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ABSTRACT Case studies from two sites demonstrate how concentration

distributions of hazardous contaminants can be rapidly measured and visua-

lized using portable XRF (X-ray fluorescence) coupled with geostatistical

interpolation tools. In this study, lead is used as an exemplar due to its

well-known detrimental effect on human health through long-term

exposure. A portable Thermo Scientific NITON X-ray fluorescence (XRF)

instrument was used for real-time in-situ concentration measurements,

which were linked to GPS coordinates of the sampling locations. A 52 point

mixed sampling density survey was performed at a site near Maynooth, Co.

Kildare, and a second 58 survey undertaken at Dublin City University

(DCU). At Maynooth, high concentrations of Pb (above 110mg=kg) were

found close to the site where a local canal meets a road. At the DCU site,

results indicate high Pb concentrations (above 160mg=kg) near a busy main

road. Geostatistical techniques were used to generate concentration predic-

tion and critical threshold contour surfaces for both sites. Linked with GPS

coordinates for each sampling location, this technology enables the distri-

bution of multiple elements to be mapped over wide areas in a relatively

short time.

Supplemental materials are available for this article. Go to the publisher’s

online edition of Spectroscopy Letters to view the supplemental file.
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INTRODUCTION

Contamination of soil by heavy metals is an important environmental

issue of rapidly increasing research interest.[1] In urban areas, soil provides

recreational and aesthetic features that are deemed necessary for social

development. However, due to the increase in human activities, such as

traffic,[2] and industry,[3] extensive contamination with heavy metal pollu-

tants in urban soils has occurred over decades. Human exposure to heavy

metals results in an accumulation in the fatty tissue of the body, and this

in turn affects the central nervous system and internal organs.[4,5] Recent

studies have shown that children are particularly at high risk due to higher
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levels of retention of these elements compared to

older people.[6,7] Furthermore, children tend to be

more exposed to contamination sources such as soil,

for example, during play,[7] as ingestion of potentially

toxic metals that have leached into topsoil can occur.

Of particular significance is the concentration of lead

(Pb), as this has shown to impact the central nervous

system and adversely affect IQ levels.[8] Maximum

allowed (or critical) values for Pb concentrations of

soil should not exceed 300mg=kg.[9]

Recent developments in XRF technology have seen

the emergence of battery-operated, field-deployable

systems capable of in situ operation. These instruments

initialize photo-electron fluorescence to perform fast

and nondestructive analysis of environmental samples,

including soils. It contains 80-MHz real-time digital

signal processing for in-field analysis, along with

integrated USB and Bluetooth communications, which

provide direct data transfer to the user’s PC. Simul-

taneous analysis of up to 32 elements is possible and

this, along with the capability of measuring solid

samples directly (i.e., without digestion), significantly

reduces the time required for sample characterization.

The XRF instrument can operate in several measure-

ment modes, including bulk sample, thin sample, and

Pb in paint testing. Environmental Protection Agency

(EPA) Method 6200[10] and National Institute for

Occupational Safety and Health (NIOSH) Method[11]

are among the official methods that now employ

XRF technology. The convenience and data richness

of the techniques mean it is being increasingly used

for the determination of metals in soils.[12–19]

A GPS feature allows the construction of spatial con-

centration maps, and in this study, we demonstrate how

the analytical data can be integrated, analyzed, and

visualized using reproducible geostatistical techni-

ques.[20–22] Here we specify a geostatistical methodology

intended to suit the distributional properties of most of

the 32 elements measured, at two study sites. Repro-

ducibility should be ensured by only using open-source

software. It is vital that the chosen methodology suits all

of the study’s objectives, and in this respect, a relatively

sophisticated approach needs to be adopted, one that

has been rarely applied in the literature.

EXPERIMENTAL

The portable XRF instrument used in this work

was an XL3 t 900 instrument obtained from Thermo

Scientific NITON, Winchester, UK. The operation

method enables a simple ‘‘point and shoot’’

technique. Prior to sample analysis, an internal

instrument calibration is performed. Typically,

accuracy of the instrument is 0.1% but can vary from

around this up to 5% to 6% in the case of magnesium

(Mg) and chromium (Cr). The error is matrix depen-

dent and will depend on both the intensity of the

element emission and the degree of coemission

and of other elements. Precision (% RSD) is usually

in the range of 0–5%, although it can be considerably

higher, for example, for low-molecular-weight

elements like aluminium (Al). For Pb, the%RE (accu-

racy) is typically ca. 0.1% and the precision ca. 0.5%.

