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Abstract
The multifractal formalism is applied to the energy eigenvalues of Ce I, Ce II,
Nd II, Sm I, Sm II, and Tb I. The Rényi dimensionsDq , mass exponents τ(q) and
f (α) spectra are calculated and used to characterize the eigenvalue spectra. It is
found that these elements show multi-scaling behaviour that can be accurately
modelled by simple multifractal recursive Cantor sets. The effect of unfolding
the spectra is also investigated.

1. Introduction

Ever since the work of Mandelbrot [1, 2] the scaling behaviour of numerous systems, both
mathematical and physical, has been investigated. Examples include Rayleigh–Bénard thermal
convection [3], diffusion-limited aggregation [4], cluster–cluster aggregates [5], epithelial cell
nuclei [6], heartbeat dynamics [7] and eigenvector components [8]. The results of these studies
have all concluded that many of the systems not only have fractal properties but are, in fact,
multifractals and so possess multi-scaling properties.

In this paper, the multifractal analysis of the energy levels of various lanthanide atoms and
ions, namely Ce I, Ce II, Nd II, Sm I, Sm II and Tb I, is performed. Previous investigations [9–11]
of atomic systems have used the box-counting method of [12]. However, the generalized
correlation sum of [13] will be used here:

Cd
q (R) = lim

R→0
N→∞

{
1

N

N∑
i=1

(
1

N

N∑
j=1

�

(
R −

[ d−1∑
n=0

(xi+n − xj+n)
2

]1/2))q−1}1/(q−1)

(1)

where the Heaviside function � counts how many pairs of points (xi , xj ) are situated within
a distance R and d is the embedding dimension.

In section 2 the Rényi dimensionsDq , mass exponents τ(q) andf (α) spectra are calculated
for Ce I and Ce II, and similarly for Nd II, Sm I, Sm II and Tb I in section 4. For these elements,
the closeness of the 4f, 6s and 5d binding energies gives rise to high level densities. In the
case of Ce I, the similarity of the statistical properties of the electronic states and transitions
between them, with those arising in compound nuclei have been detailed and attributed to
chaotic behaviour [14, 15].

0953-4075/01/132547+27$30.00 © 2001 IOP Publishing Ltd Printed in the UK 2547



2548 A Cummings et al

Figure 1. Ln
(
Cq(R)

)
versus ln(R) for (a) Ce I and (b) Ce II.

Table 1. Even and odd configurations of Ce I and Ce II.

Ce I

Ground configuration 1s22s22p63s23p63d104s24p64d105s25p64f5d6s2

Odd configurations 4f5d6s2, 4f5d26s, 4f5d3, 4f26s6p
Even configurations 4f26s2, 4f25d6s, 4f6s26p, 4f5d6s6p, 4f5d26p, 4f25d2

Ce II

Ground configuration 1s22s22p63s23p63d104s24p64d105s25p64f5d2

Odd configurations 4f5d2, 4f5d6s, 4f6s2, 4f26p, 4f3

Even configurations 4f26s, 4f25d, 4f5d6p, 5d3, 4f6s6p 5d26s, 5d6s2

The f (α) spectra for Ce I and Ce II are simulated in section 3 using simple recursive Cantor
sets with two length scales and two probability scales and in section 5 the effect of unfolding
(rescaling) the eigenvalue spectrum of Ce I is investigated.

2. Analysis of Ce I and Ce II energy eigenvalues

Pawelzik and Schuster’s generalized correlation sum method [13] was first applied to a
sequence of energy levels from the neutral cerium atom and its ion, members of the lanthanide
series of elements. The eigenvalues that were used ranged in energy from 0 to 3.843 eV for
Ce I (Z = 58) and 0 to 6.455 eV for Ce II [16]. Of course, these energies are measured relative
to the ground state of the atom or ion. In each case both even- and odd-parity levels were
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Figure 2. The generalized dimensions Dq for Ce I and Ce II.

included as were all available J values. A total of 943 and 480 energy states were used for Ce I

and Ce II, respectively. The configurations that give rise to the energy eigenvalues are shown
in table 1.

