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Abstract—In social networks, nodes are organized into
densely linked communities where edges appear among the
nodes with high concentration. Identifying communities has
proven to be a challenging task due to various community
definitions/algorithms and also due to the lack of ‘“ground
truth” for reference and evaluation. These communities not
only differ due to various definitions but also can be affected
by the type of interactions modeled in the network, which lead
to different social groups. We are interested in exploring and
studying the concept of partial network views, which is based
on multiple types of interactions. An Enron email network is
used to conduct our experiments. In this paper, we explore
the mutual impact of selecting different views extracted from
the same network and their interplay with various community
detection algorithms to measure the change and the level of
realism of the structure for non-overlapping communities. To
better understand this, we assess the agreement of partitions by
evaluating the partitioning quality (performance) and finding
the similarity between algorithms. The results demonstrate that
the topological properties of communities and the performance
of algorithms are equivalent to each other. Both of them are
affected by the type of interaction specified in each view. Some
network views appeared to have more interesting communities
than other views, thus, might help to approach a relatively
informative and logic “ground truth” for communities.

Index Terms—Community detection; Community structure;
Similarity measures; Partitions comparison

I. INTRODUCTION

In the real-world, similarities or connections between en-
tities can be determined by various relationships/interactions.
Relationship can be friendship between actors (e.g., family,
business, school) or how they communicate (e.g., email,
mobile, text). These kind of relations in social networks
are represented in what is called a “social graphs”, where
edges here represent different types of relationships between
actors. For example, in the Enron email network, different
relationships/interactions can be who cc’d, sends to or bec’d
who in the network, which represent the type of the exchanged
emails in the network. Deriving different communication net-
works or graphs from the same network, where each one
corresponds to a specific type of interaction, can affect the
derived communities. We will denote to these interaction-
based graphs in our study as partial network views where
each view models a different and specific interaction within
the network.
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Community detection in social graphs is one of the con-
siderable interests and challenges that have acquired great
attention (e.g. [1]). In fact, it has been targeted by many
studies and considered as an important part in the area of
Network Analysis. The reason for this is that communities
reveal necessary understanding for analyzing the behavior of
people with each other within the network. In networks/graphs,
a community can be defined as a group of nodes that have
a better connection within a group and sparsely connected
with other groups in the network or in other words, nodes
that have better internal connections than the external ones
[1]. Therefore, algorithms exist to detect communities which
are denser in connection, smaller in structure and have strong
connections within its vertices. Generally, most communities
which have dense links are most likely to have common
properties, that is why the concept of similarity is linked to
the concept of community. Hence, similarity measures have a
great influence on detecting communities [2].

There are various definitions for community detection al-
gorithms that have been presented and studied in the re-
search community. Each algorithm has its own approach in
defining communities. Some of the different definitions are:
random walks, spectral analysis, label propagation, centrality,
modularity and many others [3]. These algorithms can be
compared from different perspectives, either from the process
that lead to finding the community structure or from studying
the community structure itself. Choosing the best algorithm
that can suit specific problem is not an easy task [4].

In this work we focus on studying and exploring three
questions: How similar are the results of different community
detection algorithms? How does the partial network views con-
cept affect the derived communities? Which type of network
view lead to more informative communities? Generally, we
further study the change in communities under the change of
two factors: first, the partial network views and second, the
community detection algorithms. The task of comparing sets
of communities has various applications, one of the obvious
ones is to compare the results with the “ground truth”. Another
approach is to compare the results of different community
algorithms to each other. It is worth emphasizing that we can
not compare communities to “ground truth” as Enron data
lacks the “ground truth” for communities. However, our main
contribution is to study these questions and explore how social
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community structure and the quality of partitioning change
over various network views and algorithms. We will do this
by quantifying their structural properties and applying different
quality measurements to elucidate the issue of the community
structure differences over multiple views.