Two XRF sampling campaigns were conducted:

(1) at the Dublin City University (DCU) campus

in Dublin, Ireland (sample site, approximately

350,000m2), and (2) at a sports field site in

Maynooth, a small university town in Co. Kildare

about 25 km west of central Dublin (sample site,

approximately 10,000m2). All sample locations

were analyzed using the ‘‘soil mode’’ of the XRF

instrument, where high- and low-resolution trials

were performed on the DCU campus site. A 52-point

mixed sampling density survey was used to analyze

the Maynooth sports field site, while 58 sample

locations were analyzed at the DCU campus site.

No specific, preplanned sampling strategies were

employed, other than ensuring a reasonable spatial

coverage of the two study sites (noting that each site

has certain physical constraints where sampling is

impossible). Here it should be noted that sample

size and configuration directly influence the beha-

vior (or reliability) of the subsequent geostatistical

analyses. As such, their results (given in the section

on ‘‘Geostatistical Modeling’’) should be viewed

in context of the chosen sampling regime. In order

to ensure the accuracy of the sampling locations,

a differential GPS measurement was used to locate

the positions of all the sample sites.

The XRF surveys of the DCU campus and the

Maynooth sports field site were taken over 2-day

periods in July and August 2010, respectively.

A stainless steel spade was used to cut and tempor-

arily remove the grass to expose the mineral-rich

topsoil at a depth of 5–10 cm. Removing the grass

from the sample analyzed was advised by NITON

representatives as it may interfere with fluorescence

spectra. Each sample location was analyzed for 180
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seconds per sample. The fluorescence spectra were

generated by a peltier-cooled solid-state photo-

diode detector and downloaded to a spreadsheet

for further processing using Bluetooth wireless

communications.

SAMPLING RESULTS AND
DISCUSSION

Elemental Data

At each sampling site, measurements for a total

of 32 soil contaminants were taken. This included

measurements for main anthropogenic metals,

such as arsenic (As), cadmium (Cd), cobalt (Co),

Cr, copper (Cu), mercury (Hg), nickel (Ni), Pb,

vanadium (V), and zinc (Zn), all of which are closely

associated with human activity and known to pose

risks to human health. For each element, the XRF

provides a measurement and an associated error

on this measurement. Measurement error can be

integrated into the geostatistical analysis (see the

section on ‘‘Geostatistical Methodology: Step by

Step’’). The raw data are given as attachment

(‘‘Portable_XRF_Sampling_DCU_Maynooth.xlsx’’) so

the reader can gauge XRF data quality. Here

relatively high measurement errors are observed

for many of the sampled elements. Some elements,

notably As, Co, Cu, Hg, and Ni, showed concen-

trations to be around or below the limit of detection

(LOD) in every sample.

Lead Data

For this study, we focus on modeling the spatial

distribution of Pb, but this could easily be extended

to encompass all 32 contaminants (following the

same or a similar methodology). For the Maynooth

and DCU sites, 22 (from 52) and 8 (from 58) samples

resulted in Pb concentrations below the LOD,

respectively. These are valid observations and it

is common practice to assign them an arbitrary

value to half the LOD of the measuring device.[23,24]

However, in this study, such observations were

arbitrarily set to zero, as the instrument’s LOD for

Pb was unknown.

Attention is given to soil Pb as it is a significant

source of human exposure to Pb, especially among

children.[8] Anthropogenic sources of Pb include its

use in ammunition, water supply pipes, roofing

materials, and batteries; in the manufacture of glass,

pottery, and ceramics; and as an additive to paint,

petrol, and pesticides.[25] Furthermore, leaded petrol

combustion, smelting, and Pb metal works can emit

Pb particles to the atmosphere that in turn can be

deposited in soils. Pb can also be deposited in soils

due to the dumping of lead-containing materials

and the weathering of building materials. Geogenic

sources of Pb in Dublin and surrounding areas can

relate to natural background and natural anomalies.

GEOSTATISTICAL MODELING

Objectives and Limitations

A study into the spatial process of the Pb data at

both sampling sites is undertaken via a geostatistical

methodology intended to suit the distributional

properties of most of the 32 elements measured,

and not just Pb. We naı̈vely assume simple, continu-

ous spatial processes, whereas it is much more likely

that each process is sometimes discontinuous, oper-

ating at different spatial scales and driven by various

artificial, environmental, and historical factors. Such

complex urban processes require a substantive

piece of model development that is beyond the aims

of this study. That said, assuming and modeling

a continuous process should still provide insights

into the behavior of the Pb data, broadly identifying

areas of high soil contamination and concern. The

geostatistical outputs can be viewed as preliminary,

benchmark results, where subsequent modeling

work, coupled with a second more targeted

sampling campaign, would aim to improve on them.

