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NON-NEGATIVE VERSUS POSITIVE SCALAR CURVATURE

David J. Wraith

Abstract: We show that results about spaces or moduli spaces of positive
scalar curvature metrics proved using index theory can typically be extended to
non-negative scalar curvature metrics. We illustrate this by providing explicit
generalizations of some classical results concerning moduli spaces of positive
scalar curvature metrics. We also present the first examples of manifolds
with infinitely many path-components of Ricci non-negative metrics in both
the compact and non-compact cases.

§0 Introduction

There has been much recent activity concerning the topology of spaces and moduli
spaces of Riemannian metrics satisfying some form of curvature condition on a fixed mani-
fold. Such curvature conditions include positive scalar curvature, positive Ricci curvature,
non-negative and negative sectional curvature. For some recent results in this direction
see, for example, [BHSW], [BERW], [HSS], [CS], [CM], [Wal1], [Wal2], [Wr], [BH], [DKT],
[FO1-3] and the book [TW].

In this paper all manifolds under consideration will be closed unless otherwise stated,
and we will always assume that spaces of metrics are equipped with the smooth topology.

The principal theme in this paper is the comparison of (moduli) spaces of non-negative
scalar curvature metrics with (moduli) spaces of positive scalar curvature metrics. We
begin by observing that most of the results concerning (moduli) spaces of positive scalar
curvature metrics are established using the index theory of Dirac operators. We will present
some of the relevant details concerning this in §2, however it will suffice for our present
purposes to note that one of the key results which makes index theory such an important
tool in this context is the classical theorem of Lichnerowicz. In order to state this, let us
first recall that if (M, g) is a Riemannian spin manifold, we can consider the Dirac operator
D defined by Atiyah and Singer acting on the space of sections of any spinor bundle over
M . A harmonic spinor on M is a section of a spinor bundle belonging to kerD. Conversely
we say that M has no harmonic spinors if the kernel of the Dirac operator is trivial for all
spinor bundles over M , that is to say, zero is not an eigenvalue of the Dirac operator.

The Lichnerowicz theorem provides a link between harmonic spinors and positive
scalar curvature:

Theorem 0.1. ([LM; II 8.9]) If (M, g) is a closed Riemannian spin manifold with either
positive scalar curvature or non-negative scalar curvature which is positive at some point,
then M admits no harmonic spinors.

Our first result provides an extension of the Lichnerowicz theorem to scalar flat met-
rics:
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Theorem 0.2. If (M, g) is a closed Riemannian spin manifold with positive scalar curva-
ture and g′ is any metric with non-negative scalar curvature in the same path-component
of non-negative scalar curvature metrics as g, then (M, g′) admits no harmonic spinors.

The significance of this result is that it essentially says that from the point-of-view of
index theory, there is no difference between working with metrics of positive scalar curva-
ture and metrics of non-negative scalar curvature, provided the relevant path-component
of non-negative scalar curvature metrics contains a positive scalar curvature metric.

The manifolds appearing in Theorem 0.2 should be contrasted with the so-called
strongly scalar flat manifolds, studied for example in [De] and [Fu]. These are manifolds
which do not admit positive scalar curvature, but admit a scalar-flat metric (which is then
necessarily Ricci-flat).

Theorem 0.2 is an elementary corollary of the following result, which should be com-
pared, for example, with Theorems 1.2 and 1.3.

Theorem 0.3. Let M be a closed spin manifold and suppose gt, t ∈ [0, T ], is a smooth
path of nonnegative scalar curvature metrics. If g0 admits a parallel spinor (and so is
Ricci-flat), then gt is Ricci-flat for all t ∈ [0, T ]. If furthermore π1(M) = 0, then gt also
admits a parallel spinor for all t ∈ [0, T ].

A principal aim of this paper is to derive some consequences of Theorem 0.2 for
(moduli) spaces of non-negative scalar curvature metrics. We will address this issue in
two main ways: by generalizing a well-known result about moduli spaces of positive scalar
curvature metrics, and by providing some new examples involving spaces of Ricci non-
negative metrics.

