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Much uncertainty is derived from the application of conceptual rainfall runoff models.
In this paper, HYSIM, an ‘off-the-shelf’ conceptual rainfall runoff model, is applied
to a suite of catchments throughout Ireland in preparation for use in climate impact
assessment. Parameter uncertainty is assessed using the GLUE methodology. Given the
lack of source code available for the model, parameter sampling is carried out using
Latin hypercube sampling. Uncertainty bounds are constructed for model output. These
bounds will be used to quantify uncertainty in future simulations as they include error
derived from data measurement, model structure and parameterization.
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Introduction

 

Evidence for global warming over the last century is
now overwhelming. Global mean surface tempera-
tures have increased by 0.6

 

±

 

0.2

 

°

 

C over the course
of the twentieth century, with the increase in
Northern Hemisphere surface temperatures being
greater than in any other century in the last 1000
years, while the 1990s were the warmest decade
of the millennium (McCarthy 

 

et al.

 

 2001). Globally
averaged surface temperatures are projected to
increase under all International Panel on Climate
Change (IPCC) emissions scenarios during the
present century as a consequence of increases in
atmospheric CO

 

2

 

 concentrations. Indeed, in their
Third Assessment Report (TAR), the IPCC dramatically
revised upwards the top range limit of their climate
predictions of global warming between now and

2100 from 1–3.5

 

°

 

C in the previous report to 1.4–5.8

 

°

 

C.
There is broad agreement that such anthropogenic
climate change is likely to have a large impact on
water resources, with the availability of water to
meet future demands and the magnitude and fre-
quency of future extreme events being uncertain.
As such it is important to attempt to model the
impacts of such changes so as informed policy
decisions can be made.

 

Uncertainty in modelling

 

When modelling the effects of climate change on
water resources, there is a cascade of uncertainty
that begins when future economic story lines are
translated into future emission scenarios and ends
with impact modelling (Wilby 2005). Conceptual
rainfall runoff (CRR) models have been the most
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widely used for this purpose (Cunnane and Regan
1994; Arnell and Reynard 1996; Sefton and
Boorman 1997; Pilling and Jones 1999 2002; Arnell
2003; Charlton and Moore 2003). Constraints are
placed on such an approach by a lack of knowledge
of the workings of the hydrological system, a lack of
data and by the volume of complex computations
required to simulate every process within the
hydrological sphere. Consequently, CRR models
incorporate large simplifications in order to represent
catchment hydrology. One of the major consequences
of such simplifications is the generation of uncertainty
within the modelling framework. Oberkampf 

 

et al.

 

(2002) divide uncertainty into aleatory and epistemic
uncertainty. The former describes the inherent variation
associated with the physical system or environment
and is irreducible. Epistemic uncertainty is a potential
inaccuracy in any phase or activity of the modelling
process that is due to lack of knowledge and is thus
referred to as cognitive, subjective and reducible.
Such uncertainty is seen in the process of parameter
estimation with well-known limitations attributable
to parameter identifiability, parameter stability,
uncertainty and the equifinality of outputs arising
from different combinations of model parameters.
In many cases where ‘off-the-shelf’ CRR models are
applied, they are done so without prior knowledge
of the uncertainty associated with model output due
to parametric sources. Where uncertainty is catered
for, the vast majority of work has used probabilistic
methods to represent sources of uncertainty and then
sampling methods, such as Monte Carlo sampling,
to propagate these sources through the model (Khu
and Werner 2003).

 

Uncertainty evaluation

 

Uncertainty evaluation generally holds that all
acceptable parameters or models of a system be
retained until they are disproved and consists of
analysing the range of parameter sets that are
acceptable for a specific application (Wagener
2003). These plausible models are used to construct
uncertainty bounds or confidence limits for model
output. One established method for uncertainty
analysis is the Generalized Likelihood Uncertainty
Estimation (GLUE) procedure (Beven and Binley
1992). GLUE recognizes the need to quantify the
reliability of model simulations and starts with the
recognition that many model structures or parameter
sets within a given model framework will simulate
a required output. Given this concept of equifinality,

it follows that no single optimum set of model
parameters can be readily identified (Beven 1993).
Consequently, it is only possible to assign a
likelihood value to each parameter set, indicating
that it can predict the system and that the set of
parameters provides an acceptable or behavioural
simulation of the observed flow (Beven and Binley
1992). The GLUE procedure has five main steps
(Beven and Binley 1992):

1 The definition of a likelihood measure, chosen
on the basis of an objective function to determine
model performance.

2 The definition of a prior distribution for each
parameter.

3 A large number of parameter sets are sampled using
Monte Carlo Random Sampling (MCRS) from the prior
distributions (Brazier 

 

et al.

