

Sentiment Analysis Using Deep
Learning: A Comparison Between

Chinese And English

MIAO WEI
Supervisor: Ronan Reilly

Department of Computer Science
National University of Ireland, Maynooth

Dissertation submitted for the degree of
Master of Science

at
Maynooth University

October 2017

 2

Contents

DECLARATION .. 7

ACKNOWLEDGEMENTS .. 8

CHAPTER 1 INTRODUCTION ... 9

1.1 BACKGROUND.. 9

1.2 MOTIVATION .. 12

CHAPTER 2 RELATED WORK ... 16

2.1 WORD AND PHRASE EMBEDDING ... 16

2.1.1 Latent Semantic Analysis approach: Bag of Words ... 17

2.1.2 N-gram approach .. 18

2.1.3 Neural Probabilistic Language Models ... 19

2.1.4 Word2vec Model ... 20

2.2 MACHINE LEARNING & NEURAL NETWORKS FOR CLASSIFICATION .. 26

2.2.1 Support Vector Machine (SVM) ... 26

2.2.2 Multilayer Neural Network .. 28

2.3 ASSESSING THE PREVIOUS WORK IN SENTIMENT CLASSIFICATION ... 34

CHAPTER 3 METHODOLOGY... 36

3.1 MODEL OVERVIEW ... 36

3.2 SEQUENCE-TO-SEQUENCE BASICS ... 39

3.2.1 Recurrent Neural Network .. 40

3.2.2 Long-Short-Term Memory (LSTM) ... 43

3.2.3 Context Encoder Based on Sequence-to-Sequence Model ... 46

CHAPTER 4 DATA PREPARATION AND TOOL INTRODUCTION ... 48

4.1 DATA ANALYSIS .. 48

4.1.1 The Chinese Wikipedia Corpus... 48

4.1.2 Sentiment Corpus: Movie Review Analysis ... 50

4.1.3 Chinese Segmentation ... 53

4.2 DEEP LEARNING TOOL .. 54

4.2.1 Web crawler .. 55

4.2.2 Machine learning and deep learning libraries .. 56

 3

CHAPTER 5 EXPERIMENT.. 62

5.1 EXPERIMENTAL SETTING ... 62

5.1.1 Purpose of Experiment .. 62

5.1.2 Evaluation Metrics ... 63

5.2 EXPERIMENTAL PROTOCOLS .. 65

5.2.1 Task 1 .. 65

5.2.2 Task 2 .. 67

5.2.3 Task 3 .. 70

5.3 EXPERIMENT RESULTS AND ANALYSIS. .. 70

CHAPTER 6 CONCLUSION AND FUTURE WORK ... 73

BIBLIOGRAPHY ... 75

 4

List of Figures

Figure 1 Level of influence that reviews have on different product purchases(“Report: For

every $1 online influenced by reviews, offline impact at least $4,” 2016) 10

Figure 2 CBOW Structure (“CBOW of Word2Vec,” 2017) ... 21

Figure 3 Skip-gram structure(“Vector Representations of Words | TensorFlow,” 2017) 25
Figure 4 A linear separable set of 2D-points (opencv dev team, 2017) 27

Figure 5 Kernel machines are used to compute a non-linearly separable function into a

higher dimension linearly separable function (Alisneaky, 2011) 28
Figure 6 Procedures of a single layer perceptron network (source: Wikipedia) 30

Figure 7 A neural network structure(“Unsupervised Feature Learning and Deep Learning

Tutorial,” 2017) .. 32
Figure 8 Context vector encoder structure .. 37

Figure 9 An illustration of the RNN Encoder-Decode(Cho, van Merrienboer, Gulcehre, et al.,

2014) ... 38
Figure 10 An example that sequence-to-sequence model reads an input 'ABC' and produces

'WXYZ' as the output sentence(Sutskever et al., 2014).. 39
Figure 11 A recurrent neural work and the unfolding in time of the computation(LeCun et al.,

2015) ... 40
Figure 12 An example RNN with 4-dimensional input and output layers (Karpathy, 2015) .. 42

Figure 13 An LSTM contains four layers(“Understanding LSTM Networks -- colah’s blog,”

2016) ... 44
Figure 14 A unprocessed Chinese Wikipedia corpus .. 49

Figure 15 A sample of the cleaned Chinese Wikipedia corpus .. 49

Figure 16 Top 10 popular movie type and numbers of different types in the corpus 50

Figure 17 The percentage of different rating stars present in the dataset 51

Figure 18 Numbers of different sentiment polarities .. 52
Figure 19 A web-crawler workflow .. 55
Figure 20 TensorBoard(“TensorFlow,” 2017) .. 58

Figure 21 MNIST handwritten images ... 60

Figure 22 An example of Keras ... 61
Figure 23 A LSTM neural network work structure ... 66

Figure 24 The structure of word2vec and SVM ... 67

 5

Figure 25 Word2vec illustrated by 2D image shows the distribution of Chinese words. For

example, the digitals cluster together, and the highest frequency English words cluster

together at the bottom of the figure. ... 69

 6

Abstract

With the increasing popularity of opinion-rich resources, opinion mining and

sentiment analysis has received increasing attention. Sentiment analysis is one of

the most effective ways to find the opinion of authors. By mining what people think,

sentiment analysis can provide the basis for decision making. Most of the objects of

analysis are text data, such as Facebook status and movie reviews. Despite many

sentiment classification models having good performance on English corpora, they

are not good at Chinese or other languages. Traditional sentiment approaches

impose many restrictions on the raw data, and they don't have enough capacity to

deal with long-distance sequential dependencies.

So, we propose a model based on recurrent neural network model using a

context vector space model. Chinese information entropy is typically higher than

English, we therefore hypothesise that context vector space model can be used to

improve the accuracy of sentiment analysis. Our algorithm represents each complex

input by a dense vector trained to translate sequence data to another sequence, like

the translation of English and French. Then we build a recurrent neural network with

the Long-Short-Term Memory model to deal the long-distance dependencies in input

data, such as movie review. The results show that our approach has promise but still

has a lot of room for improvement.

 7

Declaration

I hereby declare that except where specific reference is made to the work of others,

the contents of this dissertation are original and have not been submitted in whole or

in part for consideration for any other degree or qualification in this, or any other

University. This dissertation is the result of my own work, except where specifically

indicated in the text.

Miao Wei
Oct, 2017

 8

Acknowledgements

I would like to express my sincere gratitude to my supervisor Ronan Reilly for his

constant support, advice and patience. I appreciate his vast knowledge and skill in

many areas.

I am also grateful to Joseph Timoney and Barak Pearlmutter for many helpful

advices in writing reports.

Finally, I want to thank my families and friends for always have faith in me.

 9

Chapter 1

Introduction

Since web technologies and e-business development, sentiment analysis as a

critical area in Natural Language Processing (NLP) is widely used in a lot of places,

such as customer analysis and product review systems, recommender system and

Question & Answer system etc. Generally explain, sentiment analysis is a method

that mining the author’s or others’ opinion through analysing the review text or

comments (Yi, Yi, Nasukawa, Bunescu, & Niblack, 2003). Thus sentiment analysis

also can be called as ‘opinion mining’ (Pang & Lee, 2008). The purpose of sentiment

analysis is studying people’s sentiment or rating contents towards specific objects,

then extracting the useful information which is held in the text contents, such as

attitudes of the writer, emotional reaction about a document and evaluation levels.

According to the sentiment analysis result, the decision maker can be more accurate

to improve their products (Dave, Lawrence, & Pennock, 2003) or give the

appropriate response in the recommendation systems (Terveen, Hill, Amento,

McDonald, & Creter, 1997) .

1.1 Background

The traditional interpretation of Sentiment Analysis is usually to use some means of

investigation to obtain product feedback or opinions about particular objects, like

prediction in political polls (Tumasjan, Sprenger, Sandner, & Welpe, 2010), or the

evaluation of movies (Tatemura & Junichi, 2000). However, after the data has been

collected, the decision maker then still needs to spend a significant amount of time to

analyse the raw data which resulted from the investigation. There has now been an

explosion in the availability of data through the internet as it is a significant resource

as millions of users can put their variety of opinions online.

In our daily life it is possible to find information on so many things either on

social media or some professional website, such as Twitter, IMDB, eBay, or

Amazon. This kind of useful information is mostly available in text form. At the same

 10

time though, users not only write a text comment for the object but also need to give

a tag star level for the object, like Amazon.com or tabao.com star rating system. In

addition to this, the website will process the collected data which is written by all the

customers and compute an average rating score, and will furnish the average score

to customers by way of a decision support. It is reasonable to assume that people’s

shopping behaviour patterns have been changed by the proliferation of reviews

online.

According to a report analysis, the availability of approved online reviews

have had a significant impact on offline purchases (David Kirkpatrick, 2016). In the

report, it says that almost 82 percent of customers prefer to use their smartphones

as shopping assistants rather than to consult a shopping guide. They would like to

check the target products’ pricing and reviews. Figure 1.1 illustrates the impact of

online research reviews across different product categories. Notably for technology

items of appliances and electronics the influence of reviews is the greatest.

Figure 1 Level of influence that reviews have on different product purchases(“Report: For every $1 online

influenced by reviews, offline impact at least $4,” 2016)

Thus, it can be taken from this point that sentiment analysis of online reviews can

generate significant value for users. At the same time, according to the

characteristics of different industries, sentiment analysis of the text on the social

 11

media or another platform would have a positive indicator effect to a marketer or

investment banker attempting to predict the trend of the market for a particular

product. The ‘Twitter mood predicts the stock market’ paper (Bollen, Mao, & Zeng,

2010) explains how there is a correlation between the stock market and the public

mood which is sourced from Twitter. This analysis demonstrated how they used 10

million tweets from 2008 to predict stock market trend.

Sentiment analysis is important but the huge level of data mean that it cannot

be done manually and needs computer algorithms to implement it. These have to be

efficient to be able to deal with the large amounts of information. Also, they need to

be accurate because understanding off natural language is not easy.

There are a large variety of models and approaches powering NLP

application, and these models achieved great performances, such as machine

learning models (Pang, Lee, & Vaithyanathan, 2002). In traditional NLP approaches,

sentiment classification is treated as a topic-based text categorization (Lin & He,

2009) or lexicon-based classification problem (Taboada, Brooke, Tofiloski, Voll, &

Stede, 2011). However, these approaches normally require developers have rich

prior-knowledge and manually set the corresponding features. Recently, deep

learning approaches have obtained the state-of-the-art performance across many

different tasks, most notably visual classification problems. Deep neural networks

(DNNs) not only achieved the brilliant performance on the image processing area

(Nguyen, Yosinski, & Clune, 2014;Dosovitskiy & Brox, 2015), but also enhanced the

accuracy of NLP tasks, such as machine translation and language understanding

problems (Sutskever, Vinyals, & Le, 2014) (Cho, van Merrienboer, Gulcehre, et al.,

2014). Compared to traditional NLP models that require developers manually specify

or extract the features from data, deep learning can automatically learn the features

(dos Santos & Gatti, 2014; Socher et al., 2013). However, most of these NLP models

are trained in English corpus, and there is some difference between languages, such

as Chinese and English. In our work, we will cover word vector representations,

neural networks, recurrent neural networks, long-short –term memory as well as

context vector model and implement the above models try to explore different corpus

whether produces a different result for the above models.

 12

1.2 Motivation

Sentiment analysis can be described as having three levels: the primary task in

sentiment analysis is the polarity classification of a document or a given input text,

sentence. Polarity classification is based on a hypothesis that the overall opinion in

an opinionated text is about one single issue or item, classify the opinion as falling

under one of two opposing sentiment polarities (positive and negative) (Pang & Lee,

2008). The second stage is the fine-grained analysis that ranking the attitude of an

object into 5 levels. Fine-grained analysis also can be considered as how positive is

the particular document. The advanced level of sentiment analysis is concerned with

the analysis of the components of a text, the holder of attitude, target of attitude, type

of attitude. In our work, we mainly focus on the primary task.

The traditional approach which has been applied to process text and to

predict the sentiment typically focuses on the topic model, for instance, Latent

Dirichlet Allocation Category Language Model (Deerwester, Dumais, Furnas,

Landauer, & Harshman, 1990). Most previous research on sentiment classification

more or less used knowledge-based ways. Subsequently, there are many efforts that

try to implement the model which relies on the non-topic-based text categorisation.

The work of (Hatzivassiloglou, McKeown, Hatzivassiloglou, & McKeown, 1997;

Turney, 2002; Turney & Littman, 2002), They performed work which focuses on

classifying the semantic polarities of words or phrases through using linguistic

heuristics or pre-selected emotional attribute dictionary. However, these models

normally are limited to many factors, the accuracy of traditional approaches depend

on the prior-knowledge and the semantic orientation dictionary, For example,

dictionary-based approach requires developers to collected manually with know

orientation words from corpora WordNet (Miller, Beckwith, Fellbaum, Gross, & Miller,

1990) or thesaurus (Mohammad, Dunne, & Dorr, 2009). However, it is difficult to

collected the similar resource for other languages, such as Chinese.

Now, machine learning and deep neural networks have become accepted

tools and have been shown to be effective once they are trained to do classification

an regression tasks, many efforts on have been made to apply the machine learning

models to tasks associated with sentiment analysis. Bo pang and Lillian Lee (Pang

 13

et al., 2002) considered the issues of using overall sentiment to classify a document

through predicting by applying basic machine learning models such as Naive Bayes

and Support Vector Machine. However, their models did not obtain the better

performance than the traditional topic-based categorisation (Zhou, Li, & Liu, 2008).

Because machine learning cannot directly process the input text, many works

prefer to build a vocabulary and use the word index to instead of the text in the

sentence. However, machine learning models require a fixed-length input. To better

fit the problem to the machine learning model and deep neural network models, the

word index approach should be replaced by another efficient representation model.

As usual, NLP systems treat words as discrete atomic symbols, such as “one-hot”

representation and bag-of-words representation.

Unfortunately, there are three weaknesses in “one-hot” representation and

bag-of-words representation (Turian, Ratinov, & Bengio, 2010). Firstly, for one-hot

representation, because of randomly give value to individual word, thus this model

can leverage very little useful information to systems, like the similarity of words and

context relationship between sentences. Then, discrete data leads to data sparsity,

means we need extra processing to solve the sparsity or reduce the dimensionalities

or collect more data to obtain a statistical work model . Finally, and also is the most

critical point, they lose the ordering of the words and ignore the semantics of the

words (Le & Mikolov, 2014).

Whether in Chinese or English, context is a rarely used information resources

in current computing tasks, even though context data can naturally improve the

understanding of overall text sentiment, particular in Chinese. Previous research

consider a document or input text is exist by the form of sequence data, with a word

appears one after another, the whole document sentiment will be changed at any

time if the new word appears. This situation could be considered as the “Garden

Path” problem (Strzalkowski, 1999), because the overall main sentiment of a

document is unknown until reading it to the very end. Based on the these reasons, a

model is required that not only can efficiently process the sequence data and

analysis the input text, but also can judge which history information should be

removed when the model is learning the representation of context. For instance:

 14

 “Chris Craft is better looking than Limestone, but Limestone projects
seaworthiness and reliability.”(Wikipedia)

Through analysing the above sentence, two brand names and two attitudes

apparent. In the first half, the sentence showed an intense negative emotion for

‘Limestone’, but in the second half, the expression of emotion turned to positive and

changed the semantics polarity of the whole sentence. Thus it is important to

consider finding an approach that can forget the first half sentence information and

correct the state information when it captures new data, from which it can

automatically generate the overall sentiment which relies on the viewpoint in the

second half as the core.

