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Abstract

An issue of major concern in the design of long wavelength systems is optical aberration or distortion, which can be particularly severe
in off-axis systems. Aberrations occur in both lenses and mirrors and in this paper we present a novel method capable of modelling off-
axis mirror configurations. Aberrations degrade fundamental receiver coupling coefficients such as aperture efficiency while increasing
spillover power losses. For single pixel instruments this will lead to much longer integration times and the possibility of stray light.
For imaging arrays the aberrations cause a departure from perfect point imaging by increasing coupling to array detectors located at
angles further off the bore sight of the telescope. This paper verifies a matrix-based scheme using Gaussian beam mode analysis (GBMA)
for predicting aberrations from off-axis mirrors. The applied technique was originally described in (S. Withington, A. Murphy, G. Isaak,
Representation of mirrors in beam waveguides as inclined phase transforming surfaces, Infrared Phys. Tech. 36(3) (1995) 723–734. [1])
and in this paper we exploit the theory and validate the approach with a series of examples using off-axis conic sections. We present the
predictions for both a fundamental Gaussian and a scalar horn field illuminating various off-axis mirror configurations including differ-
ent angles of incidence. A commercially available physical optics (PO) software package, GRASP8TM, is used to validate the accuracy of
these scalar GBMA predictions.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In [1] a comprehensive derivation of the theoretical
approach is outlined without subsequent application of
the technique to submillimetre optical systems due to the
limited computational resources available at the time of
writing. In this paper we summarise the method and apply
the technique to a number of relevant examples where both
phase and amplitude distortion are important and illustrate
the accuracy of the technique. The approach is based on
treating the off-axis mirror as an inclined phase transform-
1350-4495/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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ing surface which is considered to be the aberrating thin
lens equivalent of the mirror (i.e. the systems are consid-
ered physically to be in transmission rather than in reflec-
tion). The scatter matrix technique determines the power
scattered from a propagating mode set incident on the
input side of the inclined surface to a mode set on the out-
put side of the surface which may then be propagated to
any desired plane where the aberrated field may be recon-
structed. The scattering matrix is evaluated by considering
the diffractive spreading of the beam within the volume of
the mirror. This manifests itself as a variation of the beam
width and phase radius curvature of the beam across the
mirror surface related to the depth of the mirror as a func-
tion of position. In general GBMA ignores this variation
since the surface is considered to be normal to the
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propagating beam and thus there is only one representative
beam width at any plane. The matrix is determined by the
overlap integral between the input and output mode sets
which are characterised by GBM parameters.

The fact that the input and output mode sets are not
orthogonal over the mirror surface must also be included
in the inclined phase transforming surface technique. Any
GBM calculation is only valid for such mode sets. In the
approach adopted in this paper the input and output
planes are tilted relative to each other and thus a further
scattering matrix must be evaluated to correct for this
incomplete description. The matrix is determined by an
appropriate overlap integral between the input and output
mode sets described below. By combining the two scatter-
ing matrices accounting for the mirror shape and the
non-orthogonality of the modes a final matrix can be deter-
mined which fully describes the aberrating properties of the
off-axis mirror within the limitations of this paraxial, scalar
approach. The shapes of the conic surfaces are described by
a series of geometrical relationships [1].

A majority of long wavelength quasioptical systems are
designed utilising ray-tracing and fundamental Gaussian
beam mode analysis which ignore the departure from per-
fect imaging that arises from off-axis rays and curvature
mismatches between the mirror surface and the incoming
phase front caused by the diffractive, long wavelength nat-
ure of a propagating beam. As well as phase front errors,
aberrations also arise from bandwidth usage effects. In a
modal description this results in the scattering of power
amongst modes thus requiring a multi-moded analysis.
The mode set used to describe such a field as it propagates
limited by the paraxial and scalar assumptions are compre-
hensively described in [2–4]. If waveguide modes are to be
included in the analysis a scattering matrix technique,
based on a mode matching approach adopted in [5] and
previously used to predict the field radiated by horn anten-
nas is described in term of TE and TM modes. These
modes can be transformed to freespace as illustrated in
[6,7].
2. Theory

In the modal view of cylindrically symmetric free space
propagation, the modes can be represented by associated
Laguerre–Gaussian polynomials. In the case of asymmetric
or Cartesian systems, Hermite–Gaussian polynomials are
the preferred choice of mode set. The higher order Gauss-
ian beam solutions are given in [4]
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where W is the beam width, R is the phase radius of curva-
ture and / is the phase slippage of each mode. The appro-
priate normalizing factors are assumed. The electric field
can be calculated at any plane by a linear summation of
modes and mode coefficients (i.e.

