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Abstract: The control of blood pressure is a complex mixture of neural, hormonal
and intrinsic interactions at the level of the heart, kidney and blood vessels.
While experimental approaches to understanding these interactions remain useful,
it remains difficult to conduct experiments to quantify these interactions as the
number of parameters increases. Thus modelling approaches can offer considerable
assistance. Typical mathematical models which describe the ability of the blood
vessels to change their diameter (vasoconstriction) assume linearity of operation.
However, due to the interaction of multiple vasocontrictive and vasodilative
effectors, there is a significant nonlinear response to the influence of neural
factors, particularly at higher levels of nerve activity (often seen in subjects with
high blood pressure) which leads to low blood flow rates. This paper proposes
a nonlinear mathematical model for the relationship between neural influences
(sympathetic nerve activity (SNA) and blood flow, using a feedback path to
model the predominently nonlinear effect of local vasoactive modulators such
as Nitric Oxide, which oppose the action of SNA. The model, the structure of
which is motivated by basic physiological principles, is parameterised using a
numerical optimisation method using open-loop data collected from rabbits. The
model responses are shown to be in good agreement with the experimental data.
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1. INTRODUCTION

The regulation of blood pressure is critical in
maintaining nutrient and oxygen supply to the
various perfused organs. Blood pressure is deter-
mined according to the (Ohm’s Law) relationship:

MAP = CO.TPR (1)

where:

MAP is the mean (of the systolic and diastolic)
pressure (measured in mmHg),

CO is cardiac output, evaluated as the product
of heart rate and stroke volume (in l/s), and

TPR is the total peripheral resistance as seen by
the heart (in mmHg s/l).

This study will focus on those components which
mediate the resistance to blood flow, with the
primary pump, the heart, assumed to have a
relatively constant output. Blood flow may be
differentially regulated according to physiological
needs at any particular time via a variety of
hormonal, neural and intrinsic factors.
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In particular, the emphasis is on TPR and how it
mediates blood flow/pressure on a relatively short
timescale i.e. seconds. Central to this timescale,
with a time delay between stimulation and re-
sponse of 0.6s (Guild et al., 2001), is the neural
control of blood pressure, with sympathetic in-
nervation of a number of major organs and ar-
eas of the vasculature, allowing rapid control of
resistance via the central nervous system. Such
sympathetic nerve activity (SNA) causes the re-
lease of neurotransmitters which, in general, cause
the smooth muscle surrounding small arteries and
arterioles to constrict (DiBona and Kopp, 1997).

The distribution of sympathetic innervation through-
out the vasculature (and the nature of the local
receptors i.e. whether they cause vasoconstriction
or vasodilation) determines the action that will
take place at any particular site. However, in ad-
dition to neural control, several other mechanisms
have significant effect on resistance, including:

• Hormones, which circulate throughout the
system and can effect both vasodilation or
vasoconstriction, depending on the particular
hormone and the type of receptor it binds
to (typical hormones include Epinephrine,
Antidiuretic Hormone, Angiotensin II and
Cortisol (Sorensen et al., 2000; Bellomo et
al., 1999)),

• Intrinsic factors (myogenic autoregulation),
which regulate blood vessel compliance and,
for example, produce a vasoconstrictive ac-
tion in the smooth muscle in response to a
distorting force on the walls of blood vessels
due to blood pressure (Navar, 1998),

• Paracrines, which are humoral substances
that are secreted by cells in the endothe-
lium (the area between the circulating blood
and the vascular smooth muscle) and affect
neighboring cells. Paracrines can have both
vasodilatory (e.g. Prostacyclin, Nitric Ox-
ide) and vasoconstrictive effects (e.g. Throm-
boxane, Endothelin-1), with some paracrines
having both dilatory and constrictive poten-
tial (e.g. Endothelin-1 (Boulanger and Van-
houtte, 1998)), depending on the receptors
they bind to.

• Metabolic factors, which can elicit vasoaction
in response to local metabolic demands. Typ-
ical mediators include oxygen (constriction).

