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Abstract 
 

With the increasing popularity of opinion-rich resources, opinion mining and 

sentiment analysis has received increasing attention. Sentiment analysis is one of 

the most effective ways to find the opinion of authors. By mining what people think, 

sentiment analysis can provide the basis for decision making. Most of the objects of 

analysis are text data, such as Facebook status and movie reviews. Despite many 

sentiment classification models having good performance on English corpora, they 

are not good at Chinese or other languages. Traditional sentiment approaches 

impose many restrictions on the raw data, and they don't have enough capacity to 

deal with long-distance sequential dependencies. 

 

So, we propose a model based on recurrent neural network model using a 

context vector space model. Chinese information entropy is typically higher than 

English, we therefore hypothesise that context vector space model can be used to 

improve the accuracy of sentiment analysis. Our algorithm represents each complex 

input by a dense vector trained to translate sequence data to another sequence, like 

the translation of English and French. Then we build a recurrent neural network with 

the Long-Short-Term Memory model to deal the long-distance dependencies in input 

data, such as movie review. The results show that our approach has promise but still 

has a lot of room for improvement. 
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Chapter 1  

Introduction 
 

Since web technologies and e-business development, sentiment analysis as a 

critical area in Natural Language Processing (NLP) is widely used in a lot of places, 

such as customer analysis and product review systems, recommender system and 

Question & Answer system etc. Generally explain, sentiment analysis is a method 

that mining the author’s or others’ opinion  through analysing the review text or 

comments (Yi, Yi, Nasukawa, Bunescu, & Niblack, 2003). Thus sentiment analysis 

also can be called as ‘opinion mining’ (Pang & Lee, 2008). The purpose of sentiment 

analysis is studying people’s sentiment or rating contents towards specific objects, 

then extracting the useful information which is held in the text contents, such as 

attitudes of the writer, emotional reaction about a document and evaluation levels. 

According to the sentiment analysis result, the decision maker can be more accurate 

to improve their products (Dave, Lawrence, & Pennock, 2003) or give the 

appropriate response in the recommendation systems (Terveen, Hill, Amento, 

McDonald, & Creter, 1997) . 

 

1.1 Background 

The traditional interpretation of Sentiment Analysis is usually to use some means of 

investigation to obtain product feedback or opinions about particular objects, like 

prediction in political polls (Tumasjan, Sprenger, Sandner, & Welpe, 2010), or the 

evaluation of movies (Tatemura & Junichi, 2000). However, after the data has been 

collected, the decision maker then still needs to spend a significant amount of time to 

analyse the raw data which resulted from the investigation. There has now been an 

explosion in the availability of data through the internet as it is a significant resource 

as millions of users can put their variety of opinions online.  

In our daily life it is possible to find information on so many things either on 

social media or some professional website, such as Twitter, IMDB, eBay, or 

Amazon.  This kind of useful information is mostly available in text form. At the same 
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time though, users not only write a text comment for the object but also need to give 

a tag star level for the object, like Amazon.com or tabao.com star rating system. In 

addition to this, the website will process the collected data which is written by all the 

customers and compute an average rating score, and will furnish the average score 

to customers by way of a decision support. It is reasonable to assume that people’s 

shopping behaviour patterns have been changed by the proliferation of reviews 

online.  

According to a report analysis, the availability of approved online reviews 

have had a significant impact on offline purchases (David Kirkpatrick, 2016). In the 

report, it says that almost 82 percent of customers prefer to use their smartphones 

as shopping assistants rather than to consult a shopping guide. They would like to 

check the target products’ pricing and reviews. Figure 1.1 illustrates the impact of 

online research reviews across different product categories. Notably for technology 

items of appliances and electronics the influence of reviews is the greatest. 

 

 
Figure 1 Level of influence that reviews have on different product purchases(“Report: For every $1 online 

influenced by reviews, offline impact at least $4,” 2016) 

Thus, it can be taken from this point that sentiment analysis of online reviews can 

generate significant value for users. At the same time, according to the 

characteristics of different industries, sentiment analysis of the text on the social 
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media or another platform would have a positive indicator effect to a marketer or 

investment banker attempting to predict the trend of the market for a particular 

product. The ‘Twitter mood predicts the stock market’ paper (Bollen, Mao, & Zeng, 

2010) explains how there is a correlation between the stock market and the public 

mood which is sourced from Twitter. This analysis demonstrated how they used 10 

million tweets from 2008 to predict stock market trend. 

Sentiment analysis is important but the huge level of data mean that it cannot 

be done manually and needs computer algorithms to implement it. These have to be 

efficient to be able to deal with the large amounts of information. Also, they need to 

be accurate because understanding off natural language is not easy. 

There are a large variety of models and approaches powering NLP 

application, and these models achieved great performances, such as machine 

learning models (Pang, Lee, & Vaithyanathan, 2002). In traditional NLP approaches, 

sentiment classification is treated as a topic-based text categorization (Lin & He, 

2009) or lexicon-based classification problem (Taboada, Brooke, Tofiloski, Voll, & 

Stede, 2011). However, these approaches normally require developers have rich 

prior-knowledge and manually set the corresponding features. Recently, deep 

learning approaches have obtained the state-of-the-art performance across many 

different tasks, most notably visual classification problems. Deep neural networks 

(DNNs) not only achieved the brilliant performance on the image processing area 

(Nguyen, Yosinski, & Clune, 2014;Dosovitskiy & Brox, 2015), but also enhanced the 

accuracy of NLP tasks, such as machine translation and language understanding 

problems (Sutskever, Vinyals, & Le, 2014) (Cho, van Merrienboer, Gulcehre, et al., 

2014). Compared to traditional NLP models that require developers manually specify 

or extract the features from data, deep learning can automatically learn the features 

(dos Santos & Gatti, 2014; Socher et al., 2013). However, most of these NLP models 

are trained in English corpus, and there is some difference between languages, such 

as Chinese and English. In our work, we will cover word vector representations, 

neural networks, recurrent neural networks, long-short –term memory as well as 

context vector model and implement the above models try to explore different corpus 

whether produces a different result for the above models. 
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1.2  Motivation  

Sentiment analysis can be described as having three levels: the primary task in 

sentiment analysis is the polarity classification of a document or a given input text, 

sentence. Polarity classification is based on a hypothesis that the overall opinion in 

an opinionated text is about one single issue or item, classify the opinion as falling 

under one of two opposing sentiment polarities (positive and negative) (Pang & Lee, 

2008). The second stage is the fine-grained analysis that ranking the attitude of an 

object into 5 levels. Fine-grained analysis also can be considered as how positive is 

the particular document. The advanced level of sentiment analysis is concerned with 

the analysis of the components of a text, the holder of attitude, target of attitude, type 

of attitude. In our work, we mainly focus on the primary task. 

 

The traditional approach which has been applied to process text and to 

predict the sentiment typically focuses on the topic model, for instance, Latent 

Dirichlet Allocation Category Language Model (Deerwester, Dumais, Furnas, 

Landauer, & Harshman, 1990). Most previous research on sentiment classification 

more or less used knowledge-based ways. Subsequently, there are many efforts that 

try to implement the model which relies on the non-topic-based text categorisation. 

The work of (Hatzivassiloglou, McKeown, Hatzivassiloglou, & McKeown, 1997; 

Turney, 2002; Turney & Littman, 2002), They performed work which focuses on 

classifying the semantic polarities of words or phrases through using linguistic 

heuristics or pre-selected emotional attribute dictionary. However, these models 

normally are limited to many factors, the accuracy of traditional approaches depend 

on the prior-knowledge and the semantic orientation dictionary, For example, 

dictionary-based approach requires developers to collected manually with know 

orientation words from corpora WordNet (Miller, Beckwith, Fellbaum, Gross, & Miller, 

1990) or thesaurus (Mohammad, Dunne, & Dorr, 2009). However, it is difficult to 

collected the similar resource for other languages, such as Chinese.  

 

Now, machine learning and deep neural networks have become accepted 

tools and have been shown to be effective once they are trained to do classification 

an regression tasks, many efforts on have been made to apply the machine learning 

models to tasks associated with sentiment analysis. Bo pang and Lillian Lee (Pang 
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et al., 2002) considered the issues of using overall sentiment to classify a document 

through predicting by applying basic machine learning models such as Naive Bayes 

and Support Vector Machine. However, their models did not obtain the better 

performance than the traditional topic-based categorisation (Zhou, Li, & Liu, 2008).  

 

Because machine learning cannot directly process the input text, many works 

prefer to build a vocabulary and use the word index to instead of the text in the 

sentence. However, machine learning models require a fixed-length input. To better 

fit the problem to the machine learning model and deep neural network models, the 

word index approach should be replaced by another efficient representation model. 

As usual, NLP systems treat words as discrete atomic symbols, such as “one-hot” 

representation and bag-of-words representation.  

Unfortunately, there are three weaknesses in “one-hot” representation and 

bag-of-words representation (Turian, Ratinov, & Bengio, 2010). Firstly, for one-hot 

representation, because of randomly give value to individual word, thus this model 

can leverage very little useful information to systems, like the similarity of words and 

context relationship between sentences. Then, discrete data leads to data sparsity, 

means we need extra processing to solve the sparsity or reduce the dimensionalities 

or collect more data to obtain a statistical work model . Finally, and also is the most 

critical point, they lose the ordering of the words and ignore the semantics of the 

words (Le & Mikolov, 2014).  

Whether in Chinese or English, context is a rarely used information resources 

in current computing tasks, even though context data can naturally improve the 

understanding of overall text sentiment, particular in Chinese. Previous research 

consider a document or input text is exist by the form of sequence data, with a word 

appears one after another, the whole document sentiment will be changed at any 

time if the new word appears. This situation could be considered as the “Garden 

Path” problem (Strzalkowski, 1999), because the overall main sentiment of a 

document is unknown until reading it to the very end. Based on the these reasons, a 

model is required that not only can efficiently process the sequence data and 

analysis the input text, but also can judge which history information should be 

removed when the model is learning the representation of context.  For instance: 
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 “Chris Craft is better looking than Limestone, but Limestone projects 
seaworthiness and reliability.”(Wikipedia) 

 
Through analysing the above sentence, two brand names and two attitudes 

apparent. In the first half, the sentence showed an intense negative emotion for 

‘Limestone’, but in the second half, the expression of emotion turned to positive and 

changed the semantics polarity of the whole sentence. Thus it is important to 

consider finding an approach that can forget the first half sentence information and 

correct the state information when it captures new data, from which it can 

automatically generate the overall sentiment which relies on the viewpoint in the 

second half as the core. 

 

With the help of Long-Short-Term Memory (LSTM) RNNs, the model can 

determine whether needs to abolish the past information in the memory block 

structure (Hochreiter & Schmidhuber, 1997). LSTM and RNNs achieved excellent 

performance on some problematic sequential issues such as speech recognition and 

machine translation (Cho, van Merrienboer, Gulcehre, et al., 2014). Based on the 

hypothesis of the work (Cho, van Merrienboer, Gulcehre, et al., 2014) that they 

consider RNN encoder structure can map an input sequence to a fixed length state 

vector. This state vector (or context vector) is a summary of the whole input 

sequence. Hence,  we proposed a RNNs as the encoder to represent context vector 

from sentences or documents (Cho, van Merrienboer, Gulcehre, et al., 2014). Then, 

we used the context vector of paragraphs as the input of machine learning classifier 

to classify the sentiment of documents. 

 

Subsequent the intention is to examine the difference between Chinese and 

English based on the same vector representation model or the corresponding 

classifier, such as Word2vec with support vector machine (D. Zhang, Xu, Su, & Xu, 

2015), Bag of words with the neural network. The main interest is to study that if the 

language is different, whether it will result being assigned a different affection. 

Additionally, a significant difference between Chinese and English during raw data 

processing stage is that Chinese corpora input data should be firstly segmented but 

English not. The reason is explained in section 4.1.3. After segmentation, we used 

the same vector representation model to train the machine learning algorithms for 



 

 15 

the Chinese corpus and the English corpus respectively. The primary vector learning 

models investigated is the one-hot representation approach, word2vec. For the 

classifier model, The most classical machine learning model, the SVM is selected as 

the baseline classifier. It is compared with the currently most popular multilayer 

neural network and deep neural networks (DNNs), the LSTM (Sutskever et al., 2014) 

/ Gated Recurrent Unit (GRU) model (Chung, Gulcehre, Cho, & Bengio, 2014), which 

was trained in advance for the classification job. 