P
mAmWm). The coeffi-

cients determine the amount of power contained in each
mode. Only the phase slippage is mode dependent and
the classical ABCD matrix method adapted for GBM
propagation is used throughout this paper to track the evo-
lution of the GBM parameters through freespace [2,4,8].
2.1. Aberrations from off-axis mirrors

In order to account for the aberrating effects of a mirror
used in an off-axis configuration, [1] has proposed treating
mirrors as inclined phase transformers where the variation
of the GBM parameters of beam width W, phase radius of
curvature R, and the modal phase slippage are considered.
The input mode coefficients are scattered into the output
mode coefficients by considering two types of scattering.
Firstly, the scattering due to the two mode sets not being
orthogonal (b matrix) and secondly the actual amplitude
and phase distortion added across the mirror surface (a
matrix). For the non-orthogonally generally GBM are only
considered complete sets when they are orthogonal other-
wise corrections must be made [9]. This is given by [1]
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where Wmirror is the size of the beam width at a location (x,
y) and umn is the phase slippage at a point (x, y). The value
of Wmirror will vary across the mirror surface from a central
point, which corresponds to the chief ray intercept from a
geometrical perspective. Prior to this we have always
explicitly assumed that the value of W did not vary across
the mirror surface. Fig. 1a and b illustrates the geometry of
the problem where the mirror is tilted by an angle h. Dz

is the thickness of the mirror, x and z are the original coor-
dinate system and x 0 and z 0 represent the tilted coordinate
system.

Secondly, the actual amplitude distortion added across
the mirror surface is dependent on the variation of not only
W but also the phase radius of curvature R. From the
geometry of the conic section (elliptical or parabolic) in
question it is possible to relate the depth of the mirror to
the beam variation over the surface as illustrated below.
The scattering matrix between input and output mode set
is given in [1] as



aijmn ¼
Z 1

�1
hm

ffiffiffiffiffiffiffi
2x0

p

w1

� �
hi

ffiffiffiffiffiffiffi
2y0

p
w2

 !
exp½jðmþ nþ 1Þuin� exp½�jðiþ jþ 1Þuout�

�
Z 1

�1
hn

ffiffiffiffiffiffiffi
2x0

p

w1

� �
hj

ffiffiffiffiffiffiffi
2y0

p
w2

 !
exp �jk

ððx0 þ DxÞ2 þ y2
0Þ

R1ðz1 � DzÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1ðz1 � DzÞ2 þ ððx0 þ DxÞ2 þ y2

0Þ
q

2
64

3
75

� exp þjk
ððx0 � DxÞ2 þ y2

0Þ

R2ðz2 þ DzÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ðz2 þ DzÞ2 þ ððx0 � DxÞ2 þ y2

0Þ
q

2
64

3
75 exp½jk2Dz0 cos h�dy0dx0; ð4Þ

x’

θ

z´

2Δz´

Zin Zout

Win Wou t

x

z

Input Plane Output Plane 

xo

zo

z´

x´

z

x

Δz´

Δz´

SB

SA

B

A

C
SC

a b

Fig. 1. The geometry of the thin lens approximation of an off-axis mirror.
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where Dz is the thickness of the mirror and R1 and R2 are
the incident and output radius of curvature before and
after the transformation by the mirror surface. Using the
ABCD matrix method the evolution the input beam
parameters W, R and u can be calculated as a function
of position across the mirror surface. These values can then
be used to calculate a and b matrices to determine the full
scattering matrix for a mirror. The integral is carried out
over the surface of the mirror and so allows the physical
size of the mirror or edge taper to be included. A sequence
of mirrors can be analysed by using the output of one mir-
ror as the input for the next. The overall scattering matrix
for a mirror is a combination of a and b and can be calcu-
lated by

