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Abstract

The rapid advance of computing technology has created a world powered
by millions of computers. Often these computers are idly consuming energy
unnecessarily in spite of all the efforts of hardware manufacturers. This thesis
examines proposals to determine when to power down computers without
negatively impacting on the service they are used to deliver, compares and
contrasts the efficiency of virtualisation with containerisation, and investigates
the energy efficiency of the popular cryptocurrency Bitcoin.

We begin by examining the current corpus of literature and defining the key
terms we need to proceed.

Then we propose a technique for improving the energy consumption of servers
by moving them into a sleep state and employing a low powered device to act
as a proxy in its place.

After this we move on to investigate the energy efficiency of virtualisation and
compare the energy efficiency of two of the most common means used to do
this.

Moving on from this we look at the cryptocurrency Bitcoin. We consider the
energy consumption of bitcoin mining and if this compared with the value of
bitcoin makes this profitable.

Finally we conclude by summarising the results and findings of this thesis.

This work increases our understanding of some of the challenges of energy
efficient computation as well as proposing novel mechanisms to save energy.
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CHAPTER 1
Introduction

In this chapter, we discuss the motivations behind the work of this thesis and provide
an overview of the material presented in the following chapters.

1.1 Motivation
The computer was, for the longest time, a person equipped with some sort of
writing tool. They spent days performing calculations for all manner of tasks
such as calculating how much tax was owed and when to observe Easter. This
concept began to change in the 19th and 20th centuries. The creation of a new
branch of mathematics along with advances in materials science and electronics
created a new type of computer. The piles of paper, pencils, abacuses and
slide rules slowly faded into obscurity and the digital computer leaped into
sharp focus.

By today’s standards these machines would not be considered impressive –
they were huge – unwieldy to operate and often application specific, but they
were relentlessly hard workers. Over the years they were improved upon and
generalised to the point where computers are now ubiquitous. It’s hard to
find one aspect of our lives that isn’t somehow influenced in some way by the
output of a computer program.

But this isn’t without a downside, the march towards computerisation has
traditionally neglected the efficient use of energy. Until recently this wasn’t a
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1.2. Overview

serious concern. In 2005 Information Technology alone used 7.8% of all the
electricity consumed in the EU, and this in turn was responsible for 1.9% of
all Carbon Dioxide (CO2) emissions [145]. In response to this growing concern
a new field has emerged: Green IT.

Green IT is focused on making information technology that is environmentally
sound as well as trying to reduce the negative impact of existing technologies.
This includes building computers out of less hazardous materials, making
computers have longer usable lifespans, and making them more energy efficient
to better suit that longer lifetime. These are huge challenges which many
researchers in both academia and industry are working hard on.

In this thesis we will look at topics concerning the energy efficiency of network
services and the software that enables these services.

1.2 Overview
This thesis is organised as follows. In chapter 2 we present a literature review
covering many key areas, topics and problems in Green IT.

Chapter 3 defines the key principals of electricity and how to measure it, as well
as looking at different tools we used to measure electrical power consumption
for this thesis.

In chapter 4 we explore techniques for energy saving that use low powered
devices as a proxy to allow the proxied service to be scaled down or shut
off completely while still presenting as available. Our proposed solution
demonstrated an energy saving of up to 20% with only a minor impact on end
users.

In chapter 5 we compare the energy efficiency of running applications in a
Virtual Machine, a Linux Container and on a physical host. We discovered
that this isn’t as straightforward a proposition as first imagined, but this opens
the door to further research around the energy efficiency of virtualisation.

In chapter 6 we look at the emerging phenomena of Bitcoin and investigate
its relationship with power consumption. We discover that the profitability of
bitcoin mining is restricted by the energy efficiency of the hardware.

We conclude with chapter 7 which briefly presents the conclusions and the final

2
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thoughts of this thesis. In general we will introduce technical terms before
they are used but we also provide a glossary of terms.

1.3 Publications
The research for this thesis has resulted in the following papers, two of which
have appeared at international conferences and another two which are under
consideration for publication.

Karl J. O’Dwyer, Eoin Creedon, Mark Purcell, and David Malone. Power
saving for web servers using proxies. In Sustainable Internet and ICT for
Sustainability (SustainIT), 2013, pages 1–5, October 2013. This paper is a
preliminary version of the work presented in chapter 4.

Karl J. O’Dwyer and David Malone. A comparison of the energy efficiency of
virtual machines and linux containers. This paper is yet to be published but
appears in chapter 5.

Karl J. O’Dwyer and David Malone. Improved power saving for web servers
using proxies. This paper is yet to be published but appears in chapter 4.

Karl J. O’Dwyer and David Malone. Bitcoin mining and its energy footprint.
In Irish Signals Systems Conference 2014 and 2014 China-Ireland Interna-
tional Conference on Information and Communications Technologies (ISSC
2014/CIICT 2014). 25th IET, pages 280–285, June 2014. The contents of this
paper appear in chapter 6 albeit with some minor corrections and updates.
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CHAPTER 2
Literature Review

In this chapter we present the current state of Green IT. We look at the high level
motivations before looking briefly at current state of the area. We then look at
pressing issues in various areas and we conclude by showing how the work presented
in this thesis contributes to the area.

2.1 Introduction
In an effort to increase economic efficiency and reduce the emission of green
house gases, the European Commission has said that [53]:

Information and Communication Technologies have an important
role to play in reducing the energy intensity and increasing the en-
ergy efficiency of the economy, in other words, in reducing emissions
and contributing to sustainable growth.

Here the Commission is referring to the potential transformative power of
Information Technology to improve the efficiency of the economy. But it has
long been known that IT also is a contributor to green house gas emissions. In
2005, it was estimated that 7.8% of the electricity used in the EU was used to
power IT equipment in all its forms and that this consumption was responsible
for 1.9% of the EU’s total CO2 emissions [145]. The same report has projected
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2.2. Green IT

that without improvement, IT would consume 10.5% of all electricity generated
in the EU by 2020 and would be responsible for 4.2% of CO2 emissions.

The energy consumption of computers and their efficient use of this energy has
become an increasingly important topic in both academia and industry. The
impact of IT has been well explored [159], but many competing approaches
still exist to reduce its negative environmental impact. Traditionally this has
been the concern of hardware manufacturers but increasingly software’s impact
on energy efficiency is being explored [86]. The nature of open source software
has allowed researchers to explore what optimisations if any, developers are
using in their code for energy efficiency [115].

It also has been stated that focusing on improving energy efficiency doesn’t lead
to a reduction in green house gas emissions and it would be more useful to focus
directly on the latter [62]. The 19th century economist William Stanley Jevons
may have agreed with this after he noticed that the improved energy efficiency
of Watt’s steam engine lead to huge increase in coal consumption [131]. This
paradox is observable in many areas and render simple gains in energy efficiency
ultimately self-defeating unless paired with suitable conservation policies as
demonstrated by Freire-González et al [72].

The rest of this chapter will focus on topics in this area and will devote a
section to each.

2.2 Green IT
There are many definitions of what constitutes Green IT, but for the purposes
of this thesis we define it as: any attempt to mitigate or offset the impact
of IT on the environment. This includes, but is not limited to, reducing
energy consumption, better recycling of electronic waste and better planning
of required computing capacity.

There are many innovative examples of Green IT demonstrated in the literature.
One example of this is environmentally opportunistic computing, where waste
heat from a data centre is recycled to heat a building, or in the case of [165],
it is a green house which is next to the data centre.

There have been two major waves in Green IT according to [81]. The first
wave focused on the data centre whereas the second wave seems to shifted
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2.2. Green IT

focus onto providing sustainable services to business. These broad ideas are
now being taught to graduate students as part of planning green IT strategies
in organisations [166]. These practises are already starting to be employed in
several institutes of higher education in the UK and are starting to achieve
critical evaluation [44].

In the subsections that follow we will look at the role of end users in section 2.2.1
and in section 2.2.2 we explore the idea of making the Operating System more
responsible for power management.

2.2.1 Green IT and End Users
End users’ behaviour plays a part in energy usage. How to address this is
an interesting question. Getting end users to think about the environmental
impact of their hardware and their choice of Internet based service is hard,
[137] looked at the behaviours of students in a Malaysian university and showed
that while green services are popular, more traditional power management is
not very well understood by their students. A longitudinal study of 83 users
over 48 weeks [174], found that giving users measurement based feedback on
their energy consumption is not enough and shows that a reward system might
be able to help encourage users to improve their behaviour.

Another approach to this might be to take care of this on the users’ behalf.
In busy office environments it is often not possible to put users PC’s to sleep
as their computer still needs to maintain some network presence or perform
some background tasks. Replacing their desktop machine with a virtual
machine and consolidating when they aren’t in use is an interesting proposal
[32]. Unfortunately migrating multiple virtual machines can lead to network
congestion. This work proposes a unique approach of partial virtual machine
migration, which only migrates the working set, metadata and required pages
of these idle virtual machines, placing the desktop PC into a low power mode
until it needs to access new pages in its memory. These migrate back to the
desktop when the user resumes their activities.

2.2.2 Green OS level Improvements
Making the efficient use of energy a priority in the operating system is another
approach which has some merit for saving energy. Technologies to make
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2.2. Green IT

hardware more energy efficient have been created and are increasingly more
commonplace in consumer grade computer systems. But these technologies
don’t come with guidelines for best practice or effective usage.

Dynamic Voltage and Frequency Scaling (DVFS) is a technology found in
modern Central Processing Units (CPUs) which regulates the voltage of the
CPU and its operating frequency. Picking the appropriate CPU frequency
is usually controlled by part of the operating system. In [143] the authors
developed a CPU frequency governor which is more tightly coupled with the
operating system scheduler and alters the CPU frequency in line with scheduled
events. They implement this idea fully in the Linux kernel and report power
savings of up to 10%.

Of course to better use DVFS it is important to understand the relationship
between the operating temperature of the CPU and DVFS [79]. This has been
extended by [27] which uses a grey box approach, where they have some limited
knowledge of the behaviour to identify a suitable thermal model for multi-core
CPUs. Understanding the relationship between load and temperature can also
be used for load balancing in such a way to lessen the need for data centre
cooling [65]. It should also be noted that using DVFS can use more energy
and reduce throughput in CPU bound tasks, but in I/O bound tasks it can be
beneficial [58, 38].

Wake-on-LAN (WoL) is an industry standard for remotely powering on comput-
ers, but it can use be used to trigger computers to wake from suspend modes.
The existence of these two technologies together present an opportunity to
create services which can manage their own power consumption by powering off
when they are no longer needed. An excellent example of this idea is PowerNap,
an approach to reducing server power utilisation. In this scheme servers switch
quickly between a low power idle state and a full power mode to serve requests.
[111] A theoretical approach outlined in [87] proposes a sleeping scheme which
employs a queue for requests and proves that an optimal sleeping policy has a
simple structure in terms of hysteretics.

To make these type of decisions it is important to have actionable information,
[83] looked at improving power management in data centres used for research
and development. They develop a data acquisition framework to enable
algorithms to determine when to power machines down without impacting
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2.3. Green Clouds

ongoing work.

2.3 Green Clouds
Cloud Computing is an emerging field with a somewhat loose definition, for
our purposes we will try to stick to the definitions and characteristics outlined
by [76, 112], which define cloud computing as:

a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications and services) that can be
rapidly provisioned and released with minimal management effort
or service provider interaction.

The authors also define the models of cloud computing service as Software as
a service, Platform as a service and Infrastructure as a service.

The Cloud poses an interesting set of problems and opportunities. The com-
puting infrastructure required to both compute and store data as well as the
infrastructure required to support these operations (air conditioning, power
distribution, emergency electricity generators, etc) present opportunities to
gain efficiencies. Many areas are singled out as a potential area for improvement
[126], but ensuring that these resources are used effectively and efficiently is a
great challenge.

To this end, the better use and scheduling and the allocation of resources is a
popular topic in the literature. Virtual Machines in the cloud are singled out
for a lot of attention. Likewise, data centres themselves are also the subject of
considerable interest. Each of these topics will be discussed in the following
subsections.

2.3.1 Resource Allocation
Provisioning resources is an important topic for the providers of cloud services.
Most approaches to provisioning focus on resource efficiency or cost efficiency
and do not explicitly focus on energy-efficiency.

Designing software stacks that manage resources isn’t necessarily a popular
topic of research, but some authors are putting in the effort and developing new

8



2.3. Green Clouds

ideas and systems. For example sCloud is a system for workload placement
and migration across data centres in different geographic locations to exploit
better green energy availability [48]. There is also the GreenCloud Architecture,
which is aimed at reducing power consumption in data centres that host virtual
machines. The proposed architecture enables live monitoring, virtual machine
migration and optimised virtual machine placement [104]. In addition [167]
proposes Green Master which is a system that aims to strike a balance between
load and power management, [102] considers extending this work by adding
network bandwidth control to it.

In [52] the authors work towards a green resource manager for the Infrastructure
as a service (IaaS) platform OpenStack. They develop a monitoring tool to
enable the operator to view the energy consumption of their infrastructure.
This allowed them to do an analysis of live migration strategies and identified
how to use these in a load manager. A contrasting approach in [113] used
workload predictions from web traffic and the authors put forward a scheme
which dynamically alters the resources allocated to a service in a data centre.
This takes Service Level Agreements (SLAs) into consideration and finds, as
might be expected, that the more stringent the requirements of the SLA, the
less scope to save energy.

An interesting approach is demonstrated in [107] which implements a system
called flex to aid distributed schedulers by deploying customised storage systems
for a big data computing job before it is scheduled and to consolidate these
jobs to allow for better resource utilisation.

Energy-Proportional Computing is when a computers total power consump-
tion is a linear function of its utilisation [24]. One effort to achieve Energy-
Proportional Computing is to use groups of small, low powered computing
devices. These are called Small or Wimpy Nodes. This was first proposed by
[142], but was explored in depth by [105]. In this paper big data workloads on
clusters of wimpy and non-wimpy nodes, while I/O intensive workloads were
more energy efficient on the non-wimpy nodes, processing database queries were
more energy-efficient on the wimpy-nodes but with a slightly lower throughput.

9



2.3. Green Clouds

2.3.2 Virtual Machines and the Cloud
Virtual Machines are a topic of considerable interest. They trace their roots
back to the 1960s and the days of time sharing systems, but have evolved over
time to suit new ideas and demands. Modern virtual machines come in many
different flavours, the most popular are used to provide a layer of software
which emulate physical hardware and allows for the installation of an operating
system to run a users programs. This has many advantages.

The ability to move a running virtual machine from one physical host to
another known as live migration opens a world of possibilities. Live migration
is commonly employed as a means to redistribute workloads across a data
centre, or even between data centres, based demand or the availability of
resources.

Often the energy cost of using live migration is either not considered at all
or is given a fixed cost. This has been shown to be insufficient, this was first
modelled by [103] and later demonstrated empirically [6, 141]. The energy
consumed by a live migration is non-trivial and the type of workload of the
virtual machine has an impact on this cost.

Another study which looked at virtual machine migration in Kernel-based
Virtual Machine (KVM) [141]. It found that the workload of the virtual
machine has no bearing on the source server but it does impact the energy
consumption of the destination server and that based on the size of the virtual
machine and the network bandwidth available, migration uses a non-negligible
energy overhead and migration latency on both source and destination servers.
This work was further extended by [152] to produce a lightweight model to
estimate the cost of a virtual machine migration.