The correlation sum Cd
q (R) for the following ranges of q and R:

−20.0 � q � 20.0

−14.0 � ln(R) � −0.1 ≡ 8.315E − 7 � R � 0.9048

was calculated. Note that the energy levels are re-scaled so that they lie between 0 and 1.0
when the generalized correlation sum is calculated. Plots of ln

(
Cd
q (R)

)
versus ln(R) for Ce I

and Ce II with d = 1 are shown in figures 1(a) and (b), respectively. These plots clearly show
that there is a region of scaling for both Ce I and Ce II, but to quantify this scaling range more
clearly the local slope of ln

(
Cq(R)

)
versus ln(R) was determined. The slope was calculated

at every ln(R) for various q and over a range of ln(R) ± 0.4.
Only for the following regions is the local slope found to be approximately constant:

−3.3 � ln(R) � −1.7 ≡ 0.0369 � R � 0.1827 Ce I

−3.8 � ln(R) � −2.6 ≡ 0.0224 � R � 0.0743 Ce II

and so are taken as the scaling regions (of course, the local slope fluctuations are highly
dependent on the range of ln(R) that is used to calculate the slope). Therefore, the scaling
ranges for Ce I and Ce II change in magnitude by factors of 0.1827/0.0369 ≈ 4.95 and
0.0743/0.0224 ≈ 3.32 for Ce I and Ce II, respectively. Thus Ce I scales over a much larger
range than does Ce II.

Once these regions were found, the next task was to determine the generalized dimensions
Dq . These are obtained from the slope of ln

(
Cq(R)

)
versus ln(R) over the scaling region.
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Figure 3. The sequence of mass exponents τ(q) for Ce I and Ce II.

Figure 4. The f (α) spectra for Ce I and Ce II.
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Figure 5. Schematic diagram of a binomial multiplicative process on the unit interval, with a
continuous support for the measure.

Dq with its corresponding error is shown in figure 2 for both Ce I and Ce II. Dq should always
be monotonically decreasing and in general, in the present case, Dq ′ > Dq for q ′ < q, but
there is a slight deviation from this when q < −5.0 for Ce II. However, from figure 2 it can be
seen that the error limits are such as to allow for Dq ′ > Dq for all q ′ < q.

It can be seen in figure 2 that the error in Dq is greatest for large negative values of q.
This is because negative (q − 1) probability moments used in the generalized correlation sum
are more sensitive to small numbers of data points than are the positive (q − 1) probability
moments.

MultiplyingDq by (1−q) gives the sequence of mass exponents τ(q) and these are shown
in figure 3.

In order to determine the f (α) spectrum, a numerical Legendre transformation of Dq was
performed:

α(q) = d

dq
[(q − 1)Dq] (2)

f (α(q)) = q
d

dq
[(q − 1)Dq] − (q − 1)Dq. (3)

The resulting f (α) spectra for Ce I and Ce II are shown in figure 4, along with the
corresponding error limits for both f (α) and α.

Table 2 shows the range of q values used in the Legendre transformation, the maximum
and minimum values of the Lipschitz–Hölder exponents α, as well as the Kolmogorov capacity
D0, information D1 and correlation dimensions D2 and the maximum value of f (α).

D0 and the maximum value of f (α) for both Ce I and Ce II have values very close to 1.0,
which suggests that the support of the measure is one dimensional, i.e. a continuous ‘line’ of
points/energy levels.

Since all of the calculations are sensitive to the number of data points and to any noise or
gaps in the data, especially low density regions (negative q), the quality of the f (α) spectra
obtained should only be viewed as tentative. Also, the scaling regions are quite limited and
an interesting study of the dimensions of random distributions [17] shows that apparent fractal
behaviour is observed for a range of scales typically spanning between one and two orders of
magnitude—the typical range observed in experimental measurements of fractals.
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Figure 6. Interpolation of the f (α) spectra for Ce I and Ce II.

Table 2. Various Dq and f (α) parameters for Ce I and Ce II.

Ce I Ce II

−1.8 � q � 19.7 −2.3 � q � 19.7

D0 = 0.993 D0 = 1.035
D1 = 0.936 D1 = 0.985
D2 = 0.916 D2 = 0.961

αmin = 0.845 αmin = 0.851
αmax = 1.990 αmax = 1.938

max(f (α)) = 0.993 α = 1.098 max(f (α)) = 1.035 α = 1.114

3. f (α) simulation

Having obtained multifractal spectra, it was decided to try to generate f (α) spectra that would
have the same/similar form as the spectra obtained. In fact, there have been a number of
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Figure 7. Comparison of ‘experimental’ (full curve) and ‘numerical’ (circles) τ(q).