Smn ¼ b�1
mnamn; ð5Þ

and the output mode coefficients are calculated by

Bn ¼
X

m

SmnAm: ð6Þ

This allows the prediction of the amplitude and phase dis-
tortion introduced by an off-axis mirror. Additionally any
field input that is desired to illuminate the system can easily
be adopted in this framework.
3. Examples

In this section we introduce different examples where
different geometries and different configurations of mirrors
are illustrated with the technique. These examples include
an elliptical and parabolic mirror, each illuminated by a
Gaussian input, and also an elliptical mirror configuration
making a wavelength independent Gaussian beam tele-
scope is investigated. In each case the equivalent output
beam is predicted by a well-established physical optics tech-
nique using GRASP8TM, a recognised bench mark package
used to validate and compare the accuracy of the approach
illustrated here.
3.1. Elliptical mirror with Gaussian input beam

Initially we will consider a fundamental Gaussian illumi-
nating an off-axis elliptical mirror. Elliptical mirrors typi-
cally find use in QO systems to transform an input radius
of curvature, Rin to a desired output radius of curvature,
Rout where R1 = Rin and R2 = Rout (Fig. 4). In this scalar
approximation the fraction of power that is contained in
the fundamental mode of the reflected beam is found from
[2] to be
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Fig. 2. The relationship of the amount of power removed from the fundamental mode to higher order modes as a function of incidence angle for an off-
axis mirror with a fixed beam width and focal length.

Fig. 3. The geometry of the elliptical mirror configuration [plot generated
from GRASP GUI].
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where f is the effective focal length of the ellipse/parabo-
loid. It is evident that if one considers a mirror of fixed fo-
cal length and with a fixed beam width at its surface then
the amount of power scattering that occurs depends
on the angle of incidence. Fig. 2 illustrates the behaviour
of the power scattering from the fundamental mode (re-
lated to level of aberration), which has an asymptotic form.

Physically lower Gaussicity relates to the larger mis-
match between the mirrors curved surface and the incom-
ing field amplitude distribution. This is better matched at
lower angles of incidence when the mirror is more ‘‘face-
on’’ to the incoming field. The ability of the GBM
approach to model this effect will now be investigated for
angles of incidence of 2.5�, 5�, 10�, 20�, 30�, 40�, and 45�.
In this initial example the input is a Gaussian beam waist
with W = 1.23 mm (R =1) at a frequency of 480 GHz
located at a distance of 36.4 mm on front of the elliptical
mirror with a focal length of 30 mm as illustrated in
Fig. 3. The mirror diameter is 4W. For this particular con-
figuration the angle of incidence is 30�.

For the evaluation of the a matrix a critical parameter is
the mirror thickness Dz or alternatively its height above the
tangent plane, which is dependent on the mirror geometry.
To determine this and analyse the ellipsoid we consider the
geometry in Fig. 4. The major and minor axes are given by

a ¼ R1 þ R2

2
; b ¼
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The angle that the normal to the tangent plane makes rel-
ative to the axis of rotation is given by [1]
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and from the geometry we can say that / = p � /1 � d and
h = p � /1. The intercept of the mirror is located at

X 0 ¼ R1 sinðhÞ and Z0 ¼ R1 cosðhÞ þ ae; ð10Þ

where e is the eccentricity.
Again from [1] it is shown that by shifting and rotating

the (x, z) coordinate frame the thickness of the mirror sur-
face is then given by
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Table 1
The associated parameters for the elliptical mirror

Elliptical mirror input parameters

Wavelength 0.625 mm
Win 1.23 mm
Input distance 36.4 mm
Output distance 60 mm
Focal length f 30 mm
a of the ellipse 60 mm
b of the ellipse 56.38 mm
R1 60 mm
R2 60 mm
d 30�
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These parameters then have to be calculated for a specific
mirror. For the considered mirrors the associated parame-
ters are displayed in Table 1 for an angle of incidence of
30�.

