
International Conference on Computer Systems and Technologies - CompSysTech’10

Discovering Dynamic Integrity Rules with a Rules-Based Tool for

Data Quality Analyzing

Thanh Thoa Pham Thi, Markus Helfert

Abstract: Rules based approaches for data quality solutions often use business rules or integrity rules
for data monitoring purpose. Integrity rules are constraints on data derived from business rules into a formal
form in order to allow computerization. One of challenges of these approaches is rules discovering, which is
usually manually made by business experts or system analysts based on experiences. In this paper, we
present our rule-based approach for data quality analyzing, in which we discuss a comprehensive method for
discovering dynamic integrity rules.

Key words: data quality, business rules, integrity rules, data quality analyzing.

INTRODUCTION

Data quality (DQ) is an increasing concern for most businesses. High quality data
helps the organisations to save costs, to make better decisions and to improve customer
service. Nowadays, organisations have been increasingly aware of the importance of DQ
in their business. In a recent report, Gartner forecasts that “the DQ market will be worth
$677 million by 2011, representing a compound annual growth rate of 17.6%”.
Typical problems concerning DQ experienced by data-users are inconsistent, incomplete,
inaccurate or untimely data. Let us illustrate a typical scenario, concerning DQ problems in
e-commerce applications.
Customers choose products and place orders online followed by the product delivery.. The
customers have the right to return their products within 15 days after the delivery for
change or cancellation purposes, otherwise the order is closed. In this example,
inconsistent data can occur when the unit price of a product and the price in the order are
not the same, inaccurate data may occur when a full price is applied to products on sale,
incomplete data can happen when some important information is missed such as missing
street number and address information in the client address. An example for untimely data
can be when products are out of stock are displayed for selling.
Addressing DQ problems, several commercial tools and consulting solutions exist for
analyzing and improving DQ such as Informatica, Clavis and Trillium software. Key
functionalities of these tools are data cleansing and data verification with reference data
such as product name, address, telephone format, etc.
Over the last years, business rules (BRs) based approaches for DQ solutions have
become promising. For instance SearchDatamanagement web-magazine states that: “the
veteran DQ tool vendors are being challenged by entrants that have an international focus
and propensity toward designing and deploying domain-agnostic DQ services (…), based
on a centrally managed set of BRs" [7]. A BR is “a statement that describes some
structural aspect of a business, or defines some relationship between entities in a
business, or controls or influences the behaviour of the business” [3]. In this sense, a BR is
a structural assertion which describes some aspects of enterprise, or an action assertion
that limits or controls the actions of the enterprise, or a derivation which is statement of
knowledge derived from other knowledge in the enterprise [3]. Rules based approaches for
DQ solutions often use integrity rules for data monitoring purpose.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

CompSysTech'10, June 17–18, 2010, Sofia, Bulgaria.
Copyright©2010 ACM 978-1-4503-0243-2/10/06...$10.00.

89

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MURAL - Maynooth University Research Archive Library

https://core.ac.uk/display/297021789?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

International Conference on Computer Systems and Technologies - CompSysTech’10

Integrity rules (IRs) are constraints on data that enforce data to be meaningful, consistent,
correct and valid according to BRs and they represent BRs in a way that could be stored in
rules repository for computerized purpose, because BRs are usually described in natural
language. IRs are usually described with predicate logic in If-Then structure, decision tree
or decision table, etc.
In generally, BRs can be translated into two kinds of IRs: static and dynamic rules. [2] has
defined static rules as rules that can be applied on the data value at any time in the data
life-cycle. Dynamic rules concern the data value changes (change data status), which are
results of business process transactions. This kind of rules is validated at the moment of
data changes. For instance, a static rule is “the order date is earlier or equal to the delivery
date of this order”, and a dynamic rule states for example “an order is closed (change to
state close) after 15 days of delivery and do not have corresponding returned products”.
Indeed commercial tool providers, such as Informatica and Clavis follow a rule based
approach to DQ. Usually BRs and IRs are analyzed manually by business experts and/or
system analysts. Although this manual approach is suitable and straightforward for static
rules, for dynamic rules it can be complex and challenging.
In order to address this problem, research has contributed approaches such as mining
BRs from event log files in Business Process Management Systems [1]. These
approaches concern basically authorization rules and rules on actions (in which condition
an action is made). However this approach is out of scope for a DQ tool.
In this paper we present a rule-based approach to analyse DQ applies IRs, in which we
propose a comprehensive method to discover dynamic IRs based on object life cycles
(OLC). The OLC is described with our meta-modelling concept- the Node-Star structure
which is the dynamic part of the IASDO model [4], [5]. By applying the IASDO model we
have two main advantages: First it is a formal method which can be easily implemented in
our tool, and second it has expressive power which allows to describe more information
than other methods [5], [6]. In the following we present our rules-based approach and its
framework and illustrate it within the e-commerce example. Particularly we explore the
issue of discovering dynamic IRs. Finally we conclude our work and discuss some future
work.