Assigning virtual machines to host machines is a problem of increasing im-
portance in IaaS environments. There have been many proposals as to how
to best achieve this. Some have put forward techniques like evolutionary
algorithms and multi-objective optimisation [61], stochastic bin packing [37],
using look-ahead control [96] or modelling the problem as an exercise in profit
maximisation [146]. This problem may not have an optimal solution, but novel
algorithms are still being proposed which offer new insights. For example [140]
investigates whether improving the application running on a virtual machine
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is better than migrating to a different machine. It is important to note that
while they don’t combine these ideas, they demonstrate that both approaches
are useful in different scenarios.

The task assignment problem is related to the virtual machine assignment
problem, where work is assigned to running virtual machines with a goal of
best using current resources. This problem also has garnered some attention
[18].

We’ll review works considering the task assignment problem, tuning the re-
sources that each virtual machine requires next. The idea being that virtual
machines which are given their optimal resources will preform their tasks as
well as allowing for better overall resource usage.

Typically, proposed solutions to this involve monitoring the workload of virtual
machines and their resource utilisation. One such system called TARGO is
aimed at users of Infrastructure as a service systems and optimises virtual
machines based on user supplied rules, observation of utilisation and work-
load [70]. GreenCloud [104] is a similar proposal aimed at reducing power
consumption in data centres that host virtual machines. Another variation on
this theme is called GARL and employs a genetic algorithm and reinforcement
learning to achieve similar goals [77].

An interesting approach is demonstrated in [29] which casts the operators
desired profit, the cost of running the data centres infrastructure, and the
tasks to execute, as a mathematical programming problem and uses a solver
to derive a near optimal schedule. Unknown values in the model, such as a
task level SLA are learnt through machine learning. This enables a scheduler
to allocate tasks to hosts and strike a balance between cost of energy, Quality
of Service (QoS) and operator revenue.

A common application hosted in the cloud are Relational Database Management
Systems (RDMSs) like MySQL or PostgreSQL. The authors of [123] propose
an optimal solution for resource allocation in a specific RDMS use case. In
a similar vain, main memory databases are an emerging technology but are
normally optimised for bare metal and as such do not run very efficiently
in a virtual environment, [144] proposes an approach where the Database
Management System (DBMS) can communicate its resource requirements.
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This allows a global controller to better manage resources and live migrate the
VM running the DBMS to improve its resource efficiency.

One problem with hosting multiple virtual machines on a single host is the
hidden contention for resources between virtual machines, [176] proposes a
system to manage virtual machines which takes this into account, therefore
allowing for higher SLAs and more efficient resource usage.

Another solution might be to pin guest operating systems to CPUs. The
authors of [130] looked at how pinning workloads to specific CPUs and using
partially loaded CPUs impacts on performance and energy efficiency. They
found systems that have light background loads could benefit from per-thread
(guest operating systems share CPU cores) pinning leading to better resource
utilisation, whereas heavily loaded systems could benefit from per-chip (one
guest per NUMA node) pinning which leads to better CPU resource isolation,
which in turn offers more stable CPU performance. The authors also found
that in co-location scenarios with partial CPU utilisation a well picked CPU
pinning configuration can improve the energy efficiency.

There are a number of articles looking at data centre networks and how three
new technologies that have emerged around virtual machines have impacted on
these networks. For example [26] looks at virtual network bridging, live virtual
machine migration and multipath forwarding protocols. In particular, they
are interested in how this impacts on the common network optimisation goals
of traffic engineering and energy efficiency. This isn’t the only concern about
virtual machines and networking; [169] looks at how the energy consumption
varies according to traffic patterns and CPU affinity strategies in the virtualised
cloud environment. This paper also shows that virtual machines generate more
load on the CPU for networking related tasks than when running on real
hardware.

Better understanding the energy usage of virtual machines is important. Studies
which measure, model and evaluate the power consumption of virtual machines
show promise [127, 100]. This was taken further by [161] which outlines a
methodology for modelling a virtualised data centre running a business process.
The model enables the collection of simulated data about the process to enable
reasoning about QoS and energy efficiency.
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Request batching is a technique which can be used to save energy, but it is
difficult to extend to virtual machines. [162] proposes a technique for batching
requests for virtual machines. Combining request batching and DVFS to reduce
energy consumption while still meeting targets set by an SLA, [47] designs
a two stage expert fuzzy logic controller to scale CPU frequency and tune
request batching. It may be possible to combine these two approaches.

2.3.3 A Closer Look the Data Centre
The data centre itself is a key part of the equation. There is often a variety of
competing problems found in this domain.

The use of electricity in the data centre is often a major concern. Operators
are billed for two items: their overall consumption of electricity and their peak
demand for electricity. Reducing this peak demand is seen as a means to gain
efficiency.

Many schemes to reduce peak demand rely on some characterisation of the
power demands of data centres, but data about this appears to be scarce. The
authors of [91], try to address this, they measured the power consumption
of six Microsoft data centres over six months and presents some in-depth
analysis. The authors of [171] took this further by studying the contracts
between electrical utility companies and data centre operators, they find that
peak demand charge is a major component of the total cost of running a data
centre, more importantly they then study partial execution as a mechanism to
reduce the peak power demand thus reducing the peak demand charge and
the overall energy cost of the data centre.

With these more recent works it is possible to better evaluate approaches
like [45] which puts forward the MUSE framework for modelling data centres
and uses it to implement a resource management system. In a similar vain
[170] proposes an energy efficient framework for resource allocation in the
cloud called Anchor. It is also possible to take a different approach like using
look-ahead control to reduce energy usage [96].

To better meet the myriad of demands placed on the data centre, Green
SLAs are proposed to help operators reduce their environmental impact while
meeting the concerns and needs of their costumers [80]. This idea has been
expanded on and [16] looks at ways operators can meet their targets.
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One interesting approach to reduce the carbon footprint of a provider is to
have multiple data centres located to take advantage of sources of renewable
energy. Using virtualisation it’s possible to migrate virtual machines and
their workloads between data centres to best take advantage of available
renewable energy. This approach is often called “follow-the-renewables”, and
was employed in the GreenStar network in Canada [99]. The practicalities
of building data centres for follow-the-renewables schemes were explored by
[30], they propose a framework, an optimisation problem and an approach
for a solution to the problem of where to locate green data centres as well as
implement a system to migrate virtual machines to follow the availability of
renewable energy.

2.4 General Application Energy Modelling
To build more energy efficient software it’s important to be able to model the
energy consumption of applications, both to eliminate the prohibitive costs
of attaching measuring equipment to every software developers machine, but
also to enable developers to reason abstractly about the impact their code is
having on the energy usage of the system.

In the case where the developer has energy measurement instrumentation,
[120] develops a toolkit and an Application Programming Interface (API) to
estimate the energy usage of an application. In the case where the developer
doesn’t have access to this specialist hardware, [5] demonstrates tools which
are based on an neural network which can estimate the energy cost of an
application. The model is trained and validated against two real servers for a
selection of workloads and models power for four subsystems (CPU, Memory,
Disk and Network interfaces).

The CPU itself is the subject of particular interest in the literature, for example
[164] designs a tool which takes accurate power measurements and characterises
the power consumption of the CPUs instruction set. This tool is designed to be
easily extended to include new architectures, enabling more efficient designs in
the future. Other methodologies for power modelling CPUs include stochastic
models [59]. Models of this type tend not to consider multi-core CPUs or their
power saving mechanisms, but [25] proposes a new model which takes resource
sharing and power saving into consideration.
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Embedded devices with CPU–Graphics Processing Unit (GPU) architectures
present many interesting opportunities and challenges. [49] looks at using
a device equipped with an ARM CPU and a NVIDIA GPU and measures
its energy efficiency and performance for a number of database benchmarks.
The CPU did better in terms of performance and lower energy consumption
when doing simple operations like selection and aggregation but the GPU
performed better for sort and hash join operations in both performance and
energy consumed.

Considering the possibility of future energy crises or natural disasters, [136]
looks at the issues facing an architecture for the Internet which can operate in
places or in a possible future with intermittent energy supply.

2.5 Mobile Devices and Energy Issues
The proliferation of smart phone applications has created a power management
problem for users where some applications can create a significant load on the
system and consume precious battery power. A working prototype of a system
which logs system calls and records the power demands of system components
is presented in [91]. The largest study of this kind which measured the energy
usage of 1520 smartphones “in the wild”; from this data they put forward a
new power model which combines utilisation and finite state machine models
as well as a detailed analysis of where energy and CPU time are spent [46].

Mobile phone applications are becoming of increasing interest; one study on
periodic transfers by mobile phone applications. This was the first large scale
investigation on these transfers and tried to characterise the reasons for their
use. The authors then investigate network strategies to mitigate their impact
[134]. Another study looked at the energy cost of instant messaging using
different mobile phone applications. They evaluate the cost of the notification
that the other user is typing and put forward a message bundling scheme
which reduces the energy consumption [160]. A similar study which looked at a
number of different mobile applications which advertise the users’ presence and
finds that having these type of applications running on an otherwise idle device
can drain the battery up to nine times faster. To reduce energy consumption
and network costs they consider a low frequency and low volume two way push
notification system [19]. Another study looked at data from 20 users over 5

15



2.6. Green Networks

months and found that the majority of radio energy is consumed when the
screen is turned off and proposes that this be considered as part of a traffic
optimisation scheme [82]. Applications that run while the screen is off are
typically more delay tolerant as the user isn’t interacting with the application.
For example streaming a radio program using HTTP Live Streaming means
that the file can be buffered well in advance and the device only needs to
download enough at a time to stop the playback being interrupted.

2.6 Green Networks
If we ever hope to achieve truly sustainable computing then it is important to
consider the networks which our computing devices use to communicate. A
review of the current research in sustainable communications infrastructures
[109], albeit focusing on the cloud, shows many interesting trends. We will
explore some of these themes and more in this section.

A network management system which incorporates real-time assessments of
energy efficiency is demonstrated in [54], network performance and network
availability are also assessed in order to allow energy saving policies to be
enforced which comply with high level business decisions to deal with the trade
off between energy savings and network performance. Knowing the complete
state of all links in a network is often infeasible in large or complicated network
structures. So distributed network management is sometimes preferable, [31]
outlines a set of distributed algorithms which set the sleep state of links based
only on knowledge of the link’s current load. This work has a similar goal
to [43], which proposes a dynamic network management scheme to optimise
networks which use Open Shortest Path First. They find that on average they
can put 20% of nodes and 40% of links to sleep and not compromise network
stability or performance.

Another question that appears in the literature is about the energy efficiency
of network protocols, Transmission Control Protocol (TCP) in particular is
the subject of a large amount of attention. The first in-depth investigation
into this was [177], which looked at the energy efficiency of TCP for bulk data
transfer in an environment where channel errors are correlated (in other words,
a model of a wireless network). Other work in this general area looks at the
power consumption of TCP [34], using TCP congestion control to improve
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energy efficiency [39] & the authors of [125] investigate if there is a relationship
between capacity scaling and TCP congestion control and if this interaction
impacts on energy savings and QoS.

Comparisons between different implementations of TCP and different protocols
are also made in some literature. [147] looks at the energy consumption of the
TCP congestion avoidance algorithms Reno, New Reno and SACK in multi-hop
wireless networks. The results show that one TCP version isn’t necessarily
better than the others for all use cases they explored. A similar study looks at
the energy consumed by TCP, TCP Reno and Stream Control Transmission
Protocol (SCTP) in a simulated cloud computing environment, using the green-
cloud simulator and found that some energy consumption differences between
TCP implementations are present, but aren’t significant [94]. SCTP performs
slightly better, but isn’t a drop in replacement for TCP. Results consistent
with these were presented in [35], which demonstrated experimentally that
the software implementation is only a minor factor, but that the number of
transitions between idle and active states in the CPU were a bigger factor and
that this was dependent on the workload. The energy efficiency of WiMAX for
long duration TCP connections under different WiMAX network parameters
and using different scheduling algorithms was considered by [157]. This was
examined by simulation and shows that using a best effort scheduler for long
running TCP connections results in a lower energy efficiency per bit.

2.6.1 Green Mobile Networks
Mobile devices are also targeted in the literature, but these must be taken with
a grain of salt as [128] demonstrates the pitfalls of energy efficiency studies.
Particularly when the device draws energy from a battery. Many ideas and
applications have been tested such as: using indoor base stations to compliment
wireless access networks [155, 175]; examining the energy efficiency of a mobile
device that is streaming video over WiFi under various conditions [156]; a
new transmission protocol to stream video from mobile devices, using different
transmission laws for different channel behaviour [106].

Modelling the power consumption of a network interface is especially important
in mobile devices, [67] proposes a new power consumption model for 4G wireless
networks. With such models in mind, [168] proposes an energy efficient Medium
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Access Control (MAC) protocol for IEEE 802.11 networks, their simulations
show better energy usage and throughput than the previous MAC.

An important subject is how the application layer impacts the energy usage
and performance. This was examined in WiFi on the 5GHz ISM band. This
experimental evaluation used varying packet sizes and transmission rates and
evaluates energy consumed [153].

Cellular connections can be expensive in terms of energy, [118] investigates
sharing connections them with nearby devices. This is shown to reduce the
overall energy consumption of a group of devices. Poor signal strength is
often suspected of increasing energy consumption in mobile devices, but its
impact is poorly understood. [64] seeks to better understand this by analysing
data collected from 3785 smartphone users and quantifies the extra energy
consumed while the device is experiencing poor signal strength. The authors
go on to model this and explore the idea of opportunistically delaying network
traffic to save energy.

The structure of mobile networks also impacts the energy efficiency of end
users. While studying the impact of middle boxes in mobile networks, it has
been found that certain Network Address Translation (NAT) policies impact
on the energy used by end users [163]. Reducing the round trip time is one
way to reduce the usage of radio interfaces in wireless devices; [148] proposes
to save energy in mobile devices by using a proxy to speed up delivery of web
pages.

Radio bundling (using multiple interfaces to transfer data simultaneously)
might be useful to reduce overall energy usage [119]. The authors evaluated
different approaches and found that there is a need for an energy-aware bundling
protocol to achieve an acceptable trade-off between performance and power
consumption. To this end the authors of [93] put forward an energy model for
radio bundling which incorporates variation in packet intervals, packet length
and channel quality on a per packet basis.

Multipath Transmission Control Protocol (MPTCP) offers an interesting op-
portunity to build more resilient networks and could use multiple network
interfaces on devices which offer them. This unfortunately is in itself not very
energy efficient, [101] creates an energy model for MPTCP uses these findings
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to design and implement an energy efficient MPTCP. MPTCP may also pose
problems for congestion control, [97] proposes a congestion control algorithm
for MPTCP which is energy aware.

2.6.1.1 Wireless Sensor Networks

Wireless Sensor Networks (WSN) are required to be energy efficient due to the
constraints of their hardware. In fact a large portion of the research in that
field is dedicated to it [172]. Rather than go in depth in this subject it may be
helpful to look at some of the research which is also applicable in other areas.

A common technique used in WSN is sleep mode, used to extend the lifetime of
the sensor network. [51] looks at how this impacts the lifetime of the network
hardware.

Another related trade off is between maximising network lifetime by minimising
the load on each device or balancing the load evenly across all nodes. A
new approach being put forward is a distributed protocol which dynamically
reorganises the network to reduce load on network bottlenecks which in turn
should slow the energy depletion of these nodes [60].