 

At the final stage, we would try to implement the RNNs encoder structure from 

Sequence-to-Sequence model as an independent context-to-vector model 

(Context2vec), context2vec which we expect can learning the vector representation 

with high efficiency. According to the theory of previous work, ’After reading the end 

of the sequence, the hidden state of the RNN is a summary c of the whole input 

sequence.’ (Cho, van Merrienboer, Gulcehre, et al., 2014), We propose a hypothesis 

that the hidden state vector is a context vector, and this context vector should have 

the ability to express the overall sentiment of a document or a piece of input 

sequence. The context2vec structure is a part of the sequence-to-sequence model 

which was used to finish the machine translation and got a brilliant result (Cho, van 

Merrienboer, Gulcehre, et al., 2014; Sutskever et al., 2014; Luong, Sutskever, Le, 

Vinyals, & Zaremba, 2014; Bahdanau, Cho, & Bengio, 2014). The sequence-to-

sequence model consists of two blocks: RNNs encoder, RNNs decoder. The 

Encoder’s main function is transit the input data one by one to a fixed length state 

vector. While the decoder is used to train the target output and think of the condition 

of using the state vector which passed from the encoder. This Sequence-to-

Sequence model achieved the state of art performance on the task of Machine 

Translation (Sutskever et al., 2014).  
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Chapter 2  

Related Work 
 
The objective of this chapter is to give an overview of the basic concepts used in this 

thesis. It describes the two main components in the sentiment analysis process and 

some related models. The first component is the embedding model which used to 

map text words to vectors. It presents the theories underlying commonly used 

approaches TF-IDF (Ko & Youngjoong, 2012), N-gram, Bag-of-words and Word2vec 

model (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013). In addition, the word2vec 

model has been shown the state-of-art performance in sentiment analysis. The 

section 2.2 introduces various classifier techniques for classifying the target label 

and the sentiment polarities from the input data.  

 

2.1 Word and Phrase Embedding 

Word and phrase embedding is a feature learning methods in NLP (Mikolov, 

Sutskever, et al., 2013). In the traditional NLP tasks, people prefer to treat words as 

discrete atomic symbols, like in the “one-hot” representation, for example, “King” 

could be represented as ‘0001’ and ‘Queen’ can be represented as ‘1000’. However, 

discrete atomic symbols cannot show the relationship and similarity between words. 

At the same time, the large discrete data maybe leads to data sparsity (Friedman, 

1997). This is an issue because to overcome the problem and to successfully train 

statistical models usually lots of data is required or if it is too large specific dimension 

reduction methods can be applied. Besides, data sparsity can result in what is known 

as “ the curse of dimensionality” (Friedman, 1997). It is important that using discrete 

atomic symbols cannot represent the semantic similarities between linguistic items. 

Thus the distributional hypothesis (Harris, 1981) was proposed by Harris. 

 

Due to the distributional hypothesis theory, which states that words that 

appear in the same contexts share semantic meaning (Harris, 1981), two categories 

models were constructed: count-based methods and predictive methods. The 

difference is count-based methods just computes the statistics of the frequency of 
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words co-occurs with its neighbour words in a large corpus, and then map the 

collected count statistics into a small, dense vector in the vector space for each word 

(Baroni, Dinu, & Kruszewski, 2014). In contrast, the predictive models directly learns 

a small, dense set of embedding vectors through predicting a word from its 

neighbour words. The typical representative of count-based methods is Latent 

Semantic Analysis approach (LSA) (Deerwester et al., 1990). The classical model of 

predictive methods is neural probabilistic language model (Yoshua Bengio et al., 

2003). 

 

2.1.1 Latent Semantic Analysis approach: Bag of Words 

The Latent Semantic Analysis is a technique in count-based methods. It is used to 

analyse the relationships between the document and words that it contains. The 

distributional hypothesis is the fundamental principle of LSA. LSA can use a term-

document matrix which describes the occurrence of terms in documents. To extract 

features of co-occurrence matrix, some mathematical methods always can be used 

in the process, such as Singular Value Decomposition (SVD) (Golub & Van Loan, 

1996) and Non-negative Matrix Factorisation (NMF) (D. D. Lee & Seung, 2001).  

In order to represent the co-occurrence relationships, LSA chose a way that 

computes the frequency of occurrence words in a set of documents and then 

produces a term documents matrix to describe frequencies. The method was called 

term-document (TD) matrix. However, the term-document matrix is limited by 

unbalance-size documents. For example, a word appears 3 times in a document 

which only has ten words, and appears 100 times in another document which 

contains 1000. This condition is called as unbalance-size document set.  Finally, the 

TD matrix cannot accurately measure the relationship between words and 

documents. For example, the big part of documents usually contain lots of stop 

words, like ‘the’, ‘a’, ‘and’, this kind of words always is the highest frequency in a text. 

To address this problem, TD matrix was replaced by another more accurate 

measure way, TF-IDF. The term frequency-inverse document frequency (TF-IDF) is 

a popular normalisation way which gives weight to per term by the inverse of 

document frequency. Generally speaking, either TF or TF-IDF is measure methods 

of bag-of-words (Martineau et al., 2008). In the bag-of-words model, a text or a 
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sentence is represented as the bag of its words, it ignores the word order and word 

grammar. 

The BOW is a very popular model which simplifies the process of representing the 

input text as fixed-length feature vectors. It exhibits good performance for topic 

classification. However, it has two significant weaknesses: 1. It loses the ordering of 

the words. Due to lack of consideration to the word order, if different sentences with 

the same words but in a different order are used they will have the same 

representation; 2. It ignores semantic relationships between words (Le & Mikolov, 

2014). Thus, BOW has no ability to reveal any information about context data. As an 

alternative, people have used the N-gram model instead to reveal the context 

data (Cavnar, Cavnar, & Trenkle, 1994). 

 

2.1.2 N-gram approach 

Even though the bag-of-words get a good performance on the topic classification, it 

still has some weakness that it ignores the order of words, in other words, it cannot 

reveal more information about context data (Le & Mikolov, 2014). As an alternative, 

people have used the N-gram model to capture the context data as more as possible 

(Cavnar et al., 1994).  

 

The N-gram model is widely used in the machine translation, words correction 

system and speech recognition field (Kukich & Karen, 1992). The N-gram algorithm 

computes the probability of a sequence data and use the maximum likelihood 

estimation technique to predict the next word. When we are using a language model 

to predict the next word, the core theory is derived from Markov algorithm which 

assumes that the current word depends on the previous 𝑛 − 1 words. This is a 

crucial assumption to simplify the estimation problem. Normally, the different size of 

N-gram has different term as following table 1: 

 

Term of N-gram Size (n) 
Unigram 1 

Bigram 2 

Trigram 3 
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Four-gram 4 
Table 1 Different size of N-gram has different name 

Due to one algorithm in word2vec model, Skip-grams, is partially similar with N-gram 

(Mikolov, Sutskever, et al., 2013), and to better understanding the word2vec 

algorithm, now we will give an example to show how the n-gram represents the 

words relationship in the text.  Suppose we have a corpus of three sentences. We 

utilize a bigram to analysis the corpus. 

<s> I am Sam </s> 

<s> Sam I am</s> 

<s> I do not like green eggs and ham </s> 

 

Because the n is 2, so we calculate the probabilities of couple words occurrence as 

following: 

𝑃(	𝐼	| < 𝑠 >) = 	
2
3 

Equation 1 

 

Word ‘I’ appears twice after start symbol ‘<s>’. Other probabilities are the same. 

 

𝑃(𝑆𝑎𝑚| < 𝑠 >) = 	3
4
; 	𝑃(𝑎𝑚|𝐼) = 	 6

4
; 	𝑃(𝑑𝑜|𝐼) = 	 3

4
; 	𝑃(</𝑠 > |𝑆𝑎𝑚) = 	 3

6
;  

Equation 2 

So from the above we can see that the N-gram model to a certain extent take into 

account the order of words. 

 

 

2.1.3 Neural Probabilistic Language Models  

The neural probabilistic language is a common type of predictive method in word 

embedding, and it is based on neural networks to learn distributed representations 

model (Yoshua Bengio et al., 2003). The basic idea of the neural language model is 

to learn to associate each word in a dictionary with a continuous-valued vector 

representation. Neural probabilistic language models have the ability to effectively 
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solve the curse of dimensionality which occurs in the traditional feature extraction 

method (Yoshua Bengio et al., 2003). 

Due to the data sparsity issues, learning algorithms usually need a large 

amount of training data when attempting to solve some complicated problem. This 

requirement is called as the curse of dimensionality (Yoshua Bengio, Courville, & 

Vincent, 2012).  The most common case is when the number of training examples 

increases exponentially as the number of features which need to be learned grows. 

So it always happens with natural language models that the input is large tuples of 

sequences of text data. For example, if we want to use our model to joint distribution 

of 10 words from a vocabulary 𝑉 which size is 100000, it will generate 10<= − 1 free 

parameters (Yoshua Bengio et al., 2003). 

  

2.1.4 Word2vec Model  

Word2vec is one of useful neural probabilistic language models (Mikolov, Sutskever, 

et al., 2013). It achieved the state-of-arts performance in lots of NLP tasks which 

produce fixed-length vectors used to represent words(Mikolov, Sutskever, et al., 

2013). The basic idea of word2vec is that according to the input training corpus, it 

should produce a vector space. It then assigns a corresponding vector to each 

unique word and map it into the vector space. The word2vec model includes two 

opposing algorithms: CBOW and Skip-Gram.  The distinction between CBOW and 

Skip-gram is elaborated in (Mikolov, Corrado, Chen, & Dean, 2013).  

2.1.4.1 Continuous Bag-of-Words ( CBOW ) 

The CBOW can be illustrated using a simple example. Suppose we have a sentence 

‘The cat sits on the mat’, we would like to treat the ['The', 'cat', 'on', 'the', 'mat'] as the 

context words, and then use these context words to predict the missing word ‘sits’. 

From the above sentence, we can find the CBOW will rely on the context words to 

output the current word.  
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Figure 2 CBOW Structure (“CBOW of Word2Vec,” 2017) 

 

Figure 2 shows the CBOW structure, the CBOW structure consists of three layers: 

input layer, hidden layer and output layer. We will explain the parameters in the 

section 2.1.4.2. 

2.1.4.2 How to using the Word2vec model 

Firstly, we should define our model. We set the window size value to be 𝑚 and the 

vocabulary size to be |𝑉|. For the input word or context words 𝑋? is used to define it. 

The output word is represented by 𝑌𝑐 .Then a three layer neural network can be 

created to learn the embedding vectors. The input layer will captures 𝐶 words that 

the word window size is 𝐶, and pass the encoded word which has weighted by 𝑊 

into the hidden layer which constructed by a fixed length N-dimensional vector. 

Finally, the operated data will transit to the output layer and generate the output 

word, 𝑌?. The weight matrix which connects between the input layer and hidden layer 

should be a 𝑉 × 𝑁 matrix, 𝑊. On the other hand, the weight matrix between the 

hidden layer and output layer should be a  𝑁 × 𝑉 matrix which denoted as 𝑊F. 

 

Assuming we have already learned the weight matrix 𝑊 and 𝑊F. The whole 

process could be divided into several steps: 



 

 22 

1. The input raw text should be encoded into one-hot representation vectors 

which use a binary code to replace unique word in the vocabulary. The one 

hot representation vector length equals to the vocabulary size |𝑉|.  

2. According to the window size 𝐶 capture the context words which surround 

current word 𝑌?. Then words captured by the window should be replaced by 

encoded word vectors. 

(𝑥(?HI)	, . . . . . , 𝑥(?H3), 𝑥(?L3), . . . . . , 𝑥(?LI)	) where 𝑥M ∈ 𝑋. 
Equation 3 

3. Using the model generated embedding word vectors 𝑣	 ∈ 𝑅Q×|R| to replace of 

words in the context window. 

 

 (𝑣(?HI) 	= 	𝑉𝑥(?HI)	, 𝑣(?HIL3) 	= 	𝑉𝑥(?HIL3)	, . . . . . , 𝑣(?LI) 	= 	𝑉𝑥(?LI)) 
Equation 4 

4. Average the collected vectors to get 

𝑣S = 	
𝑣(?HI) 	+ 	𝑣(?HIL3)+. . . . . +𝑣(?LI)

2𝑚  

Equation 5 

5. Generate the score vector 
𝒛	 = 	𝑊F𝑣S  

Equation 6 

6. Using the softmax function to measure the score which obtained from the 

former step, and choose the max probability word as the target word. 

