructed in Theorem 1.6 are not mapped to zero under the canonical

map �kMC
x0
.M /! �kMC.M /. This will be done in Section 4 and leads to a proof

of the following conclusive result.

Theorem 1.7 For any d > 0 there exists a closed smooth manifold M admitting
a metric h of positive scalar curvature so that �4q.MC.M /; Œh�/ is non-trivial for
0< q � d .

Remark One should mention that the manifolds we construct in Theorem 1.7 do not
admit spin structures and are of odd dimension. In particular, the usual methods to
distinguish elements of �0MC.M /, which use the index of the Dirac operator, do not
apply to these manifolds, and we have no non-trivial lower bound on the number of
components of MC.M /.

Remark Finding non-zero elements of �kRiemC.M / for k > 1 remains an open
problem. It would be especially interesting to find examples with non-zero image in
�k.RiemC.M /=Diff.M //, or at least in �k.RiemC.M /=Diffx0

.M //.

We expect that a solution of this problem requires a different method than the one
employed in Sections 3 and 4 of our paper.
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2 The surgery method in twisted families

The aim of this section is to prove a result on the construction of fiberwise pcs-metrics
on certain smooth fiber bundles. At first we briefly review the Gromov–Lawson surgery
technique [12] on a single manifold. Here we use the approach developed by Walsh
[28; 29].
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2.1 Review of the surgery technique on a single manifold

Let W be a compact manifold with non-empty boundary @W and with dim W D nC1.
We assume that the boundary @W is the disjoint union of two manifolds @0W and
@1W both of which come with collars

(6) @0W � Œ0; �/�W; @1W � .1� �; 1��W;

where � is taken with respect to some fixed reference metric m on W , see Definition
2.1 below. By a Morse function on W we mean a Morse function f W W ! Œ0; 1� such
that

f �1.0/D @0W; f �1.1/D @1W

and the restriction of f to the collars (6) coincides with the projection onto the second
factor

@0W � Œ0; �/! Œ0; �/; @1W � .1� �; 1�! .1� �; 1�:

We denote by Cr.f / the set of critical points of f .

We say that a Morse function f W W ! Œ0; 1� is admissible if all its critical points have
indices at most .n� 2/ (where dim W D nC 1). We note that the last condition is
equivalent to the “codimension at least three” requirement for the Gromov–Lawson
surgery method. We denote by Morse.W / and Morseadm.W / the spaces of Morse
functions and admissible Morse functions, respectively, which we equip with the
C1–topologies.

Definition 2.1 Let f 2Morseadm.W /. A Riemannian metric m on W is compatible
with the Morse function f if for every critical point p 2 Cr.f / with ind p D �

the positive and negative eigenspaces TpW C and TpW � of the Hessian d2f are
m–orthogonal, and d2f jTpW C DmjTpW C , d2f jTpW � D�mjTpW � .

We notice that for a given Morse function f , the space of compatible metrics is convex.
Thus the space of pairs .f;m/, where f 2Morseadm.W /, and m is a metric compatible
with f , is homotopy equivalent to the space Morseadm.W /. We call a pair .f;m/
as above an admissible Morse pair. We emphasize that the metric m on W has no
relation to the psc-metrics we are going to construct.

The ideas behind the following theorem go back to Gromov–Lawson [12] and Gajer
[10].

Theorem 2.2 (Walsh [28, Theorem 2.5]) Let W be a smooth compact cobordism
with @W DM0tM1 . Assume that g0 is a positive scalar curvature metric on M0 and
.f;m/ is an admissible Morse pair on W . Then there is a psc-metric xg D xg.g0; f;m/

on W which extends g0 and has a product structure near the boundary.

Geometry & Topology, Volume 14 (2010)
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Proof We will provide here only an outline and refer to Walsh [28, Theorem 2.5] for
details. We begin with a few topological observations. For simplicity, we assume for

S
q
C.w/

Sp
� .w/

KpC1
� .w/

w
K

qC1
C .w/

M0

W

M1

N

U

Figure 1: Trajectory disks of the critical point w contained inside a disk U

the moment that W is an elementary cobordism, that is, f has a single critical point
w of index pC 1. The general case is obtained by repeating the construction for each
critical point. Fix a gradient like vector field for f . Intersecting transversely at w there
is a pair of trajectory disks KpC1

� and K
qC1
C , see Figure 1. Here the lower .pC1/–

dimensional disk KpC1
� is bounded by an embedded p–sphere Sp

� �M0 . It consists
of the union of segments of integral curves of the gradient vector field beginning at the
bounding sphere and ending at w . Here and below we use the compatible metric m

for all gradient vector fields. Similarly, K
qC1
C is a .qC1/–dimensional disk which is

bounded by an embedded q–sphere S
q
C �M1 . The spheres Sp

� and S
q
C are known

as trajectory spheres associated to the critical point w . As usual, the sphere Sp
� �M0

is embedded into M0 together with its neighbourhood N D Sp
� �DqC1 �M0 .

We denote by U the union of all trajectories originating at the neighborhood N , and
notice that U is a disk-shaped neighbourhood of KpC1

� [K
qC1
C , see Figure 1. A

continuous shrinking of the radius of N down to zero induces a deformation retraction
of U onto KpC1

� [K
qC1
C .

Now we consider the complement W n U , which coincides with the union of all
trajectories originating at M0nN . By assumption none of these trajectories have critical
points. We use the normalized gradient vector field of f to specify a diffeomorphism

 W W nU ! .M0 nN /� Œ0; 1�:

Geometry & Topology, Volume 14 (2010)
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Now we construct the metric xg . On the region W nU , we define the metric xg to be
simply g0jM0nN C dt2 where the t coordinate comes from the embedding  above.
To extend this metric over the region U , we have to do more work. Notice that the

g0C dt2 g0C dt2

g1C dt2

g1C dt2

f D c1

f D c1

f D c0 f D c0

standard

transition transition

transition transition

t

Figure 2: The metric xg on the disk U

boundary of U decomposes as

@U D .Sp
�DqC1/[ .Sp

�Sq
� I/[ .DpC1

�Sq/:

Here Sp �DqC1 �M0 is of course the tubular neighbourhood N while the DpC1�

Sq �M1 piece is a tubular neighbourhood of the outward trajectory sphere S
q
C �M1 .