The beam width at the mirror is Wmirror = 9 mm, the
output beam at 60 mm from the mirror has a beam width
W = 4.1 mm. Fig. 5 compares the GBMA theory with the
equivalent physical optics output as the angle of incidence
is increased and as expected the distortion increases. The
equivalent field as predicted by GRASPTM is also shown
below and it can be seen that the shift in peak intensity
is well matched for all angles. Additionally good agree-
ment is found with the GBMA technique down to
�40 dB for incident angles of 40� or less and agreement
to �25 dB for a 45� angle of incidence. This is mainly
due to the fact that as the incidence angle increases more
power is scattered into cross-polar components and
GBMA is a scalar theory. The scalar approximation will
limit the accuracy of the GBMA predictions, particularly
further off-axis. Nevertheless excellent agreement can be
observed even for an extreme example such as a full angle
throw of 90�. Additionally a limited mode set of 100 Her-
mite modes is employed. An increase from 100 modes
would improve agreement further off-axis but would
result in much longer calculation times for a single mirror
whereas 100 modes yields good agreement down to
between �25 and �40 dB which is sufficient for most
applications.

Table 2 illustrates how the increasing off-axis angle leads
to a decrease in Gaussicity from away from ideal optics.
This is calculated by evaluating the overlap integral
between the output field with its equivalent, on-axis, ideal,
fundamental Gaussian field. As with Fig. 2 the trend of
slowly increasing power scattering out of the fundamental
up to 20–30� followed by a sharp increase for higher angles
can be observed. Also shown in Fig. 6 is the power con-
tained in the fundamental mode as calculated from the
scattering matrix technique. The predictions of the funda-
mental power scattering of the GBMA in comparison to
that of Eq. (7) are also compared in Fig. 6 and exhibits
good agreement in the general trend although the GBM
technique predicts higher power scattering.

3.2. Corrugated horn input to multi-mirror systems

While the previous example is useful in highlighting the
effect of increasingly off-axis angles on the beam quality
and the accuracy of the GBMA technique, many QO feeds
radiate beams that contain a significant amount of power
in higher order modes. Additionally most QO systems will
consist of more than one mirror. Thus in this section we
demonstrate a corrugated horn input illuminating a two-
mirror Gaussian beam telescope. This configuration can
be seen in Fig. 7 and images one horn aperture to another
in a frequency independent manner. The corrugated horn
was operated at 480 GHz and is characterised by the fol-
lowing parameters: aperture diameter = 2.5 mm, Waper =
0.6345 * aperture diameter and Raper = 15.4 mm.

Thus this is the multi-moded input equivalent of the
previous example since the horn aperture is located
30 mm from the first off-axis elliptical mirror but the
phase centre is located 6.4 mm behind the aperture and
has a beam waist width W = 1.23 mm. The mirror diam-
eters are 4W. As with the previous example GRASPTM

shall be used to validate the GBMA technique. These mir-
rors will introduce aberrations to the propagating beam
that will alter the level of coupling to the symmetrical
field of the second horn antenna. The input beam is a
truncated Bessel model of a corrugated horn. The focal
lengths are f1 = f2 = 30 mm and the input distance
din = 30 mm and is equal to the output distance dout.
Finally, we shall also consider the accuracy of the phase
predictions of GBMA.

This asymmetric arrangement of elliptical mirrors is a
compensating configuration that can be derived from cal-
culating the Gaussicity of the output of mirror 1 in com-
parison to mirror 2. The output field of mirror 1 at the
plane of mirror 2 exhibits a Gaussicity of 94.8% and the
output of mirror 2 at the second horn aperture plane a
Gaussicity of 96.5% an improvement of 1.7%. (The ideal
field would exhibit a Gaussicity of 98%.)

The field at the output plane is shown in Fig. 8 as pre-
dicted by GBM and by GRASP. The two methods exhibit
excellent agreement down to �25 dB in the E and H planes.
Beyond this point GRASP predicts a narrower main beam
but again this is due to the limiting assumptions made in
the derivation of the GBM theory. The unaberrated H
plane still clearly reproduces the horn input, as it should
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Fig. 5. The amplitude distortion introduced by an off-axis elliptical mirror for increasing angles of incidence.