With the help of Long-Short-Term Memory (LSTM) RNNs, the model can

determine whether needs to abolish the past information in the memory block

structure (Hochreiter & Schmidhuber, 1997). LSTM and RNNs achieved excellent

performance on some problematic sequential issues such as speech recognition and

machine translation (Cho, van Merrienboer, Gulcehre, et al., 2014). Based on the

hypothesis of the work (Cho, van Merrienboer, Gulcehre, et al., 2014) that they

consider RNN encoder structure can map an input sequence to a fixed length state

vector. This state vector (or context vector) is a summary of the whole input

sequence. Hence, we proposed a RNNs as the encoder to represent context vector

from sentences or documents (Cho, van Merrienboer, Gulcehre, et al., 2014). Then,

we used the context vector of paragraphs as the input of machine learning classifier

to classify the sentiment of documents.

Subsequent the intention is to examine the difference between Chinese and

English based on the same vector representation model or the corresponding

classifier, such as Word2vec with support vector machine (D. Zhang, Xu, Su, & Xu,

2015), Bag of words with the neural network. The main interest is to study that if the

language is different, whether it will result being assigned a different affection.

Additionally, a significant difference between Chinese and English during raw data

processing stage is that Chinese corpora input data should be firstly segmented but

English not. The reason is explained in section 4.1.3. After segmentation, we used

the same vector representation model to train the machine learning algorithms for

 15

the Chinese corpus and the English corpus respectively. The primary vector learning

models investigated is the one-hot representation approach, word2vec. For the

classifier model, The most classical machine learning model, the SVM is selected as

the baseline classifier. It is compared with the currently most popular multilayer

neural network and deep neural networks (DNNs), the LSTM (Sutskever et al., 2014)

/ Gated Recurrent Unit (GRU) model (Chung, Gulcehre, Cho, & Bengio, 2014), which

was trained in advance for the classification job.

At the final stage, we would try to implement the RNNs encoder structure from

Sequence-to-Sequence model as an independent context-to-vector model

(Context2vec), context2vec which we expect can learning the vector representation

with high efficiency. According to the theory of previous work, ’After reading the end

of the sequence, the hidden state of the RNN is a summary c of the whole input

sequence.’ (Cho, van Merrienboer, Gulcehre, et al., 2014), We propose a hypothesis

that the hidden state vector is a context vector, and this context vector should have

the ability to express the overall sentiment of a document or a piece of input

sequence. The context2vec structure is a part of the sequence-to-sequence model

which was used to finish the machine translation and got a brilliant result (Cho, van

Merrienboer, Gulcehre, et al., 2014; Sutskever et al., 2014; Luong, Sutskever, Le,

Vinyals, & Zaremba, 2014; Bahdanau, Cho, & Bengio, 2014). The sequence-to-

sequence model consists of two blocks: RNNs encoder, RNNs decoder. The

Encoder’s main function is transit the input data one by one to a fixed length state

vector. While the decoder is used to train the target output and think of the condition

of using the state vector which passed from the encoder. This Sequence-to-

Sequence model achieved the state of art performance on the task of Machine

Translation (Sutskever et al., 2014).

 16

Chapter 2

Related Work

The objective of this chapter is to give an overview of the basic concepts used in this

thesis. It describes the two main components in the sentiment analysis process and

some related models. The first component is the embedding model which used to

map text words to vectors. It presents the theories underlying commonly used

approaches TF-IDF (Ko & Youngjoong, 2012), N-gram, Bag-of-words and Word2vec

model (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013). In addition, the word2vec

model has been shown the state-of-art performance in sentiment analysis. The

section 2.2 introduces various classifier techniques for classifying the target label

and the sentiment polarities from the input data.

2.1 Word and Phrase Embedding

Word and phrase embedding is a feature learning methods in NLP (Mikolov,

Sutskever, et al., 2013). In the traditional NLP tasks, people prefer to treat words as

discrete atomic symbols, like in the “one-hot” representation, for example, “King”

could be represented as ‘0001’ and ‘Queen’ can be represented as ‘1000’. However,

discrete atomic symbols cannot show the relationship and similarity between words.

At the same time, the large discrete data maybe leads to data sparsity (Friedman,

1997). This is an issue because to overcome the problem and to successfully train

statistical models usually lots of data is required or if it is too large specific dimension

reduction methods can be applied. Besides, data sparsity can result in what is known

as “ the curse of dimensionality” (Friedman, 1997). It is important that using discrete

atomic symbols cannot represent the semantic similarities between linguistic items.

Thus the distributional hypothesis (Harris, 1981) was proposed by Harris.

Due to the distributional hypothesis theory, which states that words that

appear in the same contexts share semantic meaning (Harris, 1981), two categories

models were constructed: count-based methods and predictive methods. The

difference is count-based methods just computes the statistics of the frequency of

 17

words co-occurs with its neighbour words in a large corpus, and then map the

collected count statistics into a small, dense vector in the vector space for each word

(Baroni, Dinu, & Kruszewski, 2014). In contrast, the predictive models directly learns

a small, dense set of embedding vectors through predicting a word from its

neighbour words. The typical representative of count-based methods is Latent

Semantic Analysis approach (LSA) (Deerwester et al., 1990). The classical model of

predictive methods is neural probabilistic language model (Yoshua Bengio et al.,

2003).

2.1.1 Latent Semantic Analysis approach: Bag of Words

The Latent Semantic Analysis is a technique in count-based methods. It is used to

analyse the relationships between the document and words that it contains. The

distributional hypothesis is the fundamental principle of LSA. LSA can use a term-

document matrix which describes the occurrence of terms in documents. To extract

features of co-occurrence matrix, some mathematical methods always can be used

in the process, such as Singular Value Decomposition (SVD) (Golub & Van Loan,

1996) and Non-negative Matrix Factorisation (NMF) (D. D. Lee & Seung, 2001).

In order to represent the co-occurrence relationships, LSA chose a way that

computes the frequency of occurrence words in a set of documents and then

produces a term documents matrix to describe frequencies. The method was called

term-document (TD) matrix. However, the term-document matrix is limited by

unbalance-size documents. For example, a word appears 3 times in a document

which only has ten words, and appears 100 times in another document which

contains 1000. This condition is called as unbalance-size document set. Finally, the

TD matrix cannot accurately measure the relationship between words and

documents. For example, the big part of documents usually contain lots of stop

words, like ‘the’, ‘a’, ‘and’, this kind of words always is the highest frequency in a text.

To address this problem, TD matrix was replaced by another more accurate

measure way, TF-IDF. The term frequency-inverse document frequency (TF-IDF) is

a popular normalisation way which gives weight to per term by the inverse of

document frequency. Generally speaking, either TF or TF-IDF is measure methods

of bag-of-words (Martineau et al., 2008). In the bag-of-words model, a text or a

 18

sentence is represented as the bag of its words, it ignores the word order and word

grammar.

The BOW is a very popular model which simplifies the process of representing the

input text as fixed-length feature vectors. It exhibits good performance for topic

classification. However, it has two significant weaknesses: 1. It loses the ordering of

the words. Due to lack of consideration to the word order, if different sentences with

the same words but in a different order are used they will have the same

representation; 2. It ignores semantic relationships between words (Le & Mikolov,

2014). Thus, BOW has no ability to reveal any information about context data. As an

alternative, people have used the N-gram model instead to reveal the context

data (Cavnar, Cavnar, & Trenkle, 1994).

2.1.2 N-gram approach

Even though the bag-of-words get a good performance on the topic classification, it

still has some weakness that it ignores the order of words, in other words, it cannot

reveal more information about context data (Le & Mikolov, 2014). As an alternative,

people have used the N-gram model to capture the context data as more as possible

(Cavnar et al., 1994).

The N-gram model is widely used in the machine translation, words correction

system and speech recognition field (Kukich & Karen, 1992). The N-gram algorithm

computes the probability of a sequence data and use the maximum likelihood

estimation technique to predict the next word. When we are using a language model

to predict the next word, the core theory is derived from Markov algorithm which

assumes that the current word depends on the previous 𝑛 − 1 words. This is a

crucial assumption to simplify the estimation problem. Normally, the different size of

N-gram has different term as following table 1:

Term of N-gram Size (n)
Unigram 1

Bigram 2

Trigram 3

 19

Four-gram 4
Table 1 Different size of N-gram has different name

Due to one algorithm in word2vec model, Skip-grams, is partially similar with N-gram

(Mikolov, Sutskever, et al., 2013), and to better understanding the word2vec

algorithm, now we will give an example to show how the n-gram represents the

words relationship in the text. Suppose we have a corpus of three sentences. We

utilize a bigram to analysis the corpus.

<s> I am Sam </s>

<s> Sam I am</s>

<s> I do not like green eggs and ham </s>

Because the n is 2, so we calculate the probabilities of couple words occurrence as

following:

𝑃(𝐼	| < 𝑠 >) = 	
2
3

Equation 1

Word ‘I’ appears twice after start symbol ‘<s>’. Other probabilities are the same.

𝑃(𝑆𝑎𝑚| < 𝑠 >) = 	3
4
; 	𝑃(𝑎𝑚|𝐼) = 	 6

4
; 	𝑃(𝑑𝑜|𝐼) = 	 3

4
; 	𝑃(</𝑠 > |𝑆𝑎𝑚) = 	 3

6
;

Equation 2

So from the above we can see that the N-gram model to a certain extent take into

account the order of words.

2.1.3 Neural Probabilistic Language Models

The neural probabilistic language is a common type of predictive method in word

embedding, and it is based on neural networks to learn distributed representations

model (Yoshua Bengio et al., 2003). The basic idea of the neural language model is

to learn to associate each word in a dictionary with a continuous-valued vector

representation. Neural probabilistic language models have the ability to effectively

 20

solve the curse of dimensionality which occurs in the traditional feature extraction

method (Yoshua Bengio et al., 2003).

Due to the data sparsity issues, learning algorithms usually need a large

amount of training data when attempting to solve some complicated problem. This

requirement is called as the curse of dimensionality (Yoshua Bengio, Courville, &

Vincent, 2012). The most common case is when the number of training examples

increases exponentially as the number of features which need to be learned grows.

So it always happens with natural language models that the input is large tuples of

sequences of text data. For example, if we want to use our model to joint distribution

of 10 words from a vocabulary 𝑉 which size is 100000, it will generate 10<= − 1 free

parameters (Yoshua Bengio et al., 2003).

2.1.4 Word2vec Model

Word2vec is one of useful neural probabilistic language models (Mikolov, Sutskever,

et al., 2013). It achieved the state-of-arts performance in lots of NLP tasks which

produce fixed-length vectors used to represent words(Mikolov, Sutskever, et al.,

2013). The basic idea of word2vec is that according to the input training corpus, it

should produce a vector space. It then assigns a corresponding vector to each

unique word and map it into the vector space. The word2vec model includes two

opposing algorithms: CBOW and Skip-Gram. The distinction between CBOW and

Skip-gram is elaborated in (Mikolov, Corrado, Chen, & Dean, 2013).

2.1.4.1 Continuous Bag-of-Words (CBOW)

The CBOW can be illustrated using a simple example. Suppose we have a sentence

‘The cat sits on the mat’, we would like to treat the ['The', 'cat', 'on', 'the', 'mat'] as the

context words, and then use these context words to predict the missing word ‘sits’.

From the above sentence, we can find the CBOW will rely on the context words to

output the current word.

 21

Figure 2 CBOW Structure (“CBOW of Word2Vec,” 2017)

Figure 2 shows the CBOW structure, the CBOW structure consists of three layers:

input layer, hidden layer and output layer. We will explain the parameters in the

section 2.1.4.2.

2.1.4.2 How to using the Word2vec model

Firstly, we should define our model. We set the window size value to be 𝑚 and the

vocabulary size to be |𝑉|. For the input word or context words 𝑋? is used to define it.

The output word is represented by 𝑌𝑐 .Then a three layer neural network can be

created to learn the embedding vectors. The input layer will captures 𝐶 words that

the word window size is 𝐶, and pass the encoded word which has weighted by 𝑊

into the hidden layer which constructed by a fixed length N-dimensional vector.

Finally, the operated data will transit to the output layer and generate the output

word, 𝑌?. The weight matrix which connects between the input layer and hidden layer

should be a 𝑉 × 𝑁 matrix, 𝑊. On the other hand, the weight matrix between the

hidden layer and output layer should be a 𝑁 × 𝑉 matrix which denoted as 𝑊F.

Assuming we have already learned the weight matrix 𝑊 and 𝑊F. The whole

process could be divided into several steps:

 22

1. The input raw text should be encoded into one-hot representation vectors

which use a binary code to replace unique word in the vocabulary. The one

hot representation vector length equals to the vocabulary size |𝑉|.

2. According to the window size 𝐶 capture the context words which surround

current word 𝑌?. Then words captured by the window should be replaced by

encoded word vectors.

(𝑥(?HI)	, , 𝑥(?H3), 𝑥(?L3), , 𝑥(?LI)) where 𝑥M ∈ 𝑋.
Equation 3

3. Using the model generated embedding word vectors 𝑣	 ∈ 𝑅Q×|R| to replace of

words in the context window.

 (𝑣(?HI) 	= 	𝑉𝑥(?HI)	, 𝑣(?HIL3) 	= 	𝑉𝑥(?HIL3)	, , 𝑣(?LI) 	= 	𝑉𝑥(?LI))
Equation 4

4. Average the collected vectors to get

𝑣S = 	
𝑣(?HI) 	+ 	𝑣(?HIL3)+. +𝑣(?LI)

2𝑚

Equation 5

5. Generate the score vector
𝒛	 = 	𝑊F𝑣S

Equation 6

6. Using the softmax function to measure the score which obtained from the

former step, and choose the max probability word as the target word.

The above description briefly introduced how to get the embedding vector. Next, it

will be illustrated how the output is computed from the raw input data. Firstly, it is

necessary to evaluate the hidden layer H. The evaluation equation is:

ℎ	 = 	
1
𝐶𝑊 ⋅（X𝑥M

Y

MZ3

）

Equation 7

the hidden layer output is the average of the input xi weighted by the matrix W. Then,

to compute the out layer result.

 23

 𝑊[F 	= 	𝑣\]
F ^ ⋅ ℎ

Equation 8

where 𝑣\]
F is the j th column of the output matrix W’.

Finally, the softmax function computes the output 𝑦[from

𝑦[= 	𝑝(𝑤3, . . . , 𝑤?) 	= 	
𝑒𝑥𝑝(𝜐[)

∑ 𝑒𝑥𝑝(𝜐[F)R
[Z	3

Equation 9

 2.1.4.3 Updating the hidden-output layer weights

We defined the object function by cross entropy as:

𝐸	 = 	−𝑙𝑜𝑔	𝑝(𝜔i	|	𝜔j)

=	𝑢[∗ 	− 	𝑙𝑜𝑔 X 𝑒𝑥𝑝(𝑢[)
R

[Z	3

Equation 10

According to the above loss function, the derivative of the loss function 𝐸 regards

with the 𝑗no node in the output layer 𝑢[is given by

𝜕𝐸
𝜕𝑣[

	= 	𝑦[− 𝑡[

Equation 11

where 𝑡[= 	1 if j = j*, otherwise 𝑡[= 	0.