attempts to discover the underlying scaling structure for a given f (α) spectrum [18,19]. Such
attempts were found to be futile except in the case where the underlying fractal structure was
built on recursive Cantor sets. Here it is shown that the scaling structure may be understood in
terms of simple recursive Cantor sets which have two length scales and two probability scales.
Why this should be the case is unclear, although for any configuration the exchange interaction
will split the levels into groups depending on their multiplicity. Frequently, this results in
the lowest multiplicity group, which contains relatively few levels, being split in energy from
the higher multiplicity group(s) which contains the majority of levels of the configuration.
Of course the question must be asked ‘can a finite number of perturbations (e.g. Fk,Gk, Rk ,
spin–orbit, etc) account for multi-scaling behaviour over a large range of length scales?’. The
multiplicative process with a continuous support (in this case the unit interval [0, 1]) was
assumed, since D0 ≈ 1.0.

The initial underlying lengths and probabilities are shown schematically in figure 5. The
f (α) spectra were then interpolated, as shown in figure 6, in order to find the ‘theoretical’
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Figure 8. Comparison of the ‘experimental’ (+, ◦) and ‘numerical’ f (α) spectra.

maximum and minimum α values. These values were substituted into the theoretical αmin and
αmax of the two-scale fractal measure:

αmin = ln(p0)

ln(l0)
(4)

αmax = ln(p1)

ln(l1)
(5)

where a continuous one-dimensional support was assumed:

l1 = 1 − l0 (6)

and of course

p1 = 1 − p0. (7)

This is conservation of the probability measure.
Solving for Ce I and Ce II as follows:

Ce I αmin = 0.828 = ln(p0)

ln(l0)
αmax = 2.154 = ln(p1)

ln(l1)

Ce II αmin = 0.836 = ln(p0)

ln(l0)
αmax = 2.019 = ln(p1)

ln(l1)
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Figure 9. Densities of the binomial multiplicative process for Ce I. The height of the bars is
proportional to the density pi/ li .

one obtains

Ce I Ce II

p0 = 0.0257 p1 = 0.9743 p0 = 0.0289 p1 = 0.9711
l0 = 0.0120 l1 = 0.9880 l0 = 0.0144 l1 = 0.9856

Note that p0 and l0 are very small.
Using these probabilities and lengths in the following equation:

p
q

0 l
τ (q)

0 + p
q

1 l
τ (q)

1 = 1 (8)

allows the sequence of mass exponents τ(q) to be solved for numerically. A comparison of
the ‘experimental’ τ(q) and those found ‘numerically’ from equation (8) is shown in figure 7.
For both Ce I and Ce II the τ(q) agree well for q � −2 but start to deviate from one another
below q = −2.

The f (α) spectra were then calculated and are compared with the ‘experimental’ results
as shown in figure 8. There is also deviation of the experimental and numerical f (α) spectra.

In order to compare the experimental and numerical f (α) spectra, q in the range
−10 � q � 185 and −10 � q � 193 were used for the numerical f (α) spectra of Ce I

and Ce II, respectively.
The deviations of the f (α) comparisons occur for negative q, i.e. for the low-density

regions of the energy eigenvalue sequences. The negative q are much more sensitive in
these cases because of the limited number of data points used to generate the ‘experimental’
τ(q). The close correspondence between the experimental and numerical f (α) spectra for
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Figure 10. The density of states for Ce I: (a) eigenvalue spectrum; (b) �E = 0.1 eV;
(c) �E = 0.01 eV; (d) �E = 0.001 eV.

positive q does not mean that the underlying probabilities and lengths used for the binomial
multiplicative process are in any way related to the processes that gave rise to the Ce I and
Ce II experimental f (α) spectra. The f (α) spectra describe the universality of the various
scaling exponents that a distribution may have. Why the f (α) spectrum of a two-scale
Cantor set should be in close correspondence to the f (α) spectra of Ce I and Ce II is as yet
unknown.

Several generations of the multiplicative process for the preceding probabilities and lengths
were calculated and are shown as densities pi/ li for generations n = 4 to 6 in figure 9 for Ce I.
For these very early generations there is a continuum with a small region of high densities. It
can be seen that as n increases the region of high density is increasing, although slowly (since
p0 and l0 are very small), so as n → ∞ one would expect ‘spikes’ of high density ‘sitting on’
a continuous background.
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Figure 11. The density of states for Ce II: (a) eigenvalue spectrum; (b) �E = 0.1 eV;
(c) �E = 0.01 eV; (d) �E = 0.001 eV.