 

The above description briefly introduced how to get the embedding vector. Next, it 

will be illustrated how the output is computed from the raw input data.  Firstly, it is 

necessary to evaluate the hidden layer H. The evaluation equation is: 

 

ℎ	 = 	
1
𝐶𝑊 ⋅（X𝑥M

Y

MZ3

） 

Equation 7 

the hidden layer output is the average of the input xi weighted by the matrix W. Then, 

to compute the out layer result. 
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     𝑊[F 	= 	𝑣\]
F ^ ⋅ ℎ 

Equation 8 

where 𝑣\]
F  is the j th column of the output matrix W’.  

Finally, the softmax function computes the output 𝑦[ from 

 

𝑦[ = 	𝑝(𝑤3, . . . , 𝑤?	) 	= 	
𝑒𝑥𝑝(𝜐[)

∑ 𝑒𝑥𝑝(𝜐[F)R
[	Z	3

 

Equation 9 

 2.1.4.3 Updating the hidden-output layer weights 

We defined the object function by cross entropy as: 

 

𝐸	 = 	−𝑙𝑜𝑔	𝑝(𝜔i	|	𝜔j) 

=	𝑢[∗ 	− 	𝑙𝑜𝑔 X 𝑒𝑥𝑝(𝑢[)
R

[	Z	3

 

Equation 10 

According to the above loss function, the derivative of the loss function 𝐸 regards 

with the 𝑗no  node in the output layer 𝑢[ is given by 

 
𝜕𝐸
𝜕𝑣[

	= 	𝑦[ 	− 𝑡[ 

Equation 11 

where 𝑡[ 	= 	1 if j = j*, otherwise 𝑡[ 	= 	0.  

Then, the chain rule is applied to compute the above equation. 

 
𝜕𝐸
𝜕𝜔M[F

= 	
𝜕𝐸
𝜕𝜇[

∙
𝜕𝜇[
𝜕𝜔M[F

 

= 	 (𝑦[ 	− 𝑡[) ∙ ℎM 
Equation 12 

At the end, the update principle of the gradient descent approach is followed and the 

eqns. is obtained 

𝜔M[
F(Qt\) 	= 	𝜔M[

F(iuv) − 𝜆 ∙ (𝑦[ 	− 𝑡[) ∙ ℎM 
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Equation 13 

Where 𝜆 is the learning rate. 

 

2.1.4.4 Skip gram architecture of word2vec 

The skip gram architecture is within word2vec. Because of the highly efficient learning 

capabilities of the Skip gram model, it usually used to train a large corpus. The CBOW, 

mentioned in Section 2.1.4.1, is based on the surrounding words to predict the target. 

However, the Skip Gram model is just the opposite in that it uses a specific word in 

the middle of the window (that is, the input word 𝑥? ) to infer the context words. 

Consider the simple example to obtain an insight into the Skip gram structure: 

 

“The cat sits on the mat.” 
 

We used a window whose size is 1 for this example. So the input will follow the 

format ( context, target ) pairs given below. Specifically, the Skip-gram model just 

inverts the order of context and target words. 

 

 

Source Text Input 
“The cat sits on the mat.” ( [ #, cat ], The ) 

“The cat sits on the mat.” ( [ The, sits ], cat ) 

“The cat sits on the mat.” ( [ cat, on ], sits ) 

“The cat sits on the mat.” ( [ sits, the ], on) 

“The cat sits on the mat.” ( [ on, mat ], the) 

“The cat sits on the mat.” ( [ ‘ . ', mat ], mat ) 
Table 2 Skip-gram input with size 1 

 

The Skip-gram architecture can be simply inverted as figure 3. 
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Figure 3 Skip-gram structure(“Vector Representations of Words  |  TensorFlow,” 2017) 

The structure of Skip-gram is similar with CBOW, it also has three layers. The input 

layer reads the target words, and the output layer predicts context words.  

 

Then the process is similar to CBOW process. The goal is to decrease the 

cost function through updating the embedding parameters by applying gradient 

descent algorithm. Finally, it can be used to represent the semantic relationship 

between words, and it has been shown to achieve an excellent performance on lots 

of NLP tasks (“Chinese comments sentiment classification based on word2vec and 

SVMperf,” 2015; Mikolov, Sutskever, et al., 2013). 

  

 Although word2vec has successfully shown that it has the ability to represent 

the semantic mean, but it still has the weakness that it does not consider the order of 

words and sentences (Le & Mikolov, 2014; Socher, 2014). To solve the order-lost 

issue, Mikolov proposed a new algorithm, Doc2vec (Le & Mikolov, 2014). This 

algorithm can learn a paragraph vector which can contain more context information 

than word2vec model. Empirical results show that paragraph vectors outperform 

count-based methods on several text classification tasks and sentiment analysis 

tasks (Le & Mikolov, 2014). 

 

Word embedding technologies have a prominent position for NLP tasks. 

However, they are just the first stage. In the following section, the aim is to give the 

background into the machine learning classifiers and provide insights into how the 
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machine learning helps the implementation of the classification tasks based on the 

word embedding vectors. 

 

2.2 Machine learning & Neural networks for classification 

Three standard machine learning and neural network algorithms are Support Vector 

Machine (Pang et al., 2002), Multilayer Neural Network (Aggarwal & Zhai, 2012) and 

Recurrent Neural Networks (LeCun, Bengio, & Hinton, 2015). Machine learning tasks 

can be divided into three broad categories: 1. Supervised learning, 2. Unsupervised 

learning and 3. Reinforcement learning. In the thesis, more attention will be given to 

the supervised learning approaches, particularly the classical supervised learning 

model: the Support Vector Machine. 

 

2.2.1 Support Vector Machine (SVM) 

Given a set In machine learning, the Support Vector Machine is the classical learning 

algorithm which widely used in many tasks, such as classification (Suykens & 

Vandewalle, 1999). It can be illustrated as follows: Given a set of labelled training 

examples, each example belongs to one of two classes, 0 and 1.  

The principle of the SVM’s principle is to map each sample as a point in an n-

dimensional vector space. Then, it will build a high dimensional hyperplane to 

separate the clustered data points. SVM has two kinds’ classifier functions, one is 

linear SVM and another is non-linear SVM. Intuitively, we need to find the best 

separation hyperplane which has the largest margin between two classes, where 

margin is defined as the distance to the nearest any-class training data point. In 

other words, we need to find the maximum-margin hyperplane. 

 

2.2.1.1 Linear SVM 

To explain the Linear SVM classifier’s theory the first step is to clarify the format of 

the training dataset of n points. The i-th sample in the training data set is denoted by 

𝑥M, and the i-th target label is denoted 𝑦M. These are as Cartesian coordinates 
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(𝑥3, 𝑦3), (𝑥6, 𝑦6)⋯ (𝑥QH3, 𝑦QH3) 
Equation 14 

Where 𝑦M is either 1 or 0.  

In binary classification problem, 1 and 0 mean two classes that the case 𝑥M 

belongs to either one of two classes. Additionally, the 𝑥M is a vector with a fixed 

length features. In the next step the data is mapped into an n-dimensional feature 

space. The SVM try to find the best separating line by searching the support vectors 

that closest data points to the decision hyperplane. For linear SVM, it is treats the 

data as being linearly separable. This means that linear SVM can be considered in 

the way that both data points in space can be separated by a straight line.  In Figure 

4 an example is provided with a set of 2-D data points. The circles and squares 

representing similar data values and appear as being clustered together. It is easy to 

visualize a line to distinguish the clusters. 

 
Figure 4 A linear separable set of 2D-points (opencv dev team, 2017) 

Figure 4 describes the learning process that the SVM learn and determine the 

optimal hyperplane from many solutions which denoted by multiple lines to the 

problems. The optimal hyperplane has the largest minimum distance to the training 

examples. At the same time, the optimal decision hyperplane maximizes the margin 

of the training data that the distance between the support vectors.  

The linear SVM could only solve the linear separable issues, but in some cases this 

is not sufficient because the data is not linearly separable. In this case a non-linear 

classifier is required. 

 

 2.2.1.2 Nonlinear SVM 

The linear SVM as a linear classifier could process the linearly separable data very 

well, but it has the weakness that it can not correctly divide the non-linear data. 
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Hence, (Boser, Guyon, & Vapnik, 1992) proposed a way to classify the non-linear 

data by applying the kernel function. The core point of nonlinear SVM is the SVM will 

implement the kernel function to map the input vector from a low dimensional to a 

high dimensional space. Since the data points are linearly indistinguishable and 

cannot be linearly classified in the low dimensional space, the kernel function leads 

to the data point becomes linear separable in a high dimensional space. Thus the 

kernel function allows the nonlinear SVM to fit the optimal hyperplane in a 

transformed feature space.  This is illustrated in Figure 5. 

 

 
Figure 5 Kernel machines are used to compute a non-linearly separable function into a higher dimension linearly 

separable function (Alisneaky, 2011) 

 

2.2.2 Multilayer Neural Network 

Consider an alternative supervised learning method to SVM, multilayer neural 

networks have also been shown to  achieved a good performance on the 

classification tasks (“Artificial neural networks (the multilayer perceptron)—a review 

of applications in the atmospheric sciences,” 1998). Neural networks are inspired by 

the biological neural networks. Currently, neural systems are widely used in the 

pattern recognition (Bishop, 1995), image processing (“Image processing with neural 

networks—a review,” 2002) and machine learning area.  

In the human brain, the transmission of information is relayed on neurons. 

These neurons are connected to each other and eventually form an efficient and 

sophisticated network. The same thing also happens in the neural network model, 

and the neural network model is usually composed of one or more layers, each layer 

contains a certain number of nerve nodes (Axon). Each neural node will be input with 
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a fixed length features vector (the input value also could be the other neurons 

output), then output a single real value (that can possibly be the input to other units 

subsequently). 

 

2.2.2.1 Perceptron 

Next, the basic unit structure of neural network model will be examined. The neural 

network consists of perceptrons. The simplest way to understand the perceptron 

algorithm is that the perceptron unit outputs a linear combination of its inputs by using 

a fixed-length vector as input, and then outputs 1 if the calculated result is greater than 

the threshold, otherwise, it equals -1. The input data is denoted as 𝑋 = (𝑥3, 𝑥6,⋯ , 𝑥Q). 

The mathematical expression to represent this is as follows: 

 

  

𝑂(𝑥3, 𝑥6,… , 𝑥Q) = { 1, 𝑖𝑓	(𝑤= + 𝑤3𝑥3 + 𝑤6𝑥6 +⋯+ 𝑤Q𝑥Q > 0)
−1, 𝑖𝑓	(𝑤= + 𝑤3𝑥3 + 𝑤6𝑥6 +⋯+ 𝑤Q𝑥Q < 0) 

Equation 15 

Where 𝑤M is the weight for every feature of input data and it determines the 

importance of features in the input data. Besides, 𝑤= is the bias value, and also can 

be called as the threshold value. Figure 6 shows the structure of the perceptron and 

how it works.  

Normally, we will rewrite the above math equation as  

𝑂~�⃑�� = 𝑠𝑔𝑛~𝑊���⃑ × �⃑�� = �10 

Equation 16 

Where 𝑠𝑔𝑛() means the activation function. 

In practice, it is normal to choose among activation function, such as sigmoid 

function and 𝑡𝑎𝑛ℎ function. 
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Figure 6 Procedures of a single layer perceptron network (source: Wikipedia) 

 

So how to obtain the weight W is the primary task. To correctly predict the label of 

the target data, there are update approaches to update the weight values known as 

(a) the Perceptron rule (Freund & Schapire, 1999) and (b) the Delta rule (Russell, 

2012). Either Perceptron Rule or Delta Rule can guarantee that the cost function will 

converge to a reasonable range, and finally captures the optimal weight parameter 

values. 

In order to learn the optimal weight parameter, the first step is that it is necessary to 

initialize the weight matrix using random values. During learning progress, if the 

algorithm detects an incorrect prediction, it can automatically modify the 

corresponding weights and update them until a perfect fit for the training cases, and 

thus find the minimum cost value. The update rule as follows: 

 

𝑊M = 	𝑊M + 	Δ𝑊M  

Δ𝑊M = 	𝛼(𝑡 − 𝑜)𝑥M 
Equation 17 

Where 𝛼 is learning rate, t is the target label, o is the perceptron output.  

It should be noted that we usually set the learning rate to a small value. Otherwise, it 

will cause the loss function cannot be convergence and leads to the underfitting 

situation if we set the learning rate to a large value. 