Fig.1 (adapted from (Richardson et al., 1998))
attempts to summarise the various factors in-
volved in mediating vasoaction. The vasoactive
mechanisms can be loosely grouped into systemic
effects (e.g. SNA, hormones) and local effects
(paracrines, tissue metabolites). The vasoaction
at any particular site is therefore likely to be a
combination of both factors, dependent on:
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Fig. 1. Summary of vasoactive mechanisms

• The systemic requirements (mainly regula-
tion of blood pressure), and

• Local requirements, including metabolic needs.

The study in this paper examines the renal vascu-
lature in particular and attempts to build a math-
ematical model relating blood flow to SNA, with
hormones, paracrines, etc. as mediating factors.

Mathematical models can be used to develop un-
derstanding of the system under study if the struc-
ture, and parameters, of the model can be vali-
dated by good agreement between model output
and experimental data. In order to achieve this
structural information, the emphasis should be
on models which attempt to exploit the physical
system description, rather than adopting a ‘bulk’
black box modelling approach. While the latter
approach can give a very good model fit for spe-
cific experimental data, it does little to reveal the
generic structure of the system under study.

To date, a number of attempts have been made
to model the blood flow response to SNA. How-
ever, most techniques focus on linear models,
which fail to capture essential aspects of the re-
sponse. For example, the paper by Eppel et al.
(2003) considers only broad magnitude changes
in renal blood flow (RBF) in response to SNA
stimulation, while the paper by Leonard et al.
(2000) fits an unparameterised frequency response
to the RBF/SNA relationship. Navakatikyan et
al. (2000) fit a first-order (pole-only) model to
the response, with Guild et al. (2001) using a
frequency-domain approach to fit a linear 4th or-
der (4 poles and 2 zeros plus delay) model to the
data. While the linear model of Guild et al. (2001)
gives a good fit at relatively low SNA amplitudes,
the response match deteriorates as higher SNA
stimulation evokes reactionary responses in (local)
vasodilatory mechanisms.

2. MODEL DEVELOPMENT

The essential model structure is shown in Fig.2.
The neural control of the renal vasculature is
considered central to the model for two reasons:



(1) It is the most significant (and ‘independent’)
input to the model i.e. most other mecha-
nisms are considered reactionary on a more
local level, and

(2) The experimental data on which the model
will be validated is ‘open-loop’ as far as neu-
ral control of the vasculature is concerned.
This is achieved via transection of the renal
sympathetic nerve and artificial (electrical)
stimulation of the renal nerves using a suit-
able excitation signal.
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Fig. 2. Feedforward/feedback configuration

The two feedback paths represent the effects that
both local and systemic blood pressure/flow con-
trol mechanisms have in response to SNA-based
activation of renal blood flow. Since the renal
vasculature is just one component which regulates
blood pressure, the response from systemic mech-
anisms is unlikely to be nearly as significant as the
response from local mechanisms. Therefore, a sin-
gle feedback block will be employed in the struc-
ture as shown in Fig.2. This single block could
incorporate systemic effects, but is configured to
mainly model local effects. The model structure
is based on the following physiological premise.
Above a certain (threshold) value of (normal)
blood flow, the response of blood flow to SNA is
relatively linear. However, when blood flow drops
below a certain value, local myogenic factors and
paracrines work progressively harder (as blood
flow decreases) to maintain an acceptable level of
local blood flow. This combination of threshold
and progressive response is captured by the ‘acti-
vation level’ block in Fig.3. The ‘local dynamics’
block in Fig.3 captures the speed of response of
these local reactionary mechanisms. Finally, the
‘smooth’ muscle dynamics’ block represents the
dynamic response of the smooth muscle to a stim-
ulus from an appropriate receptor.
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Fig. 3. Block diagram of proposed model structure
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Fig. 4. Typical ‘large-signal’ response to SNA
activation

Fig.4 shows the typical type of response obtained
from the model. The initial response to a step
activation in SNA is roughly first order exponen-
tial, but as soon as blood flow reduction reaches a
certain level, local (opposite) effects temper the
response dramatically. Following release of the
SNA activation, the response returns rapidly to
the original level, assisted by the local paracrines,
etc. which are still active and have not yet been
dispersed. Finally, the blood flow overshoots its
original value, due to the slow dispersal of these
local vasodilatory effects.