Without loss of generality assume that f .w/D 1
2

. Let c0 and c1 be constants satisfying
0< c0 <

1
2
< c1 < 1. The level sets f D c0 and f D c1 divide U into three regions:

U0 D f
�1.Œ0; c1�/\U;

Uw D f
�1.Œc0; c1�/\U;

U1 D f
�1.Œc1; 1�/\U:

The region U0 is diffeomorphic to N � Œ0; c1�. We use again the flow to identify U0

with N � Œ0; c1� in a way compatible with the identification of W nU with M0nN �I .
Then, on U0 , we define xg as the product g0jN Cdt2 . Moreover, we extend this metric
g0jN Cdt2 near the Sp �Sq �I part of the boundary, where again t is the trajectory
coordinate.
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We will now define a family of particularly useful psc-metrics on the disk Dk . For a
detailed discussion see Walsh [28].

Definition 2.3 Let ı > 0 and �ı be a smooth function �ıW .0;1/!R satisfying the
following conditions:

(1) �ı.t/D ı sin . t
ı
/ when t is near 0;

(2) �ı.t/D ı when t � ı � �
2

;

(3) R�ı.t/� 0.

Clearly such functions �ı exists, futhermore, the space of functions satisfying the
conditions (1), (2), (3) for some ı > 0 is convex. Let r be the standard radial distance
function on Rk , and ds2

k�1
be the standard metric on Sk�1 (of radius one). Then the

metric dr2C�ı.r/
2ds2

k�1
on .0;1/�Sk�1 is well-defned on Rk . By restricting this

metric to .0; b��Sk�1 , one obtains the metric gk
tor.ı/ on Dk . This metric is defined

to be a torpedo metric, see Figure 3.

0 b

Figure 3: A torpedo function and the resulting torpedo metric

Remark It is easy to show that the above conditions (1), (2), (3) guarantee that gk
tor.ı/

has positive scalar curvature. Moreover it is SO.k/–symmetric and is a product with
the standard metric on the .k � 1/–sphere of radius ı near the boundary of Dk and is
the standard metric on the k –sphere of radius ı near the center of the disk. Also one
can show that the scalar curvature of gk

tor.ı/ can be bounded below by an arbitrarily
large constant by choosing ı sufficiently small.

The most delicate part of the construction, carried out carefully in [28], involves the
following: Inside the region Uw , which is identified with the product DpC1 �DqC1 ,
the metric smoothly passes into a standard product g

pC1
tor .�/C g

qC1
tor .ı/ for some

appropriately chosen �; ı > 0, globally keeping the scalar curvature positive. This is
done so that the induced metric on the level set f �1.c1/, denoted g1 , is precisely the

Geometry & Topology, Volume 14 (2010)
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metric obtained by applying the Gromov–Lawson construction to g0 . Furthermore,
near f �1.c1/ we have xg D g1 C dt2 . Finally, on U1 , which is identified with
DpC1�Sq � Œc1; 1� in the usual manner, the metric xg is simply the product g1Cdt2 .
See Figure 2 for an illustration.

After the choice of the Morse coordinate diffeomorphism with DpC1 �DqC1 (and of
the other parameters like � and ı ), the construction is explicit and depends continuously
on the given metric g0 on Sp �DqC1 .

Later on we will need the following additional facts. The next lemma is proved by
Walsh [28, Section 3].

Lemma 2.4 The “initial” transition consists of an isotopy. In particular, g0 is isotopic
to a metric which, on a neighborhood diffeomorphic to Sp �DqC1 of the surgery
sphere Sp

� in M0 , is ı2ds2
p Cg

qC1
tor .ı/.

Lemma 2.5 The whole construction is O.pC 1/�O.qC 1/–equivariant.

Proof By construction, the standard product of torpedo metrics is O.pC1/�O.qC1/–
invariant. It is a matter of carefully going through the construction of the transition
metric in [28] to check that this construction is equivariant for the obvious action of
these groups. This is done by Walsh [29, Lemma 2.2].

Lemma 2.5 will be of crucial importance later, when in a non-trivial family we cannot
choose globally defined Morse coordinates giving diffeomorphisms to DpC1 �DqC1

(as the bundle near the critical set is not trivial). We will construct Morse coordinates
well defined up to composition with elements of O.pC1/�O.qC1/. The equivariance
of Lemma 2.5 then implies that our construction, which a priori depends on the choice
of these coordinates, is consistent and gives rise to a smooth globally defined family of
metrics.

We should emphasize that this construction can be carried out for a tubular neighbour-
hood N of arbitrarily small radius and for c0 and c1 chosen arbitrarily close to 1

2
. Thus

the region Uw , on which the metric xg is not simply a product and is undergoing some
kind of transition, can be made arbitrarily small with respect to the background metric
m. As critical points of a Morse function are isolated, it follows that this construction
generalizes easily to Morse functions with more than one critical point.

2.2 Extension to families

There is a number of ways to generalize the surgery procedure to families of manifolds.
A construction relevant to our goals leads to families of Morse functions, or maps with
fold singularities. We start with a local description.
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Definition 2.6 A map F W Rk �RnC1!Rk �R is called a standard map with a fold
singularitiy of index �, if there is a c 2R so that f is given as

(7)
Rk
�RnC1

�!Rk
�R;

.y;x/ 7�!
�
y; c �x2

1 � � � � �x2
�Cx2

�C1C � � �Cx2
nC1

�
:

Roughly speaking, the composition

Rk
�RnC1 F

!Rk
�R

p2
!R

with the projection p2 onto the second factor defines a Rk –parametrized family of
Morse functions of index � on RnC1 in standard form.