The paper is organized as follows: an overview of commu-
nity detection approaches are presented in Section II. Some
measures/criteria that have been proposed in the literature to
reflect the properties of community structure are presented in
Section III. Evaluation measures for comparing the quality of
partitions and their similarity are discussed in Section IV. An
overview of the enron dataset and clarification of our approach
in refining and modeling the data is proposed in Section V.
Then, the results and the discussion are provided in Section
VII and Section VIII respectively. Section IX concludes the
paper and highlights the future work.

II. COMMUNITY DETECTION APPROACHES

An informal definition of the community as a group with
densely connected edges has been common. However, there
are numerous definitions or approaches for algorithms that
implement different strategies for finding the community
structure. Approaches can be based on optimizing modularity,
like FastGreedy [5], Louvain [6] and Spinglass [7], or
algorithms like Leading Eigenvector [8] and Commfind [9],
which are spectral algorithms. Others algorithms that are
based on random walks like MarcovCluster [10] and Walktrap
[11], or information theoretic algorithms, like Infomod [12]
or Infomap [13]. In our study, we select some algorithms
from four main categories that differ in the approach of
identifying communities.

Walktrap (WT) is a random walk based algorithm where
hierarchical agglomerative clustering is the applied approach
proposed by Pons and Latapy [11]. Random walks mean
that at each step the algorithm moves from one node to
another through a random choice. Generally, the idea is to
use the distance measure from one node to another to identify
communities. For example, if two nodes j and k are in same
community, then the probability to a third random node 7 to
be in the same community should not be that different from
both j and k. This algorithm uses a node similarity approach
where each community is detected as a group of nodes similar
to each other and dissimilar from the rest of the nodes in the
network.

Infomap (IM) is an example of compression-based ap-
proach. It is based on information theoretic principles. The
community structure here is derived based on Huffman coding
[13]. It tries to minimize or compress the information quantity
over the network. This approach does not use the separation
and cohesion concepts like other community detection defini-
tions.

Label Propagation (LP) uses the neighborhood concept and
depends on assigning each node to one unique label from &
labels. Then an iterative process takes place where each node is
assigned the label that is mostly common in its neighborhood.

The process stops when each node has the label that is the
most frequent in its neighborhood. Communities are then
constructed by targeting groups of nodes having the same label
[14]. These type of algorithms requires no prior information
or parameter settings. The only guide here is the network
structure.

Edge Betweenness (EB) is proposed by Girvan and Newman
[15]. It is a hierarchical process where the edges are removed
from the network in a decreasing order according to their edge
betweenness scores. It measures the centrality of a specific
edge by finding the percentage of shortest paths passing
through this edge in the network and this highlights the
importance of the edge. The algorithm yields a good results
but is not commonly used for large-scale graphs due to its
high computational complexity. This type of algorithms is
based on measures of centrality approaches. They deal with the
network as one entity where the network splits into multiple
components by repeatedly removing the central edges.

IIT. TOPOLOGICAL CHARACTERISTICS OF COMMUNITIES

In this section, we study some popular topological properties
of communities to discuss in later sections how far these
properties can be affected by different partitioning on different
network interactions.

A. Size

The size of the community is the overall number of com-
munities including communities with single vertex derived by
a community detection algorithm.

B. Size distribution

The distribution of the community size is one of the
important features of the community structure. They are often
unevenly distributed and sometimes obey a power law [16]
with exponent ranging between 1 to 2 [17]. The minimum
size distribution of a community in real networks is 2 while
the maximum size can vary in a wide range depending on the
used model [18].

C. Singleton

A singleton community is the community that contains only
a single vertex.