 

A premise of using the perceptron update rule is that training examples are 

linearly separable. If the training dataset is not linearly separable, another alternative 
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method can be applied to update the weight, the Delta rule, to prevent the 

occurrence of non-convergence situation. The Delta rule uses the gradient descent 

method to find the best approximation set of weights. We use the following 

mathematical expression to write the linear operation output of the perceptron.  

 

𝑜(𝑋) = 	𝑊 × 𝑋 
Equation 18 

The distinction between Delta rule and Perceptron rule is that the above equation does 

not include the threshold 𝑊=. To compute the difference between the target function 

and our hypothesis function, a cost function must be defined to measure the training 

error of the hypothesis function. 

 

𝐸 =	
1
2X(𝑡[ − 𝑦[)6

[

 

Equation 19 

Where 𝐸 means the training error,  𝑡[ is j-th target output, 𝑦[ is the output label of 

training case j.  

With the error of the cost function decreasing, we can get the fitness weight 

parameter. 

 

2.2.2.2 Multilayer Neural Network 

A single perceptron unit can be used to classify linearly  separable data, but it is not 

suited for solve some complicated problems like speech recognition (Hinton et al., 

2012) and machine translation. Thus people prefer to use a multilayer neural 

network to solve these for non-linear high dimensional training datasets (“Artificial 

neural networks (the multilayer perceptron)—a review of applications in the 

atmospheric sciences,” 1998). For example, we can analyse and judge the letter 

which is correct by identifying the sound spectrum. Multilayer neural network has the 

ability to solve the more complex issues. 

A multilayer neural network consists of a tuple of neural nodes, and each 

node usually is a perceptron unit, so that the neural network which is made of 

multiple perceptron units also can be callas a multilayer perceptron (MLP). At the 
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same time, the output of each nerve node will be the input of the other neural nodes,  

except for the final output layer which only has one node. From figure 7, it can be 

observed that this multilayer neural network has three layers, and each layer has 

four nodes, represented as circles. Those circles which wrote +1 symbol indicate the 

threshold (which also can be called as bias).  

 

 

 
Figure 7 A neural network structure(“Unsupervised Feature Learning and Deep Learning Tutorial,” 2017) 

 

 

In figure 7, the first layer 𝐿3 is the input layer, and the second layer 𝐿6 is the hidden 

layer, the third layer 𝐿4 is the output layer. In figure 7, it can be seen that there are 

four nodes in the input layer and the hidden layer. However, considering the input 

layer and the hidden layer separately, they have three neural nodes each because of 

the last node in each layer is the bias node, it won’t get any value from the previous 

layer. In the hidden layer, each neural node will collect data which is weighted by the 

parameters from the previous layer, then output to the next layer after a linear 

operation and activation processing.  The mathematical expressions for each output 

in 𝐿6 would be as follows: 

 

𝑎36 = 	𝑓(𝑊33
3 𝑥3 +	𝑊36

3 𝑥6 +	𝑊34
3 𝑥4 + 𝑏33) 

𝑎66 = 	𝑓(𝑊63
3 𝑥3 +	𝑊66

3 𝑥6 +	𝑊64
3 𝑥4 + 𝑏63) 
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𝑎46 = 	𝑓(𝑊43
3 𝑥3 +	𝑊46

3 𝑥6 +	𝑊44
3 𝑥4 + 𝑏43) 

ℎ�,�(𝑥) = 	𝑎34 = 𝑓(𝑊33
6 𝑎36 +	𝑊36

6 𝑎66 +	𝑊34
6 𝑎46 + 𝑏36) 

Equation 20 

Where 𝑎Mu denotes the activation function output value of unit 𝑖 in layer 𝑙. 𝑊M[
u  means 

the weight parameter associated with the connection between unit 𝑖 in layer 𝑙 and 

unit 𝑗 in layer 𝑙 + 1. 𝑏Mu denotes the bias node value of unit 𝑖 in the 𝑙 layer. Eventually, 

ℎ�,�(𝑥) will output a real value whose computation depends on the previous layer 

output (𝑎36,	𝑎66,	𝑎46 and 𝑏36). 

The above algorithm is called feedforward neural network. It is operates on 

data from the input and processes it layer by layer, until finally output the result. The 

above MLP model will be used in our experiments to verify whether there is any 

difference between English corpus and Chinese corpus. 
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2.3 Assessing The Previous Work In Sentiment 
Classification 

This section briefly reviews the previous work on sentiment classification. In many 

traditional text categorization methods’ the performance depends on the knowledge 

and linguistic heuristics or the quality of the manual construction of discriminant-word 

lexicons (Pang et al., 2002). Supervised machine learning approaches have been 

widely used to do text categorization, especially through the application of the 

Support vector machine (SVM) (D. Zhang et al., 2015). Through finding a hyperplane 

for word vectors, SVM can achieve a good performance (Pang et al., 2002). 

However, SVM has some weaknesses. The major one is that it uses a kernel 

function to map the nonlinear data to a high dimensionalities space, so then it can 

find a hyperplane to do classification(Moreno & Ho Hewlett-Packard, 2003). This 

weakness increases the complexity of computation. Hence the SVM can’t be used to 

process large data sets. Another weak point regarding SVM is that it doesn’t 

consider the semantic relationship between words. 

 

Approach Advantage Disadvantage 

Support Vector Machine 
(SVM) (Pang et al., 

2002)(Vanzo, Croce, & 

Basili, 2014) 
 

1. SVM’s generally outperforms the Naïve 

Bayes classifier; 

2. It is a large-margin technique that uses a 

hyperplane unlike the probabilistic classifier  

(Pang et al., 2002). 

1. One major weakness of SVM 

having to determine the kernel 

function to compute the distances 

among data points (Moreno & Ho 

Hewlett-Packard, 2003). 

2. Semantic features have been 

rarely considered in SVM sentiment 

classification (D. Zhang et al., 2015). 

3. The accuracy of the word vectors 

is positively correlated with the 

performance; 

Word2vec + SVM (D. 

Zhang et al., 2015) 

1. This considers the semantic relationship 

between words;  

2. Because it has a low computational 

complexity, it can compute very accurate 

high-dimensional word vectors from large data 

sets (Mikolov, Corrado, et al., 2013); 

1. It ignores the context information; 

2. It does not take account of word 

order; 

3. it lacks the ability to process long 

range text. 
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LSTM (Huang, Cao, & 

Dong, 2016) 

1. It can process long-range context, solving 

the independence issue;  

2. It considers the word order and has the 

ability to extract the overall sentiment from the 

context;  

3. It solves the general sequence to sequence 

problem (Sutskever et al., 2014). 

1. The size of the training data set 

determines the performance of the 

models;  

2. From the literature it appears that 

it is better to apply it in conjunction 

with another technique (Wang, Yu, 

Lai, & Zhang, 2016). 

 

Table 3 The Comparison of Different approaches 

 

To observe the semantic relationship and improve the performance of processing of 

high dimensionality data, the word2vec model was proposed and was shown to 

achieve excellent results (Tang et al., 2014).  The Word2vec model has a high 

efficiency for learning word vectors from the raw text by using the Skip-gram or 

CBOW model. More recently, the word2vec model has also been shown to offer 

significant improvements over other techniques for Chinese corpus  (D. Zhang et al., 

2015). 

Although word2vec can directly map words into high-precision vectors and 

represent semantic relationships between words, the extraction of contextual 

semantic information and word order are ignored (Le & Mikolov, 2014). In order to 

solve these problems, researchers have tried to better understand the overall 

sentiment of text passages by increasing the processing granularity from the level of 

a word to that of a paragraph or a document. They then proposed various of 

algorithms, such as Paragraph vector (or Doc2vec) (Le & Mikolov, 2014), Recursive 

neural network (Socher, 2014), or RNN and LSTM (Chung et al., 2014; Huang et al., 

2016). Other works verified that RNN and LSTM have greater potential to produce 

better predictions of sentiment polarity than other models (Le & Mikolov, 2014)(Tai, 

Socher, & Manning, 2015). In particular, (Tang, Qin, & Liu, 2015)’s work utilized 

LSTM and RNN with many GRU for document level sentiment classification of the 

IMDB dataset. 

Therefore, for the problem of the thesis it appears that the best approach is to use a 

form of LTSM with RNN. However, it has to be noted that this approach has not been 

verified on a Chinese corpus so it may not produce results that are as good as report 

for English corpora. 
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Chapter 3  

Methodology 
 
This chapter we begin by describing context2vec methodology and the algorithm. 

Context encoder is a main component of Sequence-to-sequence model. RNN 

encoder-decoder structure is the basic idea.  Recurrent Neural Network (RNN) has 

shown outstanding performance in many problems that require  sequence 

processing, such as speech recognition (LeCun et al., 2015; Graves, Mohamed, & 

Hinton, 2013), machine translation (Cho, van Merrienboer, Gulcehre, et al., 2014).  

The main advantage with the RNN is that it takes the word order into account, 

and thus is suitable to tackle a sequence problem. In traditional Natural Language 

Processing (NLP), for simplicity the viewpoint was often held that words are 

independent from each other, , and the word order does not affect the final result 

(Taboada et al., 2011).  

However, when facing issues associated with analyzing the whole semantics, 

including sentiment, of a sentence or whole documents, such a hypothesis that 

words order is not considered in the prediction will result in a low accuracy of 

sentiment inference. For example, in Chinese, because of the existence of particular 

word segmentation rules and the fact that a combination of different orders between 

words can cause a totally different meaning, the algorithm based on the phrase 

independence theory will always leads to a low accuracy that measuring the 

expressiveness of the overall sentence. To overcome such difficulties Mikolov 

proposed the implementation of RNN for language in his work (Le & Mikolov, 2014). 

This work illustrates that the consideration of word order with previous input 

information can promote the accuracy of prediction. 

 

3.1 Model Overview 

The main goal of our model is to learn a generic context embedding vector for 

variable-length sentence. To do this, we propose a novel neural network 

architecture, which is based on the Recurrent Neural Network Encoder-Decoder 

model (Chung et al., 2014; Cho, van Merrienboer, Gulcehre, et al., 2014; Cho, van 
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Merrienboer, Bahdanau, & Bengio, 2014). We use this to extract a summary vector 

of the whole input sequence with using a most useful sequence processing neural 

model Long-Short-Term Memory (Hochreiter & Schmidhuber, 1997). 

 

This model consists of two parts: one is the RNN Encoder-Decoder structure 

and the other is a Classifier. A core element of the RNN Encoder-Decoder structure 

is the Long-short-term-memory unit (Cho, van Merrienboer, Gulcehre, et al., 2014). 

 

 
 

Figure 8 Context vector encoder structure 

Figure 8 illustrates the process of the context vector and the classifier. The process 

can be divided into several steps: 

1.According to sequence to sequence experimental protocol, the RNN 

encoder-decoder is constructed. The encoder reads the sequence until the stop 

symbol. It learns to generate a state vector (Sutskever et al., 2014). This state vector 

is what we want to extract.  

2.In the completion of the encoder processed, the state vector is transmitted 

to the decoder. While reading the state vector, the decoder also reads the target 

sequence. According to the principle of sequence to sequence, the model should 

correctly predict the sequence same with input sequence of encoder. If decoder 

detects an incorrect prediction, it will change the parameters value. The learning 
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process is lasting until the decoder can output the target sequence with high 

accuracy. 

3.After the training phase, the encoder can be used to convert the movie 

review to the context vector. The context vector length should equal to LSTM 

number in a layer, and it will be saved for the classification. 

4.In this step, the classifier is built to learn how to classify context vector 

which has been converted from the movie reviews by the encoder. 

5.Finally, the evaluation system evaluates the model accuracy by using the 

test data. 

 

The whole model adopts the strategy of combining a deep neural network with 

different classifiers. The intention is that with this system to then try to construct a 

distribution space in the RNN encoder-decoder which has been trained with a 

Chinese corpus. It will map the sequence input into the distribution space and 

represent the input sentence as a fixed-length vector representation of the overall 

semantic meaning of the input (Cho, van Merrienboer, Gulcehre, et al., 2014). In 

addition,  because of Long-Short-Term memory can solve the long distance 

dependency problem, the historical information in the sequence input will be fully 

considered whether it is forgotten or keep (Hochreiter & Schmidhuber, 1997; Y. 

Bengio, Simard, & Frasconi, 1994). 

