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Estimation of Sparse Memory Taps for RF
Power Amplifier Behavioral Models
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Abstract—When a larger than required dimension such as
memory depth or order of nonlinearity, is specified during behav-
ioral model extraction, redundant terms can be calculated when
determining the weights of the model. Extraction of a behavioral
model can therefore benefit from a priori knowledge of the system
to be modeled. Conversely if there is a limitation in the hardware
required to calculate model outputs a limit can be set for the max-
imum number of weights to be used. In this letter, an approach
is proposed which allows the input delay vector to be reduced
to a sparse vector including the delayed samples which are most
important in the construction of the power amplifier model. Sim-
ulations of behavioral models for experimentally measured data
of two different PAs demonstrates the sparse models extracted in
this way are as accurate as a full model but have a more compact
and as a result more computationally efficient structure.

Index Terms—Active antenna arrays, behavioral modeling,
memory effect, power amplifier (PA), Volterra series.

I. INTRODUCTION

P OWER amplifiers (PAs) are indispensable components in
wireless communication systems and are inherently non-

linear. In situations where there are multiple distributed PAs in a
single system, top-down design approaches can be used to allow
designers to perform faster analyses of these highly functional
products [1]. Extraction of compact PA behavioral models is
extremely important in the case of simulation of active antenna
arrays where an array of distributed nonlinear PAs must be mod-
eled simultaneously. In this scenario any saving on one signal
path is immediately scaled up by a factor of 16, 32, or 64 de-
pending on the number of PAs used in the system.
It is not immediately apparent from the output signal spec-

trum of an RF PAwhat the required model memory depth should
be. Not knowing the memory depth of a PA to be modeled or lin-
earized means the chosen model or pre-distorter memory depth
is only an estimate arrived at by conjecture. If the memory depth
is chosen too large the PA will be adequately modeled but at
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the cost of efficiency. If the memory depth is set too small, the
model may not be a good approximation of the PA.
In some cases a model is extracted initially using a large

number of terms. Once the coefficients have been calculated,
those which have the least overall effect on the output are identi-
fied and removed until a threshold level of accuracy is achieved
[2]. Ensuring a compromise of efficiency and accuracy of the
model can be obtained by employing a pruning or growing al-
gorithm in this way. However, these techniques have been in-
troduced only for certain models, and the computational over-
head can increase by a large amount if the techniques are applied
repetitively during model extraction. It is therefore desirable to
determine the optimum size for a behavioral model before the
model is extracted.
From [3], a broad categorization of memory depth calculation

approaches can be summarized as physical mechanisms, empir-
ical and systematic methods. The latter being the preferred so-
lution as it is more reliable and less complex. Analysis of the
physical mechanisms, such as non-constant frequency response
of biasing and matching networks is based on solid theory, how-
ever it is complex to implement. Empirical approaches which
have been proposed previously require multiple model training
and validation runs in order to identify the optimum memory
depth. An approach used in both [3] and [4] involves the cal-
culation of false nearest neighbors. This systematic approach
involves progressively increasing the number of delayed input
signal samples of the model space until some metric is satisfied
that indicates that the memory depth of the system is covered.
Since most of the data points are not the next point in the time
series, they are false neighbors of the current time point.
Another systematic approach proposed in [5] presents Lips-

chitz quotients to calculate the total model memory depth. This
approach was applied to the case of PA memory depth calcula-
tion directly from the input and output signal data for a PA in
[5]. In this letter this approach is extended to produce a sparse
delay vector including only those delays which contribute sig-
nificantly to the output signal even if they are sparsely dis-
tributed. A sparse Volterra series model is used to validate the
proposed approach.

II. SPARSE MEMORY VECTOR IDENTIFICATION

Systemmemory depth calculation is possible, but special care
must be taken that the sampling rate of the time domain signal
is first set so that the signal is effectively uncorrelated from the
other integer sample delayed versions of the signal [4]. The ob-
jective is to choose a value for the sampling interval that makes
each delayed version of the signal orthogonal to each other,
which will allow the extraction of the most compact model. The
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choice of a suitable signal sample interval in this way will avoid
a model with stability or convergence problems. Next a behav-
ioral model structure must be chosen in order to validate the
extraction of the sparse time delay vector. The model chosen
in this letter is the classical form of the discrete time Volterra
series model of a nonlinear dynamic system. It is described in
the discrete time domain as shown in (1). and are the
input and output complex envelope signals, NL and M repre-
sents the nonlinear order and memory depth of the model and

are discrete time Volterra kernels

(1)

Volterra kernels can be readily calculated from time domain
input and output signals. In this letter our objective is not to cal-
culate the optimum delay length but the optimum sparse delay
vector to be used on the input signal. The ultimate aim being,
to minimize the number of weights required by a model for an
accurate description of a PA.
In the case of an RF PA we can observe the PA output for

a given input signal. An observation can be made of N input-
output complex envelope sample pairs [6], [7]. Assuming the
RF PA may be characterized using the Volterra series in (1).
The functionality of sparse memory vector identification using
Lipschitz function can be described as follows:
a) Acquire a set of input-output data pairs for the system
and choose the maximum number of delays to consider.

b) Set a threshold value either explicitly or as a percentage
of the total of all Lipschitz numbers

c) Calculate the Lipschitz numbers for sample points up to a
set maximum delay
i) Compute Lipschitz quotients for input-output
sample pairs

(2)

where is the Lipschitz quotient.
ii) Determine the largest quotients
iii) Calculate the corresponding Lipschitz numbers.