The classic positive scalar curvature result we will generalize involves the Kreck-Stolz
s-invariant. The s-invariant is the principal tool for studying path-connectedness of moduli
spaces of positive scalar curvature metrics. This was developed and first applied in [KS].
The s-invariant is defined for spin manifolds M4n−1 (n ≥ 2) with vanishing real Pontrjagin
classes and positive scalar curvature, and is an invariant of the path-component in the
space of positive scalar curvature metrics. Moreover, if H1(M ;Z2) = 0 (which means the
spin structure on M is uniquely determined by the orientation), and g is a positive scalar
curvature metric on M , then |s(M, g)| ∈ Q is an invariant of the path-component of the
moduli space of positive scalar curvature metrics on M containing g.

Using Theorem 0.2 we can establish:

Theorem 0.4. For a closed spin manifold (M, g) of dimension 4k − 1 (k ≥ 2) with
positive scalar curvature and vanishing real Pontrjagin classes, the Kreck-Stolz s-invariant
is an invariant of the path-component of non-negative scalar curvature metrics containing
g. If in addition H1(M ;Z2) = 0, |s| is an invariant of the path-component containing [g]
in the moduli space of non-negative scalar curvature metrics.

We can rephrase Theorem 0.4 in the following way. Let U1, U2 be path-components of
(the moduli space of) positive scalar curvature metrics onM , and denote the corresponding
path-components for non-negative scalar curvature metrics by Ū1, Ū2. If U1 and U2 are
distinguished by their s-invariants, then

Ū1 ∩ Ū2 = ∅.
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From Theorem 0.4 we immediately obtain the following result, which is the non-
negative scalar curvature analogue of [KS; Corollary 2.15]:

Corollary 0.5. Given any M as in Theorem 0.4 with H1(M ;Z2) = 0, the moduli space
of non-negative scalar curvature metrics on M has infinitely many path-components.

In focusing on the s-invariant it should not be forgotten that one can re-visit many
other results for (moduli) spaces of positive scalar curvature metrics established using
index theory, and making the required adjustments re-state these as results about non-
negative scalar curvature. For example, one could do this with the theorems about the
higher homotopy groups of the (observer moduli) space of positive scalar curvature metrics
established recently in [HSS], as these results rely on the invertibility of a family of Dirac
operators, and this is governed by the existence or otherwise of harmonic spinors. As a
sample result (extending [HSS; Theorem 1.1]) we have

Theorem 0.6. Given k ∈ N ∪ {0}, there is an N(k) ∈ N such that for each n ≥ N(k)
and each closed spin manifold M4n−k−1 admitting a metric g0 with positive scalar cur-
vature, the homotopy group πk(Riemscal≥0, g0), where Riemscal≥0 denotes the space of
non-negative scalar curvature metrics on M , contains elements of infinite order if k ≥ 1,
and infinitely many different elements if k = 0. Their images under the Hurewicz homo-
morphism in Hk(Riemscal≥0) still have infinite order.

One could similarly generalize to non-negative scalar curvature the classic results of
Hitchin on the non-triviality of π0(Riemscal>0) and π1(Riemscal>0) for spin manifolds in
dimensions 0 and 1, respectively 0 and 7 modulo 8. (See [Hi] for the full details, or
for a synopsis explaining the dependence of these results on the invertibility of the Dirac
operator, see [LM; IV.7].) The same can also be said for the more recent results of Crowley-
Schick ([CS]), as these build on the ideas of Hitchin.

We also use Theorem 0.2 to derive some new examples involving Ricci non-negative
metrics. We remark that the following theorem presents merely one set of examples among
many that are possible. Details of the Bott manifold B8 appearing in this theorem are
given in §2.

Theorem 0.7. If K4 denotes the K3 surface, B8 the Bott manifold, and Σ4n−1, is any
homotopy (4n − 1)-sphere (n ≥ 2) which bounds a parallelisable manifold, then both
Σ×K4 and Σ×B8 have infinitely many path-components of non-negative Ricci curvature
metrics.