 

 
Figure 9 An illustration of the RNN Encoder-Decode(Cho, van Merrienboer, Gulcehre, et al., 2014) 
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Figure 9 illustrates the structure of RNN encoder-decoder. The encoder consists of 

RNN, it reads the input sequence 𝑋M until the stop symbol, and generates the state 

vector (also can be called as context vector) 𝐶 that a summary of the whole input 

sequence. The decoder also consists by RNN, and is trained to output the target 

sequence 𝑦M based on the the maximum conditional probability principle for the 

target sequence (Cho, van Merrienboer, Gulcehre, et al., 2014). 

3.2 Sequence-to-sequence Basics 

A basic Sequence-to-Sequence model (Seq2seq) mainly consists of three parts, 

which are: an encoder, a decoder and a state vector (Sutskever et al., 2014). The 

essence of the algorithm is that the model will fetch the input data from the source 

sequence by the encoder, then process it through the primary element, such as 

LSTM units  or the Gated Recurrent Units (GRU). Both these units are inspired by 

the recurrent neural networks, and have the ability to learning whether to keep the 

past information (Hochreiter & Schmidhuber, 1997; Chung et al., 2014). This will be 

seen to be very important to the Chinese language learning tasks(C. Zhang, Zeng, 

Li, Wang, & Zuo, 2009).   

After the processing of LSTM or GRU, it encodes the input data into a fixed-

size state vector. Thus we can assume the state vector is the summary of the input 

sequence (Cho, van Merrienboer, Gulcehre, et al., 2014). Then the decoder will 

collect the state vector transmitted from the encoder. Accordingly, the decoder will 

use the state vector and the target input sequence to learn how to produce the same 

target sequence.  The whole process can be represented by the figure 10. 

 

 
Figure 10 An example that sequence-to-sequence model reads an input 'ABC' and produces 'WXYZ' as the 

output sentence(Sutskever et al., 2014) 
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Where ABC is an input sentence and the model generates the output sentence 

WXYZ. The model begins to predict with the symbol "<go>" and it working until the 

model output the symbol "<eos>"(Sutskever et al., 2014).  

 

Each box in figure 10 represents a cell unit, and in our model, we chose to 

use the LSTM unit as the primary unit. From the structure of the model, it can be 

observed that information moves from left to right through it. The target sequence 

data is inputted into the right portion of boxes as the target result which used to 

correct the error, and the right part of boxes begins to produce the output sequence 

when the cell unit detected the input data is 'stop' symbol.  

In our hypothesis, the state vector is a summary of the input sequence data and 

represents the maximum conditional probability of target sequence (Cho, van 

Merrienboer, Gulcehre, et al., 2014). Next, it is important to examine how the recurrent 

network helps to obtain the features from the input sequence. 

 

 

3.2.1 Recurrent Neural Network 

It is important to examine how the Recurrent Neural Network helps to obtain the 

features from its input sequences. When the RNN tries to infer the next word, it not 

only processes the current input data, but also treats the previous calculation results 

as part of the solution(LeCun et al., 2015).  To illustrate better how it works it is 

useful to unfold an RNN model by time as the figure 11. 

 

 

 
Figure 11 A recurrent neural work and the unfolding in time of the computation(LeCun et al., 2015) 
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Figure 11 shows that an RNN being unrolled into a full state network with respect to 

time.  Xt is the input at time step t, and it usually will input a word symbol. 𝑆n is the 

hidden state at time step t. 𝑆n stored the previous information which will be called in 

next step (Chung et al., 2014). The 𝑆n is computed based on the hidden historical 

state and the current input at the current time step t: 

 

𝑆n = 𝜎(𝑈𝑥n 	+ 	𝑊𝑆nH3) 
Equation 21 

Where 𝑈 is the weight parameter that connects the first and second layers, 𝑉 is the 

parameter matrix of output layer, and 𝑊 is the weight matrix or vector associated 

with the current hidden state with the hidden state data of next step.  

Moreover, the same function and the same set of parameters 𝑈,𝑊,𝑉 are used 

at every time step. In addition, there are many options for the activation function 𝜎 , 

such tanh or Relu (Getoor, Scheffer, & International Machine Learning Society., 

2011). The activation function will determine whether to use the previous information 

during the prediction. 𝑜n represents the output at step t.  

 
𝑆n = 𝑡𝑎𝑛ℎ(𝑈𝑥n 	+ 	𝑊𝑆nH3) 

Equation 22 

𝑜n 	= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥	(	𝑉𝑆n	) 
Equation 23 

Different function are appropriate for different tasks, and for seq2seq model, a 

reasonable choice is to use softmax to predict the next word through detecting the 

probabilities across the vocabulary. 
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Figure 12 An example RNN with 4-dimensional input and output layers (Karpathy, 2015) 

 

Now an example from 'Character-Level Language Models' (J. Lee, Cho, & Hofmann, 

2016) to illustrate how to train the RNN to predict the next word. Suppose a 

dictionary exists that  includes 'h','e','l' and 'o' four characters. In the training case for 

a sequence data 'hello'. It is desirable to correctly infer that the last character is ‘o’ 

when ‘h’,’e’,’l’,’l’ is entered. The first step is to use the “one-hot” representation to 

encode these four characters as independent codes as shown in figure 12, 

['h',1000],['e',0100],['i',0010] and ['o',0001] respectively. On entering the first 

character 'h', the hidden layer computes the formula ℎFoF 	= 	𝑡𝑎𝑛ℎ(𝑈𝑥FoF 	+ 𝑊ℎnH3	). 

Because of 'h'  is the first input character, the term ℎnH3 can be initialized to 0. The 

hidden state vector ℎFoF is [0.3, -0.1, 0.9] is obtained. The final output is 𝑜FoF 	=

	[	1.0, 2.2,−3.0, 4.1	]	  which means rnn has assigned 1.0 confidence to 'h', 2.2 to 'e', -

3.0 to 'l' and 4.1 to 'o' (Karpathy, 2015). 

In the output layer in figure 3.5, it can be seen that two sets of values are 

distinguished by red and green colours in the nodes for each character. The green 

colour is associated with the value that correctly match target, while the red colour is 

used for are those that do not match the target. However, the target output label should 

be 'e' in the output layer. Thus, compared with the target label, the score of correction 

characters will be increased if the output is same as the target label, and the score of 

incorrect characters should decrease. This process is repeated many times until the 
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error of the entire neural network converges to a constant and the result is correctly 

predicted (Karpathy, 2015).  

  

3.2.2 Long-Short-Term Memory (LSTM) 

Although the RNN model can theoretically solve the long-term dependencies 

problem, in fact, it did not achieve the desired results. This issue was approved by 

Hochreiter (Hochreiter & Schmidhuber, 1997) and Bengio (Y. Bengio et al., 1994). 

Thus a more complex model is proposed to solve this problem, the model is called 

as Long-Short-Term memory units (LSTM).  

LSTM is a variation of RNN, it not only can address help language model to 

promote the accuracy of prediction for long-distance terms, but also can be used to 

prevent the vanishing gradient issues during the back-propagation through time 

(BPTT) which used descent the error (Y. Bengio et al., 1994). LSTM helps RNN 

model dramatically increases the length of learning, which also reflects the ability to 

store information significantly enhanced. 

 

3.2.2.1 LSTM Structure And Workflow 

From the structural point of view, a LSTM model mainly has the following 

components: a memory cell body, a forget gate, an input gate and an output gate 

(Hochreiter & Schmidhuber, 1997). The function of the cell body is fundamentally 

similar to RNN, which is used to store the current input data and the historical state 

vector.  

The main function of the input gate is it will read the data from the training set 

and decide whether to update the current state. On the other hand, the output gate is 

mainly used to control the output of cell body. The core of the forget gate is that it will 

manage the LSTM self-recurrent connection, deciding whether to remember or forget 

the previous state vector. Figure 13 shows a diagram of the structure of the LSTM 

(Hochreiter & Schmidhuber, 1997; Gers & Schmidhuber, 2001; Sutskever et al., 

2014; Chen, Qiu, Zhu, Liu, & Huang, 2015). 
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Figure 13 An LSTM contains four layers(“Understanding LSTM Networks -- colah’s blog,” 2016) 

 

 

In figure 13, it can be seen that each cell body has two input data streams. The first 

is the current input 𝑋n and the second data stream is the previous cell status. Both of 

these data will affect the control of the three gates. The specific steps are as follows 

 

1. The forget gate will be based on the current input data to control what 

information should be ignored. For example, assuming previous sentences have 

been read which include gender information. However, in the present sentence there 

appears a new object with a new gender attribute. In order to accurately use the 

corresponding words, it is necessary to abandon the historical gender information. 

2. According to the data read by the input gate, it is necessary to consider 

which information should be updated and stored in the state vector. With reference 

to the same example, in this step, the body cell will read the gender attribute to 

update the state vector and replace of the old state vector. 

3. Finally, once an updated cell status has been obtained, then the algorithm 

needs to learn which part of the state vector should be output and whether to only 

output the part data which has been modified. Referring again to the example,  

having the new gender data, the output gate will determine which part should be 

output and whether to output the changed portion of cell status. Now we will examine 

the math equation insight of LSTM. 

 

Status vector 

   

Input gate 
Forget gate 

Output gate 
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3.2.2.2 The math equations for gate controller  

We would like to use the variable 𝐶𝑡 to represent the cell state vector of the LSTM, 

the cell states will go through the entire training process. All of the gates used the 

sigmoid activation function to control the flow of information, and the gates are 

affected by three elements: the output from the previous time step, the current input 

and optionally the cell state vector (Chen et al., 2015). 

 

The value of the forget gate which is represented by 𝑓n is computed using. 

 

𝑓n = 𝜎(𝑊� ⋅ [ℎnH3, 𝑋n] + 𝑏�) 
Equation 24 

Where 𝑊� denotes the weight matrix for forget gate. 

 

The input gate is represented by 𝑖n. 

 

𝑖n = 𝜎(𝑊M ⋅ [ℎnH3, 𝑋n] + 𝑏�) 
Equation 25 

Where 𝑊M  represents the weight matrix for input gate 

 

And the input gate 𝑖n decides which value that will be sent to be updated. This 

update function will be implemented by a tanh function that creates a new candidate 

values 𝐶n. 

 

𝐶n = 𝑡𝑎𝑛ℎ(𝑊? ⋅ [ℎnH3, 𝑋n] 	+ 	𝑏?) 
Equation 26 

Where 𝑊?  denotes the weight matrix for 𝐶n . 

After obtaining the new candidate values 𝐶n, the model will update the old cell state 

𝐶nH3 to the new cell 𝐶n. The old state is multiplied by the forget gate 𝑓n, and combined 

with an operation involving the product of 𝑖n and 𝐶n. 

 

𝐶n 	= 𝑓n 	∗ 𝐶nH3 + 𝑖n ∗ 𝐶n 
Equation 27 
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Finally, the current generation value ℎn is found from the current cell value and the 

output gate result 𝑜n. 

𝑜n 	= 	𝜎(𝑊i ⋅ [ℎnH3, 𝑋n] + 𝑏i) 

ℎn 	= 	 𝑜n ∗ 𝑡𝑎𝑛ℎ(𝐶n) 
Equation 28 

 

3.2.3 Context Encoder Based on Sequence-to-Sequence Model 

In our model, we propose an encoder model that uses the encoder model structure 

of the sequence-to-sequence model as a context vector encoder. This is used to 

convert a variable-length sequence data into a fixed-length vector representation 

(Sutskever et al., 2014).  

The first stage is the training process, and the primary purpose is to train the 

Seq2seq model. The collected Wikipedia Chinese corpus is used as the training 

source dataset. During the training process, the encoder will gradually read every 

symbol in the input sequence until the end. Simultaneously, to get the conditional 

probability distribution for the Chinese language, we also use the Chinese corpus 

provides target sequence data which will be used in the decoder (Cho, van 

Merrienboer, Gulcehre, et al., 2014). The decoder will read the target sequence data. 

The model will learn the probability distribution and the parameter matrix from the 

source input data to the target sequence data. Thus the whole task could be 

represented by the following mathematical expression: 

 
𝑷(𝒚𝟏, . . . . . , 𝒚𝑻�	|	𝒙𝟏, . . . . , 𝒙𝒕) 

Equation 29 

 

When the encoder reads a sentence,  it will output a context state vector c, and this 

vector will be transmitted to the decoder. The decoder reads the target sequence 

data and will determine the output of current step by predicting the next word in the 

case of a given context vector c. The following mathematical equations can express 

how to compute the hidden state ℎn in the decoder: 

 

ℎn = 𝑓(ℎnH3, 𝑦nH3, 𝑐) 
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Equation 30 

𝑃(𝑦n|𝑦nH3, 𝑦nH6, 𝑦nH4, . . . . , 𝑦3, 𝑐) 	= 	𝑔(ℎn	, 𝑦nH3, 𝑐) 
Equation 31 

Where 𝑦n is target word, and ℎnis the state vector of the current body cell and c is the 

context vector which come from the encoder. 