Let W be a compact manifold with boundary @W ¤∅, dim W D nC 1. We denote
by Diff.W; @W / the group of all diffeomorphisms of W which restrict to the identity
near the boundary @W . Then we consider a smooth fiber bundle � W E!B with fiber
W , where dim B D k and dim E D nC 1C k . The structure group of this bundle is
assumed to be Diff.W; @W / and the base space B to be a compact smooth manifold.
Assume that the boundary @W is split into a disjoint union: @W D @0W t @1W .

Let �0W E0! B and �1W E1! B be the restriction of the fiber bundle � W E! B

to the fibers @0W and @1W respectively. Since each element of the structure group
Diff.W; @W / restricts to the identity near the boundary, the fiber bundles �0W E0!B

and �1W E1! B are trivialized:

E0 D B � @0W
�0
�! B; E1 D B � @1W

�1
�! B:

Choose a splitting of the tangent bundle �E of the total space as �E Š �
��B˚Vert ,

where Vert is the bundle tangent to the fibers W , that is, choose a connection.

Definition 2.7 Let � W E! B be a smooth bundle as above. For each z in B let

iz W Wz!E

be the inclusion of the fiber Wz WD �
�1.z/. Let F W E!B�I be a smooth map. The

map F is said to be an admissible family of Morse functions or admissible with fold
singularities with respect to � if it satisfies the following conditions:

(1) The diagram

E B � I

B
?

�

-F

�
����� p1

commutes. Here p1W B � I ! B is projection on the first factor.
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(2) The pre-images F�1.B�f0g/ and F�1.B�f1g/ coincide with the submanifolds
E0 and E1 respectively.

(3) The set Cr.F /�E of critical points of F is contained in E n .E0[E1/ and
near each critical point of F the bundle � is equivalent to the trivial bundle
Rk �RnC1

p1
!Rk so that with respect to these coordinates on E and on B the

map F is a standard map Rk �RnC1!Rk �R with a fold singularity as in
Definition 2.6

(4) For each z 2 B the restriction

fz D F jWz
W Wz! fzg � I

p2
�! I

is an admissible Morse function as in Section 2.1. In particular, its critical points
have indices � n� 2.

We assume in addition that the smooth bundle � W E!B is a Riemannian submersion
� W .E;mE/! .B;mB/, see Besse [3]. Here we denote by mE and mB the metrics
on E and B corresponding to the submersion � . Now let F W E ! B � I be an
admissible map with fold singularities with respect to � as in Definition 2.7. If the
restriction mz of the submersion metric mE to each fiber Wz , z 2 B , is compatible
with the Morse function fz D F jWz

, we say that the metric mE is compatible with the
map F .

Proposition 2.8 Let � W E! B be a smooth bundle as above and F W E! B � I be
an admissible map with fold singularities with respect to � . Then the bundle � W E!B

admits the structure of a Riemannian submersion � W .E;mE/! .B;mB/ such that
the metric mE is compatible with the map F W E! B � I .

Proof One can choose a Riemannian metric mB on the base B , and for each fiber Wz

there is a metric mz compatible with the Morse function fz D F jWz
. Using convexity

of the set of compatible metrics and the local triviality in the definition of a family
of Morse functions, we can choose this family to depend continuously on z . Then
one can choose an integrable distribution (sometimes called connection) to construct a
submersion metric mE which is compatible with the map F W E! B � I , see [3].

Below we assume that the fiber bundle � W E!B is given the structure of a Riemannian
submersion � W .E;mE/! .B;mB/ such that the metric mE is compatible with the
map F W E! B � I .

Consider the critical set Cr.F / � E . It follows from the definitions that Cr.F / is a
smooth k –dimensional submanifold in E , and it splits into a disjoint union of path
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components (“folds”)
Cr.F /D†1 t � � � t†s :

Furthemore, it follows that the restriction of the fiber projection

�j†j
W †j �! B

is a local diffeomorphism for each j D 1; : : : ; s . In particular, �j†j
is a covering map,

and if the base B is simply-connected then �j†j
is a diffeomorphism onto its image.

Since the metric mE is a submersion metric, the structure group of the vector bundle
Vert!E is reduced to O.nC 1/. Futhermore, since the metrics mz are compatible
with the Morse functions fz D F jWz

, the restriction Vertj†j
to a fold †j � Cr.F /

splits further orthogonally into the positive and negative eigenspaces of the Hessian of
F . Thus the metric mE induces the splitting of the vector bundle

Vertj†j
Š Vert�j ˚VertCj

with structure group O.pC1/�O.qC1/ for each †j . Here is the main result of this
section:

Theorem 2.9 Let � W E! B be a smooth bundle, where the fiber W is a compact
manifold with boundary @W DM0 tM1 , the structure group is Diff.W; @W / and the
base space B is a compact smooth simply connected manifold. Let F W E! B � I be
an admissible map with fold singularities with respect to � . In addition, we assume
that the fiber bundle � W E ! B is given the structure of a Riemannian submersion
� W .E;mE/! .B;mB/ such that the metric mE is compatible with the map F W E!

B � I . Finally, we assume that we are given a smooth map g0W B!RiemC.M0/.

Then there exists a Riemannian metric xg D xg.g0;F;mE/ on E such that for each
z 2 B the restriction xg.z/ D xgjWz

to the fiber Wz D �
�1.z/ satisfies the following

properties:

(1) xg.z/ extends g0.z/;

(2) xg.z/ is a product metric g�.z/C dt2 near M� � @Wz , � D 0; 1;

(3) xg.z/ has positive scalar curvature on Wz .

Proof We assume that B is path-connected. Let dim B D k , dim W D nC 1. We
denote, as above, Cr.F /D†1 t : : :t†s; where the †j is a path-connected fold. For
a given point z 2B , we denote by fz D F jWz

W Wz! I the corresponding admissible
Morse function.