To see if this corresponds to the experimental energies, the level densities—the number
of energy levels per unit energy interval—were calculated for intervals �E of 0.1, 0.01 and
0.001 eV. In figure 10(b) the exponential rise in the density of states as energy increases is
seen for Ce I. As the energy interval decreases there are ‘spikes’ of high density on a ‘nearly’
continuous background. When the energy level approaches zero as with 0.001 eV the density
of states becomes similar to the eigenvalue spectrum itself—as shown in figures 10(a) and (d).
Of course in the limit �E → 0 the density of states would form a set of Dirac δ-functions. A
similar occurrence of high density regions is seen to occur for Ce II as shown in figure 11. It
should be noted that the higher density regions shift in energy as �E decreases because of the
differing locations of the energy intervals as �E decreases.

Subsets, which are in this case energy intervals (for a given �E), that have level densities
that are the same or are of the same order, correspond to subsets with the same scaling exponent
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Figure 12. Ln(Cq(R)) versus ln(R) for: (a) Nd II; (b) Sm I; (c) Sm II; and (d) Tb I.

α. Also note that the high density ‘spikes’ of the multiplicative process decrease in intensity
exponentially, even as n → ∞.

4. Analysis of Nd, Sm and Tb

Having applied the multifractal formalism to Ce I and Ce II, the generalized correlation sum
method was performed on neodymium Nd, samarium Sm and terbium Tb, these also being
members of the rare-earth elements. The main purpose of this was to search for some
universality in overall behaviour, which might mirror the fact that the chemical and physical
properties of these elements are so similar due to the very effective screening of the additional
nuclear charge by addition of a highly localized 4f electron to the core in progressing along the
sequence. Any ‘glitches’ that occur can be traced to valence changes and can be understood
in terms of half filled or completed 4f subshells. The number of energy eigenvalues and range
of energies used (relative to the ground state) are shown in table 3.

The even and odd configurations that give rise to these eigenvalues are shown in table 4.
Following the same procedure as that used for Ce I and Ce II, ln

(
Cq(R)

)
was calculated as a

function of ln(R), with the results shown in figure 12 for Nd II, Sm I, Sm II and Tb I. The scaling
regions are shown in table 5. Note the larger scaling regions for Sm II and Tb I.

Figures 13–16 show the generalized dimensions Dq and τ(q). Note the large error of Dq ,
for negative q, for Sm I in figure 14(a). This large error is predominantly caused by the small
region of scaling that is used to calculateDq . However, for all the elements Ce, Nd, Sm and Tb
the negative q give large percentage errors of the order of 5–10%. Calculating the Legendre
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Figure 13. (a) Generalized dimensions Dq ; (b) sequence of mass exponents; (c) ‘experimental’
(full curve) and ‘numerical’ (circles) τ(q) for Nd II.

transforms results in the f (α) spectra as shown in figure 17. The corresponding error limits
of f (α) and α are also shown.

A comparison of the Dq dimensions and the f (α) spectra for Ce I, Ce II, Nd II, Sm I, Sm II

and Tb I are shown in figures 19 and 20. It can be seen in figure 19 that all the Dq for positive q
have similar values, however, there appear to be two separate ‘bands’ appearing in the negative
q regions: Sm II and Tb I appear to form a separate ‘band’. These ‘bands’ can also be discerned
in the f (α) spectra for the larger α values—the f (α) distribution corresponding to the less
dense regions also seem to have two ‘bands’, with Sm II and Tb I both being in the same band.
However, these so-called ‘bands’ may have their origin in the fact that only a restricted number
of energy eigenvalues were available for analysis. Also, observe that the error in Dq for each
atom and/or ion can account for and so negate this apparent bandedness. It can also be seen
that the f (α) spectra of Sm II and Tb I have a smaller range of Lipschitz–Hölder exponents than
Ce I, Ce II, Nd II and Sm I, suggesting a smaller class of scaling subsets within each set of energy
eigenvalues. The f (α) spectra coincide quite closely for positive q and this suggests that all

Table 3. Number of energy eigenvalues and their relative energy range for Nd, Sm and Tb.