D. Transitivity

The transitivity depends on how the direct neighbors of a
certain node are connected. It is the actual number of links
(edges) between neighbors, divided by all the possible links
if they are all connected. The internal transitivity 7' of a
community C' is defined as:

T b 2% 1(4)
nc Kint (1)[kznf (Z) - 1]
where n¢ is the number of nodes in community C, I(7) is the

number of actual links between neighbors of the node ¢ and
K (i) is the internal degree of the node i.
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E. Edge Density

The edge density P of a community C' of an unweighted
graph is the ratio between the actual realized links in the
community F,. to the maximum number of possible links
it can contain if all the nodes are well connected to each
other N¢ (N, —1)/2 where N, is the number of nodes in the
community. Communities are supposed to be higher in density
than the whole network. The density function is defined as:

R,
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I'V. EVALUATION OF COMMUNITY DETECTION
ALGORITHMS

P 2

Evaluating and comparing partitions is a classical problem
in the area of community detection. But, since there is no
perfect single quality measure for comparing communities
from different algorithms [19]. Therefore, in this section we
will review some of the most commonly used measures that
have been presented in the literature. Some of these measures
are based on global metric like Modularity which compares
the results relative to random graphs or based on counting
pairs like Random Index or Adjusted Random Index and others
are based on the use of mutual information like Normalized
Mutual Information. The general strategy for comparing par-
titions as shown in Figure 1 where P, = C},C,,..C, and
Py, =C,,Cy,..C. are examples of two sets of communities
from different partitions.

A. Modularity

Modularity is one of the most commonly used method to
evaluate the quality of partitioning a network into communities
[20]. It is used to measure the quality of division within
a network into communities. It is a common measure used
to determine and compare the performance of community
detection algorithms. The value of modularity ranges between
—1 and 1, a higher value means better partitioning. This
function is defined in [21] as:
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where A;; is the adjacency matrix of the network between
node ¢ and j, K; is the degree of node ¢ and ¢; is the
community index of node i and §(u,v) = 1 if w = v and
d(u,v) = 0 if otherwise.

B. Random Index (RI)

The Random Index measures the agreement for a given pair
of nodes to be in same community for the estimated and ref-
erence partition. It counts the pairs of nodes that are classified
correctly. The RI ranges from O (when pair misclassified) and
1 (correctly classified) under different partitions [22]. The RI
is defined as follows:
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Figure 1: Non-overlapping communities derived from different
community detection algorithms on the same data.

The value of R depends on both the number of nodes and the
number of partitions. P; and P» are two different partitions,
n is the number of nodes, 111 is the number of nodes that
grouped in the same community for partitions P; and P
while ngg is the number of nodes that grouped in different
community for both partitions.

C. Adjusted Random Index (ARI)

This is an adjusted version of RI that is proposed by Hubert
and Arabie [23]. The ARI is the normalized difference of RI
and the value expected under a null hypothesis (the number of
clusters be the same in the two clustering). It compares how
much two partitions have common information between each
other using the same dataset. The measure takes the value 1
when the resulting partition perfectly matches the reference
one and takes value O when the algorithm fails completely to
detect the appropriate community structure.

D. Normalized Mutual Information (NMI)

NMT is one of the classical measures that ranges from
0 to 1 when perfectly corresponds to the reference partition.
It compares how much common information between two
different partitions. It is used in the research community [24] to
measure the performance of community detection algorithms.

V. ENRON DATA
A. Enron Background

Enron is a dataset that has large number of emails for
individuals of Enron’s staff. It is a fertile source for a real
corporation within the period 1998-2002. The data was made
publicly available by the Federal Energy Regulatory Commis-
sion. William Cohen made the dataset available public on-line
for researchers. Enron data has different types of emails either
personal or official; the dataset that is on-line contain around
151 employees and all emails between them in 3500 folders. It
is organized as folder for each employee and inside each folder
sub-folders for the emails sent, deleted and junk. The staff are
mostly from the management level starting from CEO to Vice
President. The version which we will conduct our research
on is based on the MySql database that was formulated by
Shetty and Adibi [25]. The database consists of four tables,
each one represents different entity like: employees, messages,



recipients and references. They cleaned the emails by deleting
any unneeded ones, duplicates or even blank ones and fixing
aliasing problems.

B. Enron extraction and refinement

The database represents two types of information; the first is
the communication type between the employees and what we
mean by communication type is the 70, CC or BCC fields, the
second type is the content of the messages in the emails. Our
work will focus on the first type of information. We focus
on extracting the communications between the employees.
We deleted all personal emails and any emails outside the
organization. We dropped any emails ending with enron.com
but not within the 151 employees.

