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Abstract — In this paper, an examination of the effect of including rainfall
inputs in the forecasting of daily vehicular traffic volumes is undertaken. A
case study is carried out at a busy intersection in Dublin city to examine if any
reduction in forecasting error can be obtained by the incorporation of rainfall
inputs. This paper also demonstrates the value of incorporating lessons learned
from linear time series modelling to the non-linear analysis undertaken.
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I Introduction

Intelligent Transportation Systems (ITS) have
been identified as the key to solving many of the
increasing congestion problems present nowadays
on most urban roads. Intelligent Transportation
Systems have the potential to smooth traffic
flow, optimise traffic signals, provide valuable
information to travellers, reduce travel time and
decrease fuel consumption, ultimately reducing
congestion [1].

One shortcoming identified in literature, is the
need for weather responsive traffic management
[2]. Most traffic management systems are designed
assuming clear conditions and suffer from lack
of flexility during inclement weather conditions.
Issues such as traffic signal timing which may be
optimised assuming clear conditions may not be
performing optimally during periods of adverse
weather.

It has been demonstrated previously that
changes in precipitation intensity impacts the
speed, headways and capacity of roadways [3]. In
this paper, an examination of the effects of precip-
itation on traffic volume forecasting is undertaken
to investigate if an improvement in forecasting
accuracy can be achieved by its inclusion. It has
been shown previously that precipitation does
not impact on mean daily traffic volumes [4],
however, it could be reasoned that the reduction
of speeds, headway and capacity of roads may
manifest itself in the form of fewer vehicles passing
the same point on a roadway during inclement

rainfall conditions. This would also explain the
increased congestion experienced by road users
during periods of significant rainfall. By including
rainfall in the forecast of traffic volumes it will
be investigated if any improvement in forecasting
accuracy can be obtained.

This paper examines the application of neural
networks to modelling daily traffic volumes.
Neural networks have been applied, successfully,
to traffic forecasting problems in numerous publi-
cations [5, 6, 7]. Self-Organising feature maps for
day-type identification will also be employed to
identify the number of different day-types present
over a standard week.

In addition to the traditional black-box ap-
proach to neural network modelling, an effort is
also made to incorporate information on an effec-
tive input and model structure suggested by linear
time series modelling.

II Data Availability

a) Traffic Data

To undertake the modelling exercise presented
in this paper, loop detector data was gratefully
provided by Dublin City Council for a busy
junction in Dublin city center. The junction is
TCS 172. The approach to the junction which
was modelled, consists of two lanes of traffic on
the south to north approach to the junction.

Traffic volumes passing through each of the two
lanes modelled was available in 15 minute intervals
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over a period of approximately four years, from
2002 to 2006. However, in order to tabulate the
data with available meteorological data, the traffic
data had to be summed to hourly intervals. The
volumes passing through each of the two lanes on
the approach to the junction were also summed.
A plot of traffic flow on a random weekday is pre-
sented in Figure 1 below, showing the traffic vol-
ume per hour against time.
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Fig. 1: Traffic Flow for a Typical Weekday at Junction
TCS 172

b) Weather Data

Weather data for the period of 2000 to 2006 was
made available by Met Eireann. The data consists
of hourly observations for temperature, humidity,
etc. and hourly means or summations for rainfall,
wind, etc. At this stage, only the rainfall data has
been used as a causal input in the forecasting of
daily traffic volumes.

III Data Preprocessing

Prior to undertaking the modelling exercise it was
necessary to identify all outliers and missing data
in the traffic data. The weather data required
no further preprocessing as no outliers or missing
data was present.

The first task undertaken was to identify
and remove all missing data in the dataset and
to remove all bank holidays, holiday periods
(Christmas, Easter, etc.). Any other inconsistent
days identified, possibly due to roadworks, lane
closures, school holidays, etc were also removed.

The next task was to identify any trends in traf-
fic volumes over each of the seasons. Examination
of the data clearly showed fluctuations in the daily
traffic volumes and profiles over the year. Data for
period of February to April over three years was
finally selected for modelling, which demonstrated
relatively consistent daily profiles and volumes.

IV Day Type Identification

In this section Self-organising feature maps are
employed for day type identifications, in order to
classify and compare the trends over each of the
days of the week for the dataset being modelled.

The objective of this exercise was to classify
each of the days of the week and determine the
number of separate models that would be required
to model each of the day types identified.

Self-organising feature maps or Kohonen maps,
have been applied successfully in other fields such
as electrical load forecasting [8] to assist in iden-
tifying day types within large datasets. In this
application, the algorithm used by Hsu and Yang
[9] is employed to carry out the day-type identifi-
cation exercise.

Fig. 2: Kohonen Map Structure [8]

The Kohonen map network consists of a grid of
output nodes connected to the inputs via a set of
weights as shown in Figure 2. When presented
with the kth input vector Pk, ε R1xn the network
calculates the activation of each node by Pk as:

ai,j,k = Wi,jPk (1)

The inputs are said to be mapped onto the
network node with the highest activation. After
several inputs have been presented, similar inputs
are mapped to the same or adjacent nodes of the
network, i.e. within a small neighbourhood.