Number of energy eigenvalues Relative energy (eV)

Nd II Z = 60 706 0–5.830
Sm I Z = 62 469 0–4.361
Sm II Z = 62 376 0–4.774
Tb I Z = 65 590 0–4.339
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Figure 14. (a) Generalized dimensions Dq ; (b) sequence of mass exponents τ(q);
(c) ‘experimental’ (full curve) and ‘numerical’ (circles) τ(q) for Sm I.

Table 4. Even and odd configurations of Nd II, Sm I, Sm II and Tb I.

Nd II

Ground configuration 1s22s22p63s23p63d104s24p64d105s25p64f46s
Odd configurations 4f35d2, 4f35d6s, 4f46p
Even configurations 4f46s, 4f45d, 4f35d6p

Sm I

Ground configuration 1s22s22p63s23p63d104s24p64d105s25p64f66s2

Odd configurations 4f66s6p, 4f55d6s2, 4f55d26s, 4f65d6p
Even configurations 4f66s2, 4f65d6s, 4f66s7s

Sm II

Ground configuration 1s22s22p63s23p63d104s24p64d105s25p64f66s
Odd configurations 4f7, 4f66p, 4f55d6s
Even configurations 4f66s, 4f65d

Tb I

Ground configuration 1s22s22p63s23p63d104s24p64d105s25p64f96s2

Odd configurations 4f96s2, 4f95d6s, 4f86s26p, 4f85d6s6p, 4f85d26p, 4f96s7s
Even configurations 4f85d6s2, 4f85d26s, 4f96s6p

the dense regions of the various eigenvalue sequences are similar in energy distribution. In fact,
the density of states for �E = 0.1 eV, for Ce, Nd, Sm and Tb, all peak in the relative energy
region of approximately 3–4.5 eV as can be seen in (b) of figures 10, 11 and figures 21–24. The
maximum value of f (α), as well asD0, for all the selected atoms and ions is approximately 1.0.
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Figure 15. (a) Generalized dimensions Dq ; (b) sequence of mass exponents τ(q);
(c) ‘experimental’ (full curve) and ‘numerical’ (circles) τ(q) for Sm II.

This suggests that the support of the measure is a continuum. The Kolmogorov capacity D0,
information dimension D1, correlation dimension D2; range of q values used in the Legendre
transformations; the maximum and minimum values of the Lipschitz–Hölder exponents α and
the maximum value of f (α) are shown in table 5, for Nd II, Sm I, Sm II and Tb I.

As with Ce I and Ce II, the f (α) spectra for a binomial multiplicative process with a
continuous support for the measure was calculated numerically, in order to try to simulate the
f (α) spectra. The resultingf (α)distributions are shown and compared with the ‘experimental’
f (α) distributions in figure 18. The positive q regions for both the ‘experimental’ and
‘numerical’ f (α) spectra are again similar in magnitude, however, the negative q regions
deviate for Nd II, Sm I and Sm II. The coincidence of the f (α) spectra of Tb I for the less dense
regions may be purely a numerical artefact. The range of q values used for the numerical f (α)
spectra are shown in table 5. The deviation of the negative q regions can also be seen in the
‘experimental’ and ‘numerical’ τ(q), as shown in (c) of figures 13–16.

The density of states for various energy intervals �E was also calculated and these are
shown in figures 21–24. Note the ‘spikes’ of high density on a nearly continuous background
as �E decreases.

It should be noted that the f (α) technique was also applied to the theoretical energy
eigenvalues, as calculated by the Cowan suite of codes [20], of the present lanthanide atoms and
ions. Tentative results indicate the presence of multi-scaling behaviour in the dense regions of
the spectra but not in the less dense regions. This is suspected to arise from insufficient electron–
electron correlations in the configuration interaction Hartree–Fock (HFCI) code. Thus thef (α)
method would appear to be quite sensitive to the presence or absence of electron–electron
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Figure 16. (a) Generalized dimensions Dq ; (b) sequence of mass exponents τ(q);
(c) ‘experimental’ (full curve) and ‘numerical’ (circles) τ(q) for Tb I.

Table 5. Various characteristic parameters for Nd II, Sm I, Sm II and Tb I.

