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Extraction of small-signal model parameters
of Si/SiGe heterojunction bipolar transistor
using least squares support vector machines

H. Taher✉, R. Farrell, D. Schreurs and B. Nauwelaers
ELECT
A novel straightforward methodology for extracting bias-dependent
small-signal equivalent circuit model parameters (SSECMPs) of
silicon/silicon–germanium heterojunction bipolar transistors is pre-
sented. The inverse mapping between SSECMPs and scattering (S)
parameters is established and fitted using simulated data of the
SSECM. Since the problem has large input space, S-parameters at
many frequency points, the least squares support vector machines
concept is used as regression technique. Physical SSECMPs values
are obtained using the proposed methodology. Moreover, an excellent
agreement is noted between the S-parameters measurements and their
simulated counterpart using the extracted SSECMPs in the frequency
range from 40 MHz to 40 GHz at different bias conditions.
Introduction: Heterojunction bipolar transistors (HBTs) are widely
used for RF and high-speed applications. Silicon–germanium (SiGe)
technology has a lot of advantages compared to its rival, III–V technol-
ogy, such as low cost through the integration with Si CMOS, high
thermal conductivity and lower operating voltage. An accurate small-
signal equivalent circuit model (SSECM) of the device is very essential
for evaluating process technology and optimising device structure. On
the other side, they are indispensable to noise analysis and to design
low-noise amplifiers and low-power high-speed optical receivers circuits
[1]. The intrinsic characteristics of the on-wafer device are the main
interest for IC designers. The problem of SSECM parameters
(SSECMPs) extraction is mathematically described as follows: the
aim of parameters extraction is finding the solution to system of ill-
conditioned non-linear equations. These equations map SSECMPs,
independent variables, into S-parameters, dependent ones, space.
There are a lot of different techniques to extract SSECMPs. However,
it can be categorised under two main conventional approaches, direct
extraction, as an example [2], and optimisation-based extraction, as an
example [3]. In the former approach, a series of transformations from
Z-parameters to Y-parameters and vice versa of the SSECM nested
layers in conjunction with some sort of frequency analysis are needed
to extract SSECMPs. This procedure increases the uncertainty of the
extracted SSECMPs values. Consequently, accurate S-parameters
measurements are crucial and averaging over the frequency must be
taken to obtain unique values. On the other hand, the latter approach uti-
lises numerical algorithms to find the combination of SSECMPs that
result the best fit of the SSECM calculated S-parameters to the corre-
sponding measured ones. However, they suffer from local minima pro-
blems, and consequently, physical extracted values are not guaranteed.
Moreover, long extraction time is needed for searching the best
SSECMPs values.

In this Letter, to avoid the issues with utilising one of previously men-
tioned techniques, artificial intelligent (AI)-based inverse mapping tech-
nique is used to solve this problem. The philosophy of this technique is
to build an inverse mapping from the S-parameters space to the
SSECMPs space using data collected from simulations of the preas-
signed SSECM topology. The obtained data are composed of pairs
from SSECMPs and the corresponding simulated S-parameters, respect-
ively. Using the collected data, one of AI techniques is used to construct
unique function for every SSECMP. As a consequence, once the
mapping is established, every SSECMP could be extracted directly
and independently. The problem has high dimensional input space,
namely, all S-parameters multiplied by frequency points at which the
measurement is done. The least squares support vector machines
(LS-SVMs) is the technique which is qualified to perform this task.
Furthermore, LS-SVMs technique does not have the local minima
problem. Physical, reliable and frequency independent SSECMPs
values are obtained, and consequently, all the disadvantages of the con-
ventional techniques are overcome. To the authors’ knowledge, it is the
first time that SSECMPs of any RF active component could be extracted
without using the traditional approaches.

Proposed extraction technique: The complete SSECM for a Si/SiGe
HBT, as seen from the probe tips of vector network analyser (VNA),
comprises of two main parts, namely, the intrinsic bias-dependent
core of the device and extrinsic bias-independent parasitics. The
RONICS LETTERS 22nd October 2015 Vol. 5
contribution of the extrinsic part is removed from the S-parameters
measurements using the pad, short and open dummy structures. On
the other hand, the intrinsic SSECMPs, as depicted in Fig. 1, are the
base resistance (Rb), the base–emitter junction capacitance (Cπ), the
dynamic base–emitter resistance (Rπ), internal base–collector junction
capacitance (Cu), external base–collector junction capacitance (Cf),
DC transconductance (gmo), transient time phase delay (τ) and collec-
tor–substrate capacitance (Cs). All the aforementioned parameters are
extracted using the presented methodology. However, beforehand, the
bias-independent emitter resistance (Re) is extracted as in [2].
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Fig. 1 SSECM of intrinsic part of Si/SiGe HBT

Let vector Sm represents real and imaginary parts of measured
S-parameters at specific frequency point, m, and taking the following
form:

Sm = [Re(S11) Im(S11) Re(S12) · · · Im(S22)]
T [ R8 (1)

Furthermore, the vector, S, represents the S-parameters at all n frequency
points. Algebraically, S can put in the following form:

S = [S1 . . . Sm . . . Sn]
T [ R8n (2)

The extraction problem of SSECMPs vector (p) is formulated as
follows; assuming p is frequency independent, how to obtain values
of p from the following equation:

S = w(p) (3)

This formulation causes problems in extracting p as it was explained in
the introduction. Our solution is to inverse map (3) and find function ψ
such that

p = c(S) (4)