To the best of the author’s knowledge, Theorem 0.5 is the first result of any kind
concerning the topology of the space of Ricci non-negative metrics. It should be noted
that we cannot use Theorem 0.3 to establish these examples as the real Pontrjagin classes
here are not all zero, and so the s-invariant is not defined. The important thing here is that
although the manifolds above are known to admit metrics which have both positive scalar
and non-negative Ricci curvature, none are known to admit metrics with strictly positive
Ricci curvature. There are no known obstructions to positive Ricci curvature for these
manifolds (the manifolds admit positive scalar curvature, and also have finite fundamental
group and thus comply with Myers’ Theorem). Nevertheless, the author is tempted to
conjecture that no Ricci positive metrics exist.
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The examples in Theorem 0.7 give rise to the first examples of complete non-compact
manifolds with infinitely many path-components of Ricci non-negative metrics.

Theorem 0.8. If M denotes any of the manifolds in Theorem 0.7, M × R has infinitely
many path-components of complete Ricci non-negative metrics.

It should be noted that by the Cheeger-Gromoll splitting theorem ([CG]) the examples
in Theorem 0.8 do not admit any complete metrics of positive Ricci curvature.

This paper is laid out as follows. In §1 below we consider harmonic spinors and prove
Theorem 0.3, deriving Theorem 0.2. In §2 we briefly review some index theory and prove
Theorems 0.4, 0.7 and 0.8.

The author would like to express his deep gratitude to Bernd Ammann for his interest
in this work and extensive correspondence which has considerably enhanced the paper. The
author would also like to thank Thomas Schick for his detailed and very useful feedback.
Thanks also to Anand Dessai, Guofang Wei, and Hartmut Weiss for their comments.
Finally, it is a pleasure to thank Wilderich Tuschmann for alerting the alerting the author
to the non-compact examples appearing in Theorem 0.8.

§1 Harmonic spinors

Our main task in this section is to provide a proof for Theorem 0.3, from which
Theorem 0.2 can be derived as an elementary corollary. Before proving this, however, we
will gather together some relevant results from the literature.

An elementary corollary of the proof of the Lichnerowicz theorem (Theorem 0.1) is
the following fact which we will need later:

Lemma 1.1. ([LM; II 8.10]) On a closed spin manifold with identically vanishing scalar
curvature, every harmonic spinor is globally parallel.

With this in mind Theorem 0.2 can be rephrased to assert that under the given
hypotheses (M, g′) cannot admit any globally parallel spinors.

The existence of a parallel spinor on a compact Riemannian spin manifold has certain
well-known consequences, the most important of which for our purposes is that it implies
that the manifold is actually Ricci flat. More than this, the next result shows that there
are no positive scalar curvature metrics arbitrarily close-by.

Theorem 1.2. ([DWW; Theorem 4.2 and Remark]) If (M, g) is a closed Riemannian spin
manifold with a non-trivial parallel spinor, then there is no path of metrics gt with g0 = g

such that scal(gt) > 0 for all t > 0. Moreover, there is no path of non-negative scalar
curvature metrics gs with g0 = g containing a sequence of positive scalar curvature metrics
gsn where sn → 0+ as n → ∞.

We will also need the following result from the same paper which concerns simply-
connected manifolds:
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Theorem 1.3. ([DWW; Theorem 3.4]) Let (M, g) be a simply-connected closed Rieman-
nian spin manifold with a non-trivial parallel spinor. Then there exists a neighbourhood
U of g in the space of smooth Riemannian metrics on M , such that any metric with non-
negative scalar curvature in U must admit a parallel spinor, and consequently be Ricci-flat.

It should be noted that the existence of a parallel spinor for some metric does not
exclude the possibility that the manifold admits metrics of positive scalar curvature. For
example Calabi-Yau manifolds are known to admit both positive scalar curvature metrics
as well as Ricci-flat metrics with parallel spinors. Although the existence of a parallel
spinor implies the metric is Ricci-flat, it is unknown whether there exist any Ricci-flat
metrics without a parallel spinor.