 

The aim is to learn the conditional probability distribution for Chinese corpus, 

thus it is desirable to set the target sequence of the decoder to be the same 

sequence as source sequence data. According to the previous work (Cho, van 

Merrienboer, Gulcehre, et al., 2014)  that they consider the context vector c to be a 

summary of the input sequence data, The trained encoder of sequence-to-sequence 

model will be employed as a feature extractor, and will provide the context vector for 

the classifier(Tang et al., 2015). 
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Chapter 4  

Data preparation and tool introduction 
 
This chapter focuses on the details of the data, including the data sources, the data 

format, the positive and negative case number, and some necessary information 

regarding the dataset. In the experiments, classification of the training dataset into 

two categories can be carried out based on the model function. The first type of 

training dataset is used in the training of seq2seq model (Sutskever et al., 2014) 

which is used to generate context vector. The second type of data is the target 

sentiment classification data which is used in the machine learning or neural network 

classifier. 

4.1 Data Analysis 

This chapter focus on our data details, including data sources, data format, positive 

and negative case number and some necessary information of dataset. In our 

experiments, we can classify the training dataset into two categories based on our 

model function. The first type of training dataset is used in the training of seq2seq 

model which used to generate context vector. The second type of data is the target 

sentiment classification data which used in the machine learning or neural network 

classifier. 

 

4.1.1 The Chinese Wikipedia Corpus 

The Chinese Wikipedia corpus is a text corpus created from the Chinese internet 

encyclopaedia Wikipedia in 2012. For the building corpus was used Wikipedia dump. 

The corpus was segmented by Stanford Chinese segmenter. Figure 14 shows an 

unprocessed example of the Chinese Wikipedia corpus. The unprocessed corpus 

contains a large number of useless data, such as HTML code.  
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Figure 14 A unprocessed Chinese Wikipedia corpus 

 

In order to obtain a useful Chinese corpus, it is necessary to do several steps: 

1.Extract useful Chinese articles from the original corpus. Therefore, the 

HTML code and English words must be removed; 

2.Chinese has two word styles: Chinese traditional Chinese and simplified 

Chinese. All of words in traditional Chinese should be convert to simplified Chinese; 

3.The Stanford segmenter should separate all the words in the sentence 

using the delimiter ‘space’;  

 

Finally, it is possible to obtain a cleaned Chinese corpus as shown in figure 15 

which can then be used to train the sequence-to-sequence model. 

 

 
Figure 15 A sample of the cleaned Chinese Wikipedia corpus 
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4.1.2 Sentiment Corpus: Movie Review Analysis 

To obtain suitable training data of for sentiment classification, this can be mainly 

sourced from several categories: the first category is review data of products; the 

second type is the short articles posted on the social networks; the third category is 

the comment and evaluation of film and music (Pang & Lee, 2008).  

The reviews of products are primarily posted on e-commerce sites, such as 

Amazon.cn, taobao.com.  After consumers have purchased products online, they will 

give a comprehensive evaluation of the goods based on their satisfaction, in terms 

such as the performance of the commodity, its appearance, and any other aspects. 

At the same time, each consumer will manually evaluate the product from one star to 

five stars. 

The second category data mainly comes from twitter.com and microblogging 

content. There is a previous work released a large scale Chinese short text 

summarisation dataset which consists of over two datasets constructed from the 

Chinese microblogging website Sina Weibo (Hu, Chen, & Zhu, 2015). 

The third category of evaluation data is the most popular corpora in the 

sentiment analysis task, IMDB. However, it is challenging to obtain an extensive text 

summarisation dataset about film and music in Chinese. Thus eleven different types 

of film comment data which has been labelled was collected by using a web crawler 

tool.   

 

 
Figure 16 Top 10 popular movie type and numbers of different types in the corpus 
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Only reviews were selected that have rating scores or rating stars, leading to a 

collection of 322943 valid reviews in total. The distribution of reviews about the 

movie genre type is given in figure 16, with comedy films having the greatest number 

of reviews and action being close behind it. The category other collates the 

remaining reviews. The average length of each comment was 20.53 words. In 

addition, it is necessary to convert our reviews' label from rating scores or rating 

stars into one of three categories: positive, neutral and negative. 

In the classification task, the sentiment prediction is usually treated as a 

binary classification and 0 and 1 are used to represent the positive and negative 

cases respectively. As the figure 17 shows, the collected sentiment corpus has five 

levels which is same with Amazon and taobao.com rating system. A single star 

corresponds to the worst level, and five stars is the best level. The sentiment degree 

of reviews is positively correlated with the number of stars. However, it is evident that 

the number of reviews which are tagged as four stars is much bigger than the others. 

The differing number of reviews for each star level does create an imbalanced data 

problem.  

 
Figure 17 The percentage of different rating stars present in the dataset 

 

Imbalanced data refers to the problem that the number of different classes is not 

equal in the training datasets of classification (Batista, Prati, & Monard, 2004). This 

frequently occurs in classification problems. For example, if there was an attempt to 

train a classifier to predict the gender of student, the training set would be judged to 

be an imbalanced data in the situation where the training dataset contains attributes 

for one hundred males and ten females. It will most likely result in the majority of 
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testing data trials predicting the gender to be male rather than female. To avoid the 

imbalanced data problem, an equal number of training cases and test cases are 

randomly chosen from the different classes available 

At the same time, according to the sentiment categorization of different star 

classes and the binary classification requirement, the 3-star level reviews are divided 

into neutral, 1-star and 2-star’ reviews to become the negative training dataset, 4-

star and 5-star reviews were used to form the positive training data.  

 

 
Figure 18 Numbers of different sentiment polarities 

 

 

In our experiments, we just focused on discriminating between positive and negative. 

Thus we removed all of the reviews which belong to neutral level or 3 stars level. 

Finally, it resulted in a training dataset which included 25000 positive cases and 

25000 negative cases. In addition, the test dataset consisted of 7500 positive cases 

and 7500 negative cases. 

Through the analysis of the training dataset, minority reviews includes emoji 

expressions, such as “╥﹏╥” ( meaning to cry ) and “(=^･^=)” ( meaning to happy ). 

The majority of emoticons are made up of punctuations, and within the training 

dataset it is possible to find many emoticons of the form of  . Particularly on 

microblogging platforms, due to the input length restrictions, emoticons are 

commonly used to express the authors’ mind(Pak & Paroubek, 2010). However, 

emoticons are not of interest in relation to the text corpus and were removed. 
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4.1.3 Chinese Segmentation 

Within NLP, the treatment for Chinese and English is quite different. In English, 

people usually use space as the delimiter for the separation between words. 

However, in Chinese, there is no space or other delimiters to separate words. 

Furthermore, the primary unit in English is 26 letters, while the underlying unit in 

Chinese is the character, of which there are thousands. For example, in the 

sequence data:  

 

“Semantic analysis is the key area in NLP.” 
 

The basic unit is letters, and every word in this sentence consists of some English 

letters. Translating this sentence into Chinese, it becomes  

 

“语义分析是 NLP中的关键领域。” 

 

It is obvious that there is no space between words, and the basic unit is Chinese 

characters. A word with meaning usually has two or more characters in Chinese. For 

instance, it is meaningless if we just capture a Chinese character from the above 

sentence “语”. However, if “语” and “义” are combined together, then they mean a 

word “semantic”. Therefore, segmentation is acting an essential role in NLP tasks for 

Chinese. 

 Segmentation is used to divide a string into different level of units, such as 

words (Lafferty, McCallum, & Pereira, 2001), or topics (Reynar, 1998). Due to the 

primary unit of Chinese being characters, and the fact that there is no delimiter 

between the Chinese words, so words are segment based on the understanding of 

the entire sentence or on the availability of specific context information. For example, 

considering the character sequence, ‘这个苹果不大好吃。’ this sentence is easily 

misinterpreted if the segmentation is incorrect. This sentence has two different word 
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segmentation strategies that would produce opposite meanings. The first 

segmentation strategy is “这个 / 苹果 / 不大好吃。” (This apple is not delicious.). On 

the contrary, if we combine ‘不大’ with ‘苹果’, then we will get an opposite meaning 

sentence, that ‘这个 / 苹果不大 / 好吃。’ (This apple is not big, and it is delicious.). 

Generally speaking, the different combination of Chinese characters has different 

meanings, so incorrect word segmentation will have a significant impact on our 

model’s performance. 

  Currently, the favoured segmentation tool for Chinese are Stanford 

segmenter (Chang, Galley, & Manning, 2008) (Tseng et al., 2005), Jieba segmenter 

and so on. According to different approaches, the segmentation algorithms can be 

divided into two categories. The first class is the segmenter based on the lexicon-

based Max-Match approach, such as jieba segmenter. The basic idea behind this 

tool is it constructs a prefix dictionary structure, and then it searches all possible 

word combinations. The second type used the conditional random field sequence 

model (CRF) (Lafferty et al., 2001) to do the segmentation, like Stanford segmenter 

for Chinese (Tseng et al., 2005) (Chang et al., 2008). The CRF model is widely used 

in machine learning and is applied for sequence data prediction that it predicts 

sequences of labels for input sequences data.  

 Some experiments proved the Stanford segmenter has a stronger ability to 

deal with Chinese out-of-vocabulary words and has a higher accuracy than the 

lexicon-based approach (Chang et al., 2008). According to the comparison and the 

feature of Chinese that the different words segmentation strategies lead to 

ambiguous, we used Stanford segmenter to assist us to do the segmentation task. 

   

4.2 Deep learning tool 

In this section, the tools, including the libraries and platform used in our experiments 

are introduced. In the corpora collection phase a web-crawler was constructed using 

the python language to get the latest corpus data. Then, a regular expression 

approach was employed to collect and filter the information so that it retained all the 

relevant Chinese content, such as movie names, movie reviews and evaluation 

levels, that is, the number of stars. In the training phase for the RNN-encoder model, 

the Seq2seq model was implemented using the Tensorflow library (“TensorFlow,”). 
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Then we used the Scikit-learn toolkit (“scikit-learn: machine learning in Python — 

scikit-learn 0.19.1 documentation,” 2017) to help us build and train our classifier. 

4.2.1 Web crawler 

A web crawler is a tool which can be used to obtain the webpage content from the 

World Wide Web. It generally used in conjunction with a search engine to grab web 

pages. The web crawler starts with one or more initial web pages, then it can 

automatically detect other URLs (also known as seeds) which appear on the initial 

webpage and push these into a URL queue (also known as the HTML frontier) so 

that the web crawler can visit each URL in the queue one by one. The web crawler 

will repeat the above process until it meets the collection requirements (Shestakov, 

2013). In these experiments, a topical topical crawler was build which focuses on a 

specific topic in the movie domain. The working principle of Web crawler can be 

seen in figure 19. 

  

 
Figure 19 A web-crawler workflow 

During our collecting progress, we used the Urllib2 library was used to help fetch the 

target page content, which returned the raw HTML contents which included the 

movie detail and the users’ review information. Urllib2 offers many convenient 

functions, such as ‘request’ and ‘urlopen’. If it is required to grab some data from a 

webpage, then a query to the server must be constructed. Additionally, to avoid 

blocking by anti-web-crawler systems, it is possible to include headers that act to 

fake the request to make it seem as an ordinary visitor. Then the ‘urlopen’ function 
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html fronter

Judge whether the 
fronter is empty?

No
Read the URL and 
fetch the content 
from the webpage

Parse the fetched 
html content and 

detect the relative 
hyperlink or URL.

Add the new URL or 
hyperlink into the 

fronter

Judge whether the 
fronter is empty?

Yes

Stop
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can be opened to receive the response of the HTML content of the target page from 

the server. Finally, a regular expression –based approach is required to extract and 

clean the HTML raw content. 

 

4.2.2 Machine learning and deep learning libraries 

The machine learning tool which used to build the SVM classifier was discussed 

already in Section 2. Next, some essential functions of the Scikit-learn toolkit (“scikit-

learn: machine learning in Python — scikit-learn 0.19.1 documentation,” n.d.) will be 

briefly. Then we will briefly introduce the Tensorflow. Moreover, an example 

describing how to build a recurrent neural network using Keras (“Keras 

Documentation,”). 