LS-SVM is used to construct ψ. In the remaining part of this section, a
summary of the LS-SVMS theory [4] is offered. Consider N a given
training data set {xk , yk}

N
k=1 with input data xk∈ Rn and output yk∈ R,

where n is the dimension of the input space. The LS-SVMs for function
estimation has the following linear form in feature space:

y(x) = wTw(x)+ b (5)

The non-linear mapping w(.): Rn→ RnF maps the input space to a higher
dimension feature space with dimension nF. b is the threshold term; w∈
RnF is the weight vector. The optimisation problem is formulated as

min
w,b,e

J (w, e) = 1

2
wTw+ g

1

2

∑N

i=1

e2k (6)

subject to the equality constraints

yi = wTw(xk )+ b+ ek k = 1, . . . , N (7)

where eK∈ R is the error vector; γ is the regularisation parameter and
used to control the trade-off between the smoothness of the function
and the accuracy of the fitting. The optimisation problem (6) is con-
sidered to be a constrained optimisation problem and a Lagrange func-
tion is used to solve it. Instead of minimising the primary objective (6), a
dual objective, the so-called Lagrangian, is formed of which the saddle
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point is the optimum. The Lagrangian for this problem is given as

L(w, b, e, a) = J (w, e)−
∑N

i=1

ak wTw(xk )+ b+ ek − yk
{ }

(8)

where αk are Lagrangian multipliers.
This optimisation problem leads to a solution

f̂ (x) =
∑N

i=1

aiK(x, xi)+ b (9)

where K(x, xi) = ϕT(x)ϕ(xi) is the kernel.
The brilliancy of using the kernel function lies in the fact that one can

deal with linear feature spaces of arbitrary dimensionality without
having to compute the map w(.) explicitly. There are different kernel
function types such as polynomial kernel: K(xi, xj ) = (xTi xj + t)d ,
with t is the intercept and d is the degree of the polynomial and radial
basis function kernel: K(xi, xj) = e−(xi−xj2)/2s2

, with σ2 the variance
of the Gaussian kernel. In the following section, we will use (9) to
build ψ defined in (4).

LS-SVMs extraction model: To obtain ψ using LS-SVMs model, train-
ing data are required. Therefore, the corners of the problem must be
firstly determined. The proposed methodology is applied on the HBT
device with geometry of 0.8 μm× 9.6 μm. The problem corners are
the corners of the voltage region at which we want to extract
SSECMPs. Base voltage (VB) is chosen to vary from 0.8 to 0.9 V,
while collector voltage (VC) is varied between 1.0 and 2.0 V. The
SSECMPs are extracted at these four corners using any traditional tech-
nique [2, 3].
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Fig. 2 Bias dependency of some of extracted intrinsic SSECMPs
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Fig. 3 Comparison between measured (capital letter O line) and simulated
(black rectangle line) S-parameters [40 MHz–40 GHz]
a VB = 0.9 V and VC = 1.5 V
b VB = 0.8 V and VC = 1 V

In this Letter, the procedure followed in [2] is adopted. The lowest
and highest extracted values of each parameter are listed and considered
the approximated boundary of each SSECMP. The initial boundary is
stretched by 20% from the upper and lower sides, respectively, to guar-
antee that the region of interest is well fitted inside the training region.
The final boundary values are used in Monte Carlo simulation tool inte-
grated in advanced design system (ADS) package to generate the needed
data. One thousand five hundred data samples are generated for training
and test phases’ purpose. Every individual sample composes of the pair
of SSECMPs values and the corresponding S-parameters resulting from
their simulation. The value of n is 10, and therefore the dimension of
input space, S, is 80. One LS-SVMs model per SSECMP is built.
First, the generated training data are used to get the γ and σ values
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with the auto-tuning (cross validation) utility in the LS-SVMlab [5],
integrated in MATLAB. Using the obtained optimised values for γ
and σ and the same training data set, we train the LS-SVMs model
with suitable kernel to obtain αk and b values. All models use poly-
nomial kernel except the one of gm0 parameter which utilises RBF
kernel type. The criterion of kernel type selection is which one achieves
minimum test error.

The bias dependence of the extracted SSECMPs follows the physical
behaviour of the device. As an example, the bias dependence of gm0 and
Cπ reveals exponential-like dependency on VB and quasi-independency
on VC, as shown in Figs. 2a and b, respectively. As consequence of this,
an excellent agreement is noted between the S-parameters resulting from
the simulation of the extracted SSECMPs with the corresponding
measured quantities, as shown in Fig. 3 for two different biases.
However, there is a small discrepancy starting from 20 GHz and
onward for tiny S12 and it is attributed to standard 12-term VNA calibra-
tions do not correct S12 background error caused by probe-to-probe
coupling.

Conclusion: In this Letter, the inverse mapping function is established
between Si/SiGe HBT SSECMPs and S-parameters by using LS-SVMs.
The LS-SVMs is exploited to map high input S-parameters’ space into
lower output SSECMP space. Once LS-SVMs model is well trained,
in fractions of second, physical, reliable and unique SSECMPs values
are extracted. Therefore, all disadvantages of the traditional extraction
techniques are overwhelmed. The offered distinguished extraction tech-
nique is very beneficial for circuit design, noise analysis and process
technology evaluation purposes. On the other side, it could be applied
to extract SSECMPs of any RF component.
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