HOMOTOPY CLASSES WITH SMALL JACOBIANS
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Abstract

If the infimum of the conformal k-Jacobian on the homotopy class of
a map between compact Riemannian manifolds vanishes then the map
factors rationally through the k-skeleton of the target manifold.

AMS Subject Classification: 58E15 (53C43 57D99)

1. Introduction

It follows from the Sobolev inequality that a map f: M™ — X between connected
compact Riemannian manifolds M and X, m = dim(M), is nullhomotopic if its
differential df has sufficiently small L"-norm for some r» > m. In fact, the diameter
of the image of f is bounded by diam(im(f)) < C|/df||, with some constant C'
depending only on M, X and r > m. In the conformal case r = m this simple
argument fails. A map f with arbitrary small ||df||,, can have arbitrarily large
image. But by a theorem of White [10] there is a constant € > 0 depending on
the geometries of M and X such that f is nullhomotopic if ||df|, < e.

We consider the analogous question for the Jacobian in place of the L™-norm.
For k € N and r € RT these are the functionals

1) JpC(M,X) —RE , J(f) = /M o(df)

where
o(df) = |df A . Ndf[T* = o(df*df)/*
k

and oy (df*df ) denotes the kth elementary symmetric polynomial in the eigenval-
ues of df*df. If r = m = dim(M) this functional is invariant under conformal
changes of the metric on M.

In more general framework, for functionals E: C*°(M™, X) — Ry we are in-
terested in the information on the homotopy class of f detected by the infimum

E: M™ X] - RY E(f) =1inf{E(g)lg: M — X, g~ [},
in particular in the consequences of E(f) = 0.

We write Fy >> FEj if lim, Fy(f,) = 0 implies lim,, F5(f,) = 0 for any sequence
(fu)y in C®°(M™, X). Among the Jacobians the Hélder inequality gives estimates

(2) J>>J5>> 0 >> e >> T

and J* >> J;? if ry > ry. With respect to >>, the Jacobian J{(f) is equivalent

to the L™-norm of the differential and JJ? >> vol(im f). If f is homotopic to a
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map f: M — X'"! € X into the (I — 1)-skeleton X'~ of a triangulation of X

we obviously have jl’”( f) = 0 for any r. The converse is known to hold in the
extreme cases | = 1 and [ = m of (2) if » > m. It follows from a theorem of

Pluzhnikov, [7], and White, [10], that J] depends only on the restriction of f to
the [r]-skeleton of a triangulation of M.

Let f: M™ — X be a map with J™(f) = 0. In [2] it is shown that f behaves
homologically like a map into the (I — 1)-skeleton X'~! of a triangulation of X,
i.e. induces 0 in homology of degree at least [. It is also shown there that f does
not need to be homotopic to a map into X'~'. Counterexamples produced in
[2] arise from torsion elements in the higher homotopy groups of spheres. This
suggests that f factors rationally. We prove:

Theorem 3. Let X'=! be the (I —1)-skeleton of a triangulation of X and assume
that T (X'71) = 0. Let f: M™ — X be a map with jlm(f) = 0. Then the
rationalization fo: M — Xg s homotopic to a map fo: M — X(l@_1 into the
rationalization of the (I — 1)-skeleton of X.

Remarks

(1) Theorem 3 extends a result of Riviere in [8] who showed that the Hopf
invariant of a map f: S*~1 — S% is estimated by Ji£~'. For maps
between spheres the rational homotopy type is controlled by the Hopf
invariant.

(2) For the Jacobians JJ(f) with [ > 2 and arbitrary large r one easily con-
structs surjective maps M™ — X! with j;m( f) = 0. Thus a simple argu-
ment based on a Sobolev-type inequality is not available in this case.

2. Factorization in Rational Homotopy

The proof of Theorem 3 is a computation in suitable relative Sullivan algebras,
along the lines of [5], [6] where the number of homotopy classes of maps f was
estimated by bounds on the dilatation. As before X'~! denotes the (I — 1)-
skeleton of X. We denote by Xg, Xéjl the rationalisations of X and X'~! respec-
tively. Thus we have maps X — Xg and X"™! — X(l@_1 inducing isomorphisms
H*(X,Q) = H*(Xg,Z) and H*(X'"™', Q) & H*(Xé_l,Z). We assume that X!~!
is simply connected and [ > 2. Then X is also simply connected and the above
rationalisations are unique up to homotopy.

