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Abstract. A Brain-Computer Interface (BCI) is a communication system that offers the 
possibility to act upon the surrounding environment without using our nervous 
efferent pathways. One of the most important parts of a BCI is the pattern classification system 
which allows to translate mental activities into commands for an external device. This work 
aims at providing new pattern classification methods for the development of a Brain Computer 
Interface based on Near Infrared Spectroscopy. To do so, a thorough study of machine learning 
techniques used for developing BCIs has been conducted. 

K eywords: Brain-Computer Interfaces, Near Infrared Spectroscopy, Pattern Classification, 
Machine Learning. 

 

1 Introduction 

In order to produce different motor or cognitive tasks, human brain generates different 
activity patterns that can be monitored by a BCI and translated directly into 

There 
are two types of brain activities that can be used for a BCI: electrophysiological and 
hemodynamic [1]. The majority of BCIs developed so far are based on 
Electroencephalography (EEG). EEG is a non-invasive technology that measures 
electric brain activity through electrodes placed on the scalp. This technology has 
many drawbacks such as the very poor quality of signals, the sensitivity to many 
sources of noise and the use of many electrodes to monitor signals which make its use 
outside research context impossible. As an alternative to EEG technology, Near 
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Infrared Spectroscopy (NIRS) presents itself as an attractive method for developing a 
BCI that can be used in daily life [2]. NIRS is an optical spectroscopy method that 
measures task-induced blood oxygen level dependent (BOLD) response. NIRS-based 
BCIs have many benefits like robustness to noise, good spatial resolution and 
portability. But this technology is still in its maturation phase and further research 
works are to be conducted to make it reliable for a usage outside the lab. 
 

2 Brain-Computer Interfaces general architecture 

Designing a BCI is a hard task that requires several skills including neurosciences, 
biomedical engineering, computer science, etc. The main functions of a BCI are 
signal acquisition, feature extraction and pattern classification, translation into 
commands and sometimes feedback is required for online paradigms (Fig. 1): 

- Signal acquisition: different types of sensors are used for monitoring brain 
signals depending on the technology employed. In case of NIRS-based BCIs, 
a near-infrared light emitting source like a laser or a diode and a light 
detector like a photodiode are used. 

- F eature extraction: relevant features are extracted from raw signals. 
Different signal processing techniques are used for this issue. 

- Pattern classification: features are mapped into different classes 
corresponding to different mental states. This task is done by automatic 
machine learning algorithms called classifiers. 

- T ranslation into commands: a specific command is associated to each class 
in order to control or communicate with an external device. 

- F eedback: sometimes real-
performances. 

 

!
F ig.1. Brain computer Interface architecture [3] 
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3 Pattern classification in NIRS-based B C Is 

During the last years, many pilot studies have been conducted to solve problems 
related to NIRS-based BCIs and enhance their efficiency. Most of these studies 
focused on the signal acquisition [2] or the feature selection [4] parts of a BCI, and 
few ones addressed problems related to the pattern classification component of NIRS-
based BCIs. The possibility of classifying different motor or cognitive tasks using 
NIRS-based BCI technology has been proved by many research groups [5], [6], but 
simple experimental protocols were used and common classification techniques were 
applied. The use of enhanced machine learning techniques was crucial for the 
development of EEG-based BCI technology. These techniques addressed the 
problems of long-time calibration sessions before the use of a BCI system and high 
variability of monitored signals [3], [7]. Nowadays, NIRS-based BCI technology 
faces the same problems and the use of adaptive and robust machine learning 
techniques is necessary to introduce it in a daily-life context. The high variability of 
brain signals makes the mapping of activation patterns from different sessions and 
different users to disjoint classes by an individual classifier impossible.  

Different combination schemes of classifiers and online adaptation of classifiers seem 
to be promising methods for NIRS signals classification. Many studies showed that 
the use of multiple classifier systems is crucial for modeling very complex systems 
because there is no single classifier that solves all problems [8]. In the context of 
EEG-based BCI design, there are some papers highlighting the importance of using 
dynamic combination of classifiers to attain good classification rates in the context of 
transfer learning (transfer models between subjects and between sessions) [3], [7], [9], 
[10]. But, in our knowledge, there is no studies related to ensemble learning in the 
context of a NIRS-based BCI design. Fig. 2 illustrates a multiple classifier 
framework: different classifiers can be built by diversifying input data or diversifying 
models and the merging process can be a majority voting, a weighting average mean, 
a linear or non-linear function [11]. 

!

F ig. 2. Multiple classifier system 
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4 Conclusion 

In this work, we highlight the need of developing adaptive and robust pattern 
classification techniques in order to make NIRS-based Brain Computer Interfaces 
more reliable. Many studies showed that there is no single classifier that can model all 
systems and usually a set of classifiers is more powerful than individual ones when 
dealing with complex systems. In a recent pilot study, we have investigated the 
detection of attention deficits through hemodynamic activity of the brain by applying 
usual pattern classification techniques on signals monitored by a NIRS system [12]. In 
next steps we will try to design more advanced techniques suitable for this type of 
signals.  
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