The existence of a parallel spinor on a compact Riemannian spin manifold places
restrictions on the holonomy group of that manifold. For a discussion about these points
and detailed references, see for example section 1 of [AKWW]. Although we will not use
holonomy arguments directly, the above results from [DWW] depend in part on such
matters. (One might also compare the results in [Wang].) Holonomy is central to the
paper [AKWW], from which we will need the following theorem:

Theorem 1.4. ([AKWW; Corollary 3]) Let (M, g0) be a closed Riemannian spin manifold
which admits a parallel spinor on its universal cover. If gt, t ∈ [0, T ], is a smooth family
of Ricci-flat metrics on M extending g0, then the pull-back of gt to the universal cover
admits a parallel spinor for all t ∈ [0, T ], and the dimension of the space of parallel spinors
is independent of t.

There is one final result from the literature which we will need in the proof Theorem
0.3, and this is the basic structure theorem for Ricci-flat metrics (see [CG] or [FW; 4.1]):

Theorem 1.5. (The Ricci-flat structure theorem.) If (M, g) is a closed Ricci-flat manifold,
then there is a finite normal Riemannian covering π : (M̄, ḡ) × (T q, hfl) → (M, g) where
(M̄, ḡ) is a simply-connected Ricci-flat manifold and (T q, hfl) is the q-torus equipped with
a flat metric.

Proof of Theorem 0.3. We first note that admitting a parallel spinor, or equivalently
the Dirac operator having a zero eigenvalue, is a closed condition. The same is also true
for the Ricci-flat condition.

In the case where M is simply-connected, the argument is straightforward. As a
consequence of closedness, there exists c ∈ [0, T ] such that gt admits a parallel spinor for
all t ∈ [0, c], and c is maximal with respect to this property. (Note that by Theorem 1.4 we
could equivalently define c by replacing the parallel spinor condition with Ricci-flatness.)
If c = T there is nothing to show, so suppose that c < T. By Theorem 1.3 there is a
δ > 0 such that every gt with t ∈ (c− δ, c+ δ) admits a parallel spinor and is in particular
Ricci-flat. This contradicts the maximality of c < T , showing that in fact c = T.

If M is not simply-connected we must proceed more carefully. The essential difficulty
is that the universal cover will be non-compact if the fundamental group is infinite, so we
cannot simply lift the above argument to the universal cover.

We first we allow the metric path gt to evolve under the Ricci flow for some short
time interval [0, s0] to obtain a new smooth path of metrics ht. More precisely we obtain

5



a homotopy of metrics H(t, s) where H(t, 0) = gt; H(t, s0) = ht and for each t0 ∈ [0, T ],
H(t0, s) is the Ricci flow of gt0 . By [Br; 2.18], ht has strictly positive scalar curvature if
and only if gt is not Ricci-flat. Of course, gt = ht = H(t, s) for all s if gt is Ricci-flat.

We will work initially with the path ht. As g0 is Ricci-flat we have h0 = g0, and h0

has a parallel spinor. Let c ∈ [0, T ] now be the maximal value for which ht is Ricci-flat for
all t ∈ [0, c]. Again we will assume that c < T and derive a contradiction.

By the structure theorem (Theorem 1.5), for each t there is a finite normal Riemannian
covering

πt : (M̄, h̄t)× (T q, hfl,t) → (M,ht)

where (M̄, h̄t) is simply-connected and Ricci-flat, and (T q, hfl,t) is the q-torus equipped
with a flat metric. We will assume the spin structure on the torus is chosen so that it
admits a parallel spinor.

Let θ : M̄ × R
q → M̄ × T q be the product map which is the identity on the first

factor and a standard universal cover of the torus on the second. Thus the composition
πt ◦ θ is a universal covering map of M for each t. We will consider the pull-back metrics
(π0 ◦ θ)

∗(hc) and (πc ◦ θ)
∗(hc) on M̄ × R

q. Observe that these metrics create Riemannian
universal covers

π0 ◦ θ : (M̄ × R
q, (π0 ◦ θ)

∗(hc)) → (M,hc);

πc ◦ θ : (M̄ × R
q, (πc ◦ θ)

∗(hc)) → (M,hc).