Having carried out the necessary preprocessing
and training described in [8], the next step is to as-
sign day types to the triggered nodes. In this case,
each of the days of the week, Monday to Sunday
are assigned. Figure 3 shows the nodes that have
been triggered for Tuesday to Sunday respectively
(Monday has not been included due to space con-
straints). It is clear from examining the results,
that each of the weekdays have triggered the same
nodes, and that separate nodes
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Fig. 3: Nodes Triggered by Respective Daily Traffic Profiles

have been triggered for both Saturday and
Sunday (The nodes triggered for Monday were the
same as each of the other weekdays). Effectively,
each of the weekdays within the dataset exam-
ined, represent a single ‘Day-Type’. Thus, the
dataset needs to be disaggregated into weekdays,
Saturdays and Sundays for model building. Only
weekdays have been considered for the modelling
exercise presented here.

V Neural Network Modelling

a) Introduction

Neural networks provide an unconstrained nonlin-
ear modelling technique where a general nonlinear
mapping is formed between some subset of past
time series values and a future time series value.
Temporal information may be presented to the
network using a time lagged vector of time series
data at the input, known as a tapped delay line,
with the current value of the time series presented
at the output.

Tapped Delay Line
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Neural Network
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Fig. 4: Time Series Neural Network

Figure 4 above describes the univariate case.
To extend this to the multivariate case is rela-
tively straight forward task, whereby the input
is now made up of past values of the time se-

ries for which the forecast is required, but also on
present and past values of other exogeneous vari-
able time series, in this case, rainfall. Such a net-
work is suitable for performing single step predic-
tions, however, to perform multi-step predictions,
it is necessary to introduce feedback into the net-
work, whereby another tapped delay line is intro-
duced through which the output of the network is
fed iteratively back to the input.

b) Box-Jenkins Input Structure

The application of a total black-box approach
to neural network modelling of dynamic systems,
would generally utilise a model of the form shown
in Figure 5 below, with tapped delay lines for in-
put and output variables forming the input to the
network. Using a ‘standard’ autoregressive (AR)
model of form shown in Figure 5, it would be usual
to choose inputs which span a single season of the
dataset, in this case 24 inputs for the previous 24
hours of the day.

-

Yt−1

Yt−L

Yt

Fig. 5: Network with ‘Standard’ Autoregressive Input
Structure

The use of such a total black-box approach may
however, disregard structural information avail-
able from linear time series analysis. In this study,
an effort is made to incorporate information on an



effective input and model structure suggested by
linear time series modelling. The approach under-
taken here involves the use of the Box-Jenkins [10]
methodology. A similar approach was previously
carried out in [11], for electrical load forecasting,
which resulted in a significant improvement in fore-
casting accuracy in comparison to using the ‘stan-
dard’ autoregressive input structure.

The general procedure for this linear modelling
approach is as follows:

1. Determination of seasonality of time series
and application of seasonal differencing

2. Application of further differencing transfor-
mations to make the time series stationary

3. Investigation of significant inputs to use a
causal variables in model

4. Determination of orders of season and non-
seasonal regressors

5. Identification of model parameters

The univariate Box-Jenkins model is derived
from the general SARI (seasonal autoregressive in-
tegrated) model of the form:

ΦpBΦP BL∇D
L∇dYt = at (2)

where:

Yt is the time series

∇D
L∇d = (1 − BL)D(1 − B)d is a differencing

transformation required if the data is nonstation-
ary, d is the degree of non seasonal differencing,
D is the degree of non seasonal differencing, and
L is the season length (in this case its the number
of hours in a day),

B is the backward difference operator (Time
Domain),

Φp(B) = (1 − φ1B − φ2B
2 − .... − φpB

p) is
the non seasonal autoregressive operator of order
p,

ΦP (BL) = (1−φ1.LBL−φ2B
2.L− ....−φp.LBPL)

is the seasonal autoregressive operator of order P.

at is the forecast error,

The lags p and P are generally determined
using correlation analysis, however in this case the
values for p and P were determined based upon
the multi-step forecasting performance obtained
in testing. The seasonality of the data, L is 24,

i.e. one day.