 

 (2000) used up to three
million; Beven and Freer (2001) used 60 000).

4 Each parameter set is classified as behavioural
or non-behavioural through assessing whether it
performs above or below a pre-defined threshold.

5 Predictive model runs generate results from each of
the parameter sets that yield acceptable calibration
simulations. These combined simulations are in turn
used to determine the weighted mean discharge
and simulation probability bounds (Melching 1995).

There are a number of problems commonly encountered
when conducting an uncertainty analysis. For instance,
it is impossible to extract the amount of uncertainty
associated with different sources, such as model
structure, the parameters or input data (Wagener 2003).
Furthermore, such sampling requires considerable
computing resources, and in situations where the
end user was not involved in model construction
access to the model source code may be
problematic. Thus the ability to run the model for
large samples without intervention is inhibited. This
can be problematic when using MCRS where many
thousands or even tens of thousands of model
runs are required to adequately sample the entire
parameter space.

 

Uncertainty analysis and LHS

 

In order to overcome this obstacle, quasi-stratified
sampling in the form of Latin hypercube sampling
(LHS) (McKay 

 

et al.

 

 1979) can be applied. LHS selects

 

n

 

 different values from each of 

 

k

 

 variables 

 

x

 

1

 

 . . . 

 

x

 

k,

 

by attributing a pdf to each variable and dividing
the range into 

 

n

 

 non-overlapping intervals on the
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basis of equal probability. One value from each
interval is selected at random with respect to the
probability density in the interval. The 

 

n

 

 values thus
obtained for 

 

x

 

1

 

 are paired in a random manner with
the 

 

n

 

 values of 

 

x

 

2

 

. These 

 

n

 

 pairs are combined in a
random manner with the 

 

n

 

 values of 

 

x

 

3

 

 to form 

 

n

 

triplets, and so on until 

 

n k

 

-tuplets are formed (Iman
and Helton 1988).

In comparing uncertainty analysis methods, Yu

 

et al.

 

 (2001) and Melching (1992) investigated the
efficiency of different sampling methods used in
uncertainty analysis, including MCRS and LHS, and
compared the convergence rates of each method.
Yu 

 

et al.

 

 (2001) indicate that only LHS produces
results similar to the Monte Carlo approach. The
authors concluded that LHS could generate repre-
sentative samples more efficiently than MCRS due
to characteristic uniform sampling of the parameter
space. Recommendations for the necessary number
of model runs vary in the literature. Iman and
Helton (1985) suggest sampling two to five times
the number of varied model parameters. Selection
of runs in this way is rather subjective. Melching
(1995) proposed to define the number of model runs
necessary by checking for convergence of statistical
measures of model output on the number of exe-
cuted model runs. The analysis of convergence rates
for the HYSIM model show that the generation of
100 samples is adequate.

 

Model and methodology

 

HYSIM is a CRR model, which uses rainfall and
potential evaporation data, on a daily time-step, to
simulate river flow using parameters for hydrology
and hydraulics that define the river basin and
channels in a realistic way. Although spatially
lumped and hydrologically conceptual in nature,
the model contains many parameters that can be
measured from physical reality. HYSIM has been
used for a variety of hydrological applications,

including assessing the impacts of climate change
on the water resources (Pilling and Jones 1999
2002; Charlton and Moore 2003). The mathematical
model is built around two sub-routines. The first of
these simulates the hydrology of the catchment,
while the second simulates the hydraulics. The
complete flow diagram of the structure of the model
is given in Figure 1. In relation to the hydrology
routine, seven natural stores are represented. The
main components of the model are the upper and
lower soil reservoirs, with the works of Brooks and
Corey (1964) employed to represent the variation
of effective permeability and capillary suction with
changes in moisture content. A full description of
the model and its structure is given in Manley (1977
1993).