2.7 Conclusion
It could be argued that the small percent of energy used to power the world’s
information technology is being used better than in other sectors and that
efforts to improve this are not worthy of the amount of attention that it has
received. But these efforts are not in vain, as it can be argued that information
technology has changed many aspects of modern life and reduced our reliance
on technologies which are less friendly for the environment.

But most important is the power that IT technology brings to help us make
more informed decisions about our environment. If we are to use IT to help
sustain the environment, we must ensure that our use of IT produces the
smallest negative impact possible.

As measurement is an important precursor in almost everything we’ve seen in
this chapter, it is vital that before we consider anything we first must look at
how we measure power consumption and what tools are available to us to do
this. Chapter 3 addresses this requirement.
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Inspired by the work of others using low powered or wimpy devices as a
substitute for larger more powerful systems and innovative use of sleep strategies
in WSN we researched using low power devices as proxies that eventually
became chapter 4.

Seeing the vast amount of work that is dedicated to virtual machines, we
decided to investigate an emerging technology which is threatening the position
of virtual machines in some fields, Containers. Chapter 5 looks at these with a
view to understanding their energy efficiency.

It is also important to investigate new and emerging technologies carefully. As
these may become the new standard of tomorrow or the legacy systems of the
day after. With this in mind, in chapter 6 we turned our attention to Bitcoin,
a peer to peer currency which employs a computationally heavy proof of work
scheme to verify transactions.
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CHAPTER 3
Measuring Power Consumption

Much of the work in this thesis required us to measure the power consumption of
hardware. This chapter outlines how to measure electrical power consumption and
explains what tools we used in our experiments.

3.1 Introduction
To understand how to measure power consumption we must first understand
what is power, what is energy and how they are different. Our aim is to give a
clear and concise definition while not turning this thesis into a physics text
book.

Getting to grips with energy and power means we must first define work, work
is exerting force over a distance. This can be rolling a boulder up a hill, pulling
a plough across a field, or pushing electrons through a strand of copper wire.
Energy is what it takes to do this work. If we know the amount of force we
need to exert to move something and how far we need to move it, we can work
out the energy that we require.

Energy though doesn’t tell us how fast this work can be done. Power is energy
per unit of time.

In terms of electricity, or indeed any source of energy, the basic unit of energy
is the Joule. This isn’t the entire story as we need to account for time too

21



3.1. Introduction

and how much energy we use over time as this is the unit of power, the Watt,
which is one Joule per second. First allow me to introduce the other units.

Volts (V) are the amount of work in Joules (J) per Coulomb (C) of charge, V
is J

C . An Ampere (A) is the number of Coulombs per Second, A is C
s . When

writing these symbols it is important to keep in mind the two symbols related
to this, I which is used when dealing with quantities of charge and A for when
discussing units of current.

Power is Volts multiplied by the current (usually in Amperes), so power is
J
C

C
s

= J
s

= W. The unit name for J
s
is Watts (W). Or in a more general sense

VI = P.

As we’ve seen VI = P, so if we understand how V and I change over time we
can use equation (3.1) to get the energy consumed between time t0 and t1.∫ t1

t0
V(t)I(t)dt =

∫ t1

t0
P(t)dt (3.1)

Unfortunately electronic devices are discrete circuits which can only sample
the voltage and current. So in this case we can use equation (3.2) to obtain
the approximate power consumed.

t2−t1
∆t∑

n=1
V(t1 + n∆t)I(t1 + n∆t)∆t (3.2)

Where ∆t is the length of a finite sampling interval.

Thus far we’ve managed to avoid mentioning resistance, but it is one of the
last pieces of information that we need to understand power measurement.
Resistance is the measure of the reduction in electrical current across a device
or a conductor. Simply put resistance is the measure of how much a material
resists a current flowing across it. The unit for resistance is Ohms (Ω). The
relationship between voltage, current and resistance in simple conductors is
defined by Ohm’s law. Ohm’s law shows that current is proportional to voltage
and inversely proportional to resistance, assuming that resistance is constant.
This can also be defined in terms V and I as R = V

I .

In order to measure power usage, we need to measure the voltage and current
of the circuit. This is normally done by using a voltmeter connected in parallel
to the component of the circuit that you wish to measure and connecting an
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Unit Symbol
Potential Difference Volt (V) V
Charge Coulomb (C) Q
Current Amperes (A) I
Energy Joules (J) J
Power Watts (W) P

Table 3.1: List of electrical properties, units, and symbols

Ammeter in series with the circuit. But in a discrete circuit we must create
these by much simpler means. To measure the drop in voltage across a circuit
you connect an Analogue-to-Digital Converter (ADC) to it in parallel. ADCs
quantise a continuously varying voltage into a binary representation.

Then to measure the current we connect a resistor (of known resistance) in
series to the circuit and using an ADC we measure the difference in voltage
across this resistor. This gives us a voltage and a known resistance so we can
rearrange Ohm’s law and get I = V

R , which gives us the current. So we know
the voltage and current at one sample, if we keep repeating the readings we
can employ equation (3.2).

The final unit we should mention is the Kilowatt-hour (kWh). It is commonly
used to measure power consumption and as the billable unit of energy. It is
equivalent to one thousand Watts for one hour or to put it simply 3.6× 106 J.

Further reading on this subject is presented in [158] which has a good deal more
information than needed for our purposes, especially on matters of electrical
supply to data centres.

3.2 Power Measuring Hardware
In this section we shall look at some of the hardware options we considered
using for the research that makes up this thesis.

3.2.1 Power Meter Plug
We started out by using a 2000MU-UK power meter by Prodigit Electronics
Co Ltd from MaplinTM[133]. It is a small device which plugs in between a
mains socket and the device you want to monitor. It provides measurements
of voltage (180 V to 250 V), current (0 A to 15 A), power consumption(0 W to
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3750 W) & AC frequency (47.0 Hz to 63.0 Hz). The specifications say that it is
accurate down to 1% max for voltage measurements but for voltages from 190
to 250 it is accurate down to 0.2%. For measuring current, the manufacturer
claims that it is accurate down to 1% max, but it is typically 0.3% accurate
for currents from 0.2 A to 15 A.

It has proved useful for preliminary investigations and getting general informa-
tion. But it provides no way to log data for later analysis.

3.2.2 Current Cost EnviR
The Current Cost EnviR [56] is a consumer grade device to allow users to
measure the energy usage of their home with a wireless current clamp unit
which attaches to the line at the meter. This uses the magnetic field created
by the current as a proxy to measure the current. Which has the advantage
of not physically altering the circuit we wish to measure. It also can measure
the energy used by individual appliances by using an Individual Appliance
Monitor [57]. The Individual Appliance Monitor is similar to the power plug
meter seen in section 3.2.1, but it a lacks a display of its own and instead it
transmits power consumption data over a wireless interface.

This system displays power used on a simple unit with a liquid crystal display
and allows for data collection over a Universal Serial Bus (USB) interface [55].
The USB interface is a serial to USB device and capturing and logging the
data is a relatively straightforward task. To help us do this we wrote a Unix
daemon in Python to log the output of each sensor.

The frequency of data reported is low, about once every 7 seconds, and not of
the highest possible accuracy. Although it proved useful in our experiments.

The availability of easily modifiable software and the ability to monitor multiple
devices made this a good choice in studies where we wished to monitor the
aggregate power usage of multiple systems. For example, in chapters 4 and 5
the Current Cost EnviR system was used to collect data.

3.2.3 Energino
The Energino is a shield which can be added to an Arduino micro-controller
and provides a low cost way to read the power consumed by a device connected
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to it [75, 21]. It was first designed to gather data about the power consumption
of wireless networked devices, with the goal of using this data to better model
and understand the energy consumption of these devices. As the device has no
means to display information by itself it must be connected to a host computer
over USB or using a Ethernet add-on board to log its data output. As the
design is distributed under an open source licence it is possible to modify or
improve the device to better suit the task at hand. This unit was originally
designed with a Sparkfun low current sensor breakout board [150] based on
a ACS712 integrated circuit [8]. It can measure up to 5A, but the breakout
board adds an operational amplifier which enables it to measure very small
currents (at a sensitivity from 66 mV/A to 185 mV/A). The downside of this
extra sensitivity is a tricky calibration stage which can be difficult to master.
This can be avoided if instead you opt for a different sensor or breakout board.
We decided that for the uses we had in mind we did not require this sensitivity
and found a different breakout board [138]. Our Energinos were built using a
ACS714 sensor [7] which can measure from −5 A to 5 A and at a sensitivity of
185 mV/A. This also had the advantage of having a simplified calibration.

3.2.4 Monsoon Power Monitor
The Monsoon Solutions Inc. Power Monitor [116] is a piece of laboratory
equipment designed to monitor the power consumption of small electronic
devices powered by lithium batteries such as mobile phones. It can also be
used to monitor the power consumed by USB powered devices. It can measure
from 2.01 V to 4.55 V in increments of 0.01V and a maximum of 3A and it
can sample these at 5kHz. The Monsoon monitor offers highly accurate, high
frequency measurements, but is better suited to observing power events at
very small time scales.

3.2.5 Power Distribution Unit
Power Distribution Units (PDUs) are used to connect the power supply units of
servers to an electrical supply. Following the general trend of devices becoming
more intelligent and more connected, some newer models of PDU support
monitoring the power consumption of the devices they supply power to.

We had access to one such device made by APC, a rack mounted PDU model
number AP7900 and found that its readings were not consistent when lightly
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loaded compared with the Power Meter Plug and Current Cost meters from
sections 3.2.1 & 3.2.2. But more reasonable readings could be achieved if it
was under more considerable load.

3.2.6 Intelligent Platform Management Interface
Devices

The Intelligent Platform Management Interface (IPMI) is a set of specifications
for out-of-band management interfaces. These interfaces are typically used
for servers and usually include a suite of sensors to allow System Admin-
istrators to monitor the current status of the system (for example system
temperature). Some implementations of IPMI interfaces such as version 6 of
Dell’sTMIntegrated Dell Remote Access Controller (iDRAC6) supports measur-
ing the power consumption of the host system.

3.3 Discussion
As we have seen there are many options to consider when wishing to measure
power consumption. This really is a question of frequency as well as a question
of accuracy. This question has a different answer depending on what you want
to measure and for how long. Measurements of power consumption over shorter
time scales (seconds to minutes) might demand a measurement system with
higher reporting frequency. But this runs the risk of being noisy as many tools
will employ windowed averaging to overcome transient abnormal readings.

Measurements of power consumption over a longer time scale (hours to days
and weeks) don’t benefit from these higher reporting frequencies which at best
create the problem of having a large amount of data. At worst these can result
in having vast amounts of noisy data which requires a significant amount of
additional processing. Another consideration is what you intend to use this
data for. Some post processing is almost always required, but the amount
required may make some applications prohibitive.

For our experiments detailed in chapters 4 and 5, which required longer term
measurements, the Current Cost EnviR was used, as it is reasonably accurate
and it is possible to automate collecting data from it.
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For smaller shorter term investigations we used an Energino because it offered
reasonably high accuracy and sampling frequency as well as the ability to log
the collected data.
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CHAPTER 4
Power Saving for Web Servers

Using Proxies

Electricity is a major cost in running a data centre, and servers are responsible for
a significant percentage of the power consumption. Given the widespread use of
Hyper Text Transfer Protocol (HTTP), both as a service and a component of other
services, it is a worthwhile goal to attempt to reduce the power consumption of
web servers. In this chapter we consider how reverse proxies, commonly used to
improve the performance of web servers, might be used to improve energy efficiency.
We suggest that when demand on a server is low, it may be possible to switch off
servers. In their absence, an embedded system with a small energy footprint could
act as a reverse proxy serving commonly-requested content. When new content is
required the reverse proxy can power on the servers to meet this new load. Our
results indicate that even with a modest server, we can get a 25% power saving while
maintaining acceptable performance.

4.1 Introduction
New server technologies promise to reduce power consumption when resources
are idle. Servers are specified to meet or exceed current peak demands; however
common power-saving techniques are unable to power off the server while idle,
as the server must remain responsive to new requests. Empirical tests show
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4.2. Investigation of Traffic

that while powered off or sleeping, servers consume significantly less power
than in the lowest-power idle states [73].

Mechanisms for temporarily turning servers on and off do exist. Recent server
hardware supports the Advanced Configuration and Power Interface (ACPI)
power-saving modes, which were previously only available on laptop and
desktop computers. These include methods to Suspend to Disk (also known
as hibernation) and Suspend to RAM, which are low power modes with quick
recovery to normal operation. The Wake-on-LAN (WoL) standard for remote
activation of devices offers a convenient method to initiate remote recovery.

Thus, if we can overcome the adverse effect on service availability resulting
from putting a server to sleep, then it may be practical to save energy. The
use of reverse proxies for website acceleration or load balancing is relatively
commonplace. In this chapter we consider using a low-power device acting as
a reverse proxy. It will have the additional abilities to shut down the server
when demand is low, serve cached content while the server is sleeping and wake
the server if new content is required. In contrast to previous works, which
have considered how to reduce power usage when a pool of servers provide a
service (e.g. [73, 45]), we are targeting services typically provided by a single
server which may have low-demand periods (e.g. in-house servers at night,
low-demand hosted web servers, . . . ).

We explore this approach by developing a small testbed that allows us to replay
web access patterns, estimate energy savings, etc. In section 4.2, we describe
the web access patterns that we observe on a campus web server and their
implications for designing a power-saving scheme. In section 4.3, we describe
the relevant power-management features and measure their power usage. We
then discuss the limits of possible power savings without introducing additional
delays in section 4.4. This leads us to the design of a power saving scheme in
section 4.5 and our evaluation of this scheme in section 4.6. In section 4.7 we
discuss our results and conclude in section 4.8.

4.2 Investigation of Traffic
Our aim is to exploit patterns in web traffic in order to turn off web servers
when they are not required. There has been considerable work to characterise
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Yes? Serve from Cache
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Figure 4.1: A simplified diagram of the operation of a reverse proxy

web traffic (e.g. [36, 129, 22, 28, 42]), and it is known that web access patterns
are bursty.

A reverse proxy is a web server which accepts requests from clients and forwards
them to a back end server, which stores or generates all the website’s available
content. The reverse proxy caches the content as it is served, and uses the
cached content to answer requests where possible. As websites often have ‘hot’
static content, or content that is expensive to generate but can be cached
once generated, reverse proxies can often result in performance improvements.
Figure 4.1 shows a simplified diagram explaining the operation of a reverse
proxy. We use Varnish Cache [88] as a reverse proxy in our research. Varnish is
written in C and is easily extendible by adding C code to the cache configuration
files. This allows us to alter the behaviour of the cache as well as add new
features as we need them. The reverse proxy’s ability to cache content, and so
to save power, will depend on the details of the accesses. Consequently, we will
design and assess our scheme using a log file of actual requests from a campus
web server.

This web server hosts the websites of around 400 student clubs, societies and
individual students. It has a variety of content and is accessed frequently
by those on and off the campus, and exhibits a mix of web content and
access patterns. In total, it amounts to over 77GB of content in 400,000 files
excluding content stored in databases. Frequently-accessed content represents
a considerably smaller subset of this total. The server is not busy, typically
serving around 30,000 requests per day, but the volume of content should make
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Figure 4.2: Median number requests per hour by day, taken from sample web
logs

Googlebot Slurp Baiduspider
bingbot urlresolver Speedy Spider
Sosospider Sogou web spider Gigabot

Table 4.1: Strings used to identify common spiders

caching more challenging.