Then, the chain rule is applied to compute the above equation.

𝜕𝐸
𝜕𝜔M[F

= 	
𝜕𝐸
𝜕𝜇[

∙
𝜕𝜇[
𝜕𝜔M[F

= 	 (𝑦[− 𝑡[) ∙ ℎM
Equation 12

At the end, the update principle of the gradient descent approach is followed and the

eqns. is obtained

𝜔M[
F(Qt\) 	= 	𝜔M[

F(iuv) − 𝜆 ∙ (𝑦[− 𝑡[) ∙ ℎM

 24

Equation 13

Where 𝜆 is the learning rate.

2.1.4.4 Skip gram architecture of word2vec

The skip gram architecture is within word2vec. Because of the highly efficient learning

capabilities of the Skip gram model, it usually used to train a large corpus. The CBOW,

mentioned in Section 2.1.4.1, is based on the surrounding words to predict the target.

However, the Skip Gram model is just the opposite in that it uses a specific word in

the middle of the window (that is, the input word 𝑥?) to infer the context words.

Consider the simple example to obtain an insight into the Skip gram structure:

“The cat sits on the mat.”

We used a window whose size is 1 for this example. So the input will follow the

format (context, target) pairs given below. Specifically, the Skip-gram model just

inverts the order of context and target words.

Source Text Input
“The cat sits on the mat.” ([#, cat], The)

“The cat sits on the mat.” ([The, sits], cat)

“The cat sits on the mat.” ([cat, on], sits)

“The cat sits on the mat.” ([sits, the], on)

“The cat sits on the mat.” ([on, mat], the)

“The cat sits on the mat.” ([‘ . ', mat], mat)
Table 2 Skip-gram input with size 1

The Skip-gram architecture can be simply inverted as figure 3.

 25

Figure 3 Skip-gram structure(“Vector Representations of Words | TensorFlow,” 2017)

The structure of Skip-gram is similar with CBOW, it also has three layers. The input

layer reads the target words, and the output layer predicts context words.

Then the process is similar to CBOW process. The goal is to decrease the

cost function through updating the embedding parameters by applying gradient

descent algorithm. Finally, it can be used to represent the semantic relationship

between words, and it has been shown to achieve an excellent performance on lots

of NLP tasks (“Chinese comments sentiment classification based on word2vec and

SVMperf,” 2015; Mikolov, Sutskever, et al., 2013).

 Although word2vec has successfully shown that it has the ability to represent

the semantic mean, but it still has the weakness that it does not consider the order of

words and sentences (Le & Mikolov, 2014; Socher, 2014). To solve the order-lost

issue, Mikolov proposed a new algorithm, Doc2vec (Le & Mikolov, 2014). This

algorithm can learn a paragraph vector which can contain more context information

than word2vec model. Empirical results show that paragraph vectors outperform

count-based methods on several text classification tasks and sentiment analysis

tasks (Le & Mikolov, 2014).

Word embedding technologies have a prominent position for NLP tasks.

However, they are just the first stage. In the following section, the aim is to give the

background into the machine learning classifiers and provide insights into how the

 26

machine learning helps the implementation of the classification tasks based on the

word embedding vectors.

2.2 Machine learning & Neural networks for classification

Three standard machine learning and neural network algorithms are Support Vector

Machine (Pang et al., 2002), Multilayer Neural Network (Aggarwal & Zhai, 2012) and

Recurrent Neural Networks (LeCun, Bengio, & Hinton, 2015). Machine learning tasks

can be divided into three broad categories: 1. Supervised learning, 2. Unsupervised

learning and 3. Reinforcement learning. In the thesis, more attention will be given to

the supervised learning approaches, particularly the classical supervised learning

model: the Support Vector Machine.

2.2.1 Support Vector Machine (SVM)

Given a set In machine learning, the Support Vector Machine is the classical learning

algorithm which widely used in many tasks, such as classification (Suykens &

Vandewalle, 1999). It can be illustrated as follows: Given a set of labelled training

examples, each example belongs to one of two classes, 0 and 1.

The principle of the SVM’s principle is to map each sample as a point in an n-

dimensional vector space. Then, it will build a high dimensional hyperplane to

separate the clustered data points. SVM has two kinds’ classifier functions, one is

linear SVM and another is non-linear SVM. Intuitively, we need to find the best

separation hyperplane which has the largest margin between two classes, where

margin is defined as the distance to the nearest any-class training data point. In

other words, we need to find the maximum-margin hyperplane.

2.2.1.1 Linear SVM

To explain the Linear SVM classifier’s theory the first step is to clarify the format of

the training dataset of n points. The i-th sample in the training data set is denoted by

𝑥M, and the i-th target label is denoted 𝑦M. These are as Cartesian coordinates

 27

(𝑥3, 𝑦3), (𝑥6, 𝑦6)⋯ (𝑥QH3, 𝑦QH3)
Equation 14

Where 𝑦M is either 1 or 0.

In binary classification problem, 1 and 0 mean two classes that the case 𝑥M

belongs to either one of two classes. Additionally, the 𝑥M is a vector with a fixed

length features. In the next step the data is mapped into an n-dimensional feature

space. The SVM try to find the best separating line by searching the support vectors

that closest data points to the decision hyperplane. For linear SVM, it is treats the

data as being linearly separable. This means that linear SVM can be considered in

the way that both data points in space can be separated by a straight line. In Figure

4 an example is provided with a set of 2-D data points. The circles and squares

representing similar data values and appear as being clustered together. It is easy to

visualize a line to distinguish the clusters.

Figure 4 A linear separable set of 2D-points (opencv dev team, 2017)

Figure 4 describes the learning process that the SVM learn and determine the

optimal hyperplane from many solutions which denoted by multiple lines to the

problems. The optimal hyperplane has the largest minimum distance to the training

examples. At the same time, the optimal decision hyperplane maximizes the margin

of the training data that the distance between the support vectors.

The linear SVM could only solve the linear separable issues, but in some cases this

is not sufficient because the data is not linearly separable. In this case a non-linear

classifier is required.

 2.2.1.2 Nonlinear SVM

The linear SVM as a linear classifier could process the linearly separable data very

well, but it has the weakness that it can not correctly divide the non-linear data.

 28

Hence, (Boser, Guyon, & Vapnik, 1992) proposed a way to classify the non-linear

data by applying the kernel function. The core point of nonlinear SVM is the SVM will

implement the kernel function to map the input vector from a low dimensional to a

high dimensional space. Since the data points are linearly indistinguishable and

cannot be linearly classified in the low dimensional space, the kernel function leads

to the data point becomes linear separable in a high dimensional space. Thus the

kernel function allows the nonlinear SVM to fit the optimal hyperplane in a

transformed feature space. This is illustrated in Figure 5.

Figure 5 Kernel machines are used to compute a non-linearly separable function into a higher dimension linearly

separable function (Alisneaky, 2011)

2.2.2 Multilayer Neural Network

Consider an alternative supervised learning method to SVM, multilayer neural

networks have also been shown to achieved a good performance on the

classification tasks (“Artificial neural networks (the multilayer perceptron)—a review

of applications in the atmospheric sciences,” 1998). Neural networks are inspired by

the biological neural networks. Currently, neural systems are widely used in the

pattern recognition (Bishop, 1995), image processing (“Image processing with neural

networks—a review,” 2002) and machine learning area.

In the human brain, the transmission of information is relayed on neurons.

These neurons are connected to each other and eventually form an efficient and

sophisticated network. The same thing also happens in the neural network model,

and the neural network model is usually composed of one or more layers, each layer

contains a certain number of nerve nodes (Axon). Each neural node will be input with

 29

a fixed length features vector (the input value also could be the other neurons

output), then output a single real value (that can possibly be the input to other units

subsequently).

2.2.2.1 Perceptron

Next, the basic unit structure of neural network model will be examined. The neural

network consists of perceptrons. The simplest way to understand the perceptron

algorithm is that the perceptron unit outputs a linear combination of its inputs by using

a fixed-length vector as input, and then outputs 1 if the calculated result is greater than

the threshold, otherwise, it equals -1. The input data is denoted as 𝑋 = (𝑥3, 𝑥6,⋯ , 𝑥Q).

The mathematical expression to represent this is as follows:

𝑂(𝑥3, 𝑥6,… , 𝑥Q) = { 1, 𝑖𝑓	(𝑤= + 𝑤3𝑥3 + 𝑤6𝑥6 +⋯+ 𝑤Q𝑥Q > 0)
−1, 𝑖𝑓	(𝑤= + 𝑤3𝑥3 + 𝑤6𝑥6 +⋯+ 𝑤Q𝑥Q < 0)

Equation 15

Where 𝑤M is the weight for every feature of input data and it determines the

importance of features in the input data. Besides, 𝑤= is the bias value, and also can

be called as the threshold value. Figure 6 shows the structure of the perceptron and

how it works.

Normally, we will rewrite the above math equation as

𝑂~�⃑�� = 𝑠𝑔𝑛~𝑊���⃑ × �⃑�� = �10

Equation 16

Where 𝑠𝑔𝑛() means the activation function.

In practice, it is normal to choose among activation function, such as sigmoid

function and 𝑡𝑎𝑛ℎ function.

 30

Figure 6 Procedures of a single layer perceptron network (source: Wikipedia)

So how to obtain the weight W is the primary task. To correctly predict the label of

the target data, there are update approaches to update the weight values known as

(a) the Perceptron rule (Freund & Schapire, 1999) and (b) the Delta rule (Russell,

2012). Either Perceptron Rule or Delta Rule can guarantee that the cost function will

converge to a reasonable range, and finally captures the optimal weight parameter

values.

In order to learn the optimal weight parameter, the first step is that it is necessary to

initialize the weight matrix using random values. During learning progress, if the

algorithm detects an incorrect prediction, it can automatically modify the

corresponding weights and update them until a perfect fit for the training cases, and

thus find the minimum cost value. The update rule as follows:

𝑊M = 	𝑊M + 	Δ𝑊M

Δ𝑊M = 	𝛼(𝑡 − 𝑜)𝑥M
Equation 17

Where 𝛼 is learning rate, t is the target label, o is the perceptron output.

It should be noted that we usually set the learning rate to a small value. Otherwise, it

will cause the loss function cannot be convergence and leads to the underfitting

situation if we set the learning rate to a large value.

A premise of using the perceptron update rule is that training examples are

linearly separable. If the training dataset is not linearly separable, another alternative

 31

method can be applied to update the weight, the Delta rule, to prevent the

occurrence of non-convergence situation. The Delta rule uses the gradient descent

method to find the best approximation set of weights. We use the following

mathematical expression to write the linear operation output of the perceptron.

𝑜(𝑋) = 	𝑊 × 𝑋
Equation 18

The distinction between Delta rule and Perceptron rule is that the above equation does

not include the threshold 𝑊=. To compute the difference between the target function

and our hypothesis function, a cost function must be defined to measure the training

error of the hypothesis function.

𝐸 =	
1
2X(𝑡[− 𝑦[)6

[

Equation 19

Where 𝐸 means the training error, 𝑡[is j-th target output, 𝑦[is the output label of

training case j.

With the error of the cost function decreasing, we can get the fitness weight

parameter.

2.2.2.2 Multilayer Neural Network

A single perceptron unit can be used to classify linearly separable data, but it is not

suited for solve some complicated problems like speech recognition (Hinton et al.,

2012) and machine translation. Thus people prefer to use a multilayer neural

network to solve these for non-linear high dimensional training datasets (“Artificial

neural networks (the multilayer perceptron)—a review of applications in the

atmospheric sciences,” 1998). For example, we can analyse and judge the letter

which is correct by identifying the sound spectrum. Multilayer neural network has the

ability to solve the more complex issues.

A multilayer neural network consists of a tuple of neural nodes, and each

node usually is a perceptron unit, so that the neural network which is made of

multiple perceptron units also can be callas a multilayer perceptron (MLP). At the

 32

same time, the output of each nerve node will be the input of the other neural nodes,

except for the final output layer which only has one node. From figure 7, it can be

observed that this multilayer neural network has three layers, and each layer has

four nodes, represented as circles. Those circles which wrote +1 symbol indicate the

threshold (which also can be called as bias).

Figure 7 A neural network structure(“Unsupervised Feature Learning and Deep Learning Tutorial,” 2017)

In figure 7, the first layer 𝐿3 is the input layer, and the second layer 𝐿6 is the hidden

layer, the third layer 𝐿4 is the output layer. In figure 7, it can be seen that there are

four nodes in the input layer and the hidden layer. However, considering the input

layer and the hidden layer separately, they have three neural nodes each because of

the last node in each layer is the bias node, it won’t get any value from the previous

layer. In the hidden layer, each neural node will collect data which is weighted by the

parameters from the previous layer, then output to the next layer after a linear

operation and activation processing. The mathematical expressions for each output

in 𝐿6 would be as follows:

𝑎36 = 	𝑓(𝑊33
3 𝑥3 +	𝑊36

3 𝑥6 +	𝑊34
3 𝑥4 + 𝑏33)

𝑎66 = 	𝑓(𝑊63
3 𝑥3 +	𝑊66

3 𝑥6 +	𝑊64
3 𝑥4 + 𝑏63)

 33

𝑎46 = 	𝑓(𝑊43
3 𝑥3 +	𝑊46

3 𝑥6 +	𝑊44
3 𝑥4 + 𝑏43)

ℎ�,�(𝑥) = 	𝑎34 = 𝑓(𝑊33
6 𝑎36 +	𝑊36

6 𝑎66 +	𝑊34
6 𝑎46 + 𝑏36)

Equation 20

Where 𝑎Mu denotes the activation function output value of unit 𝑖 in layer 𝑙. 𝑊M[
u means

the weight parameter associated with the connection between unit 𝑖 in layer 𝑙 and

unit 𝑗 in layer 𝑙 + 1. 𝑏Mu denotes the bias node value of unit 𝑖 in the 𝑙 layer. Eventually,

ℎ�,�(𝑥) will output a real value whose computation depends on the previous layer

output (𝑎36,	𝑎66,	𝑎46 and 𝑏36).

The above algorithm is called feedforward neural network. It is operates on

data from the input and processes it layer by layer, until finally output the result. The

above MLP model will be used in our experiments to verify whether there is any

difference between English corpus and Chinese corpus.

 34

2.3 Assessing The Previous Work In Sentiment
Classification

This section briefly reviews the previous work on sentiment classification. In many

traditional text categorization methods’ the performance depends on the knowledge

and linguistic heuristics or the quality of the manual construction of discriminant-word

lexicons (Pang et al., 2002). Supervised machine learning approaches have been

widely used to do text categorization, especially through the application of the

Support vector machine (SVM) (D. Zhang et al., 2015). Through finding a hyperplane

for word vectors, SVM can achieve a good performance (Pang et al., 2002).

However, SVM has some weaknesses. The major one is that it uses a kernel

function to map the nonlinear data to a high dimensionalities space, so then it can

find a hyperplane to do classification(Moreno & Ho Hewlett-Packard, 2003). This

weakness increases the complexity of computation. Hence the SVM can’t be used to

process large data sets. Another weak point regarding SVM is that it doesn’t

consider the semantic relationship between words.

Approach Advantage Disadvantage

Support Vector Machine
(SVM) (Pang et al.,

2002)(Vanzo, Croce, &

Basili, 2014)

1. SVM’s generally outperforms the Naïve

Bayes classifier;

2. It is a large-margin technique that uses a

hyperplane unlike the probabilistic classifier

(Pang et al., 2002).