VI. DIFFERENT NETWORK VIEWS EXTRACTION

Our focus is to derive three different communications net-
work views as we illustrated before. Nodes will represent
Enron employees and edges between them correspond to a
specific type of communication which will differentiate be-
tween the views. We derived all the communications between
the Enron employees and then filtered them according to
communication type. Our focus is on extracting the 70 and
the CC fields from the Enron dataset and model each one as
a graph where each corresponds to a partial view in addition
to a general view that only indicates that there is an existing
edge whatever the type of communication.

Hence, the first view will represent an undirected graph,
we refer to this network as Netview, a single edge will exist
here between any two emails if there is any type of exchange
in emails between them. The second view is based on the
TO field in the emails, we represent this as a directed graph
that reflects the direction of communication of the emails, we
denote to this graph as TO Netview. For the third view, edges
correspond to the CC field in emails, we represent a directed
graph and refer to it as CC Netview. We note that we were
interested in studying the BCC communications but these were
not available in the dataset.

As shown in Table I, we explored some generic properties
for each view like: nodes, edges, cliques (nodes that are tightly
connected to each other) and clustering coefficient (the degree
of nodes that tend to cluster with each other). We found that
an employee named “ Paul Barbo” is missing from the three
network views, also, for the CC Netview around six employees
do not appear to have any communication (Mary Fischer,
Steven Merris, Joe Stephenovitch, Joe Quenet, Andrew Lewis,
Paul Barbo). The three networks views have almost the same
clustering coefficient (= 0.3). The number of cliques is bigger
in the undirected network (Netview) and remains the same for
both directed networks (TO Netview, CC Netview) although
they are quite different in the number of edges.

VII. RESULTS

After extracting different partial network views from the
enron dataset, as discussed in the previous section, the four
different community detection algorithms which are presented

Network Views Netview  TO Netview  CC Netview
Nodes 150 150 145
Edges 1511 2007 799
Cliques 12 8 8
Clustering Coefficient 0.388 0.37 0.33

Table I: General properties for the three communication net-
work views from Enron network.

Network Views  Netview TO Netview CC Netview
M 7 9 11
WT 4 9 15
LP 4 3 9
EB 21 9 55

Table II: Different community sizes generated from the al-
gorithms for three different communication network views
including the singleton communities.

in Section II are used to study the level of realism of
the resulting communities. We studied how each algorithm
performs differently on each view from two perspectives: (a)
Topological characteristics of the resulting communities as
described in depth in Section VII-A. (b) Partitioning quality of
each of the algorithm’s output as illustrated in Section VII-B.
Our main focus is to compare the results of the algorithms
with each other and not to the unavailable “ground truth”
as highlighted in Section I. We stress on the fact that the
community detection algorithms in most cases lead to different
results whether it is from the partitioning point of view
or the topological characteristics. Hence, we evaluated the
resulting communities from both prospectives to complement
each other.

A. Topological Characteristics

This section shows how the four community detection
algorithms with the three different network views can impact
the topological properties of the resulting communities.

1) Size, Size Distribution & Singleton: The different com-
munity size resulted from the various algorithms are high-
lighted in Table II. Figure 2 illustrates the size distribution for
each of the three different network views with an exception
of the singleton communities; where the x-axis represents the
algorithm and the y-axis shows the size distribution. While,
the singleton communities appear in Table III. It is worth
emphasizing the following:

Network Views  Netview TO Netview CC Netview
WT 2 2 0
™M 1 1 0
LP 1 1 4
EB 18 7 43