Parameters within HYSIM can be broken down
into two groups, the physical parameters and the
process or ‘free’ parameters (Sorooshian and Gupta
1995). The former represent physically measurable
properties of the watershed, such as channel slope
and land-use characteristics, whereas process
parameters represent watershed characteristics that
are not directly measurable, such as the lateral
interflow rate. The process parameters and a
description of each are given (Table 1). There are
two approaches to fitting the model that can be
taken. The first is that of specification of the physi-
cally measurable parameters, while the second
involves the optimization of process parameters. In
relation to the process parameters, the idea of spec-
ification can only be extended to defining parameter
ranges (minimum and maximum values) and calibra-
tion is employed to refine these estimates (Sorooshian
and Gupta 1995).

A split sample procedure was adopted for calibra-
tion and validation. The first 30 years of the base-
line data set (1961–90) were used for calibration.
This period was selected so that the model could
be trained on as much variability in streamflow as
possible. Validation was conducted for the period

Table 1 HYSIM process parameters and description
 

Parameter Description

Permeability at horizon boundary (PHB) The rate at which moisture moves between the two 
soil horizons

Permeability at base of lower horizon (PBL) The rate at which moisture leaves the soil layers
Interflow runoff from upper horizon at saturation (IU) Direct, or lateral runoff from the upper soil horizon
Interflow runoff from the lower horizon at saturation (IL) Direct runoff from the lower horizon
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1991–2000. This decade has been the warmest
globally, with 1998 being the warmest year on the
global instrumental record. In Ireland the warmest
year was recorded in 1997. Furthermore the ten
years 1991–2000 present some of the largest flood
peaks on record in Ireland, such as the November
2000 floods in the Suir catchment. Thus the 1990s
provide a good test of model performance, with
conditions being more akin to those expected under
climate change that at any other period in the
baseline data set.

In total ten catchments throughout Ireland are
modelled in this work. The catchments studied and
their locations are given in Table 2. For ease of
presentation only the River Suir will be dealt with
here. The methodology is divided into a number of
steps beginning with an analysis of the sensitivity of
model output to individual parameters. Parameter

specification is aided by the incorporation of a
GIS. Problems within the calibration procedure are
highlighted and the final step in the methodology is
that of uncertainty quantification and the construc-
tion of uncertainty bounds for model output.

 

Sensitivity analysis

 

In order to gain a more complete understanding
of the degree to which model output is sensitive
to the parameter values a sensitivity analysis was
conducted. This is most readily achieved by varying
one parameter at a time and running the model with
the rest of the parameters remaining fixed (Lenhart

 

et al.

 

 2002). The major limitation of this approach is
that it provides only a very local estimate of
sensitivity within the parameter space (Beven 2000).
However, it does remain quite powerful in gaining

Figure 1 HYSIM model structure
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an insight into the functioning of the model and
can adequately determine whether parameters are
described in enough detail for the modelling pro-
cedure at hand.

The most sensitive parameters were those most
strongly linked with the water balance. Of the com-
ponents of the water balance, the soil parameters
show themselves to be the most sensitive, with
vegetation characteristics also displaying a high
sensitivity. The findings of the analysis agree with
previous work conducted by Manley (1978), in
which the soil parameters such as the pore size
distribution index and the process parameters are
highlighted as the most sensitive within the model
framework. Consequently, the parameterization
procedure was constructed in order to adequately
account for the most sensitive model inputs.

 

Parameterization

 

Parameter specification

 

The first method to consider when parameterizing
the model was that of catchment delineation
(Figure 2a). Soil hydrological properties were
calculated from the General Soils Map of Ireland
(Gardiner and Radford 1980) (Figure 2b). Textures
were found for the top two soil horizons, as HYSIM
deals with both the upper and lower layers of the
soil. Each association within the catchment was
examined and the proportions of the soil type and
its location within the catchment were considered.
The dominant soil texture was calculated by
establishing the per cent sand, silt and clay in each

soil association with the derived texture being used
to calculate the soil parameters.