1. One major weakness of SVM

having to determine the kernel

function to compute the distances

among data points (Moreno & Ho

Hewlett-Packard, 2003).

2. Semantic features have been

rarely considered in SVM sentiment

classification (D. Zhang et al., 2015).

3. The accuracy of the word vectors

is positively correlated with the

performance;

Word2vec + SVM (D.

Zhang et al., 2015)

1. This considers the semantic relationship

between words;

2. Because it has a low computational

complexity, it can compute very accurate

high-dimensional word vectors from large data

sets (Mikolov, Corrado, et al., 2013);

1. It ignores the context information;

2. It does not take account of word

order;

3. it lacks the ability to process long

range text.

 35

LSTM (Huang, Cao, &

Dong, 2016)

1. It can process long-range context, solving

the independence issue;

2. It considers the word order and has the

ability to extract the overall sentiment from the

context;

3. It solves the general sequence to sequence

problem (Sutskever et al., 2014).

1. The size of the training data set

determines the performance of the

models;

2. From the literature it appears that

it is better to apply it in conjunction

with another technique (Wang, Yu,

Lai, & Zhang, 2016).

Table 3 The Comparison of Different approaches

To observe the semantic relationship and improve the performance of processing of

high dimensionality data, the word2vec model was proposed and was shown to

achieve excellent results (Tang et al., 2014). The Word2vec model has a high

efficiency for learning word vectors from the raw text by using the Skip-gram or

CBOW model. More recently, the word2vec model has also been shown to offer

significant improvements over other techniques for Chinese corpus (D. Zhang et al.,

2015).

Although word2vec can directly map words into high-precision vectors and

represent semantic relationships between words, the extraction of contextual

semantic information and word order are ignored (Le & Mikolov, 2014). In order to

solve these problems, researchers have tried to better understand the overall

sentiment of text passages by increasing the processing granularity from the level of

a word to that of a paragraph or a document. They then proposed various of

algorithms, such as Paragraph vector (or Doc2vec) (Le & Mikolov, 2014), Recursive

neural network (Socher, 2014), or RNN and LSTM (Chung et al., 2014; Huang et al.,

2016). Other works verified that RNN and LSTM have greater potential to produce

better predictions of sentiment polarity than other models (Le & Mikolov, 2014)(Tai,

Socher, & Manning, 2015). In particular, (Tang, Qin, & Liu, 2015)’s work utilized

LSTM and RNN with many GRU for document level sentiment classification of the

IMDB dataset.

Therefore, for the problem of the thesis it appears that the best approach is to use a

form of LTSM with RNN. However, it has to be noted that this approach has not been

verified on a Chinese corpus so it may not produce results that are as good as report

for English corpora.

 36

Chapter 3

Methodology

This chapter we begin by describing context2vec methodology and the algorithm.

Context encoder is a main component of Sequence-to-sequence model. RNN

encoder-decoder structure is the basic idea. Recurrent Neural Network (RNN) has

shown outstanding performance in many problems that require sequence

processing, such as speech recognition (LeCun et al., 2015; Graves, Mohamed, &

Hinton, 2013), machine translation (Cho, van Merrienboer, Gulcehre, et al., 2014).

The main advantage with the RNN is that it takes the word order into account,

and thus is suitable to tackle a sequence problem. In traditional Natural Language

Processing (NLP), for simplicity the viewpoint was often held that words are

independent from each other, , and the word order does not affect the final result

(Taboada et al., 2011).

However, when facing issues associated with analyzing the whole semantics,

including sentiment, of a sentence or whole documents, such a hypothesis that

words order is not considered in the prediction will result in a low accuracy of

sentiment inference. For example, in Chinese, because of the existence of particular

word segmentation rules and the fact that a combination of different orders between

words can cause a totally different meaning, the algorithm based on the phrase

independence theory will always leads to a low accuracy that measuring the

expressiveness of the overall sentence. To overcome such difficulties Mikolov

proposed the implementation of RNN for language in his work (Le & Mikolov, 2014).

This work illustrates that the consideration of word order with previous input

information can promote the accuracy of prediction.

3.1 Model Overview

The main goal of our model is to learn a generic context embedding vector for

variable-length sentence. To do this, we propose a novel neural network

architecture, which is based on the Recurrent Neural Network Encoder-Decoder

model (Chung et al., 2014; Cho, van Merrienboer, Gulcehre, et al., 2014; Cho, van

 37

Merrienboer, Bahdanau, & Bengio, 2014). We use this to extract a summary vector

of the whole input sequence with using a most useful sequence processing neural

model Long-Short-Term Memory (Hochreiter & Schmidhuber, 1997).

This model consists of two parts: one is the RNN Encoder-Decoder structure

and the other is a Classifier. A core element of the RNN Encoder-Decoder structure

is the Long-short-term-memory unit (Cho, van Merrienboer, Gulcehre, et al., 2014).

Figure 8 Context vector encoder structure

Figure 8 illustrates the process of the context vector and the classifier. The process

can be divided into several steps:

1.According to sequence to sequence experimental protocol, the RNN

encoder-decoder is constructed. The encoder reads the sequence until the stop

symbol. It learns to generate a state vector (Sutskever et al., 2014). This state vector

is what we want to extract.

2.In the completion of the encoder processed, the state vector is transmitted

to the decoder. While reading the state vector, the decoder also reads the target

sequence. According to the principle of sequence to sequence, the model should

correctly predict the sequence same with input sequence of encoder. If decoder

detects an incorrect prediction, it will change the parameters value. The learning

 38

process is lasting until the decoder can output the target sequence with high

accuracy.

3.After the training phase, the encoder can be used to convert the movie

review to the context vector. The context vector length should equal to LSTM

number in a layer, and it will be saved for the classification.

4.In this step, the classifier is built to learn how to classify context vector

which has been converted from the movie reviews by the encoder.

5.Finally, the evaluation system evaluates the model accuracy by using the

test data.

The whole model adopts the strategy of combining a deep neural network with

different classifiers. The intention is that with this system to then try to construct a

distribution space in the RNN encoder-decoder which has been trained with a

Chinese corpus. It will map the sequence input into the distribution space and

represent the input sentence as a fixed-length vector representation of the overall

semantic meaning of the input (Cho, van Merrienboer, Gulcehre, et al., 2014). In

addition, because of Long-Short-Term memory can solve the long distance

dependency problem, the historical information in the sequence input will be fully

considered whether it is forgotten or keep (Hochreiter & Schmidhuber, 1997; Y.

Bengio, Simard, & Frasconi, 1994).

Figure 9 An illustration of the RNN Encoder-Decode(Cho, van Merrienboer, Gulcehre, et al., 2014)

 39

Figure 9 illustrates the structure of RNN encoder-decoder. The encoder consists of

RNN, it reads the input sequence 𝑋M until the stop symbol, and generates the state

vector (also can be called as context vector) 𝐶 that a summary of the whole input

sequence. The decoder also consists by RNN, and is trained to output the target

sequence 𝑦M based on the the maximum conditional probability principle for the

target sequence (Cho, van Merrienboer, Gulcehre, et al., 2014).

3.2 Sequence-to-sequence Basics

A basic Sequence-to-Sequence model (Seq2seq) mainly consists of three parts,

which are: an encoder, a decoder and a state vector (Sutskever et al., 2014). The

essence of the algorithm is that the model will fetch the input data from the source

sequence by the encoder, then process it through the primary element, such as

LSTM units or the Gated Recurrent Units (GRU). Both these units are inspired by

the recurrent neural networks, and have the ability to learning whether to keep the

past information (Hochreiter & Schmidhuber, 1997; Chung et al., 2014). This will be

seen to be very important to the Chinese language learning tasks(C. Zhang, Zeng,

Li, Wang, & Zuo, 2009).

After the processing of LSTM or GRU, it encodes the input data into a fixed-

size state vector. Thus we can assume the state vector is the summary of the input

sequence (Cho, van Merrienboer, Gulcehre, et al., 2014). Then the decoder will

collect the state vector transmitted from the encoder. Accordingly, the decoder will

use the state vector and the target input sequence to learn how to produce the same

target sequence. The whole process can be represented by the figure 10.

Figure 10 An example that sequence-to-sequence model reads an input 'ABC' and produces 'WXYZ' as the

output sentence(Sutskever et al., 2014)

 40

Where ABC is an input sentence and the model generates the output sentence

WXYZ. The model begins to predict with the symbol "<go>" and it working until the

model output the symbol "<eos>"(Sutskever et al., 2014).

Each box in figure 10 represents a cell unit, and in our model, we chose to

use the LSTM unit as the primary unit. From the structure of the model, it can be

observed that information moves from left to right through it. The target sequence

data is inputted into the right portion of boxes as the target result which used to

correct the error, and the right part of boxes begins to produce the output sequence

when the cell unit detected the input data is 'stop' symbol.

In our hypothesis, the state vector is a summary of the input sequence data and

represents the maximum conditional probability of target sequence (Cho, van

Merrienboer, Gulcehre, et al., 2014). Next, it is important to examine how the recurrent

network helps to obtain the features from the input sequence.

3.2.1 Recurrent Neural Network

It is important to examine how the Recurrent Neural Network helps to obtain the

features from its input sequences. When the RNN tries to infer the next word, it not

only processes the current input data, but also treats the previous calculation results

as part of the solution(LeCun et al., 2015). To illustrate better how it works it is

useful to unfold an RNN model by time as the figure 11.

Figure 11 A recurrent neural work and the unfolding in time of the computation(LeCun et al., 2015)

 41

Figure 11 shows that an RNN being unrolled into a full state network with respect to

time. Xt is the input at time step t, and it usually will input a word symbol. 𝑆n is the

hidden state at time step t. 𝑆n stored the previous information which will be called in

next step (Chung et al., 2014). The 𝑆n is computed based on the hidden historical

state and the current input at the current time step t:

𝑆n = 𝜎(𝑈𝑥n 	+ 	𝑊𝑆nH3)
Equation 21

Where 𝑈 is the weight parameter that connects the first and second layers, 𝑉 is the

parameter matrix of output layer, and 𝑊 is the weight matrix or vector associated

with the current hidden state with the hidden state data of next step.

Moreover, the same function and the same set of parameters 𝑈,𝑊,𝑉 are used

at every time step. In addition, there are many options for the activation function 𝜎 ,

such tanh or Relu (Getoor, Scheffer, & International Machine Learning Society.,

2011). The activation function will determine whether to use the previous information

during the prediction. 𝑜n represents the output at step t.

𝑆n = 𝑡𝑎𝑛ℎ(𝑈𝑥n 	+ 	𝑊𝑆nH3)

Equation 22

𝑜n 	= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥	(𝑉𝑆n)
Equation 23

Different function are appropriate for different tasks, and for seq2seq model, a

reasonable choice is to use softmax to predict the next word through detecting the

probabilities across the vocabulary.

 42

Figure 12 An example RNN with 4-dimensional input and output layers (Karpathy, 2015)

Now an example from 'Character-Level Language Models' (J. Lee, Cho, & Hofmann,

2016) to illustrate how to train the RNN to predict the next word. Suppose a

dictionary exists that includes 'h','e','l' and 'o' four characters. In the training case for

a sequence data 'hello'. It is desirable to correctly infer that the last character is ‘o’

when ‘h’,’e’,’l’,’l’ is entered. The first step is to use the “one-hot” representation to

encode these four characters as independent codes as shown in figure 12,

['h',1000],['e',0100],['i',0010] and ['o',0001] respectively. On entering the first

character 'h', the hidden layer computes the formula ℎFoF 	= 	𝑡𝑎𝑛ℎ(𝑈𝑥FoF 	+ 𝑊ℎnH3).

Because of 'h' is the first input character, the term ℎnH3 can be initialized to 0. The

hidden state vector ℎFoF is [0.3, -0.1, 0.9] is obtained. The final output is 𝑜FoF 	=

	[1.0, 2.2,−3.0, 4.1]	 which means rnn has assigned 1.0 confidence to 'h', 2.2 to 'e', -

3.0 to 'l' and 4.1 to 'o' (Karpathy, 2015).

In the output layer in figure 3.5, it can be seen that two sets of values are

distinguished by red and green colours in the nodes for each character. The green

colour is associated with the value that correctly match target, while the red colour is

used for are those that do not match the target. However, the target output label should

be 'e' in the output layer. Thus, compared with the target label, the score of correction

characters will be increased if the output is same as the target label, and the score of

incorrect characters should decrease. This process is repeated many times until the

 43

error of the entire neural network converges to a constant and the result is correctly

predicted (Karpathy, 2015).

3.2.2 Long-Short-Term Memory (LSTM)

Although the RNN model can theoretically solve the long-term dependencies

problem, in fact, it did not achieve the desired results. This issue was approved by

Hochreiter (Hochreiter & Schmidhuber, 1997) and Bengio (Y. Bengio et al., 1994).

Thus a more complex model is proposed to solve this problem, the model is called

as Long-Short-Term memory units (LSTM).

LSTM is a variation of RNN, it not only can address help language model to

promote the accuracy of prediction for long-distance terms, but also can be used to

prevent the vanishing gradient issues during the back-propagation through time

(BPTT) which used descent the error (Y. Bengio et al., 1994). LSTM helps RNN

model dramatically increases the length of learning, which also reflects the ability to

store information significantly enhanced.

3.2.2.1 LSTM Structure And Workflow

From the structural point of view, a LSTM model mainly has the following

components: a memory cell body, a forget gate, an input gate and an output gate

(Hochreiter & Schmidhuber, 1997). The function of the cell body is fundamentally

similar to RNN, which is used to store the current input data and the historical state

vector.

The main function of the input gate is it will read the data from the training set

and decide whether to update the current state. On the other hand, the output gate is

mainly used to control the output of cell body. The core of the forget gate is that it will

manage the LSTM self-recurrent connection, deciding whether to remember or forget

the previous state vector. Figure 13 shows a diagram of the structure of the LSTM

(Hochreiter & Schmidhuber, 1997; Gers & Schmidhuber, 2001; Sutskever et al.,

2014; Chen, Qiu, Zhu, Liu, & Huang, 2015).

 44

Figure 13 An LSTM contains four layers(“Understanding LSTM Networks -- colah’s blog,” 2016)

In figure 13, it can be seen that each cell body has two input data streams. The first

is the current input 𝑋n and the second data stream is the previous cell status. Both of

these data will affect the control of the three gates. The specific steps are as follows

1. The forget gate will be based on the current input data to control what

information should be ignored. For example, assuming previous sentences have

been read which include gender information. However, in the present sentence there

appears a new object with a new gender attribute. In order to accurately use the

corresponding words, it is necessary to abandon the historical gender information.

2. According to the data read by the input gate, it is necessary to consider

which information should be updated and stored in the state vector. With reference

to the same example, in this step, the body cell will read the gender attribute to

update the state vector and replace of the old state vector.

3. Finally, once an updated cell status has been obtained, then the algorithm

needs to learn which part of the state vector should be output and whether to only

output the part data which has been modified. Referring again to the example,

having the new gender data, the output gate will determine which part should be

output and whether to output the changed portion of cell status. Now we will examine

the math equation insight of LSTM.