(3)

d) Calculate the first differences between the Lipschitz num-
bers.

e) Determine what first differences are greater than the
threshold value.

Following steps (a), (b) and (c) as in [5] we define the Lipschitz
quotient given by (2) where is the distance

Fig. 1. Plot of Lipschitz order index versus sample delays.

between two input signal samples and in the input
signal and the distance between two output signal
samples, and . The Lipschitz number is given by [5],

is the k-th largest Lipschitz quotient among all
and with input signal sample values.

Parameter is a positive integer whose value is typically a small
fraction of the number of input signal samples .
The maximum number of delay taps required by the model

can be visualized using the information of Lipschitz numbers
computed directly from input and output data samples in the
time domain as explained by steps (a) to (c). In Fig. 1 the Lip-
schitz number is plotted against the number of input vari-
ables. From [5]–[7] it is advised to truncate the number of input
delayed taps at the knee point of this plot. With this representa-
tion it is not always obvious from visual inspection what point
corresponds to the best point at which to truncate. In this work
steps (d) and (e) document the extension of the method pre-
sented in [5]. These involve the subtraction of Lipschitz number
magnitudes from one another to gauge the relative influence of
one delay tap in relation to the previous delay tap. In doing this,
the most influential input samples can be identified even if they
are irregularly spaced.
To establish which delays to include or exclude in a sparse

behavioral model, the first difference is taken of the Lipschitz
numbers which shows proportionally howmuch each delay con-
tributes to the output signal compared with its adjacent delays
[8]. A threshold for inclusion of the sparse delays can then be
set to determine which samples to use in the behavioral model.
One methodology which can be employed is to set the threshold
based on the hardware resources available to perform the com-
putations of the model output. In this way the threshold is varied
up or down until the maximum model size possible is reached.
As indicated in Fig. 2.

III. VALIDATION

In order to validate the approach the complex envelopes of
input and output signals for two different 10 W power ampli-
fiers are measured for a quad carrier wideband code division
multiple access (WCDMA) signal. Plotting the output signal in
the frequency domain, an acceptable order of nonlinearity for
the models to be extracted is estimated as third order. Equation
(3) is used on the input and output time domain signal samples
to calculate the dependency of the output on the delayed input
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Fig. 2. Plot of Sparse Lipschitz order index versus sample delays.

Fig. 3. Plot of model outputs for Class AB PA in frequency domain.

Fig. 4. Frequency spectra of model outputs for Doherty PA.

TABLE I
COMPARISON OF NONLINEAR MODELS

signal samples. The corresponding dependency of each sample
delay is plotted in Fig. 1. Beyond the point at which the values
saturate the use of delay taps should not increase the accuracy

of the model by a large amount and therefore an upper limit to
the number of sample delays can be set. Next the first difference
between successive sample delays is calculated and a threshold
set to identify the sparse sample delays. The sparse delays being
those that hold a value above that of the threshold.
Fig. 2 shows a plot of the first differences for the Lipschitz

numbers using a log scale. The threshold level used is indicated
on the plot and can be set according to the total number of taps
allowed for the sparse model. In the case of the two PAs used in
this work sparse delay tap vectors of {0,1,2,3,6,7} and {0,1,2,4}
were identified and used to extract behavioral models for the
Doherty and Class AB PAs respectively. Where 0 indicates no
delay, 1 indicates a delay of one sample, etc.
In order to compare the results for the sparse Lipschitz

method used to identify the sparse delay vector, two other
models are extracted. First an additional behavioral model was
extracted using all the delay taps up to and including the total
memory depth and this is denoted as the Classical Volterra
model. Another model denoted as First minimum, uses the
number of delay taps up to the first unnecessary tap equivalent
to what would constitute the knee point of the Lipschitz plots in
Fig. 1. In this way it is possible to show that further information
is contained in the additional sparse taps.
It can be seen from the normalized mean square error

(NMSE) performance metrics in Table I and Figs. 3 and 4,
that the sparse vector model provides comparable or increased
accuracy compared to the Classical model.

IV. CONCLUSION

In this letter, a novel method is presented, to calculate the op-
timum sparse delay tap vector for an RF PA behavioral model.
A sparse tap Volterra series based model is used in the veri-
fication, and its improvement in performance is evident from
the tabulated results for two different PAs. It therefore provides
a means of removing less important delay taps from a behav-
ioral model for use where there may be limited computational
resources.
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