Vegetation parameters were obtained using the
CORINE dataset (Coordination of Information on the
Environment) (O’Sullivan 1994). CORINE provides
comprehensive data on biophysical land occupation
that are consistent and comparable across Europe at
a scale of 1:100 000 (see Figure 2c). Due to the
lumped nature of the model, the land use with the
highest percentage was used to derive the land use
parameters. Groundwater parameters were esti-
mated using the Aquifer Map of Ireland (Geological
Survey of Ireland 2003) (Figure 2d).

 

Parameter estimation

 

Within HYSIM calibration is catered for by a multi-
parameter optimization procedure. HYSIM employs
the Rosenbrock method, a local search algorithm
using a direct search method. Blackie and Eeles
(1985) provide details on the functioning of the
Rosenbrock method. In order to calibrate the model
the extremes error of estimate objective function was
used. This calculation gives equal weight to extreme
values, be they high or low flows. Additional good-
ness of fit measures were also employed. These
comprised the Nash-Sutcliffe efficiency criterion
(NS), the Coefficient of Determination (

 

R

 

2

 

), the
Mean Actual Error (MAE) and the Percent Bias
(PBIAS). Both correlation and relative error
measures were included as the use of correlation-
based measures alone can be over sensitive to
extreme values and are insensitive to additive and

Table 2 Catchment characteristics
 

Catchment Area 
(km)

Gauge Data 
(days)

Mean 
rainfall 
(mm)

Mean 
ET (mm)

Mean 
discharge 
(cumecs)

Land use Soil texture

Suir 3556.00 Clonmel 14 610 2.7 1.27 48.2 Pasture Loam
Blackwater 3245.70 Ballyduff 14 610 3.1 1.5 62.3 Pasture Loam
Boyne 2670.50 Slane 14 610 2.4 1.22 35.4 Pasture Clay loam
Moy 1980.87 Rahans 9 862 3.9 1.22 57.9 Peat bogs Loam

Barrow 2956.00 Levitstown 11 688 2.5 1.27 20.9 Pasture Sandy loam

Brosna 1082.50 Ferbane 14 610 2.4 1.22 17.1 Pasture Loam
Inny 1072.50 Ballymahon 10 227 2.6 1.22 18.7 Pasture Loam
Suck 1050.00 Bellagill 9 498 2.8 1.22 25.2 Pasture Loam
Bonet 371.57 Dromahair 14 516 3.3 1.2 11.2 Natural Clay loam
Ryewater 213.90 Leixlip 14 610 2.2 1.5 2.3 Pasture Clay loam
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proportional differences between model predictions
and observations (Legates and McCabe 1999). Only
results for NS and PBIAS will be given here. For NS,
values of 1 indicate a perfect fit, while a PBIAS of
0 per cent is ideal.

Once the optimum parameter set was realized
for each catchment, the Rosenbrock algorithm was
restarted using different parameter values in order
to establish whether the results relate to a local or
global optimum. By repeating the process from a
new starting point a larger area around the optimum
may be searched (Blackie and Eeles 1985). When
different starting points were used, different end
values were encountered due to problems related
to the parameter response surface. Sorooshian and
Gupta (1995) highlight a number of difficulties asso-
ciated with the parameter response surfaces that are
generic to CRR models. These include the presence
of several major regions of attraction into which the

search algorithm may converge, with each of these
regions containing numerous local minima. Where
parameters exhibit varying degrees of sensitivity a
great deal of interaction and compensation may
be evident (Sorooshian and Gupta 1995). These
obstacles make it very difficult if not impossible
for a local search strategy such as the Rosenbrock
method to progress towards a global optimum.
Such obstacles are displayed in the contour plots
produced for selected process parameters where the
concept of parameter interaction in the form of long
narrow ridges is present in Figure 3a and multi-
modality is shown in Figure 3b, making progression
from these areas very difficult.