Status vector

Input gate
Forget gate

Output gate

 45

3.2.2.2 The math equations for gate controller

We would like to use the variable 𝐶𝑡 to represent the cell state vector of the LSTM,

the cell states will go through the entire training process. All of the gates used the

sigmoid activation function to control the flow of information, and the gates are

affected by three elements: the output from the previous time step, the current input

and optionally the cell state vector (Chen et al., 2015).

The value of the forget gate which is represented by 𝑓n is computed using.

𝑓n = 𝜎(𝑊� ⋅ [ℎnH3, 𝑋n] + 𝑏�)
Equation 24

Where 𝑊� denotes the weight matrix for forget gate.

The input gate is represented by 𝑖n.

𝑖n = 𝜎(𝑊M ⋅ [ℎnH3, 𝑋n] + 𝑏�)
Equation 25

Where 𝑊M represents the weight matrix for input gate

And the input gate 𝑖n decides which value that will be sent to be updated. This

update function will be implemented by a tanh function that creates a new candidate

values 𝐶n.

𝐶n = 𝑡𝑎𝑛ℎ(𝑊? ⋅ [ℎnH3, 𝑋n] 	+ 	𝑏?)
Equation 26

Where 𝑊? denotes the weight matrix for 𝐶n .

After obtaining the new candidate values 𝐶n, the model will update the old cell state

𝐶nH3 to the new cell 𝐶n. The old state is multiplied by the forget gate 𝑓n, and combined

with an operation involving the product of 𝑖n and 𝐶n.

𝐶n 	= 𝑓n 	∗ 𝐶nH3 + 𝑖n ∗ 𝐶n
Equation 27

 46

Finally, the current generation value ℎn is found from the current cell value and the

output gate result 𝑜n.

𝑜n 	= 	𝜎(𝑊i ⋅ [ℎnH3, 𝑋n] + 𝑏i)

ℎn 	= 	 𝑜n ∗ 𝑡𝑎𝑛ℎ(𝐶n)
Equation 28

3.2.3 Context Encoder Based on Sequence-to-Sequence Model

In our model, we propose an encoder model that uses the encoder model structure

of the sequence-to-sequence model as a context vector encoder. This is used to

convert a variable-length sequence data into a fixed-length vector representation

(Sutskever et al., 2014).

The first stage is the training process, and the primary purpose is to train the

Seq2seq model. The collected Wikipedia Chinese corpus is used as the training

source dataset. During the training process, the encoder will gradually read every

symbol in the input sequence until the end. Simultaneously, to get the conditional

probability distribution for the Chinese language, we also use the Chinese corpus

provides target sequence data which will be used in the decoder (Cho, van

Merrienboer, Gulcehre, et al., 2014). The decoder will read the target sequence data.

The model will learn the probability distribution and the parameter matrix from the

source input data to the target sequence data. Thus the whole task could be

represented by the following mathematical expression:

𝑷(𝒚𝟏, , 𝒚𝑻�	|	𝒙𝟏, , 𝒙𝒕)

Equation 29

When the encoder reads a sentence, it will output a context state vector c, and this

vector will be transmitted to the decoder. The decoder reads the target sequence

data and will determine the output of current step by predicting the next word in the

case of a given context vector c. The following mathematical equations can express

how to compute the hidden state ℎn in the decoder:

ℎn = 𝑓(ℎnH3, 𝑦nH3, 𝑐)

 47

Equation 30

𝑃(𝑦n|𝑦nH3, 𝑦nH6, 𝑦nH4, , 𝑦3, 𝑐) 	= 	𝑔(ℎn	, 𝑦nH3, 𝑐)
Equation 31

Where 𝑦n is target word, and ℎnis the state vector of the current body cell and c is the

context vector which come from the encoder.

The aim is to learn the conditional probability distribution for Chinese corpus,

thus it is desirable to set the target sequence of the decoder to be the same

sequence as source sequence data. According to the previous work (Cho, van

Merrienboer, Gulcehre, et al., 2014) that they consider the context vector c to be a

summary of the input sequence data, The trained encoder of sequence-to-sequence

model will be employed as a feature extractor, and will provide the context vector for

the classifier(Tang et al., 2015).

 48

Chapter 4

Data preparation and tool introduction

This chapter focuses on the details of the data, including the data sources, the data

format, the positive and negative case number, and some necessary information

regarding the dataset. In the experiments, classification of the training dataset into

two categories can be carried out based on the model function. The first type of

training dataset is used in the training of seq2seq model (Sutskever et al., 2014)

which is used to generate context vector. The second type of data is the target

sentiment classification data which is used in the machine learning or neural network

classifier.

4.1 Data Analysis

This chapter focus on our data details, including data sources, data format, positive

and negative case number and some necessary information of dataset. In our

experiments, we can classify the training dataset into two categories based on our

model function. The first type of training dataset is used in the training of seq2seq

model which used to generate context vector. The second type of data is the target

sentiment classification data which used in the machine learning or neural network

classifier.

4.1.1 The Chinese Wikipedia Corpus

The Chinese Wikipedia corpus is a text corpus created from the Chinese internet

encyclopaedia Wikipedia in 2012. For the building corpus was used Wikipedia dump.

The corpus was segmented by Stanford Chinese segmenter. Figure 14 shows an

unprocessed example of the Chinese Wikipedia corpus. The unprocessed corpus

contains a large number of useless data, such as HTML code.

 49

Figure 14 A unprocessed Chinese Wikipedia corpus

In order to obtain a useful Chinese corpus, it is necessary to do several steps:

1.Extract useful Chinese articles from the original corpus. Therefore, the

HTML code and English words must be removed;

2.Chinese has two word styles: Chinese traditional Chinese and simplified

Chinese. All of words in traditional Chinese should be convert to simplified Chinese;

3.The Stanford segmenter should separate all the words in the sentence

using the delimiter ‘space’;

Finally, it is possible to obtain a cleaned Chinese corpus as shown in figure 15

which can then be used to train the sequence-to-sequence model.

Figure 15 A sample of the cleaned Chinese Wikipedia corpus

 50

4.1.2 Sentiment Corpus: Movie Review Analysis

To obtain suitable training data of for sentiment classification, this can be mainly

sourced from several categories: the first category is review data of products; the

second type is the short articles posted on the social networks; the third category is

the comment and evaluation of film and music (Pang & Lee, 2008).

The reviews of products are primarily posted on e-commerce sites, such as

Amazon.cn, taobao.com. After consumers have purchased products online, they will

give a comprehensive evaluation of the goods based on their satisfaction, in terms

such as the performance of the commodity, its appearance, and any other aspects.

At the same time, each consumer will manually evaluate the product from one star to

five stars.

The second category data mainly comes from twitter.com and microblogging

content. There is a previous work released a large scale Chinese short text

summarisation dataset which consists of over two datasets constructed from the

Chinese microblogging website Sina Weibo (Hu, Chen, & Zhu, 2015).

The third category of evaluation data is the most popular corpora in the

sentiment analysis task, IMDB. However, it is challenging to obtain an extensive text

summarisation dataset about film and music in Chinese. Thus eleven different types

of film comment data which has been labelled was collected by using a web crawler

tool.

Figure 16 Top 10 popular movie type and numbers of different types in the corpus

54900
48441

35523 32294 29064 25835 22606 19376 16147 12917

25840

0
10000
20000
30000
40000
50000
60000

Comed
y

Acti
on

Adve
nture

Sci
-Fi

Horro
r

Biogra
phy &

 St
ory

War
Crim

e

Anim
ati

on

Music
al

Others

Top 10 poular movie type

Number of Review

 51

Only reviews were selected that have rating scores or rating stars, leading to a

collection of 322943 valid reviews in total. The distribution of reviews about the

movie genre type is given in figure 16, with comedy films having the greatest number

of reviews and action being close behind it. The category other collates the

remaining reviews. The average length of each comment was 20.53 words. In

addition, it is necessary to convert our reviews' label from rating scores or rating

stars into one of three categories: positive, neutral and negative.

In the classification task, the sentiment prediction is usually treated as a

binary classification and 0 and 1 are used to represent the positive and negative

cases respectively. As the figure 17 shows, the collected sentiment corpus has five

levels which is same with Amazon and taobao.com rating system. A single star

corresponds to the worst level, and five stars is the best level. The sentiment degree

of reviews is positively correlated with the number of stars. However, it is evident that

the number of reviews which are tagged as four stars is much bigger than the others.

The differing number of reviews for each star level does create an imbalanced data

problem.

Figure 17 The percentage of different rating stars present in the dataset

Imbalanced data refers to the problem that the number of different classes is not

equal in the training datasets of classification (Batista, Prati, & Monard, 2004). This

frequently occurs in classification problems. For example, if there was an attempt to

train a classifier to predict the gender of student, the training set would be judged to

be an imbalanced data in the situation where the training dataset contains attributes

for one hundred males and ten females. It will most likely result in the majority of

1 Star
5% 2 Stars

9%

3 Stars
26%

4 Stars
33%

5 Stars
27%

RATING STAR PERCENTAGE

 52

testing data trials predicting the gender to be male rather than female. To avoid the

imbalanced data problem, an equal number of training cases and test cases are

randomly chosen from the different classes available

At the same time, according to the sentiment categorization of different star

classes and the binary classification requirement, the 3-star level reviews are divided

into neutral, 1-star and 2-star’ reviews to become the negative training dataset, 4-

star and 5-star reviews were used to form the positive training data.

Figure 18 Numbers of different sentiment polarities

In our experiments, we just focused on discriminating between positive and negative.

Thus we removed all of the reviews which belong to neutral level or 3 stars level.

Finally, it resulted in a training dataset which included 25000 positive cases and

25000 negative cases. In addition, the test dataset consisted of 7500 positive cases

and 7500 negative cases.

Through the analysis of the training dataset, minority reviews includes emoji

expressions, such as “╥﹏╥” (meaning to cry) and “(=^･^=)” (meaning to happy).

The majority of emoticons are made up of punctuations, and within the training

dataset it is possible to find many emoticons of the form of . Particularly on

microblogging platforms, due to the input length restrictions, emoticons are

commonly used to express the authors’ mind(Pak & Paroubek, 2010). However,

emoticons are not of interest in relation to the text corpus and were removed.

Positive,
192656, 60%Negative,

45481, 14%

Neutral,
84806, 26%

SENTIMENT POLARITY

 53

4.1.3 Chinese Segmentation

Within NLP, the treatment for Chinese and English is quite different. In English,

people usually use space as the delimiter for the separation between words.

However, in Chinese, there is no space or other delimiters to separate words.

Furthermore, the primary unit in English is 26 letters, while the underlying unit in

Chinese is the character, of which there are thousands. For example, in the

sequence data:

“Semantic analysis is the key area in NLP.”

The basic unit is letters, and every word in this sentence consists of some English

letters. Translating this sentence into Chinese, it becomes

“语义分析是 NLP中的关键领域。”

It is obvious that there is no space between words, and the basic unit is Chinese

characters. A word with meaning usually has two or more characters in Chinese. For

instance, it is meaningless if we just capture a Chinese character from the above

sentence “语”. However, if “语” and “义” are combined together, then they mean a

word “semantic”. Therefore, segmentation is acting an essential role in NLP tasks for

Chinese.

 Segmentation is used to divide a string into different level of units, such as

words (Lafferty, McCallum, & Pereira, 2001), or topics (Reynar, 1998). Due to the

primary unit of Chinese being characters, and the fact that there is no delimiter

between the Chinese words, so words are segment based on the understanding of

the entire sentence or on the availability of specific context information. For example,

considering the character sequence, ‘这个苹果不大好吃。’ this sentence is easily

misinterpreted if the segmentation is incorrect. This sentence has two different word

 54

segmentation strategies that would produce opposite meanings. The first

segmentation strategy is “这个 / 苹果 / 不大好吃。” (This apple is not delicious.). On

the contrary, if we combine ‘不大’ with ‘苹果’, then we will get an opposite meaning

sentence, that ‘这个 / 苹果不大 / 好吃。’ (This apple is not big, and it is delicious.).

Generally speaking, the different combination of Chinese characters has different

meanings, so incorrect word segmentation will have a significant impact on our

model’s performance.

 Currently, the favoured segmentation tool for Chinese are Stanford

segmenter (Chang, Galley, & Manning, 2008) (Tseng et al., 2005), Jieba segmenter

and so on. According to different approaches, the segmentation algorithms can be

divided into two categories. The first class is the segmenter based on the lexicon-

based Max-Match approach, such as jieba segmenter. The basic idea behind this

tool is it constructs a prefix dictionary structure, and then it searches all possible

word combinations. The second type used the conditional random field sequence

model (CRF) (Lafferty et al., 2001) to do the segmentation, like Stanford segmenter

for Chinese (Tseng et al., 2005) (Chang et al., 2008). The CRF model is widely used

in machine learning and is applied for sequence data prediction that it predicts

sequences of labels for input sequences data.

 Some experiments proved the Stanford segmenter has a stronger ability to

deal with Chinese out-of-vocabulary words and has a higher accuracy than the

lexicon-based approach (Chang et al., 2008). According to the comparison and the

feature of Chinese that the different words segmentation strategies lead to

ambiguous, we used Stanford segmenter to assist us to do the segmentation task.

4.2 Deep learning tool

In this section, the tools, including the libraries and platform used in our experiments

are introduced. In the corpora collection phase a web-crawler was constructed using

the python language to get the latest corpus data. Then, a regular expression

approach was employed to collect and filter the information so that it retained all the

relevant Chinese content, such as movie names, movie reviews and evaluation

levels, that is, the number of stars. In the training phase for the RNN-encoder model,

the Seq2seq model was implemented using the Tensorflow library (“TensorFlow,”).

 55

Then we used the Scikit-learn toolkit (“scikit-learn: machine learning in Python —

scikit-learn 0.19.1 documentation,” 2017) to help us build and train our classifier.

4.2.1 Web crawler

A web crawler is a tool which can be used to obtain the webpage content from the

World Wide Web. It generally used in conjunction with a search engine to grab web

pages. The web crawler starts with one or more initial web pages, then it can

automatically detect other URLs (also known as seeds) which appear on the initial

webpage and push these into a URL queue (also known as the HTML frontier) so

that the web crawler can visit each URL in the queue one by one. The web crawler

will repeat the above process until it meets the collection requirements (Shestakov,

2013). In these experiments, a topical topical crawler was build which focuses on a

specific topic in the movie domain. The working principle of Web crawler can be

seen in figure 19.

Figure 19 A web-crawler workflow

During our collecting progress, we used the Urllib2 library was used to help fetch the

target page content, which returned the raw HTML contents which included the

movie detail and the users’ review information. Urllib2 offers many convenient

functions, such as ‘request’ and ‘urlopen’. If it is required to grab some data from a

webpage, then a query to the server must be constructed. Additionally, to avoid

blocking by anti-web-crawler systems, it is possible to include headers that act to

fake the request to make it seem as an ordinary visitor. Then the ‘urlopen’ function

Initialize a URL into
html fronter

Judge whether the
fronter is empty?

No
Read the URL and
fetch the content
from the webpage

Parse the fetched
html content and

detect the relative
hyperlink or URL.

Add the new URL or
hyperlink into the

fronter

Judge whether the
fronter is empty?

Yes

Stop

 56

can be opened to receive the response of the HTML content of the target page from

the server. Finally, a regular expression –based approach is required to extract and

clean the HTML raw content.