The metric xg will be constructed by a method which is quite similar to that employed
in the proof of Theorem 2.2. We begin by equipping the boundary component E0 with
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the given Riemannian metric g0 . We choose a gradient-like vector field V and use
the trajectory flow of V to extend xg0 as a product metric away from the folds Cr.F /.
Near the folds Cr.F /, some modification is necessary. However, roughly speaking, the
entire construction goes through in such a way that the restriction to any fiber is the
construction of Theorem 2.2.

We will initially assume that Cr.F / has exactly one path-connected component †. The
more general case will follow from this by iterated application of the construction. We
will denote by c the critical value associated with the fold †, that is, p2ıF.†/D c 2 I .
Let �c > 0 be small. Let V denote the normalized gradient vector field associated to
F and mE which is well-defined away from the singularities of F . As F has no other
critical values, we use V to specify a diffeomorphism

�0W E0 � Œ0; c � �c � �! F�1.B � Œ0; c � �c �/

.w; t/ 7�! .hw.t//;

where hw is the integral curve of V beginning at w . In particular, p2 ıF ı�0 is the
projection onto Œ0; c � �c �. As the bundle �0W E0! B is trivial, this gives rise to a
diffeomorphism

B �M0 � Œ0; c � �c �Š F�1.B � Œ0; c � �c �/:

Let xgc��c
denote the metric obtained on F�1.B� Œ0; c� �c �/ by pulling back, via this

diffeomorphism, the warped product metric mB C g0C dt2 . In order to extend this
metric past the fold †, we must adapt our construction.

Our next goal is to construct a metric xgcC�c
on F�1.B � Œ0; cC �c �/, so that on each

fiber

��1.y/\F�1.B � Œ0; cC �c �/

the induced metric has positive scalar curvature and is a product near the boundary.
Fiberwise, this is precisely the situation dealt with in Theorem 2.2. However, perform-
ing this over a family of Morse critical points, we must ensure compatibility of our
construction over the entire family. The main problem is that our construction depends
on the choise of “Morse coordinates”, that is, the diffeomorphism of a neighborhood
of the critical point to DpC1 �DqC1 . Because of the non-triviality of the bundle, a
global choice of this kind is in general not possible. We will normalize the situation
in such a way that we choose diffeomorphisms up to precomposition with elements
of O.pC 1/�O.qC 1/ (in some sense a suitable reduction of the structure group).
We then use Lemma 2.5, that the construction employed is equivariant for this smaller
group O.pC 1/�O.qC 1/.
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Our strategy actually is to use the fiberwise exponential map for mz at the critical set
as Morse coordinates. Because of the canonical splitting

Vertj† D Vert�˚VertC

with structure group O.pC1/�O.qC1/ this gives coordinates which are well defined
up to an action of O.pC 1/�O.qC 1/ (the choice of orthonormal bases in VertC

and Vert� ). However, these coordinates are not Morse coordinates for F . That the
metrics mz are compatible with the Morse function fz only means that this is the case
infinitesimally. We will therefore deform the given Morse function F to a new Morse
function F1 for which our coordinates are Morse coordinates.

We denote by DVert† the corresponding disk bundle of radius ı with respect to the
background metric mE . For each w 2†, we denote by Dw.Vert†/ the fiber of this
bundle. If ı is sufficiently small, the fiberwise exponential map (and local orthonormal
bases for VertC and Vert� ) define coordinates DpC1 �DqC1 for neighborhoods of
the critical point in each fiber. We use the exponential map to pull back all structures
to DpC1 �DqC1 and, abusing notation, denote them in the old way. In particular, the
function F is defined on DpC1 �DqC1 .

DVertCw

DVert�w

D
qC1
w

D
pC1
w

t

Figure 4: The images of the trajectory disks D
pC1
w and D

qC1
w in DwVert.†/

after application of the inverse exponential map

Let � and r denote the distance to the origin in DpC1 and DqC1 , respectively. Then
�2 and r2 are smooth functions on the image under the fiberwise exponential map
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of D.Vert†/. Moreover, define FstdWDVert† ! R by Fstd WD c � �2 C r2 . The
compatibility condition on F and the Taylor expansion theorem imply that F �Fstd D

O
�p

r2C �2
3�

, that is, F �Fstd is cubic in the mz –distance to the origin.

Choose a sufficiently small ˛ > 0 and a smooth cutoff function �˛WR! Œ0; 1� with

(1) �˛.s/D 1 for s < ˛

(2) �˛.s/D 0 for s > 2˛

(3) j�0.s/j � 10=˛ 8s 2R.

Then Ft WD Fstd C
�
1 � t�˛

�p
�2C r2

��
.F � Fstd/ provides a homotopy between

F D F0 and F1 of families of Morse functions with the following properties:

(1) Cr.Ft /D Cr.F / 8t 2 Œ0; 1�;

(2) Ft coincides with F outside of a tubular neigbourhood of † 8t 2 Œ0; 1�;

(3) F1 D Fstd on a sufficiently small neighbourhood of the fold † in DVert† .

The second and the third condition are evident. For the first, we have to check that we
did not introduce new critical points. Now the gradient of Fstd is easily calculated and
its norm at x is equal to the norm of x . On the other hand, the gradient of�

1� t�
�p

r2C �2
��
.F �Fstd/

has two summands:

(1) The first one is
�
1� t�

�p
r2C �2

��
r.F �F 0/, where .1� t�/ is bounded and

r.F �F 0/ is quadratic in the distance to the origin (as F �F 0 has a Taylor
expansion which starts with cubic terms).

(2) The second one is t�0
�p

r2C �2
�
r
�p

r2C �2
�
.F �F 0/. This vanishes identi-

cally if r2C�2�˛2 , and is bounded by 10.F�F 0/=˛0�10.F�F 0/
ıp

r2C �2

if r2 C �2 � ˛2 (here we use that the gradient of the distance to the originp
r2C �2 has norm 1). Since F �F 0 is cubic in

p
r2C �2 , the whole expres-

sion is quadratic.