The design of a second sampling campaign can be

guided or optimized according to the observed

geostatistical properties of this study’s (the pilot

study) data.[26]

Spatial Prediction with Kriging

The objectives of a geostatistical analysis can

generally be attributed to one of the following: (1)

the estimation and modeling of spatial dependence

in the data via the variogram, (2) spatial prediction

(kriging) at unsampled sites and estimating asso-

ciated measures of uncertainty, (3) data simulation,

and (4) sample design. For this study, we are only
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concerned with prediction.[27] There are numerous

kriging algorithms to choose from, largely depending

on the modeling objective, the particular properties

of data being modeled, and whether or not

a univariate or multivariate analysis is required.[28]

In this univariate study, empirical maximum

likelihood kriging (EMLK)[21,22] is chosen, where

applications of EMLK are supplemented by simpler

applications of ordinary kriging (OK) and kriging

with a trend model (KT)[28] for context, comparison,

and model development. Restricted maximum

likelihood (REML)[29] is used to find the variogram

parameters that are required to calibrate all of the

applied kriging algorithms.

Empirical Maximum Likelihood
Kriging

EMLK is a sophisticated extension of OK=KT

where more efficient results are obtained by solving

the prediction problem in the Gaussian domain via

a normal scores transform of the sample data. Further-

more, a Bayesian component in EMLK ensures condi-

tionally unbiased results where a posterior predictive

distribution is found at all target locations x. For

a variable z, the mean of the posterior distribution

is taken as the EMLK prediction ẑzEMLK ðXÞ and the

variance of the posterior distribution r2EMLK ðXÞ can

be used to assess the uncertainty of the EMLK predic-

tion. Details of the EMLK algorithm can be found

in refs. [20–22], where an open-source FORTRAN

program (EMLK2D.F95) is available that provides

EMLK predictions on a grid.[22]

EMLK is chosen to model the XRF study data, in

so much it is (1) advocated for small data sets; (2)

advocated for nonnormal data sets, including those

with observations below the LOD;[20] (3) able (via

its Bayesian construction) to provide a more realistic

approach to prediction uncertainty than that found

in many basic algorithms such as OK or KT[30–32]

(and, in turn, can provide reliable estimates of risk

for exceeding a given contamination threshold);

and (4) it is open source.

There are few credible alternatives to EMLK that

(1) suit the properties of our sampled data (i.e.,

points (1) and (2), above), (2) fulfill our modeling

objectives (i.e., point (3), above), and (3) has an

open-source version of its code (i.e., point (4),

above). Indicator kriging[33] would generally provide

a reasonable alternative, but its variography can

suffer when sample size is small. There exists

a Bayesian cokriging approach[34] that is useful in

that all 32 elements could be predicted simultaneously,

but specifying and fitting such a sophisticated

model requires considerable statistical expertise.

Observe that although we view our EMLK-based

study as preliminary, EMLK is still a relatively sophis-

ticated approach, where we still aim to model the

data as accurately as possible.

Geostatistical Methodology: Step
by Step

The steps of our geostatistical analyses are

conducted as follows:

1. Observe the spatial distribution of the raw data and

place this data in context (e.g., map with relevant

roads, waterways, railways, buildings) (Fig. 1).

2. Transform the raw data to normality using normal

scores (Figs. 2A–B and 3A–B).

FIGURE 1 Spatial distribution of raw data (mg=kg) for (A)

Maynooth and (B) DCU sites. (color figure available online.)
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3. In the transformed space assess evidence of a

spatial trend to indicate whether an OK- or KT-type

approach should be specified for the EMLK run.

This is achieved simply, by plotting the transformed

data against the coordinate data (one at a time) and

looking for a relationship (Figs. 2C–D and 3C–D).