Expansion of the univariate Box-Jenkins model
described by equation 2 gives:

1− φ1B − ...− φpB
p − φ1,LBL + φ1φ1,LBL+1

... + φpφ1,LBL+p − ...− φP,LBPL + φ1φP,LBPL+1

... + φpφP,LBPL+p)(1−BL)D(1−B)dYt = at

(3)

Defining Zt as:

Zt = (1−BL)D(1−B)dYt (4)

a Box-Jenkins neural network model of the form:

g(Zy, ..Zt−p, Zt−L..Zt−L−p, .., Zt−PL..Zt−PL−p) = at

(5)

is produced, where the inputs to the neural net-
work have already been subject to seasonal and
one-step differencing. To determine the final fore-
cast value from the neural network it is necessary
to appropriately integrate the output, using sea-
sonal and one step integration. Figure 6 below
shows a neural network with an input structure of
the form of equation 5.
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Fig. 6: Network with Appropriately Differenced
‘Box-Jenkins’ Input Structure

The objective of developing such an input struc-
ture given by equation 5 is to focus the network
on the most appropriate inputs for forecasting the
next output. In general, this also has the effect
of reducing the number of inputs required, and
hence reduces the required training time. For
example, using the ‘standard’ autoregressive input
structure, the previous 24 inputs corresponding
to one season length L were employed. Using



the Box-Jenkins input structure, with the non-
seasonal autoregressive operator p, determined
as 9 from the multi-step performance and the
seasonal autoregressive operator P determined as
1, results in a total of of 19 inputs to the network.

The integration of rainfall as an input to the
neural network involved a doubling of the number
of inputs to the network, whereby the total hourly
rainfall for each corresponding traffic volume input
is presented to the network.

c) Network Training

In time series modelling applications, a network
structure that can operate recurrently and pro-
duce a continuous output is required, due to
the autoregressive nature of time series. In this
application, recurrent Multi Layer Perceptrons
(MLP’s) have been employed. Such a model
structures have previously applied successfully to
electrical load forecasting problems [11].

A three layer structure was employed with a lin-
ear output neuron to remove any restriction on the
output range. The number of neurons within each
layer was determined from test runs. A standard
backpropogation algorithm was employed to train
the MLP network.

VI Results
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Fig. 7: Single-Step Forecasting Results using Box-Jenkins
Input Structure

Model Type RMSE
Box-Jenkins (No Rainfall Input) 22.07
Box-Jenkins (With Rainfall Input) 28.04

Table 1: Single-Step Forecast Results

Table 1 above compares the results of single-step
forecasting of one days traffic volumes using the
Box-Jenkins input structure with and without the

inclusion of rainfall as a causal input. Interest-
ingly, the inclusion of rainfall in the forecast in-
creases the forecasting error, suggesting that the
rainfall input does not influence the volume of traf-
fic recorded over each hour.
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Fig. 8: Multi-Step Forecasting Results using ‘Standard’
Autoregressive Input Structure
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Fig. 9: Multi-Step Forecasting Results using ‘Box-Jenkins’
Input Structure

Model Type RMSE
Autoregressive (No Rainfall Input) 39.72
Autoregressive (With Rainfall Input) 41.96
Box-Jenkins (No Rainfall Input) 32.52
Box-Jenkins (With Rainfall Input) 36.18

Table 2: Multi-Step Forecast Results

Table 2 above compares the multi-step fore-
casting results achieved using both the ‘standard’
autoregressive input structure and the Box-
Jenkins input structure. As was the case in
the single-step forecasting, the inclusion of the
rainfall inputs again increased the forecasting
error. Figures 8 and 9 demonstrate the results of
the multi-step (24 step ahead) forecasting.



It is noted, that the use of the Box-Jenkins
input structure leads to a significant improvement
in forecasting accuracy in comparison to that
achieved using just the ‘standard’ autoregressive
input structure.

VII Conclusions

This paper has examined the effect of including
rainfall inputs in the forecasting of daily vehicular
traffic volumes. Prior to the modelling exercise,
self-organising feature maps were employed to
carry out day-type identification of the dataset
available. It was shown that all of the weekdays
map to the same activation nodes of the feature
map, which implies that each standard weekday
represents a single day-type.

Neural networks were employed to carry out
the modelling exercise, which have been shown
previously to be suited to the forecasting of
traffic volumes. The inclusion of rainfall as a
causal input to the model, has been shown not
to improve the forecasting error achieved. This
suggests that at the junction examined, rainfall
does not influence the volume of traffic passing
through over an hourly period. It may be possible
that during intense rainfall traffic volumes passing
through the junction are reduced, however the
effect may be averaged out over a full hourly cycle.
A suggested next step, is to obtain rainfall data in
15 minute intervals to tabulate with the available
traffic data at a smaller sampling interval and
investigate its influence on forecasting accuracy.
It is also likely that the time of day at which rain
falls will have an influence over its effect on traffic
volumes and may require further investigation.

It is not immediately apparent the reason why
the inclusion of rainfall inputs to the network
should result in an increase in RMSE for the
results. It is noted however, that the data set
used for modelling was not very ‘rain rich’ and
there may have been an insufficient number of
rainy days for the training of the network. A
future approach may be to obtain a more rain
rich data set to examine any effect this may have
and also to examine if there is any threshold
effect whereby only rain above a certain intensity
influences traffic volumes.

It has also been demonstrated in this paper, that
by incorporating ideas from linear time series anal-
ysis in the application of a non-linear modelling
tool, a significant improvement in forecasting ac-
curacy can be achieved.
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