Table III: The number of singleton communities generated
from the algorithms for three different communication network
views.
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Figure 2: Size distribution plotted in bars to represent the measures for each community (y-axis) derived from each of the four
algorithms (x-axis) for Netview, TO Netview and CC Netview. The plotting here considers communities resulting from each
algorithm except the singleton communities for 150 employees in Enron network.
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Figure 3: Transitivity plotted in bars to represent the measures for each community (y-axis) derived from each of the four
algorithms (x-axis) for Netview, TO Netview and CC Netview. The plotting here considers communities resulting from each
algorithm except the singleton communities for 150 employees in Enron network.
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Figure 4: Edge Density plotted in bars to represent the measures for each community (y-axis) derived from each of the four
algorithms (x-axis) for Netview, TO Netview and CC Netview. The plotting here considers communities resulting from each
algorithm except the singleton communities for 150 employees in Enron network.



o« EB shows the poorest performance across all views
specially for the CC Netview. This can be observed from
the number of communities having more than one vertex
(3, 2, and 5 communities in the Netview, TO Netview, and
CC Netview respectively) with respect to the total number
of the resulted communities, it gives a large number of
singleton communities for the three views (See Table II
and Table III).

e WT and IM perform reasonably well for both the TO
Netview resulting in 7 and 8 communities more than
one vertex respectively. Similarly for the CC Netview
which resulted in 10 and 15 communities respectively.
Both perform perfectly with the CC Netview deriving 0
singletons.

e For LP, the communities resulted for the CC Netview is
more stable compared to the Netview and TO Netview.
This is illustrated from the ratio between the number of
communities that contain more than one vertex (4 com-
munities) with respect to the total number of communities
(9 communities) corresponding to 4/9 ~ 0.4 compared
to the 0.75 and 0.67 ratio resulted for the Netview and TO
Netview respectively. For the singletons, interestingly, it
extracts a less number of singletons than WT for Netview
and 7O Netview.

We could claim intuitively that the lower the ratio between
the number of communities that contain more than one vertex
with respect to the total number of communities, the more
uniform distributed communities and hence, a higher chance
to derive an interesting insights from such communities.

2) Transitivity: Figure 3 shows the transitivity for the four
algorithms, which show different trends. We observed that:

o For LP and EB, we observe that the larger community
size, the higher transitivity and vice versa. This inverse
relation is found to be consistent in all network views.

o It is worth noticing that despite the fact that EB resulted
in a poor partitioning (based on the size distribution
property), some of the resulting communities score high
transitivity (> 0.8).

e For IM and WT, the TO Netview is observed to have
high transitivity values compared to the CC Netview
(> 0.5) for most communities. Communities which score
transitivity equals to 1 is mainly comprised of 2 or 3
nodes which follows the intuitive thinking expected from
very small communities.

3) Edge density: As shown in Figure 4, some of the
observed interesting points are:

o For LP and EB, a defined relation between edge density
and community size; edge density decreases with the in-
crease of community size and vice versa resulting in large
sparse communities and dense small size communities.

o For IM and WT, there is slightly big difference in edge
density values for communities in the Netview. This dif-
ference decreases in the 7O Netview and further decreases
in the CC Netview; communities tend to get close in their

Network Views  Netview TO Netview CC Netview
WT 0.35 04 0.55
™M 0.23 04 0.54
LP 0.11 0.15 0.43
EB 0.2 0.17 0.145

Table IV: The quality of partitioning expressed in terms of
modularity function for three different communication network
views.

edge density values which reflects that they are more
homogeneous (all of them range between 0.2 to 0.6).

B. Evaluation of Partitions

Comparing two sets of partitions is not an easy task and
can be achieved by different ways. We can either compare
the resulting communities to the ground truth or to the results
of other community detection algorithms. Our comparison
is based on the second type. We compare the partitioning
extracted from algorithms for each view to check the
agreement of the existing a set of nodes in one community
(or in different one). Hence, the agreement corresponds to
the proportion of a set of nodes for which two communities
agree across each network view. This evaluation is performed
using the quality measures discussed in Section IV.