Such problems in the response surface limit the
identifiability of the process parameters within the
HYSIM structure. In addition, this lack of identifia-
bility can be compounded by input data error. Very
large parameter ranges can also pose problems

Figure 2 Parameter specification from spatial datasets. (a) Elevation, (b) soil type, (c) vegetation, (d) groundwater
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for parameter identification, especially where source
code is not available to automate sampling of the
parameter space, as is the case here. When examin-
ing the identifiability of the process parameters for
the Suir catchment, values were manually incre-
mented across the feasible parameter space for the

calibration period. From Figure 4 it can be seen that
there are difficulties in relation to the identifiability
of the parameters representing the permeability at
the horizon boundary (PHB) and the permeability at
the base of the lower horizon (PBL). High values in the
efficiency criterion are evident for these parameters

Figure 3 Problems within the parameter response surface. (a) Long narrow ridges, (b) multiple peaks
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across a large portion of the parameter space and
thus it is possible for unrealistic values to be returned
by the optimization procedure. Consequently, no
confidence can be placed in the optimum parame-
ter set realized by the Rosenbrock method and
uncertainty is introduced to the output from the
HYSIM model. As a result, the concept of the exist-
ence of an optimal parameter set was rejected and
replaced with the concept of equifinality. Equifinal-
ity rejects the existence of an optimal parameter set
in favour of multiple possibilities for producing sim-
ulations that are acceptable (Beven and Freer 2001).

Taking these results into consideration and given
the inability to automate the modelling procedure,
a technique based on the GLUE methodology is
adopted, with MCRS being replaced with Latin Hyper-
cube Sampling. This approach has been widely used
in environmental modelling studies. However, examples
using lumped conceptual hydrological models are
less numerous, with the majority of applications
conducted in the context of complex, spatially dis-
tributed models (Christiaens and Feyen 2001).

 

Results

 

In implementing the GLUE procedure for the Suir at
Clonmel, the NS efficiency criterion was adopted as
the likelihood measure, with behavioural parameter
sets taken as those with efficiency value above
0.7. A uniform distribution was attributed to each
process parameter (as proposed by Beven and Freer
2001) and samples were generated using LHS.
Based on the analysis of convergence rates, 100
different parameter combinations were generated.
These parameter sets were run for the calibration

period of 1961–90, and of these 50 were retained
as behavioural. Efficiency values for the entire cali-
bration series ranged from 0.701 to 0.825. In order
to validate these parameter sets a blind simulation
was conducted on each set for the validation period
1991–2000. From the 50 behavioural parameter sets
obtained during calibration, all were retained as
acceptable sets in representing the period 1991–
2000. For the validation period, model efficiency ranged
from 0.702 to 0.852.

From an analysis of the retained sets from the val-
idation period, it was found that large variations in
the parameter values resulted in similar efficiency
values. The range of values for each parameter from
which acceptable sets were generated is given in
Table 3.

The large range in the values of each process
parameter, along with the fact that many of the
acceptable parameter sets produce a similar effi-
ciency value, is indicative of the problems within
the parameter response surface. Such problems are
attributable to parameter identifiability and the equi-
finality of outputs arising from different combina-
tions of model parameters.

Figure 4 Identifiability of process parameters for the Suir at Clonmel

Table 3 Range from which behavioural parameter sets 
were sampled
 

Par. range Lower Upper

PHB 6.77 99.22
PBL 10.06 99.67
IU 1.47 48.13
IL 0.70 49.55
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Transferability of parameter sets

 

In order to assess how applicable the HYSIM model
is for operational use in climate impact assessment,
the transferability of parameter sets between wet and
dry periods is assessed for the validation period.
Wilby (2005) demonstrated how different calibration
periods affect the transferability of parameter sets
and concluded that the transferability of model
parameters depends on the representativeness of
the calibration period. In order to ascertain the
representativeness and thus the range of conditions
provided by the 1961–90 calibration period, the
transferability of parameter sets over wet and dry
periods was assessed for the validation years. The ten
most skilful parameter sets were extracted and run
for both the calibration and validation periods as well
as for individual years within the validation period.

The adopted calibration period is extensive (30
years) and covers both wet and dry periods. On a
decadal timescale the 1970s are representative of
a relatively dry decade, while the 1980s are con-
sidered to be wet. The driest year within this period
is 1971, with a cumulative annual discharge of 9786
cumecs, whereas the wettest year, occurring in
1982, produced a corresponding cumulative sum
of 22 175 cumecs. Therefore the calibration period
provides a wide range of flow conditions on which
to train the model. Furthermore, the calibration of
the model over 30 years allows the incorporation
of natural variability into the training period. Kiely
(1999) showed that 1975 was representative of a
change point in Irish streamflow records associated
with a shift in the North Atlantic Oscillation (NAO).
The NS value and PBIAS of the ten most skilful
parameter sets in capturing the entire calibration period
are shown in Table 4. These sets show good results,
especially in terms of NS values, with nine out of
the ten sets having a PBIAS of less than 10 per cent.