It follows that, if ˛ is chosen small enough (there is a uniform bound because we deal
with a compact family, so we find uniform bounds for the implicit constants in the
above estimates), the gradient of Ft vanishes exactly at the origin. Near the origin,
by the choice of � , Ft D tFstdC .1� t/F . Because the Hessians of F and of Fstd

are identical at the origin, the Hessian of Ft also coincides with the Hessian of Fstd ,
in particular Ft is a family of Morse functions. To find the required local Morse
coordinates, we can invoke Igusa’s [16, Theorem 1.4].
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Thus we can assume that the map F is standard near the fold †, that is, F D F1 in
the first place, and from now on we will do so.

Now, via the fiberwise exponential map for m�.w/ , for each w 2† we can specify a
neighbourhood Uw � �

�1.�.w// containing the point w and of the type described
in the proof of Theorem 2.2. In Figures 4 and 5, the image of this region under the
inverse exponential map, before and after the above adjustment of F , is shown. For
each w 2†, replace the fiber DwVert† with the image under the inverse exponential
map of Uw . Abusing notation we will retain the name DVert† for this bundle, the
fibers of which should be thought of as the cross-shaped region described in Figure 5.
The structure group of this bundle is still O.pC 1/�O.qC 1/. The metric induced

DVertCw DD
qC1
w

DVert�w DD
pC1
w

Figure 5: The shaded region denotes the region of the fiber DwVert.F / on
which the induced metric is defined.

by xgc��c
is defined on a subbundle with fibers diffeomorphic to Sp �DqC1 � I , see

Figure 5. On each fiber we now perform the construction from Theorem 2.2. The
fact that we adjusted F to make the trajectories standard on the fiber disk guarantees
consistency of the construction. On each fiber there is a splitting into positive and
negative eigenspaces over which we will perform our construction. We must however,
choose a pair of orthonormal bases for the negative and positive eigenspaces of that
fiber in order to appropriately identify the fiber with Euclidean space. In order to
guarantee consistency we must ensure that our construction is independent of these
choices. But this follows from Lemma 2.5.
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Extending the metric fiberwise in the manner of Theorem 2.2 and pulling back via the
exponential map, gives a smooth family of fiber metrics, which, with respect to some
integrable distribution H and the base metric mB , combine to the desired submersion
metric on F�1.B � Œ0; cC ıc �/.

Remark With some little extra care it should be possible to remove the condition that
B is simply connected in Theorem 2.9. However, we are only interested in the case
B D Sn with n > 1 so that, for our purpose, we can stick to the simpler version as
stated.

3 Metrics of positive scalar curvature on Hatcher’s examples

The work of Goette [11, Section 5.b] shows that Hatcher’s examples can be given the
structure which is described in Definition 2.7. The construction of the Hatcher bundles
Dn ! E ! Sk is explained in some detail in [11] and will not be repeated here.
Most important for our discussion is the fact that each of these bundles comes with an
admissible family F of Morse functions as indicated in the following commutative
diagram:

(8)

Dn
z E Sk

� Œ0; 1=2�

Sk

-iz

?
�

-FD.�;f /

����� p1

We follow the description given in [11]. Each fz WD f jEz
WDn

z ! Œ0; 1=2� has three
critical points p

.0/
z , p

.1/
z and p

.2/
z . In particular, the points p

.0/
z form a unique

fiberwise minimum of the Morse functions fz with value 0, and F�1.Sk � f0g/ has
a neighborhood F�1.Sk � Œ0; 1=8�/ which (as a smooth bundle) is diffeomorphic to
Dn�Sk . Near the value 1=2, the inverse image F�1.Sk�f1=2g/ has a neighborhood
diffeomorphic to .Sn�1 � I/� Sk . We now consider the upside-down copy of the
bundle (8):

(9)

Dn
z E� Sk

� Œ1=2; 1�

Sk

-iz

?
�

-F�

��
��� p1

Here E� WDE and F�.e/ WD .�.e/; 1�f�.e/.e//, that is, f �z D 1�fz , where we write
F D .�; f /. It follows that each f �z WD

n! Œ1=2; 1� has three critical points p
.�0/
z ,

p
.�1/
z and p

.�2/
z . In particular, the points p

.�0/
z form a unique fiberwise maximum
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of the Morse functions f �z with value 1, and .F�/�1.Sk � f0g/ has a neighborhood
.F�/�1.Sk � Œ7=8; 1�/ which (as a smooth bundle) is again diffeomorphic to Dn�Sk .
Near the value 1=2, the inverse image .F�/�1.Sk �f1=2g/ again has a neighborhood
diffeomorphic to .Sn�1 � I/�Sk .

By cutting out the neighborhood Dn �Sk of the fiberwise minima of F , we obtain a
smooth bundle

(10)

.Sn�1
� Œ1=8; 1=2�/z E1 Sk

� Œ1=8; 1=2�

Sk

-iz

?
�

-F1

�
����� p1

where E1 WD E n F�1.Sk � Œ0; 1=8//, F1 WD F jE1
, and the spheres Sn�1 in the

product
Sn�1

�Sk
D F�1.Sk

� f1=8g/

are given the standard metric g0 of fixed (but arbitrary) radius b independent of z 2Sk .
The bundle (10) satisfies all the assumptions of Theorem 2.9, and we obtain psc-metrics
xgz on each fiber .Sn�1 � Œ1=8; 1=2�/z with a product-metric near the boundary. In
particular, this gives a family of metrics .g1/z on the spheres Sn�1

z � f1=2g.

Now we apply the same construction to the upside-down copy E� to obtain a smooth
bundle E�

1
with fibers .Sn�1 � Œ1=2; 7=8�/z . To make sure that the metrics match, we

set xg�z WD xgz , that is, we use the same metric upside-down.