From the above description, some aspects of the
model can be clarified:

• The local vasodilatory response is not linear
and has some ‘threshold’ of blood flow change
above which it is activated,

• The response of the local vasodilatory re-
action is significantly slower than that of
the smooth muscle to the SNA stimulus (i.e.
τb > τf ), and

• The magnitude of the action (to SNA) and
reaction (by the local vasodilatory mecha-
nism) is comparable, at least to an order of
magnitude.

3. DATA AVAILABILITY

Experiments were performed on 6 anaesthetized
New Zealand white rabbits (Leonard et al., 2000).
A transit time flow probe (type 2SB; Transonic
Systems, Ithaca, NY, USA), connected to a com-
patible flowmeter (T106, Transonic Systems) was
used to measure RBF, with arterial pressure being
monitored using a catheter inserted into the cen-
tral ear artery and connected to a pressure trans-
ducer (Cobe, Arvarda, CO). The measured sig-
nals were sampled at 500Hz, digitized and saved
continuously as 2s averages of each variable. In



Table 1. Dynamic block parameters

kf kb τf (secs) τb (secs)

1 0.85 20 333

addition, heart rate (HR, beats/min) was derived
from the MAP waveform.

For stimulation, the renal nerves were placed
across a pair of hooked stimulating electrodes and
then sectioned proximal to the electrodes. Stimu-
lation sequences using both amplitude (AM) and
frequency modulation (FM) were applied, all us-
ing a pulse width of 2mS. In the AM sequence,
voltages of 0.5, 1.0, 1.5, 2.0, 3.0, 5.0 and 8.0 V were
applied in random order at a constant frequency
of 5Hz. For the FM sequence, frequencies of 0.5,
1.0, 1.5, 2.0, 3.0, 5.0 and 8.0 Hz were applied
in random order using a voltage equal to that
required to produce a maximal RBF response.
For both AM and FM sequences, the stimulation
interval was 3 min., with a 5 min. recovery period
before delivering the next stimulus.

4. MODEL PARAMETERISATION

Given the intuitive nature of the model and the
strong relationship with the underlying physiol-
ogy, initial attempts focussed on tuning the model
parameters by trial and error. One further com-
ponent was added to the model of Fig.3 in order
to correctly represent the relationship between
the varying levels of steady state response to the
frequency of SNA stimulation. This (mildly) non-
linear characteristic preceeds the model section
shown in Fig.3 and is given by the transformation
in Fig.5. The parameters of the dynamic feedfor-
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Fig. 5. Transformation for frequency stimulation

ward and feedback blocks are detailed in Table.1.
Finally, the nonlinear feedback activation function
is shown in Fig.6. A number of aspects of the
model are noteworthy:
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Fig. 6. Feedback activation function

• The feedback activation function has little
effect below blood flow reduction levels of
30%.

• The feedback branch has a potential activa-
tion level which is comparable with that of
the feedforward section, when the blood flow
level suffers any significant decrease (say to
about 60%, representing a reduction of 40%).
Note that the nonlinear feedback character-
istic has been normalised approximately to
the SNA stimulation level (of 100) at the
summation block. Therefore the values of kf

and kb can be directly compared.
• The feedback (vasodilatory) mechanism has

a time response which is an order of mag-
nitude greater than that of the feedforward
response. This, in the main, accounts for the
characteristic step response of the system.

The performance of the model in comparison
to the recorded experimental data may now be
evaluated by reference to, by way of example,
Fig.7. Clearly, the model has captured the essence
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Fig. 7. Comparison of model response with exper-
imental data

of the response contained in the the experimental
data, though several features of the data fall
outside the scope of the model, for example:



• The data contains a significant amount of
noise, as is to be expected with physiological
experimental data. It is not the intention of
the model to capture this. Arguably a better
comparison could be made if the experimen-
tal data had been filtered prior to plotting,
but the filter would introduce dynamics of its
own which may interfere with the parameter
determination.