 

 

4.2.2.1 Scikit-learn toolkit, Tensorflow and Keras  

Chapter 2 introduced the SVM model. Following on from this an overview of the 

Scikit-learn toolkit is given now. Due to the fact that python is open source, 

possesses extensive libraries and is relatively straightforward to use, the Scikit-learn 

library was chosen as the primary tool to make a Support Vector Machine model. It 

features many machine learning algorithms, such as regression, clustering and 

classification, including SVM. 

When developers try to build a classifier to predict the target label of data 

based on SVM, Scikit-learn provides three different SVM classes for various tasks, 

Support Vector Classification (SVC), Nu-Support Vector Classification (Nu-SVC) and 

Linear Support Vector Classification (LinearSVC). The most common type of SVM 

class in the Scikit-learn should be the SVC, it is based on the standard SVM 

algorithm and various parameters can be set to optimize the use of the algorithm. 

The Nu-SVC is similar to the SVC class, except for a slight difference which is that 

the Nu-SVC uses a parameter to control the number of support vectors. In fact, the 

parameter ‘nu’ represents an upper bound on the fraction of training errors and a 

lower bound on the fraction of supports(“scikit-learn: machine learning in Python — 

scikit-learn 0.19.1 documentation,”). 
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The most obvious difference between LinearSVC and SVC is that the 

LinearSVC’s kernel function has been fixed as ‘linear’. This means that you can not 

change its kernel to another. 

The Scikit-learn library not only contains many classical machine learning 

algorithms, but also provides lots of components which usually appear in machine 

learning tasks, such as the estimator, the pipeline, preprocessing, and feature 

extraction. A quick overview of the  functions of some core components is: 

1.Estimator: the estimator class is the fundamental class for all classifiers. It 

mainly contains two functions: fit(), and predict(). The fit() function is used to train the 

algorithm, and predict() is responsible for predicting the test data based on the 

trained algorithm. 

2.Pipeline: the purpose of the pipeline is to record the progress and to 

compare performances which were made by using different parameters. 

3.Preprocessing package: this package offers some useful classes, like one-

hot encoder, label encoder (which is used to convert the label to a numerical value), 

normalizer and so on.   

4.Feature_extraction package: This package is a collection of methods used 

to extract the features from data.  For example, the function text.TfidfVectorizer is 

used to generate a TF-IDF representation as an alternative to the original count 

feature matrix. 

 

Some deep learning tools can also be mentioned, Tensorflow and Keras are the 

popular deep learning libraries used for the construction of deep neural networks. 

The Tensorflow library allows developers to create various deep neural network 

structures by using data flow graphs. Data flow graph is the core of tensorflow, every 

node in the data flow graph is a computation operation, and the responsibility of the 

line which connects two nodes is describing the relationship between two nodes.  

The Tensorflow construction process can be divided into two steps: firstly 

users need to build the framework for objects of a deep neural network model. Then 

users start with creating a session and pushing the data into the framework. The 

model visualization that is a feature of TensorBoard allows users to check the 

framework of their deep neural network. Furthermore, TensorBoard not only offers a 

model visualization function, but also can record every step during the training 

progress. In fact, if developers want to determine the DNN’s parameters, they 
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usually need to observe the updating of parameters throughout the training progress. 

TensorBoard can generate many diagrams to show the data changes, an example is 

provided in figure 20. 

 

 
Figure 20 TensorBoard(“TensorFlow,” 2017) 

 

When developers are training a model on Tensorflow, some summary data can be 

generated. The summary data is stored in an event file which is read by 

Tensorboard. Here, model visualization can effectively help the developers to check 

their model and correct the parameters. It is worthwhile doing this as it can 

dramatically improve the efficiency and accuracy of the development. In next 

chapter, it will be shown how Tensorflow is used as the primary tool for the context 

encoder development for the RNNs, and also how it is used to convert the input 

sequence of testing data into a context vector.   

 

The act that model visualization and training data can be recorded are two of 

the advantages of Tensorflow. At the same time, another significant advantage of 

Tensorflow is that it allows developers to use GPUs to speed up the algorithm 

training and additionally, it supports distributed training. However, even though 

Tensorflow has many advantages, it also has some weakness. Tensorflow is based 

on the python language, so it is easy to learn. However, the various module calls in 

Tensorflow are very complicated, especially as regards the parameter setting for the 
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connections between different modules. Due to Tensorflow version updating, 

experiment code always need to be rewritten as a result of API adjustment. 

To improve the speed of our experiments, Keras is a helpful library to 

establish our deep neural network and MLP. Keras is a python-based deep neural 

network library that uses Tensorflow as the backend. It also allows users to change 

the backend to other DNN libraries, such as Theano. User-friendliness is the 

fundamental principle for Keras framework design. Keras offers a very simple and 

convenient APIs. Users just need to set the parameters for the modules when they 

try to call some functions. Moreover, it can directly give feedback about the 

algorithm, and show both the loss value and accuracy data to users. Tensorflow 

requires users to treat every computation step as an operation node in the data flow 

structure. Sometimes, it will be very complicated for users to confirm the correction 

of every step with lots of parameters.  

On the contrary, Keras’s modularity solves this problem for users, and users 

can consider every model as a separate block. All of the modules can be freely 

combined, and users can create some new models based on the foundational 

modules. For example, if users try to create a hidden layer with LSTM, they just need 

to declare a ‘sequential model’ and then use the ‘add’ function to put the LSTM into 

the model structure, and finally just need to specify the ‘number’ of LSTM units. This 

modularity dramatically reduces the user’s workload. 

By way of an illustration, a classical classification problem is shown that 

MNIST classification also uses introduce the convenience of Keras. MNIST is a 

handwritten digital dataset, usually used to test the image processing system, and 

also widely used to train and to test in the field of machine learning. The MNIST 

dataset can be directly imported from the Keras dataset, which has divided into a 

training dataset and a testing dataset. Every dataset contains two types data: one is 

the handwritten image as figure 21. 
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Figure 21 MNIST handwritten images 

 

Each handwritten image has 28 x 28 pixel. Another one is the label corresponding to 

the handwritten image from 0 to 9.  

The entire process can be divided into four steps:  

1. In the first step, the dataset needs to be preprocessed.   

2. The next step is defining and declaring the layers of the model, and setting 

the various parameters of the algorithm.  

3. In the third step, the model will be compiled and trained.  

4. The final step is the model evaluation.  

For this example, this means that firstly, the handwritten images need to be 

reshaped to a 784x1 vector and use the ‘to_categorical’ function in the ‘np_utils’ 

class which is provided by Keras to encode data labels. In practise, the label is 

encoded to a binary vector that it is suited for the prediction. This encoding method is 

similar to the “one-hot” representation which was described in the Chapter 2. Note 

that because the labels have ten values from 0 to 9, these will be encoded to a 

vector whose length is ten, and the element position in the vector is used to 

represent the label value. So ‘6’ will be encoded as [0000001000] for example. 

Secondly, the model should be defined, and then declared to be a sequential 

model because it is required to construct a feedforward neural network with a hidden 

layer which contains 128 cells. According to the structure of the MLP, this means 

adding an input layer, a hidden layer and the softmax function which is used to do 

the multi-class classification. The detail of function and parameters as are shown in 

figure 22. 
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Figure 22 An example of Keras 

From figure 22, the input layer is first declared, and the parameters with the values 

as shown. The ‘Input dimension’ parameter corresponds to the converted image 

vector which is 784 x 1 in size. A dropout layer is included to avoid overfitting 

problems (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). To 

promote the model accuracy, a hidden layer with 128 cells is added before the 

output layer. Moreover, because there are ten category labels in the corpus, the 

output layer also needs to emit a vector of length ten, where each element in the 

vector corresponds to the labels from 0 to 9 respectively. For the binary 

classification, the sigmoid function is widely used by developers. In the multiclass 

classification problem, softmax always is the first choice for developers (In output 

layer). Finally, the performance of the multiclass classification achieved 98.15% 

accuracy.   

Through the above description, we review the tools and libraries used in the 

experiment. Then we will introduce the experimental content. 

Input layer

• Funcation name:Dense(256, activation='relu',input_dim = 784)
• Input dimension: 784
• Dense cell number: 256
• Activation = 'relu'

Dropout

• Function name: Dropout(0.25)
• Rate= 0.25

Hidden 
Layer

• Function name: Dense(128)
• Unit number: 128
• activation:'relu'

Dropout

• Function name: Dropout(0.25)
• Rate= 0.25

Dense

• Function name: Dense
• Dense cell number = 10
• Activation = softmax

Compile

• Optimizer: 'rmsprop'
• Loss: 'categorical_crossentropy'
• Metrics:[accuracy]

Fit

• Function name: sequential().fit()
• Input data: x_train, y_train
• Parameters: nb_epoch=10

Evaluation

• Function name: sequential().evaluate()
• Input data: x_test, y_test
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Chapter 5  

Experiment 
 
This Chapter explains the experiments that were performed to better understand the 

performance of the word vector and the context vector representations on different 

models and different languages for sentiment analysis. The experimental design is 

first explained followed by their implementations. The results obtained are then 

analysed followed by a discussion. 

5.1 Experimental Setting 

In this section, we give the details of the experimental setting, including experimental 

purposes and evaluation standards. 

5.1.1 Purpose of Experiment 

The experiments were divided into three subtasks: 

Subtask 1: For sentiment analysis in this stage, the IMDB dataset (Maas et 

al., 2011) was used along with Chinese IMDB (CIMDB) dataset. The IMDB datasets 

consist of 25000 movies reviews, and they had been labelled by the users. Each 

word in the reviews was encoded and replaced by word indexes in vocabulary. A 

LTSM recurrent neural networks model was constructed by using the Keras library 

for sequence classification.  The behavior of the model was compared for the two 

different language corpora. 

Subtask 2: As mentioned earlier previous work used the word embedding with 

SVM classifier to classify the sentiment polarity of Chinese comments (D. Zhang et 

al., 2015). A similar experiment was conducted to evaluate the performance of the 

word2vec model with SVM using the corpus CIMDB as input. In addition, it used the 

mapped word vectors which were converted by the word2vec model so that they 

could be input to the MLP classifier. 

Subtask 3: In the first subtasks, the investigation was directed towards the 

difference between Chinese corpus and English corpus for the same type reviews. In 

this subtask, the proposed context vector encoder is used to map every sentence in 
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reviews to a fixed length vector. Different types of classifiers are compared to 

determine which type of classifier suits for use with context vectors. Then, among 

those classifies it seeks to find which of them achieves the best performance. 

A summary of experiments in terms of the models examined and the input 

corpora is shown in table 4: 

Models Corpus 

LSTM CIMDB & IMDB 

Word2vec + SVM CIMDB 

Word2vec + MLP CIMDB 

LSTM-RNN Encoder + SVM CIMDB 

LSTM-RNN Encoder + MLP CIMDB 

LSTM-RNN Encoder + LSTM CIMDB 
Table 4 Summary of the experiments carried out 

 

5.1.2 Evaluation Metrics 

To better evaluate the performance of the models, the Recall, Precision and other 

measurement standards are used in the evaluation process. In order to understand 

the advantages and disadvantages of each of the models, the evaluation metrics 

which were provided by Seki (Seki et al., 2007) in NTCIR-6 are used. 

The NTCIR is the National Institute of Informatics Test Collection for Information 

Retrieval Systems. The opinion analysis task was first featured in papers given at the 

NTCIR-5 workshop in 2005. It was served as a pilot-task at NTCIR-6 and NTCIR-7 

(Pang & Lee, 2008). Through this system, the investigation into the different opinion 

extraction sub-tasks resulted in a set of useful evaluation metrics. Thus, the Recall, 

Precision, and the F-measure were found to be the best metrics for the polarity 

classification (Seki et al., 2007). The error rate is another popular metric (Bespalov, 

Bai, Qi, & Shokoufandeh, 2011). 

On the other hand, sentiment classification or polarity classification also can be 

considered as a text classification task, so the Accuracy metric should be the most 

intuitive evaluation criterion. Further, Our evaluation system used these five metrics 

and implements them using formulas as given (Sebastiani & Fabrizio, 2002)’s work. 
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As introduced in the work of (Sebastiani & Fabrizio, 2002), a binary classification 

produces four prediction results: true positive, false positive, true negative and false 

negative. They are usually denoted as TP, FP, TN and FN:  

TP means true positive that the number of correct positive prediction;  

FP means false positive that the number of incorrect positive prediction;  

TN indicates true negative that the number of correct negative prediction; 

FN means false negative that incorrect negative prediction. 