By a basic topological result on covering spaces (see for example [Ha; 1.37]) we see that
our two universal covering maps are related by a diffeomorphism of the universal covers,
and moreover since the covering maps are local isometries, we see that this diffeomorphism
is in fact an isometry.

Since h0 admits a parallel spinor we see immediately that (M̄ ×R
q, (π0 ◦ θ)

∗(h0)) also
admits a parallel spinor. Applying Theorem 1.4 to the path of metrics (π0 ◦ θ)

∗(ht) then
shows that (M̄ × R

q, (π0 ◦ θ)
∗(hc)) admits a parallel spinor. Using the above isometry we

deduce that (M̄ × R
q, (πc ◦ θ)

∗(hc)) also admits a parallel spinor.
Now by Theorem 1.5, we have

(M̄ × T q, π∗
c (hc)) = (M̄ × T q, h̄c + hfl,c),

and therefore
(M̄ × R

q, (πc ◦ θ)
∗(hc)) = (M̄ × R

q, h̄c + hEucl),

where hEucl is a Euclidean metric. It is well known that a Riemannian product manifold
admits a parallel spinor if and only if all the individual factors do (see for example [Fu;
Lemma 3.1] or [L; Theorem 2.5]). We therefore deduce that (M̄, h̄c) admits a parallel
spinor. In turn we then see that (M̄ × T q, π∗

c (hc)) must likewise admit a parallel spinor.
Pull the path of metrics ht back to a smooth path of metrics on M̄ × T q via the map

πc. Clearly π∗
c (ht) is Ricci-flat or has positive scalar curvature according to whether ht is

Ricci-flat or has positive scalar curvature. As π∗
c (hc) admits a parallel spinor, by Theorem

1.2 along the path π∗
c (ht) there is no sequence of positive scalar curvature metrics π∗

c (hti)
with ti → c+ as i → ∞. However by definition of c such a sequence must exist, which
gives the desired contradiction. We therefore conclude that c = T, and so the path ht is
Ricci-flat for all t ∈ [0, T ].
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It remains to show that the original path gt is Ricci-flat: this follows automatically
from the Ricci-flatness of ht in conjunction with [Br; 2.18]. ⊓⊔

As an immediate corollary we obtain:

Proof of Theorem 0.2. The Lichnerowicz theorem (Theorem 0.1) shows that g′ cannot
admit a harmonic spinor except possibly in the case that g′ is scalar flat. In this case
Lemma 1.1 shows that (M, g′) admits a harmonic spinor if and only if it admits a parallel
spinor. By Theorem 0.3, if (M, g′) is scalar flat and admits a parallel spinor, then there
cannot be a smooth path of non-negative scalar curvature metrics gt on M such that g0 = g

(which has positive scalar curvature) and g1 = g′. But by assumption g and g′ belong to
the same path-component of non-negative scalar curvature metrics on M . Hence (M, g′)
cannot admit a parallel spinor, and hence cannot admit a harmonic spinor as claimed. ⊓⊔

§2 Index theory and the s-invariant

Given a closed Riemannian spin manifold (X4k, g), the Atiyah-Singer index theorem
(see for example [LM; II 6.3]) asserts that for the Atiyah-Singer Dirac operator D+ we
have

indD+(X4k, g) = Â(X).

Of course the right-hand side of this equation is a smooth topological invariant of X , and
thus the index is independent of the metric g. When combined with the Lichnerowicz
theorem (Theorem 0.1) it is straightforward to deduce that if X admits a positive scalar
curvature metric (or a non-negative scalar curvature metric which is positive at a point)
then Â(X) = 0.