Because our construction provides metrics which are products near the boundary, we
can glue together the bundles E1 and E�

1
to form a bundle zE ! Sk with fiber

.Sn�1 � Œ1=8; 7=8�/z together with a smooth family of psc-metrics. We notice that the
restriction of the bundle zE to the boundaries

.Sn�1
� f1=8; 7=8g/z D @.S

n�1
� Œ1=8; 7=8�/z

is trivial by construction, and the spheres Sn�1 � f1=8; 7=8g are given the standard
metric independent of the fiber. Thus we can glue the fiberwise caps .Dn

0
tDn

1
/z to

the bundle zE! Sk by identifying

.Dn
0/z � Sn�1

z D .Sn�1
� f1=8g/z;

.Dn
1/z � Sn�1

z D .Sn�1
� f7=8g/z :

Then we define the torpedo metrics gtor.r/ on the disks .Dn
0
/z and .Dn

0
/z such that

they match the chosen standard metric of radius b on the boundary spheres. We denote
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the resulting metric on the fiber sphere Sn
z by xgz . Let xE! Sk be the resulting fiber

bundle with fiber Sn .

Let us investigate what we have achieved: for each z 2 Sk we get a psc-metric on
the fiber Sn

z over z . This is a manifold diffeomorphic to Sn , but not with a given
diffeomorphism. Hence this metric defines a point in the moduli space of pcs-metrics
on Sn . Finally, there is a base point z0 2 Sn together with a fixed neighborhood on
which all these diffeomorphisms restrict to the identity. This implies that in fact we get
an element in �kMC

x0
.Sn/. The map

�WMC
x0
.Sn/ �!Mx0

.Sn/D B Diffx0
.Sn/

forgets the fiberwise Riemannian metrics and just remembers the structure of xE as
a smooth bundle. Because for odd n the generators of �kMC

x0
.Sn/˝Q can in a

stable range be represented by classifying maps of Hatcher bundles (see Bökstedt [4],
Igusa [16] and Goette [11]) we have proved our first main result, Theorem 1.5.

To prove our second main result, Theorem 1.6, for a general manifold M , we use the
above fiber bundles to form non-trivial bundles by taking a fiberwise connected sum
M #Sn .

Let M be a smooth manifold with a base point x0 . We assume that M is equipped
with a psc-metric h. We fix a disk Dn

0
�M of small radius centered at x0 . We may

always deform the metric h near x0 such that its restriction on Dn
0

is a torpedo metric
gtor.r/ (use, for example, Lemma 2.4 and thinking of the given disk as one half of a
tubular neighborhood of an embedded S0 ). Thus we will assume that the metric h

already has this property.

On the other hand, we consider the bundle xE! Sk with with psc-metrics xgz on the
fibers Sn

z , z 2 Sk , as constructed before. We notice that the metrics xgz are chosen
in such way that their restrictions to the disks .Dn

0
/z and .Dn

1
/z are torpedo metrics

(with chosen parameter). Let

zDn
z D Sn

z n .D
n
1/z :

This is a disk together with the metric zgz D xgzj zDn
z

which is a product-metric g0Cdt2

near the boundary Sn�1
z � zDn

z . Now for each z 2 Sk we define the Riemannian
manifold

Mz DM #.Sn/z D .M nD0/[Sn�1
z

zDn
z

equipped with the metric zhz so that

zhzjMnD0
D hjMnD0

; zhzjDn
z
D zgz :
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This defines a smooth fiber bundle

zE D .M �Sk/#E �! Sk ;

where .M � Sk/#E is the total space of the fiber-wise connected sum as we just
described. It follows from the additivity property (see Igusa [18, Section 3.1]) that the
higher Franz–Reidemeister torsion of the fiber bundle zE! Sk is a non-zero class in
H k.Sk IQ/. This implies that the classifying map

Sk
! B Diffx0

.M /DMx0
.M /

of this bundle defines a non-zero element in �k.Mx0
.M /I Œzh�/. Since we have con-

structed psc-metrics on the fibers Mz , this non-zero element can be lifted to the group
�k.MC

x0
.M /; Œzh�/. This finishes the proof of Theorem 1.6.

4 Homotopy type of the usual psc-moduli space

In this section, we show that for a suitable choice of M as in Theorem 1.6, the map
MC

x0
.M /!MC.M / is non-trivial on �k .

For a closed smooth manifold M let AH .M / be the image of the canonical map
Diff.M /! Aut.H�.M IQ//.

Lemma 4.1 For any N � 0 there is a closed smooth orientable manifold M of
dimension n with the following properties:

(1) n is odd and n�N .

(2) M carries a psc-metric.

(3) Each S1 –action on M is trivial.

(4) AH .M / is finite.

(5) Each diffeomorphism of M is orientation preserving.

Before we explain the construction of M , we show how Theorem 1.7 follows.

Let d > 0 be given and choose N so that Theorem 1.5 holds for all n � N and all
k D 4q � d . For k D 4q � d we consider the fibration

M !E! Sk

constructed at the end of Section 3. By construction this fibration is classified by a
map f W Sk ! BG , where G WD Torr.M /\Diffx0

.M /: Because the higher Franz–
Reidemeister torsion of this bundle is a non-zero element in H k.Sk IQ/, the funda-
mental class of Sk is mapped to a non-zero element in Hk.BGIQ/ and then further
to a non-zero element c 2Hk.B Torr.M /IQ/.
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Let �W M!M be a diffeomorphism. Then � is orientiation preserving by assumption.
Because Torr.M / is normal in Diff.M /, the map � induces a map

x�W B Torr.M /! B Torr.M /;

where we think of B Torr.M / as E Diff.M /=Torr.M /.

Lemma 4.2 x��.c/D c .

Proof The map x� is induced my the homomorphism Torr.M /! Torr.M / given
by conjugation with � . By construction, the bundle E is classified by a map Sk !

B Diffx0
.M;M �D/ where D �M is a small embedded disc around the base point

x0 2M . Note that Diffx0
.M;M �D/ can be regarded as a subgroup of Torr.M /. The

map � is isotopic to a diffeomorphism fixing D . Conjugation by this element induces
the identity homomorphism on the subgroup Diffx0

.M;M �D/� Torr.M /.