Table 2
The Gaussicity of the aberrated output field relative to the unaberrated
maximum

Angle of incidence Gaussicity (%)

Ideal mirror 100
2.5 99.91
5 99.88
10 99.79
20 99.40
30 98.68
40 97.59
45 96.93
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be re-imaged on the second horn. The level and position of
the side lobes in the E plane also exhibit good agreement.
Additionally the phase shows excellent agreement.
3.3. Parabolic mirrors

Parabolic mirror typically finds use in submillimetre sys-
tems for transforming a diverging beam to a quasi-colli-
mated beam or vice-versa as illustrated in Fig. 9. In this
example the phase centre of the horn is placed at the focus
of the parabola, as quasioptically, this is the equivalent of a
geometrical point focus. In this GBM scheme the height of
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Fig. 9. The geometry of an off-axis parabolic mirror [1] [second plot
generated from GRASP GUI].
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Table 3
The associated parameters for the parabolic mirror

Parabolic mirror input parameters

Wavelength 3.19 mm
Win 5.11 mm
Input distance 30 mm
Output distance 44 mm
Focal length 30 mm
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the parabolic surface over the tangent plane Dz(x 0, y 0) must
be known and this is again calculated by shifting and rotat-
ing the origin of the coordinate frame (X, Z) to the centre
of the off-set parabolic such that Dz 0 [1]

Dz0 ¼ �Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC
p

2A

					
					; ð13Þ

where the values of A, B and C are related to the input
parameters of the parabolic mirror through

A ¼ sin2 d;

B ¼ 2x0 sin d cos dþ 2X 0 sin dþ 4a cos d;

C ¼ 2x02 cos2 dþ 2x0X 0 cos d� 4ax0y02 sin d:

ð14Þ

The input parameters needed to define the mirror is the
optical focal length of the mirror f. The geometrical focal
length of the parent paraboloid is then given by a = fcos2d
(see Table 3). The coordinates of the centre point of the
mirror X0 and Z0 are given by, respectively, X0 = fsin2d
and Z0 = fcos2d. These parameters are required to calcu-
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Fig. 10. The beam distortion of an off-axis parabolic mirror in the E an
and phase (b, d).
late the a and b-matrices as described in Eqs. (3) and (4).
The input field is a corrugated horn designed to operate
at a centre frequency of 94 GHz to illustrate the accuracy
of this technique at longer wavelengths than utilised in
the previous example. These parameters then have to be
calculated for a specific parabolic mirror. For the consid-
ered mirror the associated parameters are displayed in Ta-
ble 3 for an angle of incidence of 45 degrees.

The output distance was chosen to yield the smallest
possible beam of W = 5.9 mm. The mirror size was 4W.
The fields predicted by GRASP and GBMA scatter matrix
are compared to determine the accuracy of GBMA in pre-
dicting the aberrations introduced by the parabolic mirror.
Again 100 modes were used given the accuracy demon-
strated by this mode set previously. Fig. 10a–d displays
the intensity and phase distribution in both E and H planes
at a plane 44.1 mm from the mirror as predicted by the
GBM scatter matrix approach which now gives a distorted
profile and exhibits good agreement down to �25 dB
between the GRASP and the scalar GBM approach. Both
beams exhibit a squinted beam with an asymmetric beam
profile although GBMA predicts a slightly wider beam
below �25 dB, the profile is still well matched and the shift
of the peak intensity is the same for both. As with the ellip-
tical mirror there are no distortions introduced in the H
plane as the mirror is only tilted in one direction.

The phase exhibits a distortion in the E plane due to the
tilting of the mirror that introduces a phase mismatch
across the surface between the incoming fields phase radius
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of curvature and the mirrors curvature. The GBM tech-
nique exhibits good agreement in the distorted phase front
in the E plane also. As with previous examples the GBMA
is limited by its simplifying assumptions but still exhibits
excellent agreement with the PO package.
4. Conclusions

We have presented here a scalar method based on Gauss-
ian beam modes that allows the calculation of aberrations
or distortions induced by off-axis mirrors within the parax-
ial assumptions inherent to GBMA. Using examples of
both elliptical and parabolic surfaces we have validated
the theory originally described in [1]. The technique has pro-
ven accurate compared to GRASP8 simulations, a physical
optics (PO) package for off-axis angles of up to 45� down to
an intensity level of�25 dB to�40 dB using a limited mode
set. The described technique has also been illustrated to rep-
resent accurately to levels of �25 dB a two-mirror system
with a multi-moded input arranged in a compensating con-
figuration. The technique can also predict phase front vari-
ation equivalent to that calculated using GRASP8. This
GBM technique allows a more intuitive understanding of
beam evolution in a quasioptical system than is possible
from a rigorous PO approach, where the basic physical pro-
cesses can be obscured, and exhibits a similar accuracy.
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