4. In the transformed space, use REML to find the

variogram and (if necessary) the trend model

parameters (i.e., only if KT adopted) that need to be

specified for the EMLK run (Fig. 4). When

specifying the REML fit, use themean of the observed

data measurement errors to fix (not estimate) the

nugget variance variogramparameter. That is, assume

a stationary measurement error that is fully accounted

for in the nugget variance. This ensures that

measurement error is reflected in the spread of each

predictive distribution of step 6. In all cases, fit only

exponential variogram models, and for context,

present the REML model fits with a classic (estimated

not modeled) method of moments variogram.[28]

5. In the transformed space, use basic OK (or KT)

as a (computationally simpler) surrogate for its

EMLK form to find an optimal prediction neighbor-

hood for the EMLK run (Fig. 5). Here, a series of

leave-one-out root mean squared prediction errors

(RMSPE) are found for different neighborhood

FIGURE 2 Exploratory data analysis for Maynooth site

(n=52): histograms of (A) raw (mg=kg) and (B) transformed data;

(C) and (D) projections of transformed data with coordinates (for

evidence of a KT-type model).

FIGURE 3 Exploratory data analysis for DCU site (n=58):

histograms of (A) raw (mg=kg) and (B) transformed data; (C)

and (D) projections of transformed data with coordinates (for

evidence of a KT-type model).
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sizes. An optimal neighborhood is one that corres-

ponds to the smallest RMSPE.

6. Use the outputs from steps 2–5 to calibrate the

EMLK algorithm to predict on a grid. Use the

(back-transformed) posterior means to populate

a prediction surface (Figs. 6A and 7A). Define an

example critical cut-off for concentrations and

find a ‘‘risk of exceedance’’ surface using the full

posterior predictive distributions that are specific

to each grid point (Figs. 6B and 7B).

All exploratory analyses, REML variogram fits,

and basic OK=KT runs are conducted within the

open-source R statistical computing environment.[35]

Here the gstat[36] and the geoR[29] geostatistical

packages are extensively utilized. Postprocessing

of the gridded EMLK2d. F95 output data for the

contoured surfaces is also conducted in R using

the sp[37] spatial data package. The contoured sur-

faces could have been presented using ArcGIS (ESRI

FIGURE 5 Kriging neighborhood functions with respect to

RMSPE (i.e., prediction accuracy for different neighborhood sizes

using OK with transformed data) at (A) Maynooth and (B) DCU

sites. Minimums taken at neighborhood sizes of N=15 (28.8%

of sample data) and N=14 (24.1% of sample data), respectively.

FIGURE 4 Variography for (A) Maynooth and (B) DCU sites. All

variograms using transformed data where the REML fits are

specified with a constant trend and exponential model. For

Maynooth site, nugget variance fixed at 0.456 squared units,

partial sill estimated at 31.64 squared units, and range estimated

at 3009 meters. For DCU site, nugget variance fixed at 0.455

squared units, partial sill estimated at 1.141 squared units, and

range estimated at 661.6 meters. (color figure available online.)
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Corp., Redlands, CA, USA) or an open-source GIS

(Geographical Information System) such as QGIS.[38]

Thus, all analyses use open-source software.

Furthermore, none of the individual functions that

are used are adapted in any way. This ensures

that our methodology is easily reproducible for

modeling data with similar properties, and for

studies with similar objectives.

Geostatistical Analysis for Pb at the

Maynooth Sports Field Site

For the Maynooth sports field site, the spatial

coverage of data is reasonable (Fig. 1A) and as

such, no adverse modeling effects due to sample

configuration are expected. Most observations are

taken in the sports field, although three observa-

tions to the west are outside of the sports field

and are taken on grass verges of a nearby

‘‘no-through’’ road (used mainly for parking for a

train station to the south). However, these three

locations are also in the path of occasional flooding

from the nearby canal (which is still in use and has

a slipway adjoining the road). It is therefore not sur-

prising that two of these three observations also

FIGURE 7 EMLK prediction (mg=kg) (A) and risk of exceedance

(B) surfaces for DCU site. For the risk surface, an arbitrary cut-off

of 80mg=kg is used for demonstration purposes only. (color fig-

ure available online.)

FIGURE 6 EMLK prediction (mg=kg) (A) and risk of exceedance

(B) surfaces for Maynooth site. For the risk surface, an arbitrary

cut-off of 80mg=kg is used for demonstration purposes only.

(color figure available online.)

T. Radu et al. 522



produce the two highest Pb concentrations. A key

difficulty with modeling this data is that sample size

is small, and 42% of the observations have values

set to zero (i.e., they lie below the LOD). However,

the benefit of applying a normal scores transform to

this data is that a Gaussian distribution is ensured

regardless of the shape of the raw data (Fig. 2A–B).