Let Q(M), (X) and Q(X*) denote the respective algebras of differential forms.
By the functorial properties of Sullivan algebras the rationalization fp: M — Xg
is homotopic to a map F: M — X(l@_1 C X if there is a relative Sullivan algebra
S :=QUX)®4 AV ~ Q(X'!) and an extension F*: § — Q(M) of f*: Q(X) —
Q(M), see [3], [4]. We will first construct a suitable Sullivan algebra S and then
use the estimate on the Jacobian of f to define F™*.
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2.1. Construction of S

We abbreviate X := Q(X), Y := Q(X!7!) and let j: X — Y be the morphism
of commutative cochain algebras obtained by restriction. Up to homotopy we
want to replace j by a morphism j into a relative Sullivan algebra & homotopy
equivalent to Y such that the triangle

X$8:X®d/\v%y
J

commutes up to homotopy. A relative Sullivan algebra ([4]) is a commutative
cochain algebra & = X ®4 AV such that there are graded vector spaces V;, i € N,

Ve=PVi=JV@), V@) =V(i-1)aV, V(-1):=0
1>0 >0
and homomorphisms
di: Vi =8t —1) =X @4 AV(i—1)
extending to a differential d: & — S which is nilpotent in the sense that
dV(i) Cc S(1 — 1) := X ®4 AV (i — 1) where S(—1) := X .
The algebras S(q) are constructed together with morphisms m,: S(q) — Y

which are quasiisomorphisms in degrees increasing with ¢. To begin, let V' (0) <
kerd C ) be a vectorspace of cycles in ) such that V' (0) ®im Hj generates H())
as an algebra. Define
S(0) := X @ AV(0) with djyg) = 0
and
mo: X @ AV(0) 2224y

By construction mg induces an epimorphism Hmg: H(X) @ AV(0) — H()) in
homology.
Proceeding by induction in ¢, assume V' (¢) and

S(g) =X @4 AV(g) —>Y

have already been constructed such that Hm, is surjective. Let V11 C S(q) with
Vi1 = ker Hm, C H(S(q)) be a vector space of representing cycles where the
degree on Vi1 is set to be the degree inherited from of S(g) diminished by 1.
The differential d: V11 — S(q) is defined to be the inclusion V41 — S(g). The

map mgy1: Vi1 — Y is a lift of m, o d over d¥:

Hmyg

(1) ker Hm,“— HS&(q )HHE)/
y
.

Y
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Extending mg41 to AV (¢ +1) = AV @ V(g)) we obtain mg1: S(g+ 1) =
X ®4V(qg+ 1) — Y which again induces an epimorphism in homology.

2.2. Extension of f

Let f*: X = Q(X) = M = QM) and j*: X = Q(X) - Y = Q(X'1) be
the morphisms of commutative cochain algebras induced by f: M — X and
the inclusion j: X'~! < X respectively. The homomorphism induced by j in
cohomology is an isomorphism in degrees < [ — 1, injective in degree [ — 1 and 0
in degrees > [ — 1. Hence we may choose V(0) C H'"*()) such that

H(Y)=V(0) ®imHj .

The morphism m constructed as before then induces an isomorphism Hmg in
degrees < [ —1. Denote by i(q) the ideal generated by V(0) in S(g). In the
diagram (1) we may split

Vo1 = Vo @ dlig)
where V| lies in degrees > [ — 1.

We will inductively extend f* to maps f;: S(q) — M such that the f; vanish
on i(q). To this end set

ffo=r8-)=x-M
and assume that we already have constructed the extension
fe:8(q) = M

satisfying estimates

(2) ||f;w||n/r < EHWHn/r

for all w € S(q) of degree r, n > r > [ — 1. Changing f by a homotopy we can
have (2) with arbitrarily small value of e.
For any r-cycle o in M we find a homologous r-cycle ¢’ such that [, |fiw| <
a M | fyw| where C; does not depend on f; (see [10], Proposition 3.1 for instance,
or [2], proof of Theorem 3.2). If dw = 0 the Holder inequality gives an estimate

J. 4

with C5 1ndependent of f. In particular fiw is exact if dw = 0.

Thus f;(dV,,,) C dM. Let {w;}; be a basis for V. We define f7,, on
Vg+1 by liftmg J;- More precisely, choose for each w; some a; € M satisfying
doy = f(dw;) and the estimate (4) of the following Lemma 3. Define f, [y := 0

and fr(w;) == aj.

< GCilfjwlly < CL1Goll frwllngr < CLCs¢||w ]|y

Lemma 3. Let M be a compact n-dimensional Riemannian manifold and denote
by ||- ||, the LP-norm of differential forms given by the Riemannian metric. There
is a constant C' € R depending on M (but not on ) such that for each exact r-
form B € Q" (M), B € dQ (M) there is a € Q"1 (M) with

(4) ﬁ = da and ||Oé||n/(r_1) S CHB”n/r .
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Proof: From the Hodge decomposition
Q(M) =ker A @ imd @ imd*

the Laplacian A is invertible on imd @ im d*. Let « := d*A~!3. Clearly da = (.
Extending the operator A~ on im d®im d* by 0 to all of Q" (M) yields a bounded
operator LP = W% — W?2P into the Sobolev space W2P, [9]. Also d*: WP —
WP is bounded, [1]. From the Sobelev-embedding ¢: W C L™/("=P) we infer
that

[elnp/n—p) < ClIBIp
where C' := |v d*A™Yp is the operator norm. With p = n/r, np/(n —p) =
n/(r — 1) the assertion follows. o
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