We conclude that the finite group AH .M / D Diff.M /=Torr.M / acts freely on the
space E Diff.M /=Torr.M / D B Torr.M / with quotient E Diff.M /=Diff.M / D

B Diff.M / and fixes c 2 H�.B Torr.M /IQ/. A transfer argument implies that
c is mapped to a nonzero class in H�.B Diff.M /IQ/ under the canonical map
B Torr.M /! B Diff.M /.

Theorem 1.7 now follows from the observation that this class lies in the image of the
Hurewicz map, from the commutativity of the diagram

RiemC.M/=G //

��

Riem.M/=G

��

Riem.M/�G E Diff.M/DBG

��
RiemC.M/=Torr.M/ //

��

Riem.M/=Torr.M/

��

Riem.M/�Torr.M/E Diff.M/DBTorr.M/

��

oo

RiemC.M/=Diff.M/ // Riem.M/=Diff.M/ Riem.M/�Diff.M/E Diff.M/DB Diff.M/
�oo

and from the following lemma.

Lemma 4.3 Assume that 
 2 �k.B Diff.M // is not in the kernel of the Hurewicz
map

�k.B Diff.M //!Hk.B Diff.M /IQ/:

Then the canonical map

�W B Diff.M /DRiem.M /�Diff.M /E Diff.M /!Riem.M /=Diff.M / ;

sends 
 to a non-zero element in �k.Riem.M /=Diff.M //.
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Proof For Œg�2Riem.M /=Diff.M / the preimage ��1.Œg�/D .g �Diff.M //�Diff.M /

E Diff.M / is homeomorphic to B.Diff.M /g/, where Diff.M /g is the isotropy group
of g 2 Riem.M /. Furthermore, by the existence of a local slice through g for
the action of Diff.M / on Riem.M /, which can be assumed to be Diff.M /g –linear
(see, for example, Bourguignon [6, Section II.13.]), each neighbourhood of Œg� 2
Riem.M /=Diff.M / contains an open neighbourhood U so that ��1.U / retracts to
��1.Œg�/. In particular, the Leray sheaf H�.�/ for �, see Bredon [7, IV.4], is constant
and equal to Q in degree 0 and equal to 0 in all other degrees. Here we use the
Myers–Steenrod theorem (see Myers [23]) which says that Diff.M /g is a compact
Lie group and hence finite as S1 can act only trivially on M . This implies that the
reduced sheaf theoretic cohomology zH�

sh
.B Diff.M /gIQ/D 0 for all g 2Riem.M /

by the usual transfer argument [7, II.19] for sheaf theoretic cohomology.

We conclude that the cohomological Leray spectral sequence (see, for example, [7,
IV.6])

E
p;q
2
DH

p

sh
.Riem.M /=Diff.M /IHq.�//)H

pCq

sh
.B Diff.M /IQ/

collapses at the E2 –level. From this it follows that the map � induces an isomorphism
in sheaf theoretic cohomology with rational coefficients.

In order to derive the statement of the lemma, note that up to homotopy equivalence the
space B Diff.M / can be assumed to be a paracompact Fréchet manifold (see Kriegl
and Michor [19, Section 44.21]), in particular to be locally contractible. This and the
homotopy invariance of sheaf theoretic cohomology [7, Theorem II.11.12] imply by [7,
Theorem III.1.1] that there is a canonical isomorphism

H�sh.B Diff.M /IQ/ŠH�sing.B Diff.M /IQ/

of sheaf theoretic and singular cohomology.

Let 
 be represented by a map Sk ! B Diff.M / and consider the composition

Sk
! B Diff.M /!Riem.M /=Diff.M / :

We have shown above that there is a class in H k
sh
.Riem.M /=Diff.M /IQ/ whose pull-

back under this composition evaluates non-zero on the singular fundamental class of Sk

(after identifying H k
sh
.Sk IQ/DH k

sing.S
k IQ/). This implies that this composition

cannot be homotopic to a constant map.

It remains to construct the manifold M in Lemma 4.1.

Let n� 3 be a natural number. According to Mostow rigidity the isometry group of
a closed hyperbolic n–manifold M is isomorphic to the outer outomorphism group
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Out.�1.M //. In Belolipetsky and Lubotzky [2, Theorem 1.1] a closed hyperbolic
n–manifold M n with trivial isometry group is constructed. In the notation of [2],
M n is defined as a quotient Hn=B of hyperbolic n–space by a discrete subgroup of
Isom.Hn/ which, according to [2, Section 2.3 and Remark 6.3], can be assumed to
consist only of orientation preserving isometries of Hn . In particular, we can assume
that M n is orientable. Summarizing, we have

Lemma 4.4 For each n� 3, there is an orientable closed hyperbolic (hence aspherical)
n–manifold Bn so that Out.�1.B

n//D 1.

Next, let k � 2 be a natural number. We construct an orientable 4k –dimensional
manifold N as follows.

Recall the Moore space M.Z=2; 2/D S2 [� D3 where �W @D3! S2 is of degree
2. Its reduced integral homology is concentrated in degree 2 and isomorphic to Z=2.
Let S2! B SO.3k/ represent a generator of �2.B SO.3k//D Z=2. This map can
be extended to a map M.Z=2; 2/! B SO.3k/ which then induces an isomorphism
H 2.B SO.3k/IZ=2/ŠH 2.M.Z=2; 2/IZ=2/ of groups that are isomorphic to Z=2.
By pulling back the universal bundle over B SO.3k/ we obtain a Euclidean vector
bundle X !M.Z=2; 2/ of rank 3k which is orientable, but not spin. At this point we
note that the generator of H 2.B SO.3k/IZ=2/ is the second Stiefel–Whitney class of
the universal bundle over B SO.3k/.