We looked at the median and mean number of requests per hour over 270 days
worth of log data and grouped them by a specific hour during a week. The
median is shown in figure 4.2, with the noisier mean values in figure 4.3. We
do not see periodic activity, but a diurnal pattern emerges, showing significant
variation throughout the day. Figure 4.3 also shows some large spikes which
we determined where an attempt to index all the content on the server.

Further inspection of the data reveals that a significant number of requests are
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Figure 4.3: Mean number requests per hour by day, taken from sample web
logs

from web spiders [95] 1. Based on a manual inspection of the User Agent field
of the log file, and consulting lists of common spiders, we found that matching
the list in Table 4.1 allowed us to identify the majority of requests made by
spiders to this site. We randomly sampled requests with User Agent fields
that do not match this list, and inspected them manually. Only ≈ 5% of the
remaining requests come from suspected spiders.

We calculate the median and mean request rate from spiders in this list and
also show this median and mean in figure 4.2 and figure 4.3 respectively. We
see that a significant number of requests are actually from these spiders and
that this traffic does not exhibit the same diurnal pattern. This suggests that
it may be useful to handle web traffic from spiders as a special case.

If we want a server to sleep between requests, then an important factor to
consider is the period between requests. We estimate this using the length of

1A web spider is an automated system that loads web pages [122], typically to gather
information e.g. search-engines’ crawlers.
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Figure 4.4: Number of gaps of a particular duration between requests. We
omit gaps of duration less than one second

gaps between logged requests (logged at a resolution of 1 second in Combined
Logfile Format). The length of these gaps will indicate if it may be possible to
switch off the web server between requests, or if such opportunities are limited.

Using a subset of our data, amounting to 40305 requests over 28 hours, we
look at the distribution of the gaps. Figure 4.4 shows the frequency of the gap
of a particular duration. As we expect, gaps are typically quite short, which
limits our chances to turn a server on and off without impacting on web traffic.

To consider the impact of caching on the gaps between requests to the (back
end) web server we replayed the requests to the campus server using Varnish
[88] as a reverse proxy to cache the content 2. The resulting distribution of
gap lengths is shown in figure 4.5. We see an increase in the number of long
duration gaps, representing an increase in opportunities to put the server to
sleep.

2The cache starts empty. We use the default Varnish configuration.
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Figure 4.5: Number of gaps of a particular duration between requests to back
end omitting requests served by reverse proxy. We omit gaps of duration less
than one second

For comparison, we also consider the distribution of gaps between requests
when we omit requests from spiders. We do this on the basis that a spider does
not usually need the content immediately, and indeed, some spiders can be told
to make their requests later using a HTTP 503 response with a Retry-After
header [71, 85]. The results are shown in figure 4.6. We now see that the tail of
the distribution of gap durations has thickened, which suggests a better chance
of powering the server off without impacting on user requests. Comparing
these results with figure 4.5, it appears that for this log file, smart handling
of spiders might have a bigger impact than caching of commonly-accessed
content.

4.3 Power States and Recovery
Various systems are available for controlling the power state of servers. In
particular, we will make use of an interface for putting the system into a low
power state (ACPI) and then waking it at some later point (WoL).
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Figure 4.6: Number of gaps of a particular duration between non-spider
requests. We omit gaps of duration less than one second

ACPI is a standard that aims to consolidate all power management and
configuration standards [1]. The ACPI Standard defines a number of power
states, from G0 (active) to G3 (mechanical off). The sleeping state, G1, is
subdivided into four sub-states (S1-S4). For us, S3 and S4 are interesting as
they define Suspend to RAM and Suspend to Disk respectively. As we will see
in these states, servers consume almost as little power as when powered off.
With operating system support, the power state of a server can be changed.

WoL is an industry standard for remotely powering on computers. It requires
a compatible network interface card which remains powered on after the
computer is powered off. A number of different signals can be used to wake
a computer, based on hardware support, including PHY activity, Address
Resolution Protocol (ARP) and broadcast, unicast and multicast messages.
The most commonly supported signal used to wake up a computer is called
the Magic Packet [84], a broadcast frame with a payload that is 6 B set to 255
followed by the target computer’s MAC address repeated 16 times. WoL can
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On Power Usage Off Power Usage Switch Cost Time to Sleep Time to Recover
(W) (W) (J) (s) (s)

MSI Server 43.3 1.6 170.7 3.7–4.3 0.1–0.2
Soekris net 5501 5

Table 4.2: Measured power profiles for devices, the power consumed while off
is mainly being used to support WoL

usually be configured via the BIOS/firmware or operating system.

To illustrate these power management features we investigate the power con-
sumption of the device we use as a server. For this work we investigated a
number of different methods for measuring power consumption, this can be
seen in chapter 3. We decided to use a Current Cost EnviR as described in
section 3.2.2. Below we describe how we model the energy use of our servers.
For these systems, we also measure the time needed to put the system to
sleep and the time to wake after a WoL message. This will influence the
responsiveness of our scheme. We call the sum of these the threshold. We also
characterise the threshold below.

We characterise our hardware in table 4.2. For comparison, we also show the
power consumption of a Soekris net5501. We will use this as a reverse web
proxy during quiet periods.

MSI Server The server used was a custom-built server based on a MSI
“Military class” motherboard, an Intel i7 2700k processor and 16GB of
Random Access Memory (RAM) running Ubuntu 12.04 LTS. We used
the on-board 1Gbit Ethernet for a network connection. We tested several
other servers of this generation, and older generations. We found that
this system had good support for both WoL and use of ACPI power
states. The power supply is rated at several hundred Watts, though in
practice it uses considerably less when operating as a web server.

Soekris net5501 The Soekris net5501 is a single board PC based around the
AMD GeodeTMprocessor, using a maximum of 20W, but typically much
lower as we see in table 4.2. We run an older version of Ubuntu, 8.04.4
LTS, with smaller resource requirements on this device and which also
still supports the i686 processor architecture. We do not use or report on
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4.3. Power States and Recovery

Figure 4.7: Power consumption for a server when sleeping, waking, & powered
on

the sleep/wake features of the net5501, as we intend to use this device
as the reverse proxy.

In reviewing older server hardware, we found that WoL and ACPI support
was less consistent. For example, after upgrading the firmware on a Dell R©

PowerEdgeTM1800 we found WoL and ACPI were available. However as only
suspend to disk was possible, wake times were over one minute. The Dell R©

OptiplexTM755 desktop system supported suspend to RAM, with much better
wake times, however we found that WoL did not always wake the system
and though capable of running a web server, was not typical of server-class
hardware.

4.3.1 Modelling Power and Energy Usage
Figure 4.7 shows the power usage for our server over a number of sleep/wake/powered-
on cycles. We can see that there is a pattern, which suggests roughly constant
power usage when sleeping or powered on/off. There is a brief spike in power
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usage when the machine wakes. Based on this, we model the server as having
a power usage Pon while on, a power usage Poff when off and there is a cost for
each switch-on event of Eswitch. From figure 4.7 we see that these quantities
are not fixed, but in fact random.

We do this by measuring the power used by the test bed while it performs a
series of sleeps and wakes of variable length in an experiment labelled i. For
each experiment we record four variables: the total amount of time awake Toni

,
the total amount of time sleeping as Toffi

, the number of times it switches on
or off Nswitchi

and the total energy used Etotali . Our model suggests that in
expectation we have

Toni
E[Pon] + Toffi

E[Poff] +Nswitchi
E[Eswitch] = E[Etotali ] (4.1)

We then want to estimate the Power used while the server is on and off and
the energy overhead for a switch between these two states. Over a number of
runs we can write this as

Toni
Toffi

Nswitchi

... ... ...




E[Pon]
E[Poff]

E[Eswitch]

 ≈
Etotali

...

 . (4.2)

We can then use the least squares estimator for E[Pon], E[Poff] and E[Eswitch]
given Etotali , 

E[Pon]
E[Poff]

E[Eswitch]

 ≈ (ATA)−1AT

Etotali
...

 , (4.3)

where A is the matrix of on/off times and switch counts. The results of
performing these estimates for our server are shown in table 4.2.

4.3.2 Server Wake/Sleep Times
The length of time required to put a server to sleep and to wake it again is
also important to our scheme. These determine the minimum amount of time
we can sleep for, and also how long it will take to answer an uncached request
that arrives while the server is asleep. We describe how we measure both times
below using ICMP ping packets, to determine if the Internet Protocol (IP)
stack of the server is operational.
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To measure the time that it takes the server to be put asleep, we issue the
sleep command to the server via Secure Shell (SSH). At the same time, we
ping the server once every 100ms until we receive no response. The number
of pings between issuing the SSH command and the last received ping gives
us the time to sleep in tenths of a second. Note, that there is some timing
overhead associated with the SSH connection, which would not be present if
a more lightweight way of issuing the sleep command was used. To estimate
this, we also timed how long it took SSH to run a null command.

To estimate the wake-up time, we also send a ping to the server every 100ms
and then send a WoL magic packet. We then observe the amount of time
between issuing the magic packet and when the server starts to respond. In
order to avoid issues with ARP entries timing out, we manually set the ARP
entries for the server. Again, this gives us an estimate of the time to wake the
system to the nearest tenth of a second.

The results of estimating both the wake and sleep times for our server are
shown in table 4.2.

4.4 Idealised Power Saving Model
In this section, we show how to estimate the possible power savings for a web
server, given information about power usage, gaps between requests and how
quickly it can be turned on and off. Consider an idealised situation, where
the server could somehow determine when the next request will arrive. After
serving each request, it could see if the time to the next request is greater
than its turn-around-time. If so, the server goes immediately to sleep and
schedules a wake up just in time to serve the next request. This would allow
the server to serve all requests without introducing any delays waking the
server, while sleeping for the maximum time possible. However, as we would
only like to consider sleeping if we get a resulting power saving, and as we will
see in section 4.5.3, this can also be converted into a minimum threshold on
the sleep time.

We can calculate the power saving given by this idealised scheme. Let (ti)i=1..N

be the sequence of gaps between requests. We can find To and Ts, the time
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that the server spends on or sleeping respectively. For this scheme,

To =
N∑

i=1,ti<tthr

ti

and
Ts =

N∑
i=1,ti≥tthr

ti,

where tthr is the threshold given by the minimum turn around time and the
requirement for power saving. Total energy usage, in kWh, will then be

ToPon + TsPoff +NEswitch

3.6× 106 ,

where N is the number switches, given by the number times ti < tthr.

Using this model, we can assess the power saving possible without introducing
extra delays. Figure 4.8 shows the total energy consumption possible as a
function of the threshold time, tthr, assessed for the original sequence of requests
served by the web server. We see that for the original log file, for a threshold
of 20s or more, there are few opportunities to sleep, and the total power usage
is similar to having the server always on. However, threshold times of 2 s to
5 s actually result in significant savings.

Following our observations from section 4.2, we consider the impact of spiders
and caching. First, figure 4.8 also shows the results if we are willing to ignore
requests from spiders. Here the situation is much more promising. With our
idealised scheme, a threshold of 20s allows a reduction of energy consumption
to around one third of the consumption for a server that is always on. The
nearly linear increase seen in the “Original without Spiders” line indicates
that when the threshold is smaller than most of the gaps, the power usage is
roughly proportional to the theshold size.

Second, we consider the impact of caching in figure 4.9. Here, we use the
idealised power-saving model on requests that are passed by a varnish cache
to the the back end server. This eliminates the need for the back end to
serve the content cached by the reverse proxy. As expected based on our
discussion in section 4.2, we see a saving over answering all requests; however
the improvement is not as large as the saving for ignoring requests from spiders.
We also see that combining caching with the special handling of requests from
spiders results in useful gains.
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Figure 4.8: Power saving for the idealised scheme that results in no delay, as a
function of the threshold

4.5 Design of a Practical Power Saving
Strategy

In this section we will consider how to design a practical scheme to allow web
servers to sleep. We consider when to power the server down, when to power it
up and, as the scheme does not have advance knowledge of the requests, how
to handle requests that arrive when the server is powered down.

4.5.1 Architecture
The system we consider is a high-power web server with a low-power reverse
proxy (though other configurations are discussed in section 4.7). The reverse
proxy manages the power state of the web server via ACPI and WoL. We
assume that the low-power proxy does not cause performance problems during
periods of high load. In practice, this issue can be overcome by switching
to directly serving requests (there are a number of means to achieve this
for example DNS, ARP/IP mapping or using software defined networks) or
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Figure 4.9: Power saving for idealised scheme, answering requests that cannot
be responded to by reverse proxy as a function of the threshold

switching in a higher-power proxy at higher loads. Similarly, we assume that
caching is managed in the usual way by Varnish, with parameters set as
described in section 4.6.1.

4.5.2 Power-On Decisions
Power-on decisions must be made by the reverse proxy, as the server is not
always available to make decisions itself. Thus we describe the power-on
decisions in terms of the operation of the reverse proxy. Of course, if the web
server is on, we configure the reverse proxy to operate as usual, responding to
queries from the cache or making requests to the back end.

If the web server is off, we trigger power-on requests based on the arrival of
server requests. Naturally, if the request can be served from the cache, then
there is no need to wake the back end. Based on the discussion in section 4.2,
we believe there may be an advantage to handling requests from spiders in a
special way. If the back end is off and the request is from a spider, we also
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choose not to wake the back end and instead issue a HTTP 503 response,
indicating that the service is currently unavailable and that the spider should
return later. We suggest that this time could be chosen to be a known-busy
hour of the day or a period specially chosen to facilitate website crawling by
spiders. The logic is summarised in algorithm 1.

Algorithm 1 Decision process to wake sleeping back ends
if request in cache then
serve request from cache

else if back end server available then
serve request from back end server

else if request from spider then
issue HTTP 503 to request spider

else
wake back end

end if

4.5.3 Power-Off Decisions
In practice, the power-off decision could be made by either the back end web
server or the reverse proxy. We considered a number of possible strategies
for making this decision, including forecasting demand based on previous
weekly/diurnal patterns, monitoring the hit-rate in the reverse proxy’s cache,
or using a learning algorithm. We will consider a scheme that aims to achieve
power savings on average while achieving a target delay for serving requests.

One possible improvement that applies to most schemes is to ensure server
sleep time isn’t interrupted by requests from web crawling agents used to index
websites for search engines. This can be achieved by the ether responding to
all requests from such agents either with cached-content, no update or a HTTP
503 response (this should mitigate any negative effect on search ranking).
Consideration should also be given to client side caching for supported clients
as a means to reduce the number of possible requests to the server.

4.5.3.1 Expectation of Power Saving

An important consideration for switching off is, will turning off save power?
Ideally we would like the power used to turn off and then power back on again
to be less than the power used for turning on, i.e. TPoff + Eswitch < TPon,
where T is time between requests, and Poff, Pon and Eswitch are the energy
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usage parameters described in section 4.3.1. Since these quantities, particularly
T , are random quantities, we can instead ask to save power on average, so we
take the expectation,

E[TPoff + Eswitch] < E[TPon] (4.4)

E[T ]E[Poff] + E[Eswitch] < E[T ]E[Pon] (4.5)

This can be further simplified to give us this lower bound, below which we
should not send the server to sleep:

E[T ] > E[Eswitch]
E[Pon]− E[Poff] (4.6)

Provided that E[Pon]− E[Poff] is positive, which we expect for realistic on/off
power values. We also assume that T is independant of Poff and Pon

To implement this condition, we estimate the power usage parameters, as
described in section 4.3.1, and a window of ten requests to estimate the current
spacing to the next request T .