4.2.2 Machine learning and deep learning libraries

The machine learning tool which used to build the SVM classifier was discussed

already in Section 2. Next, some essential functions of the Scikit-learn toolkit (“scikit-

learn: machine learning in Python — scikit-learn 0.19.1 documentation,” n.d.) will be

briefly. Then we will briefly introduce the Tensorflow. Moreover, an example

describing how to build a recurrent neural network using Keras (“Keras

Documentation,”).

4.2.2.1 Scikit-learn toolkit, Tensorflow and Keras

Chapter 2 introduced the SVM model. Following on from this an overview of the

Scikit-learn toolkit is given now. Due to the fact that python is open source,

possesses extensive libraries and is relatively straightforward to use, the Scikit-learn

library was chosen as the primary tool to make a Support Vector Machine model. It

features many machine learning algorithms, such as regression, clustering and

classification, including SVM.

When developers try to build a classifier to predict the target label of data

based on SVM, Scikit-learn provides three different SVM classes for various tasks,

Support Vector Classification (SVC), Nu-Support Vector Classification (Nu-SVC) and

Linear Support Vector Classification (LinearSVC). The most common type of SVM

class in the Scikit-learn should be the SVC, it is based on the standard SVM

algorithm and various parameters can be set to optimize the use of the algorithm.

The Nu-SVC is similar to the SVC class, except for a slight difference which is that

the Nu-SVC uses a parameter to control the number of support vectors. In fact, the

parameter ‘nu’ represents an upper bound on the fraction of training errors and a

lower bound on the fraction of supports(“scikit-learn: machine learning in Python —

scikit-learn 0.19.1 documentation,”).

 57

The most obvious difference between LinearSVC and SVC is that the

LinearSVC’s kernel function has been fixed as ‘linear’. This means that you can not

change its kernel to another.

The Scikit-learn library not only contains many classical machine learning

algorithms, but also provides lots of components which usually appear in machine

learning tasks, such as the estimator, the pipeline, preprocessing, and feature

extraction. A quick overview of the functions of some core components is:

1.Estimator: the estimator class is the fundamental class for all classifiers. It

mainly contains two functions: fit(), and predict(). The fit() function is used to train the

algorithm, and predict() is responsible for predicting the test data based on the

trained algorithm.

2.Pipeline: the purpose of the pipeline is to record the progress and to

compare performances which were made by using different parameters.

3.Preprocessing package: this package offers some useful classes, like one-

hot encoder, label encoder (which is used to convert the label to a numerical value),

normalizer and so on.

4.Feature_extraction package: This package is a collection of methods used

to extract the features from data. For example, the function text.TfidfVectorizer is

used to generate a TF-IDF representation as an alternative to the original count

feature matrix.

Some deep learning tools can also be mentioned, Tensorflow and Keras are the

popular deep learning libraries used for the construction of deep neural networks.

The Tensorflow library allows developers to create various deep neural network

structures by using data flow graphs. Data flow graph is the core of tensorflow, every

node in the data flow graph is a computation operation, and the responsibility of the

line which connects two nodes is describing the relationship between two nodes.

The Tensorflow construction process can be divided into two steps: firstly

users need to build the framework for objects of a deep neural network model. Then

users start with creating a session and pushing the data into the framework. The

model visualization that is a feature of TensorBoard allows users to check the

framework of their deep neural network. Furthermore, TensorBoard not only offers a

model visualization function, but also can record every step during the training

progress. In fact, if developers want to determine the DNN’s parameters, they

 58

usually need to observe the updating of parameters throughout the training progress.

TensorBoard can generate many diagrams to show the data changes, an example is

provided in figure 20.

Figure 20 TensorBoard(“TensorFlow,” 2017)

When developers are training a model on Tensorflow, some summary data can be

generated. The summary data is stored in an event file which is read by

Tensorboard. Here, model visualization can effectively help the developers to check

their model and correct the parameters. It is worthwhile doing this as it can

dramatically improve the efficiency and accuracy of the development. In next

chapter, it will be shown how Tensorflow is used as the primary tool for the context

encoder development for the RNNs, and also how it is used to convert the input

sequence of testing data into a context vector.

The act that model visualization and training data can be recorded are two of

the advantages of Tensorflow. At the same time, another significant advantage of

Tensorflow is that it allows developers to use GPUs to speed up the algorithm

training and additionally, it supports distributed training. However, even though

Tensorflow has many advantages, it also has some weakness. Tensorflow is based

on the python language, so it is easy to learn. However, the various module calls in

Tensorflow are very complicated, especially as regards the parameter setting for the

 59

connections between different modules. Due to Tensorflow version updating,

experiment code always need to be rewritten as a result of API adjustment.

To improve the speed of our experiments, Keras is a helpful library to

establish our deep neural network and MLP. Keras is a python-based deep neural

network library that uses Tensorflow as the backend. It also allows users to change

the backend to other DNN libraries, such as Theano. User-friendliness is the

fundamental principle for Keras framework design. Keras offers a very simple and

convenient APIs. Users just need to set the parameters for the modules when they

try to call some functions. Moreover, it can directly give feedback about the

algorithm, and show both the loss value and accuracy data to users. Tensorflow

requires users to treat every computation step as an operation node in the data flow

structure. Sometimes, it will be very complicated for users to confirm the correction

of every step with lots of parameters.

On the contrary, Keras’s modularity solves this problem for users, and users

can consider every model as a separate block. All of the modules can be freely

combined, and users can create some new models based on the foundational

modules. For example, if users try to create a hidden layer with LSTM, they just need

to declare a ‘sequential model’ and then use the ‘add’ function to put the LSTM into

the model structure, and finally just need to specify the ‘number’ of LSTM units. This

modularity dramatically reduces the user’s workload.

By way of an illustration, a classical classification problem is shown that

MNIST classification also uses introduce the convenience of Keras. MNIST is a

handwritten digital dataset, usually used to test the image processing system, and

also widely used to train and to test in the field of machine learning. The MNIST

dataset can be directly imported from the Keras dataset, which has divided into a

training dataset and a testing dataset. Every dataset contains two types data: one is

the handwritten image as figure 21.

 60

Figure 21 MNIST handwritten images

Each handwritten image has 28 x 28 pixel. Another one is the label corresponding to

the handwritten image from 0 to 9.

The entire process can be divided into four steps:

1. In the first step, the dataset needs to be preprocessed.

2. The next step is defining and declaring the layers of the model, and setting

the various parameters of the algorithm.

3. In the third step, the model will be compiled and trained.

4. The final step is the model evaluation.

For this example, this means that firstly, the handwritten images need to be

reshaped to a 784x1 vector and use the ‘to_categorical’ function in the ‘np_utils’

class which is provided by Keras to encode data labels. In practise, the label is

encoded to a binary vector that it is suited for the prediction. This encoding method is

similar to the “one-hot” representation which was described in the Chapter 2. Note

that because the labels have ten values from 0 to 9, these will be encoded to a

vector whose length is ten, and the element position in the vector is used to

represent the label value. So ‘6’ will be encoded as [0000001000] for example.

Secondly, the model should be defined, and then declared to be a sequential

model because it is required to construct a feedforward neural network with a hidden

layer which contains 128 cells. According to the structure of the MLP, this means

adding an input layer, a hidden layer and the softmax function which is used to do

the multi-class classification. The detail of function and parameters as are shown in

figure 22.

 61

Figure 22 An example of Keras

From figure 22, the input layer is first declared, and the parameters with the values

as shown. The ‘Input dimension’ parameter corresponds to the converted image

vector which is 784 x 1 in size. A dropout layer is included to avoid overfitting

problems (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). To

promote the model accuracy, a hidden layer with 128 cells is added before the

output layer. Moreover, because there are ten category labels in the corpus, the

output layer also needs to emit a vector of length ten, where each element in the

vector corresponds to the labels from 0 to 9 respectively. For the binary

classification, the sigmoid function is widely used by developers. In the multiclass

classification problem, softmax always is the first choice for developers (In output

layer). Finally, the performance of the multiclass classification achieved 98.15%

accuracy.

Through the above description, we review the tools and libraries used in the

experiment. Then we will introduce the experimental content.

Input layer

• Funcation name:Dense(256, activation='relu',input_dim = 784)
• Input dimension: 784
• Dense cell number: 256
• Activation = 'relu'

Dropout

• Function name: Dropout(0.25)
• Rate= 0.25

Hidden
Layer

• Function name: Dense(128)
• Unit number: 128
• activation:'relu'

Dropout

• Function name: Dropout(0.25)
• Rate= 0.25

Dense

• Function name: Dense
• Dense cell number = 10
• Activation = softmax

Compile

• Optimizer: 'rmsprop'
• Loss: 'categorical_crossentropy'
• Metrics:[accuracy]

Fit

• Function name: sequential().fit()
• Input data: x_train, y_train
• Parameters: nb_epoch=10

Evaluation

• Function name: sequential().evaluate()
• Input data: x_test, y_test

 62

Chapter 5

Experiment

This Chapter explains the experiments that were performed to better understand the

performance of the word vector and the context vector representations on different

models and different languages for sentiment analysis. The experimental design is

first explained followed by their implementations. The results obtained are then

analysed followed by a discussion.

5.1 Experimental Setting

In this section, we give the details of the experimental setting, including experimental

purposes and evaluation standards.

5.1.1 Purpose of Experiment

The experiments were divided into three subtasks:

Subtask 1: For sentiment analysis in this stage, the IMDB dataset (Maas et

al., 2011) was used along with Chinese IMDB (CIMDB) dataset. The IMDB datasets

consist of 25000 movies reviews, and they had been labelled by the users. Each

word in the reviews was encoded and replaced by word indexes in vocabulary. A

LTSM recurrent neural networks model was constructed by using the Keras library

for sequence classification. The behavior of the model was compared for the two

different language corpora.

Subtask 2: As mentioned earlier previous work used the word embedding with

SVM classifier to classify the sentiment polarity of Chinese comments (D. Zhang et

al., 2015). A similar experiment was conducted to evaluate the performance of the

word2vec model with SVM using the corpus CIMDB as input. In addition, it used the

mapped word vectors which were converted by the word2vec model so that they

could be input to the MLP classifier.

Subtask 3: In the first subtasks, the investigation was directed towards the

difference between Chinese corpus and English corpus for the same type reviews. In

this subtask, the proposed context vector encoder is used to map every sentence in

 63

reviews to a fixed length vector. Different types of classifiers are compared to

determine which type of classifier suits for use with context vectors. Then, among

those classifies it seeks to find which of them achieves the best performance.

A summary of experiments in terms of the models examined and the input

corpora is shown in table 4:

Models Corpus

LSTM CIMDB & IMDB

Word2vec + SVM CIMDB

Word2vec + MLP CIMDB

LSTM-RNN Encoder + SVM CIMDB

LSTM-RNN Encoder + MLP CIMDB

LSTM-RNN Encoder + LSTM CIMDB
Table 4 Summary of the experiments carried out

5.1.2 Evaluation Metrics

To better evaluate the performance of the models, the Recall, Precision and other

measurement standards are used in the evaluation process. In order to understand

the advantages and disadvantages of each of the models, the evaluation metrics

which were provided by Seki (Seki et al., 2007) in NTCIR-6 are used.

The NTCIR is the National Institute of Informatics Test Collection for Information

Retrieval Systems. The opinion analysis task was first featured in papers given at the

NTCIR-5 workshop in 2005. It was served as a pilot-task at NTCIR-6 and NTCIR-7

(Pang & Lee, 2008). Through this system, the investigation into the different opinion

extraction sub-tasks resulted in a set of useful evaluation metrics. Thus, the Recall,

Precision, and the F-measure were found to be the best metrics for the polarity

classification (Seki et al., 2007). The error rate is another popular metric (Bespalov,

Bai, Qi, & Shokoufandeh, 2011).

On the other hand, sentiment classification or polarity classification also can be

considered as a text classification task, so the Accuracy metric should be the most

intuitive evaluation criterion. Further, Our evaluation system used these five metrics

and implements them using formulas as given (Sebastiani & Fabrizio, 2002)’s work.

 64

As introduced in the work of (Sebastiani & Fabrizio, 2002), a binary classification

produces four prediction results: true positive, false positive, true negative and false

negative. They are usually denoted as TP, FP, TN and FN:

TP means true positive that the number of correct positive prediction;

FP means false positive that the number of incorrect positive prediction;

TN indicates true negative that the number of correct negative prediction;

FN means false negative that incorrect negative prediction.

Table 5 illustrates the logical relationships between these four measures as a

confusion matrix (Sebastiani & Fabrizio, 2002).

Actual Label Prediction

True False

True TP FN

False FP TN
Table 5 Confusion matrix for binary classifier

Like previous work, we use Accuracy, Precision, Recall, Error rate and F-measure as

the experimental measures (D. Zhang et al., 2015).

1. Accuracy：the accuracy is the most common evaluation standard, which directly

reflects the model prediction results. In the test dataset, the accuracy is equal to the

number of correct prediction divided by the number of entire test data.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +�𝑁
𝑃	 + 𝑁

	=
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Equation 32

Where 𝑃 indicates the number of positive cases in a test set, 𝑁 means the

number of negative cases in a test set.

2. Precision: precision is the proportion of the correct positive predictions in all of the

positive predictions.

 65

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃	 + 𝐹𝑃

Equation 33

3. Recall: Recall is computed as the number of correct positive predictions divided by

the all of the positive cases numbers in test data

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Equation 34

4. Error rate: Error rate is computed as the number of all incorrect predictions divided by

the total number of the dataset.

𝐸𝑟𝑟𝑜𝑟	𝑟𝑎𝑡𝑒 =
𝐹𝑃 + 𝐹𝑁
𝑃 +𝑁

Equation 35

5. F-Measure: Sometimes, the previous criteria are conflicting, result in the inability to

measure the performance of a model accurately. Thus the f-measure is a balanced

measure which performs a weighted average of precision and recall values:

𝐹1 =
2	 × 	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 × 	𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Equation 36

5.2 Experimental protocols

The detail of experimental protocols is discussed in this section, including parameter

values of models, model structures and the data workflow.

5.2.1 Task 1

In this experiment, the LSTM model is implemented using the Keras library to

classify the sentiment class on both the English and Chinese IMDB corpora and

compare the results. The parameters of the model first need to be set according to

the corpus data. Considering the more efficient extraction of valid feature words, the

words whose frequency was less than 3 were ignored and the term ‘UNK’ was used

 66

to represent them as unknown instead. During the investigation, there were 60034

words which appeared with a frequency of two or greater in the corpus. Thus a

vocabulary was created with size 60034 which contained 60034 words with the

highest number of occurrences. Figure 23 shows an overview of the LSTM model

structure implemented by Keras.

It was necessary to take into account the issue that the length of each sentence in

the corpus is not the same. The pad function was used to extend all sentences to a

fixed length, and so the input data dimensionality was set to be 300 as can be seen

in Figure 23. The input layer converts the input data to be a fixed length feature

vector by lexicon. Then, the processed input vector is transmitted to a dropout layer

which prevents the model from overfitting as mentioned in the previous chapter

(Srivastava et al., 2014). The hidden layer in the model consists of 100 LSTM

neurons. After the hidden layer here, the data enters into a sigmoid function. After

completing the definition of all the modules, the compile function is passed the

optimizer type being used and also the accuracy metrics which will be collected

during the model training are set.

Input
layer

• Input data shape: 300

Hidden layer

• neuron number: 100
• LSTM

Dropout
layer

• Rate: 0.2

Dense layer
• Activation: sigmoid

Compile

• Optimizer: adam
• Return: accuracy

Figure 23 A LSTM neural network work structure

 67

5.2.2 Task 2

In this subtask, experiments are conducted to investigate the performance of the

word2vec model that is used to maps the words from the reviews to a vector space.