Table 5 illustrates the logical relationships between these four measures as a 

confusion matrix (Sebastiani & Fabrizio, 2002). 

 

Actual Label Prediction 

True False 

True TP FN 

False FP TN 
Table 5 Confusion matrix for binary classifier 

Like previous work, we use Accuracy, Precision, Recall, Error rate and F-measure as 

the experimental measures (D. Zhang et al., 2015). 

 
1. Accuracy：the accuracy is the most common evaluation standard, which directly 

reflects the model prediction results. In the test dataset, the accuracy is equal to the 

number of correct prediction divided by the number of entire test data.  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +�𝑁
𝑃	 + 𝑁  

	=
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

Equation 32 

Where 𝑃 indicates the number of positive cases in a test set, 𝑁 means the 

number of negative cases in a test set. 

 
2. Precision: precision is the proportion of the correct positive predictions in all of the 

positive predictions. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃	 + 𝐹𝑃 

Equation 33 

3. Recall: Recall is computed as the number of correct positive predictions divided by 

the all of the positive cases numbers in test data 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

Equation 34 

4. Error rate: Error rate is computed as the number of all incorrect predictions divided by 

the total number of the dataset. 

 

𝐸𝑟𝑟𝑜𝑟	𝑟𝑎𝑡𝑒 =
𝐹𝑃 + 𝐹𝑁
𝑃 +𝑁  

Equation 35 

 
5. F-Measure: Sometimes, the previous criteria are conflicting, result in the inability to 

measure the performance of a model accurately. Thus the f-measure is a balanced 

measure which performs a weighted average of precision and recall values: 

 

𝐹1 =
2	 × 	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 × 	𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙  

Equation 36 

5.2 Experimental protocols  

The detail of experimental protocols is discussed in this section, including parameter 

values of models, model structures and the data workflow.  

5.2.1 Task 1 

In this experiment, the LSTM model is implemented using the Keras library to 

classify the sentiment class on both the English and Chinese IMDB corpora and 

compare the results. The parameters of the model first need to be set according to 

the corpus data. Considering the more efficient extraction of valid feature words, the 

words whose frequency was less than 3 were ignored and the term ‘UNK’ was used 
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to represent them as unknown instead. During the investigation, there were 60034 

words which appeared with a frequency of two or greater in the corpus. Thus a 

vocabulary was created with size 60034 which contained 60034 words with the 

highest number of occurrences. Figure 23 shows an overview of the LSTM model 

structure implemented by Keras. 

 

 

 

It was necessary to take into account the issue that the length of each sentence in 

the corpus is not the same. The pad function was used to extend all sentences to a 

fixed length, and so the input data dimensionality was set to be 300 as can be seen 

in Figure 23. The input layer converts the input data to be a fixed length feature 

vector by lexicon. Then, the processed input vector is transmitted to a dropout layer 

which prevents the model from overfitting as mentioned in the previous chapter 

(Srivastava et al., 2014). The hidden layer in the model consists of 100 LSTM 

neurons. After the hidden layer here, the data enters into a sigmoid function. After 

completing the definition of all the modules, the compile function is passed the 

optimizer type being used and also the accuracy metrics which will be collected 

during the model training are set. 

 

Input
layer

• Input data shape: 300

Hidden layer

• neuron number: 100
• LSTM

Dropout 
layer

• Rate: 0.2

Dense layer
• Activation: sigmoid

Compile

• Optimizer: adam
• Return: accuracy

Figure 23 A LSTM neural network work structure 
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5.2.2 Task 2 

In this subtask, experiments are conducted to investigate the performance of the 

word2vec model that is used to maps the words from the reviews to a vector space. 

Then we input the word vector data to the SVM or the MLP to classify the sentiment 

polarity of the comment texts, such as if it belongs to a positive class or negative 

class. Figure 24 shows the framework of this experiment set. 

 

 

   

 

 

 

 

 

 

 

 

 

 
In the previous chapter it was explained that an extra step of word segmentation 

needs to be carried out when processing Chinese data. Thus, the Stanford 

segmenter was applied to convert the review strings in the training corpus into 

words. Then, the experiment protocol of (Mikolov, Sutskever, et al., 2013) and (D. 

Zhang et al., 2015) were followed to learn the word vector and map the words into 

the word vector space. The Tensorflow Deep learning library was then used to 

analyse this data and create a display of the similarity among the words contained in 

the vector space. The parameters used in the word2vec model are given in table 6. 

 

 

CIMDB Word2vec Word Vector 

Selected 
Reviews 

 

Word2vec Word Vector 

SVM 

MLP 

Figure 24 The structure of word2vec and SVM 
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Parameters Value 
Training strategy Skip gram 

Training batch size 128 

Embedding size 200 

Skip window 2 

Optimizer Stochastic gradient descent 
Table 6 the detail of the word2vec model 

 
The word2vec model learns to map the word to a word vector space and generates a 

vector with a fixed length of 200 for each word. These word vectors are stored in a 

memory space that will be used in the next step. Next step, the trained word2vec 

model uses the stored vector to convert each of word in reviews. Since the average 

words number of reviews is 20.53, and each word is represented by a vector belongs 

to ℛ6==×3. Thus we compute all the words in the reviews with the mean approach. 

The i-th word’s vector is denote by 𝑣M, and each review’s vector is represented by 𝑆[ 

where j is the j-th review in the corpus. The expression as follows: 

 

𝑆[ = 	X(𝑣M)
Q

�Z=

 

Equation 37 

Where n is the number of words in the review. 

 

After completing the vector transformation of the reviews in the CIMDB, it is 

necessary to construct the classifier models. Here, different tools, as described in 

Chapter 4, are used to build the classifier model. The Scikit-learn library is utilized to 

build the SVM model, and the Keras library is used to build the framework of MLP. 

 

The review vector which has just been converted is ready for input to the SVM 

model. However, before starting the classification it needs to be determined whether 
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the data is linearly separable, as this impacts the choice of SVM model. By plotting 

the output of Word2Vec as shown in Figure 25 it can be surmised that the type of the 

data is non-linear separable. Thus the linear-SVC model of Scikit-learn can be 

excluded and the kernel function of SVC is set to be the ‘RBF’ kernel function. 

 
Figure 25 Word2vec illustrated by 2D image shows the distribution of Chinese words. For example, the digitals 

cluster together, and the highest frequency English words cluster together at the bottom of the figure.  
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5.2.3 Task 3 

For the third subtask, the experiment is divided into two parts: 

1. A context encoder is created and is trained using the CIMDB based on the 

sequence to sequence model (Sutskever et al., 2014). Then, the trained context 

encoder is used to convert the review comments in the CIMDB into vectors of length 

300. If a review includes more than one sentence, it is possible to just use the 

average of the whole review using the mean approach to build the vector. 

2. Then three types of classifiers are built and are utilized to classify the 

reviews in the CIMDB. Finally, the performance of different classifiers is measured 

by the measures of Accuracy, Precision, Recall, and the F-Measure detailed in 

Section 5.1.2 

 

5.3 Experiment results and analysis. 

In table 6, the result are shown for a feed-forward neural network with LSTM applied 

to the different language corpuses. Note that the CIMDB is we collected movie 

review corpus in Chinese, and the IMDB is the movie review in English (Maas et al., 

2011).  

In the experiment, 25000 reviews were randomly extracted from the IMDB 

and CIMDB respectively as the training set, and another 25000 reviews were 

randomly extracted as the test set. The experimental parameter values setting were 

described in section 5.2.1, and the training epoch was set to 3. For this experiment, 

the accuracy measure is used to evaluated the performance. 

From the experimental results, the accuracy of Chinese corpus CIMDB is 

69.99%, and the accuracy of English corpus IMDB is 85.99%. From the comparison 

it can be seen that the same model using different language corpus will return a 

significantly different value for the accuracy. It could be suggested that the 

performance difference is attributable to the greater demands required for the correct 

segmentation of the Chinese language. 

 

Model Corpus Accuracy 

Long-short-term memory IMDB 85.99% 
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Long-short-term memory CIMDB 69.99% 
Table 7 Accuracy of different corpus for binary classification using LSTM 

 

 

 

Following this, the word2vec model was used to implement the word embedding for 

Chinese corpus CIMDB.  

 

Model Accuracy Precision Error Recall F1 
Word2vec + SVM 72.64 68.05 27.36 83.34 74.92 

Word2vec + MLP 75.61 72.07 25.12 81.22 76.39 
Table 8 Evaluation of different models using CIMDB corpus 

From the table 8, it can be observed that Word2vec with SVM classifier and 

Word2vec with MLP classifier have very similar results across all measures for the 

task of binary classification. For example, Word2vec with SVM classifier achieved an 

accuracy of 71.74% and Word2vec with MLP classifier achieved an accuracy of 

75.61%.  From the evaluation of F1, the performance of SVM and MLP are not much 

different, only disagreeing by less than 1.5 units. 

 Comparing the LSTM and SVM classifiers, their performance in the task of 

binary classification for Chinese corpus is improved from 69.99% shown in Table 6 

to 75.61% from Table 8. The results from both Tables illustrate that the Word2vec 

model can help improve the performance of CIMDB classification without having to 

borrowing any sentiment lexicons or manual rules.  

 

Model Accuracy Precision Error Recall F1 
Context-

encoder + 
SVM 

65.89 59.37 34.11 75.34 66.40 

Context-
encoder + 

MLP 
64.42 58.41 35.60 72.32 64.62 

Context-
encoder + 

LSTM 
54.87 53.48 45.12 74.82 62.37 

Table 9 Evaluation of different classifier based on context2vec 
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Table 9 shows the results of context2vec with different classifiers. In general, 

context2vec did not achieve what was hoped for. The average accuracy of three 

classifiers is 61.72%. Thus, their performance is lower than word2vec with SVM and 

MLP by a factor of 12%. The results clearly show that worst of all is LSTM so it can 

be concluded that it is not best to combine it with the context2vec embedding model. 

However, using it with SVM and MLP shows an better performance by approximately 

10% in both cases. Overall, the measures for Context2Vec with SMV and MLP show 

very similar values. 

 

 

 

 

 

 

 
 
 
 
 
 
  



 

 73 

Chapter 6  

Conclusion and Future Work 
 

In this chapter, we highlight the contributions that have been made in this 

dissertation and discuss topics that merit exploration in future work. 

 

To summarise the outcome of the experiments, first of all it can be said that 

the three goals were successfully achieved. In the first experiment, the LSTM neural 

network was applied to classify different corpora. It was demonstrated that there is a 

16% difference in the sentiment classification accuracy between Chinese corpora 

and English corpora. We consider the main reason is that the Chinese corpus 

classification introduces difficulty because of the additional task of word 

segmentation. In the second experiment, we employed the word2vec model with the 

different classifiers, SVM and MLP. The result showed that in this problem domain 

different types of classifier don’t impact on the performance of word2vec model. 

Moreover, compared the experiment 1 that using LSTM classifier without word 

embedding and the experiment 2 that using word2vec model, the accuracy of 

models for sentiment classification has been significantly improved by use of 

word2vec model. The final experiment is used to verify whether the combination of 

the context2vec with different classifiers can produce good results. Unfortunately, the 

result showed that our proposed context vector representation for the sequence text 

does not achieve a good performance when used with any of the three classifiers 

investigated.      

 

Finally, we have proved three conclusions through experiments: 

1.   The type of language in the case of the Chinese or the English corpora 

will exhibit a significant impact on the performance for the task of sentiment 

classification. According on the comparison of experimental process between two 

corpus in experiment 1, the main factor affecting the classification accuracy could be 

the word segmentation required for the Chinese word data.  
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2.    The accuracy comparison between experiment 1 and experiment 2, it can 

be seen that using the word2vec model can significantly improve the performance for 

the Chinese language corpus. 

3.    Our proposed hypothesis that context vector can be used to improve the 

accuracy of prediction for classification did not achieve the desired result. However, 

it still has room for improvement. In the future work, the character-level model (J. Lee 

et al., 2016) will be applied to deal the Chinese corpus, thus we can ignores the 

affection of segmentation. At the same time, we will try to use the convolutional 

neural network (CNN) to classify the CIMDB. In the previous work, CNN shows it 

achieved a good performance based on the word vector (Kim, 2014). Thus, it has the 

potential to classify the context vector. 

 

In the future work, we would like apply our model to fine-grained opinion 

mining tasks. We would also like to explore the performance of our model works on 

other language corpus. Although context2vec model did not achieve the expectation, 

we believe that context vector still worth studying.  
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