4.5.3.2 Managing Delay

If we are not concerned about delaying requests, then putting the server to
sleep for extended periods can save a lot of power. However, we suppose that
we have an SLA that requires that no more than a fraction fSLA of the requests
can be delayed by more than a delay δ over some window.

Suppose that at some time, the number of requests that will arrive in a
threshold period is K. If D is the number of requests that have exceeded
the delay threshold δ and T is the total number of requests seen in the
current window, then to achieve the SLA, we require the server to maintain a
counter of the total number of requests T and a counter of delayed requests D.
Estimating the expected number of requests in the threshold K is relatively
simple, by maintaining a request rate over a window. Note, that we expect
that maintaining this condition will increase power usage, which is in line with
other studies considering power usage and SLAs [113].

4.5.3.3 Power Cycling Cost and De-bounce

Our scheme, in practice, limits the amount of switching between on and off
states, however a server might want to limit the amount of hardware stress due
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to power cycling or bouncing between on and off states because of conflicting
on and off conditions. We implement two simple conditions, first we will not
power off the server for 60s after a power-on, to avoid excessive power cycling.
Second, we wait at least 5s after the most recent request before powering the
server down, to allow slow clients to request all the content for a page load.

4.5.4 Mitigating Against Mistakes
We note that a power-saving scheme does not know when requests will arrive
so it will ultimately make some mistakes. If requests from users are delayed
while waiting for a server to awaken, this could have a negative impact on
their experience of using the service, or might result in a connection time-out.
In the case that the reverse proxy detects that is must wake the server, we
propose a method to combat this. If the content is delayed, alternative web
pages could be presented by the proxy, such as a splash screen or a loading
bar. Alternatively, an advertisement or suggestion that the user take a short
survey might be offered.

Note that we must only stall the user for approximately five seconds in order to
wake a server from the Suspend-to-RAM state, when the user can be redirected
to their originally requested content. We have implemented this last method
as an addition to Varnish. If a request requires a server to power on, the end
user is served a page asking them to take part in a survey and giving them a
countdown until they will be redirected to their requested content. We call
this method ‘Survey’.

4.5.5 Other Considerations
Reverse proxies are generally used to increase throughput or performance. To
decrease power usage, most of our tests are conducted with a low-power device,
which may actually decrease performance. We evaluate the impact of this in
section 4.6 by studying actual request delays. However, we also assess using a
high-performance embedded device in section 4.6.4.

4.6 Results
In this section we outline our test bed, the parameters of our experiments and
the results we obtained.
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4.6.1 Test System
Our prototype test system consists of three components: a client, a reverse
proxy, and a server. The client makes requests to the reverse proxy or server
using a group of Python scripts that replay a given Apache access log in real
time (i.e., requests are spaced as in the log file). These scripts record the
status of the request responses and the delay in serving the content.

For a reverse proxy, we use a Soekris net5501 embedded computer, with power
usage detailed in table 4.2. The system runs a version of Varnish Cache
(version 3.0.1), which has been modified to allow the operation described in
section 4.5.1. Varnish has been configured with a 128MB cache space. The
connection time out to the back end is set to 10s. The server runs Apache
version 2.2.2 and is a MSI-based system whose power requirements are detailed
in table 4.2.

To implement the power-saving scheme from section 4.5.1, we send User
Datagram Protocol (UDP) packets between the reverse proxy and the server.
We found that all the WoL implementations we tested sometimes entered
a state where wake requests were ignored. This is most likely due to a
bug in the operating system or firmware. To work around this, we initially
tried using an optocoupler attached to the Soekris net5501 General-Purpose
Input/Output (GPIO) pins to “press” the power button on the server. While
this mechanism was more reliable than using a WoL packet, we still found the
servers occasionally in a state where they would not wake. Our conclusion is
that either the Linux hibernation code or the ACPI implementation on the
servers we tested is not dependable enough to run our scheme.

Consequently, for our experiments to assess the performance of the scheme,
instead of putting the server to sleep, we set up a firewall rule that blocking
port 80, which is used for requests, when we need to simulate the server being
unavailable. These rules are removed, after a delay to simulate the wake time,
when the system is woken. We use 5s as the delay, to overestimate the full
wake/sleep cycle from table 4.2. We then estimate the power usage using
the log of sleep/wake events and the power model from section 4.3.1. One
advantage of this method is that we can vary the threshold and power model
to estimate performance of other systems.
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4.6.2 Evaluation
To evaluate the performance and power usage of our scheme, we replay the
28 hour section of log file described in section 4.2. We consider five different
configurations of the test system, chosen to offer some insight into the per-
formance trade-offs involved in powering the system down. In each case the
cache starts empty.

No Varnish The server is always powered on and requests are sent directly
to Apache;

Varnish Requests are routed to Varnish running with default parameters.
Varnish contacts the always-on back end Apache server as necessary;

Varnish (Aggressive Caching) Requests are routed to Varnish running
with grace period set to one hour and Varnish contacts the always-on
back end Apache server as necessary;

Varnish (Sleep and Bot Redirection) Requests are routed to Varnish run-
ning with aggressive cache settings. Varnish runs the power-control
scheme in section 4.5.3 and section 4.5.2. Wake and sleep times are set
to 5s and 5s respectively, after Varnish makes the request. Bots are
redirected if the back end is asleep when a request arrives;

Varnish (Sleep, Bot Redirection, and Survey) Requests are routed to
Varnish running with aggressive settings, running the power-control
scheme described above. Wake and sleep times are also as above, with
bot redirection active. Request from users are redirected to a survey
while the server is waking (as described in section 4.5.5).

In the last two configurations, the algorithm works with a delay budget of
50ms, for 90% of requests and uses 5s as an estimate for the threshold.

4.6.3 Results
First let us see if our technique can save power in practice. Figure 4.10 shows
the power usage for the five different runs described above. The run with
Apache alone, and no Varnish gives us a baseline of close to 45W. The second
and third experiments do not attempt to power the server on and off, and so
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Figure 4.10: Comparison of the results of various experiments in terms of
energy used

the power usage is simply the sum of power usage of the server and Soekris
box. The final two experiments do produce an actual power saving; the extra
power used by keeping the Soekris box on is more than matched by the power
saved by letting the server sleep. The final bars show that it is possible to save
power of approximately 25% even accounting for this overhead. Note that the
server we used has quite a modest power usage, and greater power savings
would be seen with more power-hungry servers.

Now, we need to see the impact of this power saving on performance. Table 4.3
shows the breakdown of how requests are served. The first column shows the
results when Apache fields all requests. While most requests are successful, a
number are for files that do not exist, and these are listed under the HTTP
404 heading, for File Not Found. We also record the delays involved in serving
the files. We see that the mean response time is around a millisecond, and the
maximum delay is around 0.4s.

The second column shows the impact of introducing Varnish to the system.
Observe that a significant amount of the content, around 7000 requests or 17%,
can be cached and served by Varnish. In terms of performance, we see that
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the low-power reverse proxy cannot serve content as quickly as the Apache
server. The low power device only increases average delay by around 5ms,
even though all requests are directed through it. There are a small number of
requests with larger delays and we can look at the cumulative distribution of
these in figure 4.11. We see that the fraction of requests with a greater than
50ms delay is small.

The third column shows the impact of adjusting Varnish’s settings to allow
more aggressive caching of content. We see that this is quite effective in
increasing the number of requests served by Varnish, raising the number to
around 12000, or about 31%. The mean delays for the requests served by
both Varnish and Back end requests does not substantially change, but overall
mean delay decreases because the fraction of requests served by Varnish has
increased.

The fourth column of the table shows the results when the server is powered
on and off, introducing a 5s delay. The most significant difference we observe
here is that requests from spiders while the server is off now receive a Retry
After response, indicated by the Bot Redirection row. There are additional
delays in responding to back end requests, due to some requests now having to
wait for the server to wake. However, they are still small on average coming to
less than 60ms. Consulting figure 4.11, we see that we easily meet the target of
90% of requests served in under 50ms, however there are a cluster of requests
that take several seconds to serve corresponding to the time taken to wake the
server.

The fifth column of table 4.3 shows results where if a request arrives while the
back end is sleeping, we suggest the browser take a survey and wake the back
end. The request is then replayed after 15 seconds. This results in a higher
number of overall requests in this scenario, and we show the results of these
extra requests separately in the table. We see introducing the survey reduces
the average time to serve requests to less than 10ms, so it is quite an effective
technique. Figure 4.11 shows the increased number of requests, and that the
cluster of requests is now gone, with just a handful of requests taking more
than one second to serve, which is broadly in line with the number when we
use Varnish but do not put the server to sleep.

49



4.6. Results

Experiment Label No Varnish Varnish Varnish Varnish Varnish
(Default (Aggressive (Sleep & (Sleep, bot,
config) config) bot) & survey)

Requests 40305 40305 40305 40305 41696
Malformed Requests 7 7 7 7 7
Served By Apache 40298 33288 27673 20280 20245
Served By Varnish 7010 12625 20018 21444
HTTP 200 36846 36837 36834 29879 29922
HTTP 404 3459 3459 3459 2674 2695
HTTP 503 9 12 241 163
Bot Redirection 7511 7525
Served Survey 1391
Replayed – HTTP 200 1041
Replayed – HTTP 404 205
Replayed – HTTP 503 14
Max Delay – Apache (s) 0.04 11.23 8.01 12.53 8.05
Max Delay – Varnish 0.20 0.12 3.0 1.98
Mean Delay – All Requests 0.001 0.006 0.005 0.058 0.009
Mean Delay – Apache 0.001 0.007 0.006 0.111 0.012
Mean Delay – Varnish 0.001 0.001 0.005 0.005

Table 4.3: Statistics showing results of HTTP requests for each configuration
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Figure 4.12: Performance of PowerENTM-based reverse proxy

4.6.4 High Performance Proxy
In previous sections we reported the results of using a power saving reverse
proxy on a Soekris net5501, a low-power single-board computer. This raises
the possibility that even though content is being successfully cached during
busy periods, the net5501 may not be able to serve content as quickly as a
fully-featured server system.

However, the reverse proxy could instead be run on an embedded device
designed for high performance networking, such as a IBM R© PowerENTMboard
[74]. These devices are designed to offer high-performance networking at
a lower power consumption than the equivalent PC-based system. In this
subsection we demonstrate that using such a device, it is possible to maintain
high network throughput. As the device we test is a prototype, we cannot
report accurate power usage statistics.

In our test, we ran varnish on the PowerENTM board, which proxied content
from a server. The content to be proxied was hundreds of files varying from
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tens of bytes to hundreds of megabytes. Apache JMeter [78] was configured
to use multiple threads to request content, with a short ramp-up period. The
resulting throughput of the JMeter host is shown in figure 4.12. We see that
an embedded device designed for high network performance can maintain a
throughput of over 1Gbps, and seems to be able to burst at a higher rate
when a number of requests for large files arrive concurrently. This raises the
possibility of using an embedded device, even within a server or router, as a
reverse proxy to reduce power usage while maintaining high performance.

4.7 Discussion
In section 4.6 we saw that in practice we could make power savings of 25%.
This is a reasonable saving, however it is small compared to the idealised saving
for around of 60–70% for a 5s threshold, (when the power usage of the proxy is
factored in). This suggests there may be some scope for improvement, however
it is important to consider that the idealised version we described uses the
arrival time of future requests, which must be estimated by a practical scheme.

Our practical power savings do have a performance cost associated with them.
For example, the increased baseline delay of a couple of milliseconds that is
visible in figure 4.11. Some of this is the inevitable result of introducing an
extra proxy system between the client and server, but some of these values
relate our experimental setup. For example, we began our experiments with
an empty cache with a modest size (128MB). With a larger cache and a longer
test run, it is possible that caching of static content could be more effective
again, resulting in fewer wake ups and fewer delays in serving content.

We do not know if our method of introducing a survey to stall users while
the back end is being woken will be irritating for users, however it has been
reported that negative feelings caused by waiting for content can be alleviated
by explaining the reason for these delays [139]. Conducting user validation
studies would allow us to see if the added delays or the occasional stalled
request may negatively impact on the end user. These studies would require
adapting our testbed to serve a selection of different types of web content and
will have users rate their experience of accessing this content while the testbed
is performing a variety of scenarios, such as simulated heavy request loads and
simulated light loads with request stalling. Such a user study would let us
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gauge our impact on users, but is beyond the scope of the current study.

Taking a more realistic view of the users, requests and web sites might also
allow us to improve our power savings. Tracking the behaviour of users could
allow us to predict their next likely request. This might be achieved by tracking
IP addresses or sessions where active users are monitored. A long period of
inactivity or explicit user log out could provide better indications of when to
sleep. This could be based on the statistics of the dwell times of typical users,
or could be customised for particular website content, possibly anticipating
wake-ups from patterns of accesses to cached requests.

Similarly, we could extend the techniques that we use to handle spiders. Site
maps are commonly employed by websites to inform web crawlers, both of
the structure of a website, and the frequency of updates to its content. These
could be used to help reduce the number of requests by spiders to see if page
content has been updated or prevent requests for resources that do not need to
be indexed. Another commonly-requested resource is robots.txt, a text file
defining which well behaved spiders are allowed to crawl the page and what
URLs they are allowed or not allowed to follow. Both the robots.txt and
site map files could be used to mediate the requests from spiders [95].

Another important question is how to generalise our results to other web traffic
or server configurations. Based on a search for sites with on-line statistics
publicly available, we find many sides outside the Alexa top 1,000,000 have a
lower load than the server we consider here. Other aspects of a site’s traffic may
have patterns that can be exploited. If request patterns are highly predictable,
or such that delays in responses of a few seconds are not a concern, then
this could lead to improved power savings. Alternatively, if content is highly
dynamic or has tight constraints on how quickly it must be served, then this
will make power saving more challenging.

We have considered a situation with a single server hosted on physical hardware
that can be powered down. A similar configuration with a higher-powered
server should result in the scheme achieving larger savings. The principle of
the scheme also generalises to other configurations. Multiple servers hosted on
multiple physical systems could be cached by a single reverse proxy, spreading
the cost of a higher-performance proxy over several web servers.
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Hosting of web servers on virtual hardware is also common. One way to apply
the power-saving scheme would be to suspend and resume the virtual hardware.
This may result in indirect power savings because of lower resource usage on
the physical host, though we expect the savings would be smaller unless enough
virtual hosts were suspended to allow a physical machine to sleep. This might
be facilitated by allowing migration of suspended virtual machines to reduce
the number of physical hosts currently required.

4.8 Conclusion
We have explored the use of a low-powered reverse proxy to save power by
powering off a web server leaving the reverse proxy on. We have considered fea-
tures of web traffic that facilitate this, including traffic patterns and prevalence
of spiders. We demonstrated that if a server is not too busy and can recover
from a low-power state quickly (say 5 s to 10 s) then it is possible to save power
by putting a high-power web server to sleep during low activity periods. In
our testbed, we were able to save 25% energy while keeping performance at an
acceptable level.
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CHAPTER 5
Energy Efficiency in Virtual

Machines, Linux Containers and
on Physical Hosts

Increasingly the world of computing is becoming more disconnected from what our
ideas of what a computer is, we are now seeing a world where a computer can be an
abstraction made of software that runs in software on computers that host many
other software computers. This is called virtualisation and this holds promise for a
whole new world of possibilities. In this chapter we look closer at two technologies
used in this area and see what impacts, if any, these have on the efficient use of
energy.