Nd II Sm I Sm II Tb I

ln(R) −3.8 � ln(R) � −2.8 −3.9 � ln(R) � −3.3 −3.8 � ln(R) � −2.4 −4.0 � ln(R) � −2.0
0.022 � R � 0.061 0.020 � R � 0.037 0.022 � R � 0.091 0.018 � R � 0.135

q used for f (α) −2.8 � q � 19.7 −2.4 � q � 19.7 −6.0 � q � 19.7 −3.2 � q � 19.7
D0 1.046 1.055 1.018 1.004
D1 0.987 0.990 0.969 0.981
D2 0.969 0.970 0.946 0.967
αmin 0.899 0.896 0.838 0.878
αmax 1.879 1.885 1.392 1.282
max (f (α)) α 1.046 1.156 1.055 1.189 1.018 1.080 1.004 1.031
p0 5.2008E−3 6.3742E−3 0.1424 0.1004
l0 2.5908E−3 3.1575E−3 0.096 0.0702

q used to
simulate f (α) −10 � q � 134 −10 � q � 132 −10 � q � 62 −10 � q � 90
spectrum

correlations. In fact, the multifractal experimental results are suspected to arise from complex
electron–electron correlations.
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Figure 17. f (α) spectra for Nd II, Sm I, Sm II and Tb I.

Figure 18. Comparison of ‘experimental’ (+) and ‘numerical’ (full) f (α) spectra.

5. Unfolding and f (α) spectra

Although all of the experimental f (α) spectra are concave, they do not extend to f (α) = 0.
Also f (αmax) and f (αmin) are different in value. This may be an indication of ‘some sort’ of
phase transition. The most obvious correspondence to any phase transition is the variation of



2564 A Cummings et al

Figure 19. Comparison of the generalized Dq dimensions for Ce I, Ce II, Nd II, Sm I, Sm II and Tb I.

Figure 20. Comparison of the f (α) spectra for Ce I, Ce II, Nd II, Sm I, Sm II and Tb I.

the density of states with changing energy. So to test for the effect that the varying density of
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Figure 21. The density of states for Nd II: (a) eigenvalue spectrum; (b) �E = 0.1 eV;
(c) �E = 0.01 eV; (d) �E = 0.001 eV.

states might have upon f (α), the Ce I eigenvalues were unfolded [21] using

N(E) =
∫ E

E0

ρa dE′ (9)

where N(E) is the mean cumulative number of states as a function of energy (mean mode
number) and ρa is the density of states. E0 is the minimum energy and ρa is defined as

ρa = ρ0 exp
(
a
√
E − E0

)
(10)

where ρ0 and a are treated as curve fitting parameters.
Figure 25(a) shows the mode number and mean mode number for Ce I. The energy

eigenvalues are unfolded by replacing each eigenvalue by the mean mode number at that
energy. This results in a mean level density of 1.0 as shown by the broken line of figure 25(b).
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Figure 22. The density of states for Sm I: (a) eigenvalue spectrum; (b) �E = 0.1 eV;
(c) �E = 0.01 eV; (d) �E = 0.001 eV.

The correlation sum and the resultingDq , τ(q) and f (α) spectra are determined as before,
with results as shown in figures 26–28. The corresponding error limits are also included.

The range of scaling is found to have increased quite dramatically:

−5.0 � ln(R) � −2.0 ≡ 0.0067 � R � 0.1353 where 0.1353/0.0067 ≈ 20.19.

The f (α) spectrum of figure 28(a) is now restricted in its α range suggesting a less
inhomogenous set of energy levels (see also figure 28(c)). The levels are less inhomogenous
in relation to there being a more restricted range of αs. This, however, does not give any
indication as to whether the lacunarity [22] has or has not changed.

The minimum values of f (α) are both closer to zero. The maximum value of f (α)
is approximately 1.0 as with the pre-unfolded levels. It would be expected that a constant
level density of 1.0 would give α = 1.0 and f (α) = 1.0, i.e. only one Lipschitz–Hölder
exponent. However, the unfolded spectrum still has fluctuations about the mean mode number



Multifractal analysis of selected rare-earth elements 2567

Figure 23. The density of states for Sm II: (a) eigenvalue spectrum; (b) �E = 0.1 eV;
(c) �E = 0.01 eV; (d) �E = 0.001 eV.

and these give rise to the other αs. Thus, since the α range of the f (α) spectrum is found to
be more restricted in extent than that found for the pre-unfolded levels, this would imply that
the unfolding (rescaling) process is actually a smoothing procedure.

Table 6 shows the range of q values used in the Legendre transformation, the maximum
and minimum values of the Lipschitz–Hölder exponents α, as well as the Kolmogorov capacity
D0, information D1 and correlation dimensions D2 and the maximum value of f (α).