Then we input the word vector data to the SVM or the MLP to classify the sentiment

polarity of the comment texts, such as if it belongs to a positive class or negative

class. Figure 24 shows the framework of this experiment set.

In the previous chapter it was explained that an extra step of word segmentation

needs to be carried out when processing Chinese data. Thus, the Stanford

segmenter was applied to convert the review strings in the training corpus into

words. Then, the experiment protocol of (Mikolov, Sutskever, et al., 2013) and (D.

Zhang et al., 2015) were followed to learn the word vector and map the words into

the word vector space. The Tensorflow Deep learning library was then used to

analyse this data and create a display of the similarity among the words contained in

the vector space. The parameters used in the word2vec model are given in table 6.

CIMDB Word2vec Word Vector

Selected
Reviews

Word2vec Word Vector

SVM

MLP

Figure 24 The structure of word2vec and SVM

 68

Parameters Value
Training strategy Skip gram

Training batch size 128

Embedding size 200

Skip window 2

Optimizer Stochastic gradient descent
Table 6 the detail of the word2vec model

The word2vec model learns to map the word to a word vector space and generates a

vector with a fixed length of 200 for each word. These word vectors are stored in a

memory space that will be used in the next step. Next step, the trained word2vec

model uses the stored vector to convert each of word in reviews. Since the average

words number of reviews is 20.53, and each word is represented by a vector belongs

to ℛ6==×3. Thus we compute all the words in the reviews with the mean approach.

The i-th word’s vector is denote by 𝑣M, and each review’s vector is represented by 𝑆[

where j is the j-th review in the corpus. The expression as follows:

𝑆[= 	X(𝑣M)
Q

�Z=

Equation 37

Where n is the number of words in the review.

After completing the vector transformation of the reviews in the CIMDB, it is

necessary to construct the classifier models. Here, different tools, as described in

Chapter 4, are used to build the classifier model. The Scikit-learn library is utilized to

build the SVM model, and the Keras library is used to build the framework of MLP.

The review vector which has just been converted is ready for input to the SVM

model. However, before starting the classification it needs to be determined whether

 69

the data is linearly separable, as this impacts the choice of SVM model. By plotting

the output of Word2Vec as shown in Figure 25 it can be surmised that the type of the

data is non-linear separable. Thus the linear-SVC model of Scikit-learn can be

excluded and the kernel function of SVC is set to be the ‘RBF’ kernel function.

Figure 25 Word2vec illustrated by 2D image shows the distribution of Chinese words. For example, the digitals

cluster together, and the highest frequency English words cluster together at the bottom of the figure.

 70

5.2.3 Task 3

For the third subtask, the experiment is divided into two parts:

1. A context encoder is created and is trained using the CIMDB based on the

sequence to sequence model (Sutskever et al., 2014). Then, the trained context

encoder is used to convert the review comments in the CIMDB into vectors of length

300. If a review includes more than one sentence, it is possible to just use the

average of the whole review using the mean approach to build the vector.

2. Then three types of classifiers are built and are utilized to classify the

reviews in the CIMDB. Finally, the performance of different classifiers is measured

by the measures of Accuracy, Precision, Recall, and the F-Measure detailed in

Section 5.1.2

5.3 Experiment results and analysis.

In table 6, the result are shown for a feed-forward neural network with LSTM applied

to the different language corpuses. Note that the CIMDB is we collected movie

review corpus in Chinese, and the IMDB is the movie review in English (Maas et al.,

2011).

In the experiment, 25000 reviews were randomly extracted from the IMDB

and CIMDB respectively as the training set, and another 25000 reviews were

randomly extracted as the test set. The experimental parameter values setting were

described in section 5.2.1, and the training epoch was set to 3. For this experiment,

the accuracy measure is used to evaluated the performance.

From the experimental results, the accuracy of Chinese corpus CIMDB is

69.99%, and the accuracy of English corpus IMDB is 85.99%. From the comparison

it can be seen that the same model using different language corpus will return a

significantly different value for the accuracy. It could be suggested that the

performance difference is attributable to the greater demands required for the correct

segmentation of the Chinese language.

Model Corpus Accuracy

Long-short-term memory IMDB 85.99%

 71

Long-short-term memory CIMDB 69.99%
Table 7 Accuracy of different corpus for binary classification using LSTM

Following this, the word2vec model was used to implement the word embedding for

Chinese corpus CIMDB.

Model Accuracy Precision Error Recall F1
Word2vec + SVM 72.64 68.05 27.36 83.34 74.92

Word2vec + MLP 75.61 72.07 25.12 81.22 76.39
Table 8 Evaluation of different models using CIMDB corpus

From the table 8, it can be observed that Word2vec with SVM classifier and

Word2vec with MLP classifier have very similar results across all measures for the

task of binary classification. For example, Word2vec with SVM classifier achieved an

accuracy of 71.74% and Word2vec with MLP classifier achieved an accuracy of

75.61%. From the evaluation of F1, the performance of SVM and MLP are not much

different, only disagreeing by less than 1.5 units.

 Comparing the LSTM and SVM classifiers, their performance in the task of

binary classification for Chinese corpus is improved from 69.99% shown in Table 6

to 75.61% from Table 8. The results from both Tables illustrate that the Word2vec

model can help improve the performance of CIMDB classification without having to

borrowing any sentiment lexicons or manual rules.

Model Accuracy Precision Error Recall F1
Context-

encoder +
SVM

65.89 59.37 34.11 75.34 66.40

Context-
encoder +

MLP
64.42 58.41 35.60 72.32 64.62

Context-
encoder +

LSTM
54.87 53.48 45.12 74.82 62.37

Table 9 Evaluation of different classifier based on context2vec

 72

Table 9 shows the results of context2vec with different classifiers. In general,

context2vec did not achieve what was hoped for. The average accuracy of three

classifiers is 61.72%. Thus, their performance is lower than word2vec with SVM and

MLP by a factor of 12%. The results clearly show that worst of all is LSTM so it can

be concluded that it is not best to combine it with the context2vec embedding model.

However, using it with SVM and MLP shows an better performance by approximately

10% in both cases. Overall, the measures for Context2Vec with SMV and MLP show

very similar values.

 73

Chapter 6

Conclusion and Future Work

In this chapter, we highlight the contributions that have been made in this

dissertation and discuss topics that merit exploration in future work.

To summarise the outcome of the experiments, first of all it can be said that

the three goals were successfully achieved. In the first experiment, the LSTM neural

network was applied to classify different corpora. It was demonstrated that there is a

16% difference in the sentiment classification accuracy between Chinese corpora

and English corpora. We consider the main reason is that the Chinese corpus

classification introduces difficulty because of the additional task of word

segmentation. In the second experiment, we employed the word2vec model with the

different classifiers, SVM and MLP. The result showed that in this problem domain

different types of classifier don’t impact on the performance of word2vec model.

Moreover, compared the experiment 1 that using LSTM classifier without word

embedding and the experiment 2 that using word2vec model, the accuracy of

models for sentiment classification has been significantly improved by use of

word2vec model. The final experiment is used to verify whether the combination of

the context2vec with different classifiers can produce good results. Unfortunately, the

result showed that our proposed context vector representation for the sequence text

does not achieve a good performance when used with any of the three classifiers

investigated.

Finally, we have proved three conclusions through experiments:

1. The type of language in the case of the Chinese or the English corpora

will exhibit a significant impact on the performance for the task of sentiment

classification. According on the comparison of experimental process between two

corpus in experiment 1, the main factor affecting the classification accuracy could be

the word segmentation required for the Chinese word data.

 74

2. The accuracy comparison between experiment 1 and experiment 2, it can

be seen that using the word2vec model can significantly improve the performance for

the Chinese language corpus.

3. Our proposed hypothesis that context vector can be used to improve the

accuracy of prediction for classification did not achieve the desired result. However,

it still has room for improvement. In the future work, the character-level model (J. Lee

et al., 2016) will be applied to deal the Chinese corpus, thus we can ignores the

affection of segmentation. At the same time, we will try to use the convolutional

neural network (CNN) to classify the CIMDB. In the previous work, CNN shows it

achieved a good performance based on the word vector (Kim, 2014). Thus, it has the

potential to classify the context vector.

In the future work, we would like apply our model to fine-grained opinion

mining tasks. We would also like to explore the performance of our model works on

other language corpus. Although context2vec model did not achieve the expectation,

we believe that context vector still worth studying.

 75

Bibliography
Aggarwal, C. C., & Zhai, C. (2012). Mining text data. Springer. Retrieved from

https://books.google.ie/books?hl=en&lr=&id=vFHOx8wfSU0C&oi=fnd&pg=PR3&

dq=neural+network+sentiment+analysis&ots=oc1iVEgIUq&sig=M5IBNYzfkg9Cp

7pg-RfJyq0ggYY&redir_esc=y#v=onepage&q=neural network sentiment

analysis&f=false

Alisneaky. (2011). File:Kernel Machine.png - Wikimedia Commons. Retrieved

October 29, 2017, from

https://commons.wikimedia.org/wiki/File:Kernel_Machine.png

Artificial neural networks (the multilayer perceptron)—a review of applications in the

atmospheric sciences. (1998). Atmospheric Environment, 32(14–15), 2627–

2636. http://doi.org/10.1016/S1352-2310(97)00447-0

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural Machine Translation by Jointly

Learning to Align and Translate. Retrieved from http://arxiv.org/abs/1409.0473

Baroni, M., Dinu, G., & Kruszewski, G. (2014). Don’t count , predict ! A systematic

comparison of context-counting vs . context-predicting semantic vectors.

Proceedings of the 52nd Annual Meeting of the Association for Computational

Linguistics., 238–247. http://doi.org/10.3115/v1/P14-1023

Batista, G. E. A. P. A., Prati, R. C., & Monard, M. C. (2004). A study of the behavior

of several methods for balancing machine learning training data. ACM SIGKDD

Explorations Newsletter, 6(1), 20. http://doi.org/10.1145/1007730.1007735

Bengio, Y., Courville, A., & Vincent, P. (2012). Representation Learning: A Review

and New Perspectives. Retrieved from http://arxiv.org/abs/1206.5538

Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C., Kandola, J., Hofmann, T., …

Shawe-Taylor, J. (2003). A Neural Probabilistic Language Model. Journal of

Machine Learning Research, 3, 1137–1155.

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with

gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157–

166. http://doi.org/10.1109/72.279181

Bespalov, D., Bai, B., Qi, Y., & Shokoufandeh, A. (2011). Sentiment Classification

Based on Supervised Latent n-gram Analysis. Retrieved from

http://delivery.acm.org/10.1145/2070000/2063635/p375-

bespalov.pdf?ip=149.157.116.88&id=2063635&acc=ACTIVE

 76

SERVICE&key=846C3111CE4A4710.AB4E84BDC4F162A6.4D4702B0C3E38B

35.4D4702B0C3E38B35&__acm__=1527177906_b16f2a7124a91c0f66ddc8f5b

782454f

Bishop, C. M. (1995). Neural networks for pattern recognition. Clarendon Press.

Retrieved from

https://books.google.ie/books?hl=en&lr=&id=T0S0BgAAQBAJ&oi=fnd&pg=PP1

&dq=multilayer+Neural+Networks+pattern+recognition&ots=jM20sGbzod&sig=Y

ycuHjeP8IGJnYIV5jPrFykxcoY&redir_esc=y#v=onepage&q=multilayer Neural

Networks pattern recognition&f=false

Bollen, J., Mao, H., & Zeng, X.-J. (2010). Twitter mood predicts the stock market.

Journal of Computational Science, Pages 1-8.

http://doi.org/10.1016/j.jocs.2010.12.007

Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal

margin classifiers. In Proceedings of the fifth annual workshop on Computational

learning theory - COLT ’92 (pp. 144–152). New York, New York, USA: ACM

Press. http://doi.org/10.1145/130385.130401

Cavnar, W. B., Cavnar, W. B., & Trenkle, J. M. (1994). N-Gram-Based Text

Categorization. IN PROCEEDINGS OF SDAIR-94, 3RD ANNUAL SYMPOSIUM

ON DOCUMENT ANALYSIS AND INFORMATION RETRIEVAL, 161--175.

Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.9367

CBOW of Word2Vec. (2017). Retrieved October 29, 2017, from

http://www.cs.nthu.edu.tw/~shwu/courses/ml/labs/10_Keras_Word2Vec/10_Ker

as_Word2Vec.html

Chang, P.-C., Galley, M., & Manning, C. D. (2008). Optimizing Chinese Word

Segmentation for Machine Translation Performance, 224–232. Retrieved from

https://nlp.stanford.edu/manning/papers/acl08-cws-final.pdf

Chen, X., Qiu, X., Zhu, C., Liu, P., & Huang, X. (2015). Long Short-Term Memory

Neural Networks for Chinese Word Segmentation. Emnlp, (September), 1197–

1206.

Cho, K., van Merrienboer, B., Bahdanau, D., & Bengio, Y. (2014). On the Properties

of Neural Machine Translation: Encoder-Decoder Approaches. Retrieved from

http://arxiv.org/abs/1409.1259

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,

 77

H., & Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder-

Decoder for Statistical Machine Translation. Retrieved from

http://arxiv.org/abs/1406.1078

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical Evaluation of Gated

Recurrent Neural Networks on Sequence Modeling. Retrieved from

http://arxiv.org/abs/1412.3555

Dave, K., Lawrence, S., & Pennock, D. M. (2003). Mining the Peanut Gallery:

Opinion Extraction and Semantic Classification of Product Reviews. In

Proceedings of the twelfth international conference on World Wide Web - WWW

’03 (p. 519). New York, New York, USA: ACM Press.

http://doi.org/10.1145/775152.775226

David Kirkpatrick. (2016). Study: Online reviews have big impact on offline

purchases | Marketing Dive. Retrieved October 31, 2017, from

https://www.marketingdive.com/news/study-online-reviews-have-big-impact-on-

offline-purchases/415355/

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R.

(1990). Indexing by latent semantic analysis. Journal of the American Society for

Information Science, 41(6), 391–407. http://doi.org/10.1002/(SICI)1097-

4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9

dos Santos, C. N., & Gatti, M. (2014). Deep convolutional neural networks for

sentiment analysis of short texts. Proceedings of the 25th International {…},

(August), 69–78. Retrieved from http://www.anthology.aclweb.org/C/C14/C14-

1008.pdf

Dosovitskiy, A., & Brox, T. (2015). Inverting Visual Representations with

Convolutional Networks. Retrieved from http://arxiv.org/abs/1506.02753

Freund, Y., & Schapire, R. E. (1999). Large Margin Classification Using the

Perceptron Algorithm. Machine Learning, 37(3), 277–296.

http://doi.org/10.1023/A:1007662407062

Friedman, J. H. (1997). On Bias, Variance, 0/1—Loss, and the Curse-of-

Dimensionality. Data Mining and Knowledge Discovery, 1(1), 55–77.

http://doi.org/10.1023/A:1009778005914

Gers, F. A., & Schmidhuber, J. (2001). LSTM recurrent networks learn simple

context-free and context-sensitive languages. IEEE Transactions on Neural

Networks, 12(6), 1333–1340. http://doi.org/10.1109/72.963769

 78

Getoor, L., Scheffer, T., & International Machine Learning Society., Y. (2011).