Table 4 also shows the results obtained for the
validation period using the best sets derived from
calibration. For each there is an increase in the
efficiency skill and a decrease in the PBIAS. As
mentioned, the ten years used for validation (1991–
2000) comprise the warmest decade on the instru-
mental record and thus provide the best available
surrogate for expected future conditions as a result
of climate change. The results achieved when
transferring the best calibration parameter sets to the
validation period indicate that the calibration period
provides a representative sample of the range of
hydrological conditions for the Suir.

In order to assess the transferability of parameter
sets between wet and dry years, the ten most skilful
sets were run for individual years within the valida-
tion period. The driest years within this period are
1991, 1992 and 1999, while the wettest include the
years 1994, 1997, 1998 and 2000. Figure 5 shows
the NS values achieved for each parameter set over
this period. The model performs well for the valida-
tion period, with efficiency values of above 0.70 for
all years, with the exception of 1992 and 1997.
However, actual error measurements are quite good
for these years. With the exception of 1992, the
behavioural sets perform quite well for the dry years
1991 and 1999, with the majority of sets providing
skill levels of 0.80 or above. Similar skill is also evident
for the wet years of 1998 and 2000, with these two
years providing some of the largest floods on
record. In terms of the warmest years, model results
are also quite satisfactory. Variation in model skill
for individual years can be derived from differences
in the information content of the calibration period
(Wilby 2005). However, the good results achieved
here for both wet and dry years would suggest that
the parameter sets have been trained on a period
representing the full variation of streamflow for the
Suir. Indeed the results obtained for both wet and dry
periods lend confidence to the study of extremes
under future climatic conditions.

 

Uncertainty bounds

 

Given the uncertainty generated from parametric
sources, the 50 behavioural parameter sets were

Table 4 Performance of the best ten behavioural 
parameter sets
 

Top 
parameter sets

Calibration Validation

Efficiency PBIAS Efficiency PBIAS

32 82.2 8.6 85.0 4.1
84 82.2 8.9 85.2 4.5
11 82.0 9.1 85.1 4.5
71 81.9 8.8 84.0 4.3
35 81.6 9.6 83.8 4.9
48 81.4 10.1 84.4 5.2
17 81.2 8.9 84.1 3.9
56 81.0 9.6 83.5 5.3
8 80.8 8.4 84.7 4.0
18 80.7 9.5 82.1 5.1



 

74

 

Murphy et al.

 

used to calculate the probability distribution of
model output for each time step (daily). Uncertainty
bounds for model output were generated using
the 5th and 95th percentiles. From the bounds
constructed for the period of October to December
2000 (Figure 6), the measured data are contained
quite well within the 90 per cent uncertainty
bounds. This is reassuring, as the peak recorded
on the 6 November 2000 is the largest flood peak
in the baseline dataset for the Suir at Clonmel.
These uncertainty bounds incorporate the epistemic
uncertainty derived from data measurement, model
structure and parameterization.

Uncertainty bounds were also considered for four
selected years within the validation period. Included

are the dry years of 1991 and 1999, as well as the
wet years 1994 and 1998 (Figure 7). On a seasonal
basis the uncertainty bounds capture the recorded
flow quite well during times of high flow, with good
results being achieved during winter and spring.
However, there are sections of the hydrograph
where the recorded flow lies outside the 90 per cent
uncertainty bounds. This is most evident for the
winter and spring of 1991 where, for various storm
events, the uncertainty bounds fail to capture the
recorded flow adequately. Given that 1991 lies at
the start of the data series the problems for this
particular year may be related to the insufficient
initialization or spin up of the model. The failure of
the uncertainty bounds to capture the recorded flow

Figure 5 Transferability of parameter sets between years in the validation period

Figure 6 Uncertainty bounds for the largest flood peak in the baseline dataset
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in other areas such as in spring 1999 and summer
1994 may be explained by the use of large scale
maps for the calculation of some of the physical
parameters such as the soil textural attributes and
land use characteristics. Further research is required
in this area.