In order to prove Theorems 0.4 and 0.7 we will need to investigate the index on
manifolds with boundary. We will begin by recalling the index theorem of Atiyah-Patodi-
Singer:

Theorem 2.1. ([APS]) Let (W, gW ) be a compact even dimensional Riemannian spin
manifold with non-empty boundary M , where the metric gW is a product dt2 + gM in
a neighbourhood of the boundary. Consider the Atiyah-Singer Dirac operator D+ on W

acting on the subspace of spinor bundle sections for which the restriction to M belongs to
the span of the negative eigenspaces of the operator induced on M . Then the index of this
(restricted domain) Dirac operator on W is given by

indD+(W, gW ) =

∫
W

Â({pi(W, gW )})−
h(M, gM) + η(M, gM)

2
,

where Â denotes the Â-polynomial in the Pontrjagin forms pi(W, gW ), h is the dimension
on the space of harmonic spinors on the boundary M , and η is the eta-invariant of the
Dirac operator on M .

At first glance, the index would appear to depend on both the topology and the global
geometry of W . In actual fact, the metric-dependence of the index only involves the metric
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in a neighbourhood of the boundary. To see this we consider metrics gW and g′W on W

which both take the form dt2 + gM in near the boundary. It follows easily from Theorem
2.1 that

indD+(W, gW )− indD+(W, g′W ) = indD+(W ∪ −W, gW ∪ g′W )

= Â(W ∪ −W ),

where we have used the Atiyah-Singer index theorem for closed manifolds to derive the
last line. Now Â is a ring homomorphism from oriented bordism to the rationals, so the
Â-genus of any null bordant oriented manifold is zero. As it is well-known that ‘double’
manifolds such as W ∪ −W are null bordant in this way, the result follows.

As it will be important for later arguments, we note that if scal(gW ) > 0, then just as
in the case of closed manifolds, we have indD+(W, gW ) = 0.

Now consider the behaviour of the index formula in Theorem 2.1 under smooth defor-
mations of the metric. The Pontrjagin forms depend smoothly on the metric, and hence
the integral term in the formula varies smoothly. The eigenvalues of the boundary Dirac
operator also vary smoothly. (This behaviour is well known, however see [No] for a de-
tailed account.) Notice that the boundary conditions imposed on the domain of the Dirac
operator will certainly be stable over the metric deformation provided no boundary Dirac
operator has zero eigenvalues. If this is the case then h will be fixed over the deformation,
as h can only vary if an eigenvalue hits zero or becomes non-zero, and the resulting varia-
tion is then clearly by an integer amount. Recall that the eta-invariant is also defined in
terms of these eigenvalues. The eta function η(z) is defined for complex numbers z to be

η(z) =
∑
λ6=0

(sign λ)|λ|−z

wherever the series on the right-hand side is convergent, where the sum is over all non-
zero eigenvalues. It can be shown that this function is defined and holomorphic on the
half-space consisting of all z with suitably large real part. There is a unique meromorphic
extension of η(z) across the whole complex plane, and the eta-invariant is defined to be
the value of this extension at 0. It can further be shown that the eta-invariant is always
finite. As the index is always an integer, it follows immediately from the index formula
that if the eta invariant jumps during the metric deformation, this must also be by an
integer amount, and such behaviour can only occur if an eigenvalue hits or departs from
zero. In summary we have:

Observation 2.2. Given the hypotheses of Theorem 2.1, if we consider a smooth path
of metrics gt on W (products near the boundary) such that the Dirac operator on M has
no zero eigenvalues for any t, then each term in the index formula varies smoothly during
the deformation. In particular, as the index and h are integers, these remain constant
throughout the deformation.

In [KS; Remark 2.2] it is stated that if the boundary metric gM has positive scalar
curvature, the index of (W, gW ) depends only on the path-component of gM in the space
of positive scalar curvature metrics on M . To see this, consider any two metrics on W

which restrict to metrics in the same path-component of positive scalar curvature metrics
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on M . These metrics can be joined by a path of metrics on W for which the boundary
restrictions all have positive scalar curvature. By the Lichnerowicz theorem (Theorem 0.1
above) the Dirac operator on M has no zero eigenvalues for any metric in this path, and
therefore the index remains constant by Observation 2.2. Conversely if two positive scalar
curvature metrics on M extended to W yield different indices, these metrics must lie in
different path-components of the space of positive scalar curvature metrics on M . This
basic idea is the starting point for the derivation of the s-invariant, as well as for many
other results about the topology of (moduli) spaces of positive scalar curvature metrics.