5.1 Introduction
A virtual machine is a software layer which emulates physical hardware. This
virtual hardware can have a full operating system installed on it and a piece
of software called a hypervisor manages this environment and the interactions
between the virtual environment and the computer that it is hosted on. The
hypervisor also allows for multiple virtual machines to be hosted together on
one physical host machine. Virtual machines are useful for a huge number
of applications, including testing applications on many different versions of
operating systems, emulating obsolete hardware to run legacy code, developing
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software for new processor architectures that aren’t yet available, isolating
processes when hosting multiple applications on a small number of physical
machines or hosting applications in the cloud. A diagram outlining the general
structure of virtual machines is shown in figure 5.1.

In recent years virtualisation has become an increasingly integral part of the
modern computing landscape. Loosening the coupling between the physical
hardware and the software that runs on it has enabled operators to improve
resource utilisation by hosting many virtual machines on one physical host
as well as offering virtual machine hosting as part of their Infrastructure as a
service products.

Operating-system-level virtualisation is a type of virtualisation which is becom-
ing popular for some server side applications [173, 149, 124, 89, 132]. Instead of
a hypervisor creating a virtual hardware platform and installing an operating
system to manage it, operating-system-level virtualisation creates isolated
userspace instances which share the host kernel and operating system. These
can co-exist with other virtualisation solutions if required.

One version of these userspace instances are called Linux containers. These are
used to run applications and contain all the applications dependencies, making
this technology well suited for packaging applications for many deployment
scenarios that are common for cloud applications. Similar technologies have
existed before such as chroots [50], also known as root jails, available in many
flavours of Unix, but chroots only restrict the applications contained inside to
a sub-tree of the host machines file system, whereas Linux containers allow
more fine grained control over resources (CPU, block I/O, memory, networking,
etc).

Creating, managing and generally orchestrating Linux containers are facilitated
by the use of some software tools to automate these processes. One of the more
popular solutions for this is called Docker [114]. We give a general outline of
the software architecture of containers in figure 5.2.

While virtual machines and Linux containers have some things in common,
they are inherently different beasts, but they can be used to achieve the same
goals (such as process isolation and improved hardware utilisation) in some
cases. This begs the question: if the situation allows for the use of either a
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Figure 5.1: A simplified diagram of the software architecture of virtual machines
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Figure 5.2: A simplified diagram of the software architecture of containers

virtual machine or a Linux container, which is more energy efficient?

This chapter outlines our attempts to answer this question.

5.2 Experiments
To make managing Linux containers easier, a number of completing and
complimentary tools have been developed. Docker is what we have used for
our investigation [114].

Virtual machines are a mature technology and as we have seen in chapter 2, they
have been the topic of a considerable amount of research. For our experiments
we will use Xen, a virtualisation hypervisor which is well supported, actively
developed and used across industry & academia [23]. Relational Database
Management Systems (RDMSs) are a commonly used and mature technology,
these are used across a wide number of areas and even though they can provide
some access control to the data they store in some cases it might make sense
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to run separate instances in isolation. RDMSs often include tools to measure
or benchmark the performance of the service. We used PostgreSQL and the
benchmarking tool pgbench for these experiments [151].

The parameters used in the experiments are outlined in table 5.1. With
experiments 0, 1 & 2, looking at the impact of the size of the database.
Experiments 3 and 4 look at the same database configuration as experiment 1,
only changing the type of the query from the set of selection and update queries
seen in listing 5.1 to using only selection and in the case of experiment 4 using
PostgreSQLs prepared statements, which are queries written in Structured
Query Language (SQL) which are parsed and optimised ahead of when they
are executed and are expected to be called multiple times.

We think that experiment 0 should provide a simple baseline, the small size of
the database should mean that it should be able to fit into memory comfortably
and shouldn’t be adversely impacted by differences in the performance of disc
I/O. Experiments 1 & 2 increase the scaling size and therefore the size of the
database considerably. This should increase the stress on disk I/O and reveal
any direct performance bottle necks owing to this.

Experiments 3 & 4 alter the type of query used, with 3 only reading rows
from the database and not updating any values, which should indicate the
performance of these systems to read from the disc. Experiment 4 makes use
of the prepared statement feature of PostgreSQL and should lead to better
overall performance.

The “Scaling Factor” column in table 5.1 refers to the size of the database.
The total size can be attained by multiplying the scale by 16MB.

\ set nbranches : s c a l e
\ set n t e l l e r s 10 ∗ : s c a l e
\ set naccounts 100000 ∗ : s c a l e
\ setrandom aid 1 : naccounts
\setrandom bid 1 : nbranches
\setrandom t i d 1 : n t e l l e r s
\ setrandom de l t a −5000 5000
BEGIN;
UPDATE pgbench_accounts SET abalance = abalance + : de l t a
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WHERE aid = : a id ;
SELECT abalance FROM pgbench_accounts WHERE aid = : a id ;
UPDATE pgbench_te l l e r s SET tba lance = tba lance + : de l t a

WHERE t i d = : t i d ;
UPDATE pgbench_branches SET bbalance = bbalance + : de l t a

WHERE bid = : bid ;
INSERT INTO pgbench_history ( t id , bid , aid , de l ta , mtime

) VALUES ( : t id , : bid , : aid , : de l ta , CURRENT_TIMESTAMP
) ;

END;

Listing 5.1: The SQL used in experiments 0-2

Experiment Size Scaling Factor Query Type
0 240MB 15 Simple
1 1.12GB 70 Simple
2 9.6GB 600 Simple
3 1.12GB 70 Selection Only
4 1.12GB 70 Prepared Statements

Table 5.1: Description of experiment parameters

We ran each experiment for 300 seconds and measured the power consumed by
using the Current Cost EnviR described in section 3.2.2. The physical machine
used was a Dell PowerEdge R320 II with an Intel Pentium 1403 CPU (which
has two CPU cores and 5MB of cache and a clock speed of 2.6GHz) and 4GB
of RAM, running Ubuntu 14.04.4 with version 3.19.0-59 of the Linux Kernel,
Xen version 4.4.2 and Docker 1.11.1.

The Xen virtual machine was running Ubuntu 14.04.4 as the operating system
with one virtual CPU and was given 512MB of RAM. The container was
configured using Docker and was allowed a maximum of 512MB of RAM and
was pinned to run on the second physical CPU core to allow for a more fair
comparison with the virtual machine.

The final platform we tested on was the physical machine itself which we refer
to as bare metal.

Each of the platforms tested ran PostgreSQL version 9.1 and the pgbench tool
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5.3.1: Power consumed over time for experiment 0

was run on a separate computer networked with the physical machine using
Ethernet over a dedicated 100Mbitps LAN. With pgbench configured to run
for 300s and simulate two clients using a single thread.

For each experiment we measured the power consumed over time, sampled
at 7s intervals using the Current Cost EnviR seen in section 3.2.2, and the
performance of PostgreSQL in transactions per second, from this we were able
to get four sets of graphs, power usage over time, total power consumption, how
many joules of energy were used per transaction and how many transactions
were completed per second.

5.3 Initial Results
As we see in figures 5.3.1 to 5.3.5, which show the power consumption over
time, the power consumption was relatively flat across all the experiments,
with variations on the scale of approximately 10%, since these variations over
time are small, it is reasonable to summarise the results with an average.

In figures 5.4.1 to 5.4.5 we can see the total power used in each experiment
in Joules. These figures make the comparison between Bare Metal, Docker &
Xen more straightforward. Figure 5.4.1 shows a flat total power usage whereas
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5.3.2: Power consumed over time for experiment 1
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5.3.3: Power consumed over time for experiment 2
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5.3.4: Power consumed over time for experiment 3
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5.3.5: Power consumed over time for experiment 4

Figure 5.3: Power consumption over time for experiments 0 to 4
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5.4.1: Total energy consumed in experiment 0
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5.4.2: Total energy consumed in experiment 1
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5.4.3: Total energy consumed in experiment 2
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5.4.4: Total energy consumed in experiment 3
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Figure 5.4: Total energy consumption for experiments 0 to 4
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Figure 5.5: Average number of Joules consumed per transaction in experi-
ments 0 to 4
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5.6.1: Transactions per second in experiment 0
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5.6.2: Transactions per second in experiment 1
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5.6.3: Transactions per second in experiment 2
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5.6.4: Transactions per second in experiment 3
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5.6.5: Transactions per second in experiment 4

Figure 5.6: Mean number of transactions per second in experiments 0 to 4

figures 5.4.2 and 5.4.3 show only small difference in total energy consumption
between all three platforms. In figure 5.4.4 there is a similar difference but the
order is reversed with Docker using the least amount of energy in total. In
figure 5.4.5 we see while there is the same small gap in energy consumption,
Bare Metal consumed the least and Docker and Xen are close to being even.

However, total power usage does not tell the full story.

Figures 5.5.1 to 5.5.5 show Joules per transaction across the experiments. Bare
metal uses the least joules per transaction in each experiment bar figure 5.5.3.
This is expected because we believe virtualisation to introduce overhead in
terms of power usage. Xen uses more energy for each database transaction
than bare metal except in figure 5.5.3. Docker seems to use more energy than
Bare Metal and Xen except in figure 5.5.1, which appears at first to be an
anomaly.

To understand these results, Figures 5.6.1 to 5.6.5 show the number of trans-
actions per second of each experiment, these figures include the connections to
the database. Bare Metal performs best by this measure, with Docker coming
in last in all experiments but figure 5.6.1. These figures confirm that the dif-
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Figure 5.7: Experiment 0 repeated with an increasing number of threads

ference is energy efficiency per transaction which arises from the performance
of PostgreSQL under the different virtualisation systems.

5.4 Scaling up the Experiments
Building on the first set of experiments we wondered if the amount of concurrent
requests changed the results and if so, how? By scaling up these experiments
they might become bound by a different resource (for example CPU access
or I/O) and would test other aspects of virtualisation. The experiments
were repeated but the number of clients and threads that pgbench used were
increased with each repetition from 1 thread simulating 2 clients until pgbench
used 50 simultaneous threads of execution to simulate 100 clients.

Figures 5.7 to 5.11 show the total Joules consumed, the number of transactions
per second and the energy efficiency in Joules per transaction.

As we can see in figure 5.7 up until 6 threads, there is no real difference between
bare metal, Xen and docker, but the number of transactions per second decline
for Docker. Figure 5.8 shows that Docker’s performance increases slowly with
the number of threads, peeks early and slowly declines, whereas Xen and Bare
Metal reach their peak performance around ten threads and stay around 300
to 350 transactions per second. A similar result is seen in figures 5.9 and 5.11.
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Figure 5.8: Experiment 1 repeated with an increasing number of threads
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Figure 5.9: Experiment 2 repeated with an increasing number of threads
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Figure 5.10: Experiment 3 repeated with an increasing number of threads
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Figure 5.11: Experiment 4 repeated with an increasing number of threads
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Figure 5.10 isn’t very surprising when compared with figure 5.6.4 which shows
that Docker didn’t perform favourably when compared with Xen and Bare
Metal, but when scaled up with larger number of threads we see that Xen
and Bare Metals transactions per second diverge and then seem to follow each
other by some offset of a few thousand transactions per second.

This seems odd that the performance of the Docker container is measurably
worse than the virtual machine and bare metal in the majority of our ex-
periments. The Docker system is relatively simpler by comparison to the
virtual machine, which would make us believe that without the work of the
hypervisor and the virtual hardware layer Docker would have fewer constraints
and at least achieve a comparable performance across all the benchmarks. We
can see this if we look at figures 5.1 and 5.2, which show an outline of the
respective software architectures of containers and virtual machines. These
gaps in performance warrant further investigation, which is what we will do in
the following sections.

5.5 Understanding the Results
These results were interesting but slightly unexpected. We made every effort
to reduce the possibility of misconfiguration, but perhaps this was caused by a
misconfiguration or maybe it is something else we failed to consider. To better
understand the implications of these tests we will look at the performance
of the CPU, RAM, Disk I/O and Networking under Docker, Xen and on the
host. We keep the configuration of Docker and Xen the same in order to better
understand the results shown in sections 5.3 and 5.4

5.5.1 CPU
The sharing CPU schemes used by Docker and Xen are similar and when
we measure CPU performance using SysBench version 0.4.2 [4], it offers a
straightforward means of testing CPU performance by calculating all the prime
numbers up to a given number, in this case 20000 and uses a single thread 1.
We can see the results of this in table 5.2.

We see only a very small difference between the three. But it is not enough to
explain the differences observed in the previous section.

1There are 2262 prime numbers between 0 and 20000

74



5.5. Understanding the Results

Bare Metal Xen Docker
Total time taken (s) 33.05 33.05 32.50
Per-request statistics (ms)

Minimum 3.25 3.28 3.24
Average 3.30 3.31 3.25

Maximum 7.36 6.99 21.22
95th Percentile 3.31 3.31 3.25

Table 5.2: CPU benchmark experiments

Bare Metal Xen Docker
Throughput (MBps) 631.02 373.18 363.79

Table 5.3: RAM benchmark experiments

5.5.2 RAM
Access to RAM is important in all of the scenarios we tested. To understand
this better we used the SysBench tool and used its memory benchmark, this
test allocates a buffer and with each operation it writes or reads to this memory
in a sequential or random manner using a specified number of threads.

For this first experiment we use a buffer size of 1kB and just write to this
buffer sequentially, using 4 threads, each experiment wrote 102400MB into
RAM.

The results of this first experiment are shown in table 5.3. As we can see
running the test on the Bare Metal performs considerably better than the Xen
and Docker instances, which in part is explained by the host machine having
access to all the available RAM but also having access to both CPU cores.

5.5.3 Disk IO
Reading and writing to a hard disk can often be the source of many bottlenecks.
We wished to see what difference the means of abstracting access to the disk
has on the performance of the Xen virtual machine and on the application in
the Linux container created and managed by Docker. If we look at figures 5.1
and 5.2 we can see that there are different layers of abstraction between the
application and the hardware which is executing it. Understanding the impact
of these differences may explain the performance disparity we observed.
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Bare Metal Xen Docker
Disk Seek Rate
Requests Completed 914 28 700 905
I/O Operations per Second 305 10 000 302
Throughput (MBps) 1.2 39.0 1.18

Request Time Statistics
Minimum (ms) 0.114 0.093 0.115

Average 3.3 0.100 3.31
Maximum 0.434 17.3 18.3

95th Percentile 3.6 0.008 3.56

Sequential Read Speed
Requests Completed 785 9200 814
I/O Operations per Second 265 3200 275
Throughput (MBps) 66.4 809.5 68.8

Request Time Statistics
Minimum (ms) 1.2 0.264 1.15

Average 3.8 0.308 3.63
Maximum 29.2 3.2 19.8

95th Percentile 2.3 0.047 1.72

Table 5.4: I/O latency benchmark experiments

We begin by looking at I/O latency, table 5.4 shows the results of using the
ioping tool [2] to measure disk seek rate, which tries to measure how many I/O
operations per second the hard disk can support, and sequential read speed,
which measures the transfer rate for reading large contiguous blocks of data
from the disk.