In this discussion we can replace M.Z=2; 2/ by a homotopy equivalent finite 3–
dimensional simplicial complex, which we denote by the same symbol. If k is chosen
large enough then M.Z=2; 2/ can be embedded as a subcomplex into RkC1 . We
consider a regular neighbourhood R�RkC1 of this subcomplex. This is an compact
oriented submanifold of RkC1 with boundary which contains M.Z=2; 2/ as a deforma-
tion retract. By construction @R is an oriented closed smooth manifold of dimension k .
Furthermore, because R has the rational homology of a point, Poincaré duality and the
long exact homology sequence for the pair .R; @R/ show that @R is a rational homology
sphere. Let E! @R be the restriction of the pull back over R of the vector bundle
X !M.Z=2; 2/. If k is chosen large enough, then H 2.RIZ=2/!H 2.@RIZ=2/ is
an isomorphism and hence E is not spin.

Let DE be the disc bundle of E and let P be the oriented double of DE . The manifold
P is the total space of an oriented S3k bundle over @R with vanishing Euler class
(the latter for dimension reasons). Hence the rational homology of P is concentrated
in degrees 0, k , 3k and 4k and isomorphic to Q in these degrees. Furthermore, the
manifold P is orientable, but not spin. The latter holds, because the tanget bundle of
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DE restricted to @R splits as a direct sum T .@R/˚E and the bundle T .@R/ is stably
trivial, since it becomes trivial after adding a trivial real bundle of rank 1.

Because P is simply connected by construction, the Hurewicz theorem modulo the
Serre class of finite abelian groups shows that P has finite homotopy groups up to
degree k � 1.

If we additionally assume that k is odd, then the only possibly non-zero Pontrijagin
class of P lives in degree 4k , hence the yA–genus of P is a multiple of the signature
of P and thus equal to 0.

There is a 4k –dimensional oriented closed smooth manifold Q, given by a Milnor E8 –
plumbing construction (see Milnor and Kervaire [22]), which is .2k � 1/–connected
and whose intersection form on H 2k.QIZ/ is a direct sum of copies of the positive
definite lattice E8 , hence itself a positive definite lattice. In particular, the signature of
M is non-zero. The first non-zero Pontrijagin class is pk.Q/ 2H 4k.QIZ/, which is
non-zero by the signature theorem. In particular the yA–genus of Q is nonzero.

For later use we recall that positive definite lattices have finite automorphism groups:
Given such a lattice E choose a bounded ball D around 0 which contains a set of
generators. Because E is finitely generated and positive definite, D is finite. Now
observe that each automorphism E permutes the points in D and is uniquely determined
by this permutation.

We finally define the oriented manifold N 4k WD P]Q as the connected sum of P and
Q.

Lemma 4.5 For each odd n > 0 and each (sufficiently large and odd) k > n, the
manifold M WD Bn �N 4k has all the properties described in Lemma 4.1.

Proof The dimension of M is odd and can be chosen arbitrarily large.

The manifold N is simply connected, of dimension at least 5 (if k is large enough)
and not spin. It therefore carries a metric of positive scalar curvature (see Gromov and
Lawson [12]) and the same is then true for the product Bn �N 4k .

Because B is aspherical and N is simply connected, we can regard the projection
p1W M D B �N ! B onto the first factor as the classifying map of the universal
cover of M . By construction, the manifold M has finite �2 and �4 and the higher
yA–genus hA.M /[��.c/; ŒM �i associated to the fundamental class c 2H n.BIQ/D

H n.B�1.M /IQ/ is nonzero. Because the group �1.B/ is the fundamental group of
a hyperbolic manifold, it is torsion free and does not contain Z2 as a subgroup (the
latter by Preissman’s theorem). This implies that the image of any homomorphism
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Z ! center.�1.M // is trivial. We can therefore apply Herrera and Herrera [14,
Theorem 4.1] to conclude that M does not carry any effective S1 –action.

We now show that AH � Aut.H�.M IQ// is finite. Let f W M !M be a diffeomor-
phism. Up to homotopy we can assume that f fixes a base point x0 so that we get an
induced automorphism f�W �1.M;x0/! �1.M;x0/ and together with the classifying
map p1W M ! B a homotopy commutative diagram

M //

f

��

B

Bf�
��

M // B

Because the automorphism f�W �1.M /! �1.M / must be inner by our choice of B ,
the right hand vertical map induces the identity in rational cohomology. The classifying
map �W M !B being an isomorphism in rational cohomoloy up to degree n (because
k > n), we see that f � preserves the subspace p�

1
.H�.BIQ//�H�.M IQ/ and acts

as the identity on this subspace.

Up to a homotopy equivalence zM ! N , the universal cover � W zM ! B �N can
be identified with the inclusion N D f�g�N ,! B �N (that is, the corresponding
triangle diagram commutes). This holds because B is aspherical and N is simply
connected. Hence, because the inclusion N ,! B �N has a left inverse (take the
projection p2W B �N ! N ), the map � identifies H�. zM IQ/ with the subspace
p�

2
.H�.N IQ// � H�.B �N IQ/. Since f induces a map zM ! zM (albeit not a

map N !N ), f � preserves this subspace. The induced map on H�. zM IZ/ defines
an automorphism of the lattice H 2k. zM IZ/ D H 2k.QIZ/. Because this lattice is
positive definite, the map f can induce only finitely many self maps of H 2k. zM IQ/.
The remaining nonzero rational cohomology of zM is concentrated in degrees 0, k ,
3k and 4k where it is isomorphic to Q. Hence f � can act only by minus or plus the
identity on these cohomology groups.

We conclude that f � preserves the subspaces p�
1
.H�.BnIQ// and p�

2
.H�.N IQ//

of the vector space H�.M IQ/ and can only act as the identity on the first and in
finitely many ways on the second. Because H�.M IQ/ is generated as a ring by these
subspaces, f � is determined by the action on these subspaces. This shows that AH is
indeed finite.

The preceding argument also shows that the induced action of f on H 4k. zM IQ/ must
be the identity, since a generator of this group can be chosen as the k th Pontrijagin class
of zM by the construction of Q. This and the fact that f � acts trivially on H n.M IQ/D
H n.BnIQ/ (see above) imply that f must act in an orientation preserving fashion on
the manifold M .
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