• There is some longer term drift in the data,
most noticable at lower levels of SNA acti-
vation. This is due to longer term autoregu-
latory effects, which are numerous. Conceiv-
ably, such an effect could be built into the
model, but it is difficult (from an experimen-
tal point of view) to isolate such effects in or-
der to develop components which will provide
a generic description of these mechanisms.

The experimental responses in Fig.7, for higher
activation levels (e.g. 3Hz, 5 Hz and 8 Hz) show
a good pattern match to the ‘template’ response
of Fig.4. At lower levels of SNA activation, the
response is broadly (first-order) exponential, with
little participation of the feedback loop.

5. CONCLUSIONS

This paper has developed a large-signal model
for neurally-induced vasoaction in the renal vas-
culature. The model is based on physiological
principles and the resulting intuitive relationship
between the model parameters and its response
has enabled the parameters to be determined on
a trial-and-error basis. A Gauss-Newton gradient
search algorithm was used in an effort to provide a
more objective means of determining an optimum
parameter set, but there was no improvement as
a result of this, due to the difficulties with multi-
ple local minima and the resulting sensitivity to
initial parameter values. Some future work will
examine the effectiveness of stochastic and con-
current search algorithms in providing an optimal
parameter set.

The model presented in this paper focusses on
the renal vasculature only and caution must be
exercised in any attempt to extend its applicabil-
ity to other vasculature components or, indeed, to
TPR in general. It is known (see Section 1) that
different vasculature beds may respond differently
to similar vasoactive mechanisms, depending on
the particular receptors (or mix of receptors) con-
tained in the various vascular beds. Therefore, it is
not reasonable to attempt to generalise this model
to other vascular beds until it can be validated
with appropriate experimental data. However, the
renal vasculature is a major component of inner-
vated resistance (approximately 30%) and there-

fore the model has a not insignificant relevance to
TPR.

The model developed has deliberately separated
dynamic and nonlinear elements (with a Hammer-
stein structure in the feedback path) in an effort
to make the model as transparent as possible and
facilitate parameter tuning. However, it is likely
that an integrated model could provide a better fit
to the data, though presenting a greater challenge
in parameter determination (only via optimisation
techniques).

We believe that this model can also be helpful
as part of the modelling effort to investigate the
origins of low-frequency (circa 0.1 Hz in humans)
oscillations in blood pressure. Current models
utilise a relatively simple linear first-order dy-
namic element to represent the resistance com-
ponent of the vasculature (Ringwood and Mal-
pas, 2001) and while this representation is ade-
quate for small-signal situations, it is known that
oscillations of a significant amplitude can occur
under certain physiological conditions e.g. haem-
orrhage (Malpas and Burgess, 2000). Inclusion of
the counteractive vasodilatory mechanism in the
model presented in this paper is likely to make
a significant change to predictions of oscillation
amplitudes (particularly at higher amplitudes)
compared to current models utilising simple linear
models.

There is considerable scope for further work. In
addition to the investigation of different optimi-
sation techniques for model parameter determina-
tion, some improvements to the basic model struc-
ture are possible. In particular, Fig.7 confirms
that, notwithstanding the employment of differ-
ent time constants for feedforward and feedback
components, the responses in positive-going and
negative-going directions occur at different rates,
with the slower response during the recovery from
stimulation. This is perfectly reasonable, since:

• Recovery from SNA activation is passive and
the smooth muscle may take longer to relax
than contract under forced activation, and

• Hormones, paracrines, etc. may take much
longer to disperse than the rate at which they
were formed, since they rely on other aspects
of the physiology to dilute them.

Finally, it is also anticipated that a model can be
built which can combine the effects of both am-
plitude and frequency SNA stimulation. However,
some careful analysis of the equivalence between
these two mechanisms is necessary and there is an
inherent difficulty in quantifying ‘amplitude’ stim-
ulation on SNA fibres, since there is uncertainty
as to the number of fibres covered by stimulating
electrodes (and the mechanism by which ‘ampli-
tude’ modulation occurs is via the recruitment of



more/less fibres, ‘amplitude’ level on a single fibre
being approximately fixed).
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