Looking first at disk seek rate, the important results are the I/O operations
per second and the average time taken for each I/O operation. As we can see
in table 5.4, Bare Metal and Docker have very similar results. But the Xen
VM out performs both by quite a substantial margin.

Looking at sequential read speed the important results are the measurements
for the throughput. Again we see Bare Metal and Docker have very similar
results. But the Xen virtual machine is clearly outperforming the others.

It’s worth keeping in mind that all of these are using the exact same physical
hard disk drive. The close performance numbers between Docker and Bare
Metal would be expected when you consider these are just two processes
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accessing the disk using the same kernel, the main difference being that the
Linux kernels cgroups feature might be adding small amount of overhead to
the processes running in the Docker container.

Meanwhile for the Xen virtual machine, it is a complete operating system
contained by the hypervisor. The guest operating system is using a virtual disk
which is hosted in a file on the host operating system disk. The hypervisor
may be providing some buffering between the guest operating system and the
hard disk drive of the host operating system.

To look a bit further at this, we used the SysBench tool to measure the
performance of disk I/O. We look at measuring the performance of reading and
writing to the disk both in a sequential and random fashion. In our tests we
used a total file size of 10GB, synchronous disk access mode and a maximum
test time of 300 seconds. The total file size was chosen as it was close to
the size of the largest database generated in the previous experiments and is
considerably larger than the RAM available to any of the platforms tested, so
this will force physical disk accesses. The test scenarios we decided to examine
were: sequential reads from the disk, sequential writes to the disk, random
writes, and combined random read & writes.

In terms of disk I/O sequential reads and writes refers to accessing locations on
the disk in a contiguous manner, whereas random refers to accessing locations
on the disk in a non-contiguous manner.

Table 5.5 shows the performance of Bare Metal, Xen and Docker at doing
sequential read operations from the disk. As we can see, Bare Metal and
Docker have comparable performance, where as Xen completes the task with
fewer read operations and these operations executed faster on average.

Table 5.6 shows the performance of sequential disk writes. In this test the
performance gap between Xen and the other two platforms appears to narrow
a bit. It is still performing with a higher number of requests executed per
second, but the average length of request times are closer.

Table 5.7 shows the performance of the three platforms at carrying out random
reads and writes. In this case the number of requests executed per second was
lower for Xen.
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Bare Metal Xen Docker
Sequential Read
Operations Performed

Read 655 360 453 729 655 360
Write 0 0 0
Other 0 0 0

Requests/sec Executed 6615.72 8001.36 7143.86
Request Time Statistics

Minimum (ms) 0.01 0.00 0.01
Average 0.15 0.12 0.14

Maximum 116.98 78.21 105.30
95th Percentile 0.75 0.62 0.80

Table 5.5: Sequential disk reading benchmark experiments

Bare Metal Xen Docker
Sequential Write
Operations Performed

Read 0 0 0
Write 655 360 453 729 655 360
Other 128 0 128

Requests/sec Executed 6266.59 8233.05 7039.38
Request Time Statistics

Minimum (ms) 0.01 0.01 0.01
Average 0.15 0.12 0.13

Maximum 5025.61 4438.04 4080.87
95th Percentile 0.03 0.02 0.05

Table 5.6: Sequential write disk benchmarking experiments

Table 5.8 shows the performance of random writes. In contrast to tables 5.5
and 5.6 which shows the performance of doing disk operations sequentially,
we see that performing random disk operations is better performed on Bare
Metal, while Xen and Docker showed lower performance.

It is interesting to note that Xen appears to be performing fewer operations
but achieving similar amount of output, this suggests that Xen’s virtual hard
disk may use a different block size from the others. This may explain some of
the differences in efficiency we have seen but this does not explain the disparity
in performance between Docker and the other platforms.
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Bare Metal Xen Docker
Combined Random Read/Write
Operations Performed

Read 26 004 22 955 23 514
Write 17 336 15 303 15 676
Other 55 424 48 896 50 048

Requests/sec Executed 144.47 127.52 130.63
Request Time Statistics

Minimum (ms) 0.01 0.01 0.01
Average 3.32 3.99 4.41

Maximum 69.00 76.71 28.54
95th Percentile 11.16 11.77 11.24

Table 5.7: Combined random read/write to the disk

Bare Metal Xen Docker
Random Write
Operations Performed

Read 0 0 0
Write 39 500 31 300 42 600
Other 50 534 40 006 54 448

Requests/sec Executed 131.67 104.33 141.99
Request Time Statistics

Minimum (ms) 0.02 0.01 0.01
Average 0.03 0.03 0.03

Maximum 0.25 0.69 0.29
95th Percentile 0.03 0.03 0.07

Table 5.8: Random writes to the disk

5.5.4 Networking
As much as we wanted to control for as many variables as possible, Docker and
Xen employ radically different schemes for network access. Xen uses a virtual
network bridge and each virtual machine can be manually configured or can
get an IP address via Dynamic Host Configuration Protocol (DHCP), whereas
Docker makes use of the host machine’s instance of iptables and remaps a port
on the host to the port the application is listening on. If we consult figures 5.1
and 5.2 we can see that there are different layers of abstraction between the
application and the hardware which is executing it, these may also impact the
networking performance.
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Host Xen Docker
Bandwidth (Mbitps)

Sender 94.0 94.0 94.0
Receiver 93.9 93.9 93.7

Table 5.9: Network benchmark experiment

To measure the performance of the networking we used iperf version 3.0.11
[3]. This tool is commonly used for network throughput testing and creates
streams of either TCP or UDP data between two hosts, with one host acting
as a client requesting this data transfer, and other acting as the server tasked
with serving it.

Each experiment lasted 30 seconds and was a test of network throughput using
a TCP connection, as this is the more common way to communicate with a
RDMS such as PostgreSQL. The experiment used the environment under test
as the server and the machine that ran pgbench in the earlier experiments as
the client. The results are summarised in table 5.9. We conclude there is little
difference between the platforms tested in terms of the performance of TCP
over IP.

5.6 Conclusions
From what we have demonstrated here, the overall power consumption is very
similar for all each setup, however when we consider the performance per
transaction there is a very different story, due to the variable performance of
Docker, Xen and the physical host.

In section 5.5 we tried to diagnose some of the larger performance discrepancies.
These performance issues weren’t easy to diagnose, and now we are forced to
consider that these seem to arise from the detailed interactions between the
guest operating system and the virtualisation hypervisor.

This may indicate that while virtualisation is useful and mainstream, the
arising performance issues are still complicated and that complicates effective
measurement of power efficiency.

It is possible that Xen being a mature system with numerous active users and
developers has been optimised to handle the sort of anomalies that plagued
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Docker without large degradations in performance.

5.7 Future Works
The issues surrounding virtual machines and power have been explored in some
detail by others, as we saw in section 2.3.2, but current research is limited to
looking at single aspects of virtual machines, it would be useful to be able to
understand the trade off between the energy efficiency of transactions on a
virtual machine and the cost of consolidating multiple running virtual machines
to a single host machine.

There are currently attempts to introduce something akin to virtual machine
style live migration to Docker and Linux containers in general. This would
allow running containers to be moved between hosts like virtual machines,
but as we have seen live migration isn’t without costs. Further study and
comparison is required to understand the benefits and drawbacks to container
migration versus live virtual machine migration.
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CHAPTER 6
Energy and Cryptocurrencies

Bitcoin is a digital cryptocurrency that has generated considerable public interest,
including both booms in value and busts of exchanges dealing in Bitcoins. One of
the fundamental concepts of Bitcoin is that work, called mining, must be done in
checking all monetary transactions, which in turn creates Bitcoins as a reward. In
this chapter we look at the energy consumption of Bitcoin mining. We consider
if and when Bitcoin mining has been profitable compared to the energy cost of
performing the mining, and conclude that specialist hardware is usually required
to make Bitcoin mining profitable. We also show that the power currently used for
Bitcoin mining is comparable to Ireland’s electricity consumption.

6.1 Introduction
Bitcoin is a peer-to-peer cryptocurrency mainly used for monetary transactions
on the Internet [117] and is designed to be similar to Fiat Money and com-
modities. Bitcoins are intrinsically valueless, their worth is decided by those
trading in them. At the time of writing 1, 1 Bitcoin (B) is worth approximately
370 Euro (e) 2. Bitcoin has generated a huge amount of interest in the media
lately and has sparked a wave of copy-cat-currencies [98, 63] and even a fully
working parody currency [108]. It has also generated interest in academic

1April 2016
2A graph of historical exchange rates between Bitcoin & US Dollars can be seen in

figure 6.4
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circles due to issues it creates in user privacy e.g. [17], as well as attempts to
gain insights into who is behind the transactions e.g. [110] and attempts to
better understand its implications as a payment system e.g. [90].

Bitcoin is based on a peer-to-peer network within the Internet. The members
of the peer-to-peer network effectively maintain a ledger of Bitcoin transactions
which have been accepted by the network. In this ledger, Bitcoins are owned
by Bitcoin addresses, which are public keys from a key pair. In order to assign
Bitcoins, or some fraction thereof, to a new owner, the current owner must
sign the transaction with the private key of the key pair using an Elliptic
Curve Digital Signature Algorithm (ECDSA) scheme. Before a transaction is
accepted by the network, the transaction is checked for validity, including the
presence of these signatures.

Bitcoins are not issued or governed by a central authority but, instead are
created in a process called mining. Mining is one of the key concepts behind
the Bitcoin protocol, in which valid transactions are collected into blocks and
are added to the ledger by linking it to the previously accepted blocks. The
network forms a common view, called the blockchain, of which transactions
have taken place, preventing users from reusing Bitcoins and attempting to
spend them more than once.

To add a block to the blockchain, a signature must be found linking the
transactions in the block to the previous blocks. This requires finding a nonce
value which satisfies a particular equation involving the SHA256 cryptographic
hash function [121]. This is a computationally expensive task; however, a
member of the peer-to-peer network who finds a suitable value is rewarded by
being able to assign newly mined Bitcoins to an address of their choosing.

In this chapter we consider the energy cost of Bitcoin mining. Solving of
the computational problem requires energy. We consider how this energy
can be calculated and the impact of using different types of hardware for
this computation. Using historical information from the Bitcoin network and
Bitcoin exchanges, we compare the monetary cost of the energy to the reward
for calculating a Bitcoin block. We also consider the likely power consumption
of the whole Bitcoin mining operation, and show that it is comparable to
Ireland’s average electricity consumption.
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Figure 6.1: Basic operation of Bitcoin mining, including the information stored
in the header of each block

6.2 Bitcoin Mining
As we mentioned, a Bitcoin miner is part of Bitcoin’s peer-to-peer network
that collects recent transactions and aims to complete a proof of work scheme,
based on the ideas of Hashcash [20]. In this scheme, there is a current target
value T , which is periodically recalculated by the network (see section 6.2.1).
The miner’s aim is to find a nonce value so that

H(B.N) < T (6.1)

where B is the string representing the recent transactions, N is the nonce
value, ‘.’ is the concatenation operator and H is the Bitcoin hash function, in
this case

H(S) := SHA256(SHA256(S)).

The proof of work can be achieved by choosing values for N randomly or
systematically until equation (6.1) is satisfied. When an N is found, the
resulting block can be sent to the Bitcoin network and added to the Bitcoin
blockchain. Finding a block results in a reward of extra Bitcoins for the block’s
finder. Thus, the process of finding a suitable N value is referred to as Bitcoin
mining.

Figure 6.1 gives us an outline of the bitcoin mining process, this shows how
hash values are included in the blocks that form Bitcoin’s blockchain.

6.2.1 Difficulty
The rate at which Bitcoins can be discovered can be controlled by the Bitcoin
Network’s choice of the value of the target, T , in equation (6.1). However,
the target depends on the current number and speed of miners in the Bitcoin
network, and is normally quoted in terms of the difficulty, D. The relationship
between the difficulty and the target T is

D = Tmax
T
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where the largest possible value of the target Tmax is (216 − 1)2208 ≈ 2224.

The hash function H for Bitcoin has been chosen so that it behaves approxi-
mately as a uniformly random value between 0 and 2256 − 1. Thus, for any
given nonce value, the probability of it satisfying equation (6.1) is

p = T

2256 = Tmax
D2256 ≈

1
D232 .

Each nonce value tested should behave like an independent trial, so the number
of trials until a block is successfully completed will be geometrically distributed,
therefore the the expected number of hashes to find a block is D232. If we have
a system calculating hashes at a rate R, the expected time to find a block is

E[t] = 1
Rp
≈ D232

R
. (6.2)

For example, if you can calculate a Bitcoin hash 1 million times a second, and
the difficulty 3 is 166, 851, 513, 283 , then E[t] ≈ 7.16621792838594592768 ×
1014seconds 4.

6.2.2 Change in Difficulty
The difficulty D, is recalculated every 2016 blocks, with the aim of keeping
the average time to discover a new block near 10 minutes. At this ideal speed,
2016 blocks will be discovered every two weeks. To calculate the new difficulty,
the length of time that it took to calculate the the last 2016 blocks is used
to estimate the hash rate of the entire Bitcoin network. The new difficulty is
selected so that if the same average hash rate is maintained, it will take two
weeks to calculate the next 2016 blocks. If the resulting difficulty is more than
four times harder (or four times easier) than the current difficulty, then the
result is capped to four times harder (or easier). Restrictions on the range
of acceptable difficulties/targets are also applied. The historical values of
difficulty to date are shown in figure 6.2. The increasing trend in difficulty has
been caused by an increase in the resources dedicated to calculating hashes in
the Bitcoin network.

6.2.3 Change in Reward
There are two sources of reward for calculating a new block. First, the block is
formed from Bitcoin transactions, and a transaction may choose to include a

3Current as of April 1st 2016.
4approximately 22.72 million years
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Figure 6.2: Change of the difficulty to generate a Bitcoin over time, based on
information from the block chain [40].

transaction fee, to be paid to whoever finds a block containing this transaction.
Second, a standard reward is provided depending on how many blocks have
been successfully calculated. This reward started at B50 per block and is
halved every 210,000 blocks. It halved to B25 on the 28th of November 2012.
As of mid-October 2016, the reward is B12.5, having halved on the 9th of June
2016.

The reward will eventually reach B0; after such time it is imagined that the
network of miners will continue mining but will do so in order to gain processing
fees. This means that there is a limit on the number of Bitcoins which will be
mined, but each Bitcoin is divisible up to 8 decimal places.

The mean value of the transaction fee over a day is plotted for a range of
days in figure 6.3. As we can see the current standard reward of B12.5, is
considerably larger than the current or historical average transaction fees. This
may change in the future, as the standard reward continues to halve.
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Figure 6.3: Average transaction fee per block per day. Data derived from
http://blockchain.info/charts.

6.3 Hardware Arms Race
The major limiting factors in Bitcoin mining are the hash rate of hardware
and the cost of running this hardware. The hash rate R, is typically measured
in millions of hashes per second or Mega-hashes (Mhash/s). This is combined
with the power usage P , of the hardware to get the energy efficiency of the
hardware E = R/P (Mhash/J) which serves as a helpful statistic to compare
hardware. Statistics are shown for a selection of hardware in table 6.1.

Initially mining took place on normal computers 5. As Bitcoin gained popularity,
there was something akin to an arms race as miners attempted to increase
their hash rate. GPUs which can perform many parallel calculations are well-
adapted to Bitcoin mining. Standard programming interfaces, such as Open
Computing Language or CUDA, made GPUs popular among Bitcoin miners.
Their higher hash rate compared with their lower energy footprint made them
better suited to mining than normal CPUs.