Again it is interesting to interpolate the f (α) spectrum to find the maximum and minimum
α values and then using these values to solve the binomial multiplicative equations to calculate
the theoretical sequence of mass exponents τ(q) for a binomial multiplicative process with a
continuous support. The calculated probabilities and lengths are:

p0 = 0.0240 p1 = 0.9760

l0 = 0.0152 l1 = 0.9848.
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Figure 24. The density of states for Tb I: (a) eigenvalue spectrum; (b) �E = 0.1 eV;
(c) �E = 0.01 eV; (d) �E = 0.001 eV.

Table 6. Characteristic parameters of unfolded Ce I.

Unfolded Ce I

−3.0 � q � 19.7

D0 = 0.984
D1 = 0.977
D2 = 0.974

αmin = 0.904
αmax = 1.53

max (f (α)) = 0.984 α = 0.998

The τ(q) exponents are shown in figure 27(c) and the resulting f (α) spectrum is shown in
figure 28(b). It can be seen that there is quite good agreement between the ‘experimental’ and
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Figure 25. (a) Mode number and mean mode number for Ce I; (b) cumulative number of unfolded
energy eigenvalues.

‘numerical’ f (α) spectra over all the range of α. The density of states for the unfolded Ce I is
shown in figure 29.

6. Conclusion

The multifractal formalism has been applied to sequences of energy eigenvalues for Ce I, Ce II,
Nd II, Sm I, Sm II and Tb I. The resulting Rényi dimensions Dq , mass exponents τ(q) and
f (α) spectra were calculated with D0 ≈ 1.0 and max (f (α)) ≈ 1.0, both suggesting that
the energy states are derived from an underlying continuum of energy levels. The fact that
f (α) spectra were obtained implies that the energy levels have various subsets with differing
scaling exponents α, i.e. they are multi-scaling. The Dq and f (α) spectra seem to give rise
to two ‘separate bands’ as shown for the negative q regions. These correspond to the less
dense regions of the eigenvalue spectra and so may have their origin in the restricted number
of eigenvalues that were used in the analysis and/or the limited range of scaling that was
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Figure 26. Ln(Cq(R)) versus ln(R) for unfolded Ce I.

   
   

Figure 27. (a) Generalized dimensions Dq ; (b) sequence of mass exponents τ(q);
(c) ‘experimental’ (full curve) and ‘numerical’ (circles) τ(q).

obtained. This is confirmed by the corresponding errors in Dq . However, the more dense
regions are not banded and lie very close in value. The f (α) spectra for all the selected atoms
and ions are still, however, quite similar in appearance and extend over comparable ranges
of αs, suggesting universal behaviour in the way Nature ‘packs’ the energy eigenvalues into
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Figure 28. f (α) spectra of (a) unfolded Ce I; (b) ‘experimental’ (+) and ‘numerical’ (full) unfolded
Ce I; (c) pre-unfolded Ce I (circles) and unfolded Ce I (+).

a given energy region. This ‘packing’ implies an efficiency law or minimization principle
to which Nature subscribes. However, multifractality is suggestive of a quite complex set of
interwoven scaling subsets. Why this complexity should be ‘efficient’ is another question.
Of course, this may be related to maximizing the entropy (entropy = information loss/lack of
information content) of the system, which in turn minimizes the information content of the
system.

The f (α) spectra were then simulated using a binomial multiplicative process with a
continuous support for the measure. It was found that the underlying scaling structure of the
f (α) spectra could be understood in terms of a simple recursive Cantor set with two length
scales and two probability scales. The numerical and experimental f (α) spectra were found
to coincide for αs corresponding to the denser regions.

The effect of unfolding energy levels before calculating an f (α) spectrum was tested on
Ce I. Since the α range of the f (α) spectrum was found to be more restricted in extent than
that found for the pre-unfolded levels, this would imply that the unfolding (rescaling) process
is actually a smoothing procedure. Thus, any extreme fluctuations in the unfolded values are
reduced quite significantly.

Other lanthanide elements such as La, Pr, Eu and Dy were also tested for multifractality,
but these did not yield any definitive results. Whether or not multi-scaling behaviour occurs
across the whole of the periodic table has yet to be determined.
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Figure 29. The density of states for unfolded Ce I: (a) eigenvalue spectrum; (b) �E = 0.1 eV;
(c) �E = 0.01 eV; (d) �E = 0.001 eV.
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