1) Modularity: is used to measure the quality of partition-
ing in general, as shown in Table IV to find out which is the
best partitioning in each case. We found that:

¢ IM and WT have the highest modularity when compared
to LP and EB. Both IM and WT score very close
modularity index among all views.

o The quality of partitioning for all the algorithms is higher
in the CC Netview than the TO Netview.

o The quality of partitioning of the 7O Netview is higher
than the Netview except for the EB.

2) Similarity measure: is used to compare the resulted
partitions to highlight their similarity level. When looking
at RI, ARI and NMI in Table V, Table VI and Table VII
respectively. We observed that the three similarity measures
agree on the order of the similarity values for both the views
and the algorithms. However, values of ARI are higher than
NMI values which are higher than RI. Our discussion is valid
for any of the three measures.

« EB & WT/IM/LP, although EB nearly scores the least
modularity for all the network views across the other
three algorithms but it shows a high similarity score when
compared to them specially for the Netview. Generally,
these high values do not match with the high divergence
in the community sizes distribution. The only view that
matches with that divergence is the CC Netview and gives
low similarity scores as well, where the performances
observed to be very low (nearly close to zero) for ARI
measure with other algorithms.

e IM & WT score the highest similarity measure when
compared to each other for the CC Netview followed by



View Netview TO Netview CC Netview

RI M LP WT EB M LP WT EB M LP WT EB

M 1.000 | 0.709 | 0.712 | 0.876 | 1.000 | 0.319 | 0.865 | 0.380 | 1.000 | 0.837 | 0.915 | 0.704

LP 0.709 | 1.000 | 0.423 | 0.603 | 0.319 | 1.000 | 0.401 | 0917 | 0.837 | 1.000 | 0.857 | 0.636

WT 0.712 | 0.423 | 1.000 | 0.720 | 0.865 | 0.401 1.000 | 0.459 | 0915 | 0.857 | 1.000 | 0.681

EB 0.876 | 0.603 | 0.720 | 1.000 | 0.380 | 0.917 | 0.459 | 1.000 | 0.704 | 0.636 | 0.681 1.000
Table V: Random Index (RI) values represented to find the best two matching algorithm or Netview, TO Netview and CC
Netview.

View Netview TO Netview CC Netview

ARI M LP WT EB M LP WT EB M LP WT EB

M 1.000 | 0.355 | 0.457 | 0.756 | 1.000 | 0.064 | 0.530 | 0.072 | 1.000 | 0.358 | 0.550 | 0.091

LP 0.355 | 1.000 | 0.114 | 0.245 | 0.064 | 1.000 | 0.116 | 0.770 | 0.358 | 1.000 | 0.492 | 0.033

WT 0.457 | 0.114 | 1.000 | 0.422 | 0.530 | 0.116 | 1.000 | 0.143 | 0.550 | 0.492 | 1.000 | 0.077

EB 0.756 | 0.245 | 0.422 | 1.000 | 0.072 | 0.770 | 0.143 | 1.000 | 0.091 | 0.033 | 0.077 | 1.000

Table VI: Adjusted Random Index (ARI) values represented to find the best two matching algorithm or Netview, TO Netview

and CC Netview.

View Netview TO Netview CC Netview

NMI | IM LP WT EB M LP WT EB M LP WT EB
M 1.000 | 0.432 | 0.689 | 0.701 1.000 | 0.281 | 0.739 | 0.339 | 1.000 | 0.642 | 0.796 | 0.529
LP 0.432 | 1.000 | 0.271 | 0.285 | 0.281 1.000 | 0.323 | 0.694 | 0.642 | 1.000 | 0.667 | 0.411
WT 0.689 | 0.271 1.000 | 0.629 | 0.739 | 0.323 | 1.000 | 0.404 | 0.796 | 0.667 | 1.000 | 0.485
EB 0.701 | 0.285 | 0.629 | 1.000 | 0.339 | 0.694 | 0.404 | 1.000 | 0.529 | 0.411 | 0.485 | 1.000

Table VII: Normalized Mutual Information (NMI) values represented to find the best two matching algorithm or Netview, TO

Netview and CC Netview.

the TO Netview and that means that their similarity value
affected significantly by the type of the relationship in
the graph. For example, their values reached 0.9 for the
RI measure for the CC Netview and this agreed with their
corresponding modularity values which is more than 0.5.

e LP & WT obtained the highest values for the CC Netview
and then the TO Netview.

e Most of the algorithms showed better value for the 70
Netview more than the Netview except LP & IM, both of
them give higher similarity over the Netview than the TO
Netview.