Using Theorem 0.2 we can adjust the arguments in the above paragraph to incorporate
non-negative scalar curvature metrics:

Proposition 2.3. Consider manifolds W and M as in Theorem 2.1. Given a path gt of
non-negative scalar curvature metrics on M , t ∈ [0, 1], suppose that for some t0 ∈ [0, 1]
the metric gt0 has positive scalar curvature. If ḡt is any smooth path of metrics on W

which extend gt (and take the form of a product near the boundary), then indD+(W, ḡt)
is independent of t.

Proof. By Theorem 0.2 no metric in the path gt has any harmonic spinors, so in particular
the Dirac operator on M has no zero eigenvalues for any t ∈ [0, 1]. By Observation 2.2 the
index of (W, ḡt) is constant. ⊓⊔

Proof of Theorem 0.4. By checking the arguments in [KS] it is easily verified that
the invariance properties of s are a direct consequence of the invariance of the index on
path-components of positive scalar curvature boundary metrics as discussed above. The
result now follows immediately from Proposition 2.3. ⊓⊔

Turning our attention to examples, we consider two families of products, one involving
a K3 surface K4, and the other involving a Bott manifold B8 as a factor. Recall that K4

can be defined by

K4 := {(z0, z1, z2, z3) | z
4
0 + z41 + z42 + z43 = 0} ⊂ CP 3.

The Bott manifold can be constructed by forming the boundary connected sum of 28 copies
of the manifold constructed by plumbing the tangent disk bundle of S4 to itself according
to the E8-graph. Thus resulting object has boundary S7, and this can then be made into
a smooth closed manifold B8 by gluing in a disc D8. Together with HP 2, B8 generates
Ωspin

8
∼= Z ⊕ Z. We have Â(K4) = −2 and Â(B8) = 1, and so neither manifold admits a

positive scalar curvature metric. However both are known to support Ricci flat metrics
(see for example [B; page 128] for K4 and [J] for B8).

We also consider the set of homotopy spheres which bound parallelisable manifolds
in dimensions 4n − 1, (n ≥ 2). Although finite for each n, this family grows more than
exponentially with dimension. The moduli space of positive Ricci curvature metrics for
each of these spheres was shown to have infinitely many path-components in [Wr]. This
result was established by exhibiting an infinite family of Ricci positive metrics on each
sphere, and showing that these metrics can be distinguished by their s-invariants.
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Proof of Theorem 0.7. It suffices to consider Σ4n−1 ×K4 for some choice of homotopy
sphere Σ4n−1 bounding a parallelisable manifold, as the argument in all other cases is
identical.

In [Wr] it was shown that we can find a sequence of Ricci positive metrics gi on
Σ such that s(Σ, gi) 6= s(Σ, gj) whenever i 6= j, so gi and gj belong to different path-
components of the moduli space of positive scalar curvature metrics on Σ. For each i there
is a parallelisable bounding manifold Wi for Σ such that gi extends to a positive scalar
curvature metric ḡi over Wi (product near the boundary).

TheWi are constructed by plumbingD2n-bundles over S2n. If we consider the oriented
union Wi ∪Σ (−Wj), it is established for example in [Ca; page 73] that Â(Wi ∪ (−Wj))
is a non-zero multiple of the difference of signatures sig(Wi) − sig(Wj). As noted in [Wr;

§2], for i 6= j we have sig(Wi) 6= sig(Wj), and thus Â(Wi ∪ (−Wj)) 6= 0. As the Â-genus is

multiplicative for products and Â(K4) 6= 0, we deduce that

Â((Wi ×K4) ∪ (−Wj ×K4)) 6= 0.

Let gK denote a Ricci flat metric on K4, and consider the product metrics gi + gK .

These have non-negative Ricci curvature and positive scalar curvature. By the above, these
metrics can be extended to positive scalar curvature metrics ḡi + gK on Wi ×K4, so

indD+(Wi ×K4, ḡi + gK) = indD+(Wj ×K4, ḡj + gK) = 0.