This, in turn, ensures certain optimality in the EMLK

results provided that the (difficult) back-transforms

are reasonable.

From Fig. 2D, there is evidence of an east-to-west,

low-to-high trend in the data. In this respect, a KT

model with a first-order polynomial trend fit (of the

coordinate data) was applied. The resulting residual

variogram depicted pure nugget (random) variation

(not shown), indicating that the trend fit itself would

suffice as a valid model for this data. OK (i.e., kriging

without a trend fit) gave similar results to the simple

trend fit and, in this case, was selected as the basic

kriging form. The transformed data variography is

given in Fig. 4A. As the identified trend in data was

not filtered out, the variography has a characteristic

unbounded and increasing nature.

The OK neighborhood function for this trans-

formed data results in an optimum of the nearest 15

observations (Fig. 5A) and is specified in this data’s

EMLK run. The EMLK prediction surface is given in

Fig. 6A, where high Pb concentrations are found in

the west, near to the road and canal slipway. The

EMLK ‘‘risk of exceedance’’ surface (Fig. 6B) largely

mimics that of the Pb prediction surface, where the

risk of exceeding the chosen cut-off of 80mg=kg is

relatively low everywhere.

Geostatistical Analysis for Pb at the

DCU Campus Site

For the DCU campus site, the spatial coverage of

data is also good (Fig. 1B). Most observations were

taken within the DCU campus, but some observations

were taken in a nearby residential area to the west

and in green areas to the south. The two highest Pb

concentrations lie on the edge of the sampled area

to the north, next to a busy main road. From

Fig. 3C–D, there is little evidence of a trend in this

data, and as such, OK was also chosen as the basic

kriging form. In this case, the REML variogram fit

strongly differs from the classic variogram (Fig. 4B).

The OK neighborhood function (Fig. 5B) yields

an optimum of the nearest 14 observations and is

specified in this data’s EMLK model. The EMLK

prediction surface is given in Fig. 7A, where high Pb

concentrations are depicted in the north beside the

(first) busy main road. Other areas of high Pb concen-

tration can be found to the west, near a second main

road. Again, the EMLK ‘‘risk of exceedance’’ surface

(Fig. 7B) largely mimics that of the prediction surface,

where the risk of exceeding a cut-off of 80mg=kg

is relatively high in areas of high Pb concentrations.

Relative Accuracy of the EMLK
Outputs

Both EMLK and OK provide predictions and

prediction variances at any location, but they differ

in that the former is able to provide more (locally)

realistic prediction variances and associated estimates

of risk than the latter.[21] This difference primarily

relates to a modeling assumption in OK that the

variability in the sample data is stationary across

space.[30–32] Thus, a simple assessment of the local

behavior of the EMLK and OK variances is to relate

them to actual local variances, where ideally some

relationship is expected. This assessment is conducted

in order to validate the choice of EMLK as our study

kriging method.
In this respect, actual local variances are found

using a geographically weighted (GW) approach,[39,40]

which for sample data denoted by a¼ 1,. . ., n can be

defined as s2ðxÞ ¼
Pn
a¼1

waðzðxaÞ � mðxÞÞ2
� Pn

a¼1
wa;,

where mðxÞ ¼
Pn
a¼1

wazðxaÞ
� Pn

a¼1
wa is a GW mean,

and where the weights wa accord to some

distance-decay kernel function. For this study, we

specify a bi-square kernel with an adaptive bandwidth

set to the same neighborhood size as that used in the

EMLK and OK runs.

As the GW mean is itself a simple spatial predictor,

it is also compared to the EMLK and OK predic-

tions to provide a neat symmetry in this model

comparison, where grid outputs from the two com-

plementary GW models are compared to those from

EMLK and OK. Scatterplot matrices and correlation

coefficients are used for this comparison (Fig. 8).

As the grid outputs total over 30,000 points for each

study site, a random subset of about 600 grid points

is used to facilitate a clearer visual interpretation.
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For both study sites, there is little to choose

between the GW means and the OK and EMLK

predictions. Thus, all three models are equally valid.

This similarity between predictors is common-

place,[26] where a sophisticated predictor (i.e., some

kriging model) is often only marginally more

accurate than an unsophisticated one (i.e., some

nonparametric smoother such as the GW mean).
As expected, key differences arise with respect to

assessments of local uncertainty, where the EMLK

variances more strongly correlate with the GW

variances than the OK variances do (and, as such,

are able to better reflect the local properties of the

sample data). However, this does not entail that the

EMLK and OK variances do not correlate well with

each other, as both variance estimates will have

similar properties from their underlying geostatis-

tical design. Here they should still reflect areas of

under- and oversampling (giving high and low

prediction variances, respectively). Observe also that

unlike the kriging models, the GW means do not

come with associated estimates of prediction uncer-

tainty (as there is no underlying model).