VIII. DISCUSSION

From the topological properties point of view, size distri-
bution got affected by both algorithms and the type of the
network view. It is clear that changing the views do not impact
the rate of singletons but the algorithm itself is the main
impact on their rate. The transitivity and the edge density
are not always dependent on the size of communities. The
partitioning of CC Netview with IM and WT worth having an
attention as it may give insights that might be close to real-
world. Directed networks can be more fertile for partitioning
and insightful than undirected ones even if they are denser
(e.g. TO Netview better than Netview). Some directed networks
can be more interesting than other directed ones according to
the modeled relation type. We can infer this from the CC
Netview where the derived communities seem to be more

appropriate than the 7O Netview as in fact they correspond
to a more obvious relationship between any two employees.
Interestingly, we found some communities in the views act
as a sub-network and tend to split into communities in other
views. For instance, in WT, some communities in the Netview
get split in the 70 Netview and communities in the latter one
tends to split in the CC Netview. Hence, it is clear that deciding
whether the derived communities are well formed or it could
be split further into communities, is not an easy task.

From the quality of partitioning point of view, It is clear
that among the three network views that WT & IM have the
highest scores. The use of different similarity measures did not
matter much for our data, this could save time in evaluations.
It is observed that the highest scores always achieved for the
CC Netview and TO Netview across most of the measures.
This can indicate that: the more relationship is specified in the
graph, the higher the quality of the partitions than modeling
a graph without specific relationship. It is also clear that the
quality results coincide with the topological results, both of
them agree that IM is almost as good as WT especially for
the CC Netview which has been shown to have better topology
structure and higher quality of partitioning as well. As the
CC Netview scores higher results than the 7O Netview and
the latter scores higher results than the Netview, therefore, we
expect that we can derive more interesting communities when
modeling the BCC communications.



Generally, we found that the quality of partitioning and the
topological structure are equivalent to great extent, however,
it was hinted in the literature that they are not equivalent to
each other [3]. For instance, the equivalence is clearly defined
for Infomap and Walktrap. We found that the graph based on
specific relationship between its nodes in the Enron network
play an observable role, it is obvious that modeling a graph
based on one type relationship can have an observable impact
on optimizing the structure and the quality of communities.
Generally, the view can have a big impact, as can the algo-
rithm.

IX. CONCLUSION AND FUTURE WORK

The aim of this paper is to study the entire derived com-
munities based on different relationships/interactions repre-
sentation for the Enron email network using four different
community detection algorithms such as: Walktrap, Infomap,
Label propagation and Edge Betweenness. The goal from this
study is to discover how the topological properties and the
quality of partitioning of communities got affected by two
factors: various network interactions (partial network views)
and multiple community detection approaches. We aim that
this study tackle the idea of selecting an interesting interaction
and a reliable algorithm for detecting communities which has
been a challenging task with the lack of “ground truth” for
many networks nowadays.

We studied some topological properties of the estimated
communities resulted from each algorithm applied on three
network views. We then asses the results through evaluating
the quality in terms of comparing partitions using modular-
ity measure and other similarity measures. The considered
measures mostly agree with each other on the quality of
partitioning with tiny differences and equivalent some how
to the topological properties.

This work can be extended to a more comprehensive analy-
sis by expanding the properties and using a wide range of al-
gorithms with some additional community structure measures.
It would be also useful if we consider other email networks
and observe if they behave similarly or not. Since each
of the community detection algorithms based on optimizing
only one criteria, future work can be to diffuse different
community detection approaches with multiple criteria to a
single algorithm in order to obtain “Robust Communities”.
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