For i 6= j suppose the metrics gi + gK and gj + gK belong to the same path-component
of non-negative scalar curvature metrics on Σ × K4, i.e. there is a path ht, t ∈ [0, 1],
with scal(ht) ≥ 0, h0 = gi + gK and h1 = gj + gK . Let h̄t be any path of metrics on
Wi ×K4 which extend ht (and take the form of a product near the boundary). Applying
Proposition 2.3 to the path h̄t we deduce that

indD+(Wi ×K4, h̄1) = 0.

Following the argument presented after Theorem 2.1 then yields

0 =indD+(Wi ×K4, h̄1)− indD+(Wj ×K4, ḡj + gK)

=Â((Wi ×K4) ∪ (−Wj ×K4))

6=0,

and we have a contradiction. Thus gi + gK and gj + gK cannot belong to the same path-
component of non-negative scalar curvature metrics, and hence must belong to different
path components of Ricci non-negative metrics. ⊓⊔

As remarked in the introduction, one can replace the homotopy spheres in Theorem
0.7 with other manifolds. For example one could use the infinite family of 7-dimensional
Einstein manifolds Mk,l considered in [KS], which were shown to have infinitely many
path-components of Ricci positive metrics in [KS], and infinitely many path components
of non-negative sectional curvature metrics in [KPT].
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Proof of Theorem 0.8. With M as in Theorem 0.7, consider a smooth family of Ricci
non-negative metrics gt onM×R. The manifold (M×R, gt) has two ends, and by a standard
argument (see for example [P; page 260]) must contain a line. Thus by the Cheeger-Gromoll
splitting theorem the manifold must split as a Riemannian product between a Riemannian
manifold diffeomorphic to M and a line, though topologically this splitting might not
coincide with the given product structure.

At any given point in M × R it is clear that as the metric gt changes smoothly with
t, we can choose a smoothly varying vector tangent to the unique line through that point.
Collectively we obtain a smoothly varying one-dimensional distribution on M×R, together
with a smoothly varying distribution of orthogonal complements.

The Riemannian product structure provided by the splitting theorem is given by
the integral submanifolds to these distributions, together with their induced metrics. In
particular this means that we obtain a smooth path of Ricci non-negative metrics onM . (In
detail, choose any point in M ×R and consider the codimension one integral submanifold
Mt0 through this point for some time t = t0. Of course Mt0 is diffeomorphic to M . The
compactness of Mt0 ensures that there is an ǫ > 0 such that for any t ∈ (t0−ǫ, t0+ǫ) there
is a canonical diffeomorphism between Mt0 and Mt given by mapping each point in Mt0 to
the unique nearest point in Mt, measured with respect to some fixed choice of background
metric. Thus there exists a smooth path of diffeomorphisms M → Mt, and pulling back
the metrics induced by gt on Mt gives the desired path of Ricci non-negative metrics on
M .)

Finally, we note that if two Ricci non-negative metrics ds2+h0 and ds2+h1 on M×R

belong to the same path-component of Ricci non-negative metrics, then h0 and h0 must
belong to the same path-component of Ricci non-negative metrics on M . The result now
follows immediately from Theorem 0.7. ⊓⊔
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Seminars 46, Birkhäuser, Springer Basel (2015).

[Wal1] M. Walsh, Cobordism invariance of the homotopy type of the space of positive scalar
curvature metrics, Proc. Amer. Math. Soc. 141 (2013), no. 7, 2475-2484.

[Wal2] M. Walsh, H-spaces, loop spaces and the space of positive scalar curvature metrics on
the sphere, Geom. Topol. 18 (2014), no. 4, 2189-2243.

[Wang] M. Wang, Preserving parallel spinors under metric deformations, Indiana Math. J.
40 (1991), no. 3, 815-844.

[Wr] D. J. Wraith, On the moduli space of positive Ricci curvature metrics on homotopy
spheres, Geom. Topol. 15 (2011), 1983-2015.

Department of Mathematics and Statistics, National University of Ireland Maynooth,
Maynooth, County Kildare, Ireland. Email: david.wraith@nuim.ie.

13