BENEFITS OF USING PORTABLE XRF
APPROACH

The primary benefit of the XRF approach is the

ability to obtain multielement analytical data from

solid samples like soil without having to employ

tedious wet-chemical digestion, in contrast to com-

monly employed analytical techniques like AAS,

ICP, or chromatographic methods. Furthermore, the

approach is inherently nondestructive and samples

are available for subsequent analysis by other tech-

niques that may offer better analytical characteristics

like LOD or accuracy=precision. As such, portable

XRF is an ideal technique for rapid screening of

large areas and identifying locations that could be

classified as pollution ‘‘hot spots’’ that require further

detailed investigation. In addition, the ability to

link the analytical data to GPS coordinates of the

sampling locations allows spatial distributions and

trends to be rapidly visualized and identified using

geostatistical techniques. For example, at the DCU site,

there is a clear trend where the Pb levels apparently

increase toward local roads that bear heavy traffic

loads. Such trends lead to debate about the underlying

reasons for their existence. In this case, the implication

is that the higher Pb levels are a consequence of the

traffic, due to the extensive use of lead-bearing fuel

for many years. Validating this claim of course would

require more extensive research and referencing to

similar studies worldwide. XRF enables interesting

trends like this to be discovered as the sites can be

surveyed much more quickly than using conventional

methods. Furthermore, it also enables ‘‘hot spots’’ to

be uncovered, which assists with second-phase sam-

pling strategies that home in on these hot regions; these

samples are then analyzed with more sensitive techni-

ques like ICP that can provide very accurate and pre-

cise data at much higher sensitivities. The availability

of portable XRF with integrated GPS makes this type

of pollution screening study much simpler to perform,

and we can expect the volume of spatially located

analytical information to rise rapidly in the coming

years, which in turn facilitates more certain identifi-

cation of the sources of pollution in the environment.

CONCLUSIONS

Portable XRF with integrated GPS opens the way to

obtaining multielement information that is spatially

FIGURE 8 Matrices of scatterplots and associated correlation

coefficients for relative performance of EMLK predictions (mg=

kg) and variances, with respect to (i) OK predictions (mg=kg)

and variances (left) and (ii) GW means (mg=kg) and GW variances

(right), for (A) Maynooth and (B) DCU sites.
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located and compatible with advanced statistical

tools and map-based graphical visualization. Such

studies enable trends in distribution to be rapidly

identified and the underlying sources deduced. In

the cases presented in this study, Pb distribution

at two sites has been explored and spatial trends

identified. These in turn have been tentatively linked

in one case to traffic on local roads and in the second

case to water coming from a local canal. We anti-

cipate many more studies of this type, in which

portable XRF is used to rapidly screen large sites to

identify possible pollution hot spots and trends in

the elemental distributions.
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M.; Lu, L. Comparison of XRF and FAAS methods in analysing CCA
contaminated soils. Water Air Soil Pollut. 2005, 171, 95–110.

16. Shefsky, S. Comparing field portable X-ray fluorescence (XRF) to
laboratory analysis of heavy metals in soil. Presented at the
International Symposium of Field Screening Methods for Hazardous
Wastes and Toxic Chemicals, Las Vegas, Nevada, USA, January
29–31, 1997. Available from: http://www.epa.gov/tio/download/
char/dataquality/ sshefsky02.pdf. (accessed May 17, 2013).

17. Markey, A.; Clark, C.; Succop, P.; Roda, S. Determination of the
feasibility of using a portable X-ray fluorescence (XRF) analyzer in
the field for measurement of lead content of sieved soil. J. Environ.
Health 2008, 70, 24–29.

18. Shefsky, Stephen, NITON Corporation. Comparing field portable
X-ray fluorescence (XRF) to laboratory of heavy metals in soil.
http://www.epa.gov/tio/download/char/dataquality/sshefsky02.pdf.
(accessed May 17, 2013).

19. Radu, T.; Diamond, D. Comparison of soil pollution concentrations
determined by AAS and portable XRF techniques. J. Hazard. Mater.
2009, 171, 1168–1171.
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