Domain adaptation for large-scale sentiment classification: a deep learning

approach. Proceedings of the 28th International Conference on International

Conference on Machine Learning. [International Machine Learning Society].

Retrieved from https://dl.acm.org/citation.cfm?id=3104547

Golub, G. H. (Gene H., & Van Loan, C. F. (1996). Matrix computations. Johns

Hopkins University Press. Retrieved from

https://dl.acm.org/citation.cfm?id=248979

Graves, A., Mohamed, A., & Hinton, G. (2013). Speech recognition with deep

recurrent neural networks. In 2013 IEEE International Conference on Acoustics,

Speech and Signal Processing (pp. 6645–6649). IEEE.

http://doi.org/10.1109/ICASSP.2013.6638947

Harris, Z. S. (1981). Distributional Structure. In H. Hiż (Ed.), Papers on Syntax (pp.

3–22). Dordrecht: Springer Netherlands. http://doi.org/10.1007/978-94-009-

8467-7_1

Hatzivassiloglou, V., McKeown, K. R., Hatzivassiloglou, V., & McKeown, K. R.

(1997). Predicting the semantic orientation of adjectives. In Proceedings of the

35th annual meeting on Association for Computational Linguistics - (pp. 174–

181). Morristown, NJ, USA: Association for Computational Linguistics.

http://doi.org/10.3115/976909.979640

Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A., Jaitly, N., … Kingsbury, B.

(2012). Deep Neural Networks for Acoustic Modeling in Speech Recognition:

The Shared Views of Four Research Groups. IEEE Signal Processing

Magazine, 29(6), 82–97. http://doi.org/10.1109/MSP.2012.2205597

Hochreiter, S., & Schmidhuber, J. (1997). LONG SHORT-TERM MEMORY. Neural

Computation, 9(8), 1735–1780. Retrieved from http://www7.informatik.tu-

muenchen.de/~hochreit

Hu, B., Chen, Q., & Zhu, F. (2015). LCSTS: A Large Scale Chinese Short Text

Summarization Dataset. Retrieved from http://arxiv.org/abs/1506.05865

Huang, M., Cao, Y., & Dong, C. (2016). Modeling Rich Contexts for Sentiment

Classification with LSTM. Retrieved from http://arxiv.org/abs/1605.01478

Image processing with neural networks—a review. (2002). Pattern Recognition,

35(10), 2279–2301. http://doi.org/10.1016/S0031-3203(01)00178-9

Karpathy, A. (2015). The Unreasonable Effectiveness of Recurrent Neural Networks.

 79

Retrieved May 22, 2018, from http://karpathy.github.io/2015/05/21/rnn-

effectiveness/

Keras Documentation. (n.d.). Retrieved October 25, 2017, from https://keras.io/

Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification.

Proceedings of the 2014 Conference on Empirical Methods in Natural Language

Processing (EMNLP 2014). http://doi.org/10.1109/LSP.2014.2325781

Ko, Y., & Youngjoong. (2012). A study of term weighting schemes using class

information for text classification. In Proceedings of the 35th international ACM

SIGIR conference on Research and development in information retrieval - SIGIR

’12 (p. 1029). New York, New York, USA: ACM Press.

http://doi.org/10.1145/2348283.2348453

Kukich, K., & Karen. (1992). Technique for automatically correcting words in text.

ACM Computing Surveys, 24(4), 377–439.

http://doi.org/10.1145/146370.146380

Lafferty, J. D., McCallum, A., & Pereira, F. C. N. (2001). Conditional Random Fields:

Probabilistic Models for Segmenting and Labeling Sequence Data. In

Proceedings of the Eighteenth International Conference on Machine Learning

(pp. 282–289). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Retrieved from http://dl.acm.org/citation.cfm?id=645530.655813

Le, Q. V., & Mikolov, T. (2014). Distributed Representations of Sentences and

Documents. Retrieved from http://arxiv.org/abs/1405.4053

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–

444. http://doi.org/10.1038/nature14539

Lee, D. D., & Seung, H. S. (2001). Algorithms for Non-negative Matrix Factorization.

Retrieved from http://papers.nips.cc/paper/1861-algorithms-for-non-negative-

matrix-factorization

Lee, J., Cho, K., & Hofmann, T. (2016). Fully Character-Level Neural Machine

Translation without Explicit Segmentation. Retrieved from

http://arxiv.org/abs/1610.03017

Lin, C., & He, Y. (2009). Joint sentiment/topic model for sentiment analysis. In

Proceeding of the 18th ACM conference on Information and knowledge

management - CIKM ’09 (p. 375). New York, New York, USA: ACM Press.

http://doi.org/10.1145/1645953.1646003

Luong, M.-T., Sutskever, I., Le, Q. V., Vinyals, O., & Zaremba, W. (2014).

 80

Addressing the Rare Word Problem in Neural Machine Translation. Retrieved

from http://arxiv.org/abs/1410.8206

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., & Potts, C. (2011).

Learning Word Vectors for Sentiment Analysis. In Proceedings of the 49th

Annual Meeting of the Association for Computational Linguistics: Human

Language Technologies - Volume 1 (pp. 142–150). Stroudsburg, PA, USA:

Association for Computational Linguistics. Retrieved from

http://dl.acm.org/citation.cfm?id=2002472.2002491

Martineau, J., Martineau, J., Finin, T., Finin, T., Fink, C., Fink, C., … Others. (2008).

Delta TFIDF: An Improved Feature Space for Sentiment Analysis. Proceedings

of the Second International Conference on Weblogs and Social Media (ICWSM,

29(May), 490–497. Retrieved from

http://ebiquity.umbc.edu/papers/select/person/Tim/Finin/

Mikolov, T., Corrado, G., Chen, K., & Dean, J. (2013). Efficient Estimation of Word

Representations in Vector Space. Proceedings of the International Conference

on Learning Representations (ICLR 2013), 1–12.

http://doi.org/10.1162/153244303322533223

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed

Representations of Words and Phrases and their Compositionality. Retrieved

from http://arxiv.org/abs/1310.4546

Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D., & Miller, K. J. (1990).

Introduction to WordNet: An On-line Lexical Database*. International Journal of

Lexicography, 3(4), 235–244. http://doi.org/10.1093/ijl/3.4.235

Mohammad, S., Dunne, C., & Dorr, B. (2009). Generating high-coverage semantic

orientation lexicons from overtly marked words and a thesaurus. In Proceedings

of the 2009 Conference on Empirical Methods in Natural Language Processing

Volume 2 - EMNLP ’09 (Vol. 2, p. 599). Morristown, NJ, USA: Association for

Computational Linguistics. http://doi.org/10.3115/1699571.1699591

Moreno, P. J., & Ho Hewlett-Packard, P. P. (2003). A New SVM Approach to

Speaker Identification and Verification Using Probabilistic Distance Kernels.

EUROSPEECH. Retrieved from https://www.isca-

speech.org/archive/archive_papers/eurospeech_2003/e03_2965.pdf

Nguyen, A., Yosinski, J., & Clune, J. (2014). Deep Neural Networks are Easily

Fooled: High Confidence Predictions for Unrecognizable Images. Retrieved from

 81

http://arxiv.org/abs/1412.1897

opencv dev team. (2017). Welcome to opencv documentation! — OpenCV 2.4.13.4

documentation. Retrieved October 31, 2017, from

https://docs.opencv.org/2.4/index.html

Pak, A., & Paroubek, P. (2010). Twitter as a corpus for sentiment analysis and

opinion mining. In LREc (Vol. 10).

Pang, B., & Lee, L. (2008). Opinion Mining and Sentiment Analysis. Foundations and

Trends R in Information Retrieval, 2, 1–2. http://doi.org/10.1561/1500000001

Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up? sentiment classification

using machine learning techniques. In Proceedings of the ACL-02 conference

on Empirical methods in natural language processing - EMNLP ’02 (Vol. 10, pp.

79–86). Morristown, NJ, USA: Association for Computational Linguistics.

http://doi.org/10.3115/1118693.1118704

Reynar, J. C. (1998). Topic Segmentation: Algorithms And Applications. Retrieved

from http://repository.upenn.edu/ircs_reports

Russell, I. (2012). The Delta Rule. Retrieved October 29, 2017, from

http://uhavax.hartford.edu/compsci/neural-networks-delta-rule.html

scikit-learn: machine learning in Python — scikit-learn 0.19.1 documentation. (n.d.).

Retrieved October 30, 2017, from http://scikit-learn.org/stable/

scikit-learn: machine learning in Python — scikit-learn 0.19.1 documentation. (2017).

Retrieved October 31, 2017, from http://scikit-learn.org/stable/

Sebastiani, F., & Fabrizio. (2002). Machine learning in automated text categorization.

ACM Computing Surveys, 34(1), 1–47. http://doi.org/10.1145/505282.505283

Seki, Y., Evans, D. K., Ku, L.-W., Chen, H.-H., Kando, N., & Lin, C.-Y. (2007).

Overview of Opinion Analysis Pilot Task at NTCIR-6. Proceedings of NTCIR-6

Workshop Meeting. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.364.9258&rep=rep1&t

ype=pdf

Shestakov, D. (2013). Current Challenges in Web Crawling. In F. Daniel, P. Dolog, &

Q. Li (Eds.), Web Engineering: 13th International Conference, ICWE 2013,

Aalborg, Denmark, July 8-12, 2013. Proceedings (pp. 518–521). Berlin,

Heidelberg: Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-39200-

9_49

Socher, R. (2014). RECURSIVE DEEP LEARNING FOR NATURAL LANGUAGE

 82

PROCESSING.

Socher, R., Perelygin, A., Wu, J. Y., Chuang, J., Manning, C. D., Ng, A. Y., & Potts,

C. (2013). Recursive Deep Models for Semantic Compositionality Over a

Sentiment Treebank, 1631–1642. Retrieved from

http://www.aclweb.org/anthology/D13-1170

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).

Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of

Machine Learning Research, 15, 1929–1958. Retrieved from

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

Strzalkowski, T. (1999). Natural language information retrieval. MIT Press.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to Sequence Learning with

Neural Networks. Retrieved from http://arxiv.org/abs/1409.3215

Suykens, J. A. K., & Vandewalle, J. (1999). Least Squares Support Vector Machine

Classifiers. Neural Processing Letters, 9(3), 293–300.

http://doi.org/10.1023/A:1018628609742

Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-Based

Methods for Sentiment Analysis. Computational Linguistics, 37(2), 267–307.

http://doi.org/10.1162/COLI_a_00049

Tai, K. S., Socher, R., & Manning, C. D. (2015). Improved Semantic Representations

From Tree-Structured Long Short-Term Memory Networks. In Proceedings of

the 53rd Annual Meeting of the Association for Computational Linguistics and

the 7th International Joint Conference on Natural Language Processing (pp.

1556–1566). Retrieved from https://www.aclweb.org/anthology/P15-1150

Tang, D., Qin, B., & Liu, T. (2015). Document Modeling with Gated Recurrent Neural

Network for Sentiment Classification. In Proceedings of the 2015 Conference on

Empirical Methods in Natural Language Processing (pp. 1422–1432). Retrieved

from http://aclweb.org/anthology/D15-1167

Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., & Qin, B. (2014). Learning Sentiment-

Specific Word Embedding for Twitter Sentiment Classification *. In Proceedings

of the 52nd Annual Meeting of the Association for Computational Linguistics (pp.

1555–1565). Retrieved from http://www.aclweb.org/anthology/P14-1146

Tatemura, J., & Junichi. (2000). Virtual reviewers for collaborative exploration of

movie reviews. In Proceedings of the 5th international conference on Intelligent

user interfaces - IUI ’00 (pp. 272–275). New York, New York, USA: ACM Press.

 83

http://doi.org/10.1145/325737.325870

TensorFlow. (n.d.). Retrieved October 29, 2017, from https://www.tensorflow.org/

Terveen, L., Hill, W., Amento, B., McDonald, D., & Creter, J. (1997). PHOAKS: a

system for sharing recommendations. Communications of the ACM, 40(3), 59–

62. http://doi.org/10.1145/245108.245122

Tseng, H., Tseng, H., Chang, P., Andrew, G., Jurafsky, D., & Manning, C. (2005). A

Conditional Random Field Word Segmenter for Sighan Bakeoff 2005.

PROCEEDINGS OF THE FOURTH SIGHAN WORKSHOP ON CHINESE

LANGUAGE PROCESSING, 168--171. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.329.6123

Tumasjan, A., Sprenger, T. O., Sandner, P. G., & Welpe, I. M. (2010). Predicting

elections with Twitter: What 140 characters reveal about political sentiment.

Proceedings of the Fourth International AAAI Conference on Weblogs and

Social Media. http://doi.org/{{{doi}}}

Turian, J., Ratinov, L., & Bengio, Y. (2010). Word representations: A simple and

general method for semi-supervised learning, 384–394. Retrieved from

http://metaoptimize.

Turney, P. D. (2002). Thumbs Up or Thumbs Down? Semantic Orientation Applied to

Unsupervised Classification of Reviews. Proceedings of the 40th Annual

Meeting of the Association for Computational Linguistics, (2002), Philadelphia,

Pennsylvania, 417–424. Retrieved from http://arxiv.org/abs/cs/0212032

Turney, P. D., & Littman, M. L. (2002). Unsupervised Learning of Semantic

Orientation from a Hundred-Billion-Word Corpus. Retrieved from

http://arxiv.org/abs/cs/0212012

Understanding LSTM Networks -- colah’s blog. (n.d.). Retrieved from

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Unsupervised Feature Learning and Deep Learning Tutorial. (n.d.). Retrieved

October 29, 2017, from

http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/

Vanzo, A., Croce, D., & Basili, R. (2014). A context-based model for Sentiment

Analysis in Twitter. In the 25th International Conference on Computational

Linguistics (pp. 2345–2354). Retrieved from

http://www.aclweb.org/anthology/C14-1221

Vector Representations of Words | TensorFlow. (n.d.). Retrieved October 29, 2017,

 84

from https://www.tensorflow.org/tutorials/word2vec

Wang, J., Yu, L.-C., Lai, K. R., & Zhang, X. (2016). Dimensional Sentiment Analysis

Using a Regional CNN-LSTM Model. In Proceedings of the 54th Annual Meeting

of the Association for Computational Linguistics (pp. 225–230). Retrieved from

http://www.aclweb.org/anthology/P16-2037

Yi, J., Yi, J., Nasukawa, T., Bunescu, R., & Niblack, W. (2003). Sentiment analyzer:

Extracting sentiments about a given topic using natural language processing

techniques. IN IEEE INTL. CONF. ON DATA MINING (ICDM, 427--434.

Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.102.7125

Zhang, C., Zeng, D., Li, J., Wang, F.-Y., & Zuo, W. (2009). Sentiment analysis of

Chinese documents: From sentence to document level. Journal of the American

Society for Information Science and Technology, 60(12), 2474–2487.

http://doi.org/10.1002/asi.21206

Zhang, D., Xu, H., Su, Z., & Xu, Y. (2015). Chinese comments sentiment

classification based on word2vec and SVMperf. Expert Systems with

Applications, 42(4), 1857–1863. http://doi.org/10.1016/J.ESWA.2014.09.011

Zhou, S., Li, K., & Liu, Y. (2008). Text Categorization Based on Topic Model. In

Rough Sets and Knowledge Technology (pp. 572–579). Berlin, Heidelberg:

Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-540-79721-0_77