Generally the summer simulations are the most
problematic. Typical 

 

R

 

2

 

 values indicated that only
around 50 per cent of the variance in observed
flows is captured by many of the parameter sets.
This fact is evident for the summer periods of both
wet and dry years, where summer storms are difficult

Figure 7 Uncertainty bounds for four selected years
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to capture. Indeed the inability of CRR models to
adequately capture catchment response to storm
events following a prolonged dry period seems to
be a generic problem. Cameron 

 

et al.

 

 (1999) and
Lamb (1999) have indicated the inability of TOP-
MODEL to reproduce flood events following an
extended dry period. Uhlenbrook and Sieber (2005)
have also reported similar difficulties for the process-
based catchment model TAC

 

D

 

, with the response to
summer convective storms proving difficult to repli-
cate. Such problems are also evident within the
HYSIM model. For each year in Figure 7 the first
major storm events after the summer season show
the widest uncertainty bounds. Summer storms are
also difficult to capture, with some of the larger
summer peaks rising beyond the uncertainty
bounds. This may be due to a scale mismatch of
using such spatially lumped models to represent
streamflow from summer convective storms, which
can produce high volumes of precipitation in a
small space of time. Given the intensity of these
events, there is likely to be a larger proportion of
effective precipitation as more rainfall is transported
by overland flow rather infiltrating the soils. The
spatial variability and localized nature of such storm
events also provide problems, as rain gauges may
fail to capture an event that is present on the flow
record, highlighting the importance of high density
rain gauge networks.

 

Conclusion

 

Large amounts of uncertainty can be derived from
the use of CRR models in environmental impact
assessment. As such it is important to attempt to
analyse and quantify this uncertainty. Such
assessments are limited when using off-the-shelf
CRR models, as the lack of access to model source
code can limit the ability to produce many runs
of the model. However, the adoption of an efficient
sampling strategy such as Latin hypercube sampling
can substantially reduce the number of model
runs required to conduct a successful uncertainty
assessment. This procedure provides an efficient
and feasible sampling methodology in the absence
of the ability to consider large Monte Carlo random
samples. The uncertainty bounds constructed in-
corporate the error derived from model structure,
data measurement, parameterization and lack of
knowledge in the process parameters, and can
thus be used to quantify uncertainty in model
simulations beyond the baseline calibration

period. The use of multiple parameter sets in future
simulations caters for the need to represent change
in the form of ranges so as the full span of possible
future conditions can be taken onboard. Due to the
uncertainty involved in extracting the optimal
parameter set within HYSIM the use of a single
parameter set derived from automatic calibration may
provide misleading results for future hydrological
conditions as a result of problems within the
parameter space. Finally, given the application of
the GLUE methodology, the procedure adopted
allows easy updating of the likelihood weights and
thus uncertainty bounds as more data become
available.

In terms of the representativeness of the calibra-
tion period, the transferability of parameter sets
highlights the variation in streamflow conditions
that the model has been trained on. Given that the
validation period provides the closest surrogate
possible for future conditions, the good results
achieved give greater confidence to the transference
of behavioural parameter sets from current to
changed climate conditions. However, there is the
caveat that land use and soil textural characteristics
will remain the same under a changed climate.

This research provides a means by which un-
certainty analysis can be conducted for rainfall–
runoff models in which the automation of sampling
procedures is not possible. The reduced number of
samples required for LHS provides a useful alternative
to MCRS. Furthermore, a methodology is described
in which the possible ranges of sensitive parameters
within the HYSIM framework can be reduced in
order to avoid the use of unrealistic parameter
values. However, uncertainty derived from problems
associated with the calibration of CRR models is just
one aspect of the cascade of uncertainty involved
when assessing climate change impacts. Other sources
of uncertainty are derived from the construction of
future emissions scenarios, the sensitivity of different
Global Climate Models (GCMs), as well as in the
method employed in relating large-scale output
from GCMs to point sources (e.g. downscaling). The
uncertainty derived from rainfall–runoff model
calibration remains important and can be comparable
in magnitude to the uncertainty arising from future
greenhouse gas emission scenarios (Wilby 2005).
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