As the use of GPUs became more widespread, people were forced to look for
5Where ‘normal’ is defined as a general purpose computer, such as an IBM PC type

computer with an x86 CPU.
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Name Type Hash Rate Power Use Energy Efficiency Cost Reference
R (Mhash/s) P (W) E (Mhash/J) ($)

Core i7 950 CPU 18.9 150 0.126 350 [12, 33]
Atom N450 CPU 1.6 6.5 0.31 169 [11, 33]
Sony Playstation 3 CELL 21.0 60 0.35 296 [15, 33]
ATI 4850 GPU 101.0 110 0.918 45 [14, 33]
ATI 5770 GPU 214.5 108 1.95 80 [10, 33]
Digilent Nexys 2 500K FPGA 5.0 5 1 189 [13, 33]
Monarch BPU 600 C ASIC 600000.0 350 1714 2196 [41, 33]
Block Erupter Sapphire ASIC 333.0 2.55 130 34.99 [9, 33]

Table 6.1: Examples of bitcoin-mining devices

alternatives to keep ahead of the crowd. Field Programmable Gate Arrays (FP-
GAs) came into vogue for a brief period before Application Specific Integrated
Circuits (ASICs) came onto the scene. ASICs can perform the Bitcoin hash at
higher rates but with a much smaller energy requirement. The evolution of
hardware for Bitcoin mining is described in detail in [154].

6.4 Energy Cost/Reward Trade Off
Bitcoin is similar to other currencies, in that the exchange rate between Bitcoin
and other currencies fluctuates over time. This in turn impacts on the viability
of Bitcoin mining: if the value of a Bitcoin is less than the cost of the energy
required to generated it then there is a disincentive to continue mining. The
exchange rate with the US dollar is shown in figure 6.4.

On the other hand, as the number of people mining Bitcoin increases and the
difficulty of mining follows suit, so the likelihood of discovering a valid block
decreases. To overcome this, more powerful hardware is required to achieve the
same success rate. However, since the cost of energy is a limiting factor, newer
hardware will have to have a higher hash rate and a lower energy footprint.

Thus, there is a trade off between two time varying factors: first, the energy
cost of discovering a block,

Ce = E[t]PU ≈ D232PU

R
= D232U

E

where U is the unit cost for a Joule of energy; second is the cash reward for
discovering the block, which is simply the reward for the block, in B, times
the current exchange rate for a Bitcoin. Alternatively, we may normalise this

88



6.4. Energy Cost/Reward Trade Off

2011 2012 2013 2014 2015 2016
0

200

400

600

800

1000

1200

U
S
D

Average BTC to USD Exchange Rate

Figure 6.4: Exchange rate between bitcoin and dollars, based on aggregate
statistics [40, 135].

per Bitcoin. Figure 6.5 shows the energy cost and the value for generating a
Bitcoin for various hardware from table 6.1. We use a dashed line for hardware
before its release and a grey line to show the exchange rate between USD and
Bitcoin. As long as the lines for each mining platform remain under the grey
line, they are profitable as the cost to generate a bitcoin is less than its value.

To allow easy comparison with the Bitcoin exchange rate, we use a cost of 0.10
US dollars per kWh. This is the lowest cost of electricity in Eurostat’s 2013
statistics [68]; for Industrial rates in Finland. As typical consumer prices are
twice this or more, this should provide a lower bound for the energy cost of
mining Bitcoins in Europe. When calculating the value of each block, we have
used the standard reward and not included transaction fees, as we have seen
that the transaction fees are uncertain and currently a small fraction of the
total reward.

For the period for which exchange rate data is available, we see that it has never
been profitable to use a generic Core i7 CPU, and it appears that it may only
have been briefly been profitable to use a Playstation 3. Using FPGAs or GPUs
appears to have been close to profitable until mid-2013, when the increase in
difficulty outpaced the increase in Bitcoin value. The yet-to-be-available ASIC
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Figure 6.5: Cost of generating a bitcoin and the value of the resulting reward.

hardware could be profitable, though the gap is closing.

6.5 Network Power Usage
As we know that the Bitcoin network aims for an aggregate block discovery
rate of one every 10 minutes, we can use equation (6.2) to estimate the hash
rate of the entire network if we know the difficulty:

Rnet ≈
D232

600s .

Combining this with the efficiency E for different hardware, we can estimate
the network’s power usage as Pnet = Rnet/E . For commodity hardware
(CPUs/GPUs), efficiency values above 2 Mhash/J are unlikely [33]. For FPGAs,
values around ten times this are possible. For ASICs values of 100–1000 times
are possible.

Figure 6.6 shows conservative estimates for the total power used for Bitcoin
mining, assuming that it consists of either efficient commodity hardware (E =
2 Mhash/J) or efficient specialist hardware (E = 2000 Mhash/J). The actual
network will be a mix of hardware of types at different levels of efficiency, so we
expect that the actual efficiency will be between the two. This suggests that
the total power used for Bitcoin mining is around 0.1 GW to 10 GW. Average
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Figure 6.6: Estimated power consumption of the bitcoin mining network

Irish electrical energy demand and production is estimated at around 3 GW
[69, 66], so it is plausible that the energy used by Bitcoin mining is comparable
to Irish national energy consumption.

6.6 Conclusion
In this chapter, we have described aspects of Bitcoin relevant to Bitcoin mining
and its energy consumption. Even though the value of Bitcoin is decided by
those who trade in them, it is also related in some way to the value of electricity.
We have seen that the cost of Bitcoin mining on commodity hardware now
exceeds the value of the rewards. Thus, the competition created in mining
for Bitcoin has led to a situation where in order to be financially viable the
hardware has to become faster and more energy efficient.

In this chapter we looked at the energy issues around Bitcoin mining and
its profitability. We also estimated under reasonable assumptions, that cur-
rently the entire Bitcoin mining network is on par with Ireland for electricity
consumption.
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CHAPTER 7
Conclusions

In this chapter, we review and summarise the work presented in this manuscript and
give recommendations for possible extensions to it.

7.1 Summary
The work presented in this thesis looked at network services and the energy
efficiency of these services.

Chapter 2 reviewed the field and what is in the current literature. Chapter 3
looked at measuring electrical energy usage, as well as the important theoretical
concepts in electricity measurement and considered different devices available
to do this. The contribution of these two chapters is to set the stage for the
research described in the chapters that follow them.

Chapter 4 focused on saving power by moving under-utilised servers to a low
power state. This required us to investigate the web traffic of a typical web
server and design a strategy to transition the server to a low power mode and
a mechanism to return to full power around this.

We examined this mechanism but due to the lack of dependable hardware we
had to model the power consumed by our experimental test bed and used
this model to estimate the potential savings. Despite this we were able to
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demonstrate the possibility to save a significant amount of energy using a
practical algorithm.

Chapter 5 compared the Docker Linux container system and Xen, the virtual
machine hypervisor system, both promise and deliver a lot of useful functionality.
Both can be used to host applications, for providing a complete working
environment to a developer and as a way to ensure isolation of applications
that share physical hardware. All things considered, we aimed to determine
which performs better if energy efficiency is your primary concern. The energy
usage was similar but there was a serious difference in the performance we
observed. After a substantial amount of investigation we could not isolate
the reasons why Docker performed so poorly. This did not lead us to a direct
answer to our question but fuels us on to investigate the many interesting
aspects of virtualisation and operating-system-level virtualisation.

Chapter 6 explored bitcoin, an emerging cryptocurrency with interesting
technological implications. In this chapter we explored the key concepts of
bitcoin and the fast paced competition to gain more energy efficient and
effective mining. Our main contribution was to estimate the energy efficiency
of the bitcoin network. We then compared the cost of generating bitcoin and
the value of bitcoin and found that only the very latest mining hardware offers
a profitable means to mine bitcoin.

7.2 Future Works
There are many possible additions or improvements which could be build on
this body of work.

As we saw in chapter 3 there are many ways to measure energy consumption,
and none of these are universally applicable. A useful addition would be a
comprehensive set of benchmarking tests to allow for better comparison of
different energy measurement devices. This would allow researchers to make
more informed choices about the measurement equipment they use.

Chapter 4 proposed a mechanism to reduce power consumption in HTTP
servers without a serious impact on the availability of this service. This could
be further built on by generalising this to other services that use a stateless
protocol like HTTP. Other interesting improvements could be found by adding
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machine learning techniques to identify when servers are best suited to be put
to sleep or to predict what items should be cached before sleeping to maximise
possible sleep time.

What we didn’t consider was the case where the HTTP servers are hosted on
virtual machines, and technologies like live migration enable consolidation of a
group of running virtual machines to run on a single physical host. This could
then leverage our scheme in order to further reduce the number of running
virtual machines on the host.

The work described in chapter 5 looked at virtual machines and Linux contain-
ers, this work could be extended further by investigating the efficiency versus
performance trade-offs around the interactions between the guest operating
system and the virtualisation hypervisor. For example the hypervisor has the
ability to control the CPU frequency by changing the voltage of the CPU, this
can be controlled in accordance with a number of different algorithms. The
impact of using such algorithms could be a slight reduction in performance
but an improvement in overall energy efficiency.

Containers and virtual machines aren’t completely opposed, as we stated it is
possible for them to coexist on the same physical host or to host containers
inside a virtual machine. It might be interesting to rerun the main experiments
from chapter 5 against an instance of PostgreSQL running inside a container
which in turn is running inside a virtual machine. This would almost certainly
impact the performance and the efficiency of the tasks in the experiment, but
it is unclear the direction or magnitude of this change.

Chapter 6 looked at energy and the cryptocurrency bitcoin, it would be
interesting to examine the energy efficiency of other cryptocurrencies such as
Litecoin [98] which use a different proof of work scheme to reduce the advantage
of using specialist hardware, or Peercoin [92] which introduces a modification
to the Bitcoin proof of work to improve the energy efficiency of mining.

In the time since the publication of the original work we’ve seen an explosion
in the efficiency of mining hardware as well as many fluctuations in the value
of bitcoin. This area may continue to be of considerable interest to those of us
who are looking into issues of efficiency. Just as the monetary value of bitcoin
has accelerated the demand for more efficient hardware, it is possible that this
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phenomenon could occur again in a different field.

7.3 Final Thoughts
I would like to to conclude with some final personal observations that I have
made while conducting my research.

• From the work presented in this thesis it is evident that energy efficiency
does not have to come at the sacrifice of computational power or of
flexibility, but it does require some forethought in order to gain sufficient
benefit.

• This work is at odds with the accepted conventional wisdom at many
points. This was not our intention but it should serve as a reminder to
researchers that challenging the accepted wisdom is probably not going to
lead to earth shattering results but can often lead you to more interesting
results.

• The growth in the cloud, widespread acceptance of software as a service
and emergence of private cloud infrastructure has made continued research
into energy efficiency essential. But to understand this field better, more
research is required into how to measure power consumption of hardware
as well as how to gauge the efficiency of the software that runs on it.

• While planning any experiment it is vital to consider what you hope to
measure and how you plan to measure it. But it is equally important to
consider the third question “is my means of measurement sufficient for
what I hope to achieve?”. With this in mind I would recommend that
anyone working this field consider this question early in the design of
their experiments.

• In the course of this thesis we have seen a group of seemingly unrelated
topics which have actually been related by concerns of their efficient use
of energy. This work is certainly not the first of its kind, but it is not
going to be the last, as new technologies are always emerging. All new
technologies should give us the opportunity to pause and to consider
their impact on the environment.
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Glossary

ACPI

Advanced Configuration and Power Interface.

ADC

Analogue-to-Digital Converter.

API

Application Programming Interface.

ARP

Address Resolution Protocol.

ASIC

Application Specific Integrated Circuit.

Bare Metal

A colloquial term referring to an application running directly on hardware
without an operating system or to an operating system which runs on
the metal of the computer, not inside a virtual machine.

Big Data

Big data refers to large and often complex data sets and the challenges
they present in terms of analysis, curating, data privacy, searching,
storing, sharing and sorting.

CO2

Carbon Dioxide.
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Glossary

CPU

Central Processing Unit.

Cryptocurrency

A digital currency which uses cryptographic techniques to verify the
transfer of money as well as the creation of new currency units. Typically
these currencies operate without a central bank or an equivalent authority.

CUDA

An API allowing developers to execute code for general purpose processing
on certain GPUs.

DBMS

Database Management System.

DHCP

Dynamic Host Configuration Protocol.

Diurnal

Mainly active during the day time.

DVFS

Dynamic Voltage and Frequency Scaling.

ECDSA

Elliptic Curve Digital Signature Algorithm.

Fiat Money

Money issued by a Government which is declared to be legal tender and
not convertible to any other thing nor does it have a fixed value by an
objective standard.

FPGA

Field Programmable Gate Array.

GPIO

General-Purpose Input/Output.
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Glossary

GPU

Graphics Processing Unit.

HTTP

Hyper Text Transfer Protocol.

HTTP Live Streaming

A standard developed by Apple for streaming live or on demand video
or audio over HTTP.

HTTP Status Code 200

OK, the request was successful.

HTTP Status Code 404

Not Found, the requested resource was not found.

HTTP Status Code 503

Service Unavailable, the service is currently unavailable due to planned
maintenance or is overloaded.

Hysteretics

Relating to hysteresis, the lag in response of a system to changes acting
on it.

I/O

Input/Output.

IaaS

Infrastructure as a service.

Infrastructure as a service

A cloud computing service model which abstracts the user from the detail
of the infrastructure like physical computers and security.

IP

Internet Protocol.
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Glossary

IPMI

Intelligent Platform Management Interface.

ISM

Industrial, Scientific, and Medical radio band.

KVM

Kernel-based Virtual Machine.

Linux Container

A system which creates isolated userspace instances which share a kernel,
similar to FreeBSD’s jails.

MAC

Medium Access Control.

MPTCP

Multipath Transmission Control Protocol.

NAT

Network Address Translation.

Open Computing Language

A framework and language for writing programs that execute on different
computing platforms including CPUs, FPGAs and GPUs.

Operating System

Software which manages all the hardware resources of a computer and
provides an environment to execute programs by exposing software
interfaces to access the hardware.

Operating-System-Level Virtualisation

A vitualisation technique which enables running multiple isolated user
space instances on a single kernel.

PDU

Power Distribution Unit.
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Glossary

Platform as a service

A cloud computing service model where where consumers can run, develop
and manage applications without the need to build or maintain the
underlying physical infrastructure.

PostgreSQL

PostgreSQL, also known as Postgres, is a popular relational database
server.

QoS

Quality of Service.

RAM

Random Access Memory.

RDMS

Relational Database Management System.

SCTP

Stream Control Transmission Protocol.

SHA256

Secure Hash Algorithm 2 using a 256-bit digest size.

SLA

Service Level Agreement.

Software as a service

A cloud computing service model where software is licensed and hosted
from a vendor.

SQL

Structured Query Language.

SSH

Secure Shell.
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Glossary

TCP

Transmission Control Protocol.

UDP

User Datagram Protocol.

USB

Universal Serial Bus.

Virtual Machine

An emulation of a computer system where a physical computer is replaced
by software, specialist hardware or a combination of the two.

WoL

Wake-on-LAN.

WSN

Wireless Sensor Networks.
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