FRAMEWORK FOR RULES-BASED DATA QUALITY ANALYZING

Our framework has four main components (Figure 1).

Figure 1. Framework of Rules-based DQ analyzing approach

As external component we illustrate a data set or database as main input. The Meta-Data
Management component is responsible for capturing the DB Schema and the object life
cycle models which are specified by business experts or system analysts The Rules
Management component manages IRs during the life-cycle and is responsible for
generating dynamic rules. The static rules specification can be manually done; meanwhile

90

International Conference on Computer Systems and Technologies - CompSysTech’10

dynamic rules specification is semi-automatic. The Data Analyzing component checks the
validity of data according to the rules stored in the rules repository. Finally the Error
reporting component exports data errors and makes necessary statistics. In this paper, we
focus on discovering dynamic IRs. We use e-commerce example to illustrate our
approach.

DISCOVERING DYNAMIC INTEGRITY RULES

Our method for discovering dynamic IRs is based on the logic of state change
defined in object life cycles (OLC), and the logic of state definition in DB schema.
Nowadays, with the support of most DB Management Systems and CASE tool, it is easy to
retrieve the DB Schema from a dataset or a database in relational form. A DB schema
includes a set of tables or relations and links of foreign keys between tables. System
analyst defines the correspondence of elements in DB schema and states in OLC. The
general steps of our method are described in Figure 2. The first and second tasks are
carried out manually; meanwhile the last phase can be done automatically. In the
following we describe in the detail these tasks.

Figure. 2 Method for discovering dynamic IRs based on OLC

OLC MODELLING

The OLC model represents the dynamic aspect of our information system modelling
concepts (PhamThi et al, 2005) (PhamThi, Helfert 2007a). An OLC is presented by a
bipartite graph, which is called Node-Star Net. In this graph, a node corresponds to a
state, and a star corresponds to a process.
A state is an object situation which satisfies some conditions. In it, objects execute
methods or wait for participating into processes. A process corresponds to a system
process, a business process, an administrative process, etc., or to a decision. A process
owns its pre-condition and post-condition. A process is enabling if its pre-condition is
satisfied, after a process is carried out, its post-condition is satisfied.
An OLC with the node-star structure is described as follows: OLC = <S, P, fi, fo, loop,
back-inactive>
S: a set of states, P: a set of processes.
fi: an input function, fi : (S x P) →{0, 1}, fi(s, p) = 1 if s is an input state of the process p.
fo: an output function, fo : (T x S) →{0, 1}, fo(p, s) = 1 if s is an output state of the process
p.
loop: (S x S) →{0, 1}, loop(sj, si) = 1 if sj is a looped state of si (si is a predecessor state of
sj);
back-inactive: (S x S) →{0, 1}, back-inactive(sj, si) = 1 then when an object changes to the
state sj, it leaves the state si, (si is a predecessor state of sj), otherwise object still keeps
the state si, which results that objects resides in many states at the same time.
This model allows modellers to describe process flow thanks to the pre/post-conditions of
processes and back-inactive function.
In Figure 3, we illustrate the OLC modelling of Order objects and DB schema within the e-
commerce example. In this example, an order object leaves its current state when it
changes to a new state. When a Shipped order object changes to Closed state, it leaves

91

International Conference on Computer Systems and Technologies - CompSysTech’10

the Shipped state, therefore the Return process can not be carried out on this object (the
pre-condition of the Return process is that there is an order object in Shipped state and a
return object concerning this order), or vice-versa when a Shipped order object changes to
Returned state. In other words this corresponds to an exclusive process control.

Figure 3. Object life cycle of Order and DB schema of E-commerce example

Mapping correspondent elements of DB Schema and OLC states

The OLC describes possible states of the objects in correspondent table(s) from the
DB schema. These also represents in what order objects change their states. Determining
the correspondences between OLC states and data elements in a DB schema helps to
derive dynamic rules.
We identify following situations in a DB schema which correspond to states in OLC:
1. A state is defined as a table in a DB Schema
2. Explicit descriptions of object states with one or many attributes of a table in DB
schema, in other words, the attribute values describe object states. For example, the
OrderStatus attribute of Order table describes different order states such as paid,
packaged, shipped, etc.
3. Implicit description of object states in DB schema which is usually based on links
established between objects. For example, an order is changed to Paid state if there is a
receipt object linked to this order and vice versa, or the order is changed to Shipped state
if there is a delivery object linked to this order and vice versa, or the order is changed to
returned state if there is a return object linked to a delivery object which is linked to that
order object.
4. Combination of attribute values and links. This means an object state is determined by
attribute values and links establishment from (to) this object to (from) other objects.
This correspondence information are specified and stored in a Correspondence repository.
Deriving dynamic integrity constraints

In a DB Schema, it is possible that the definition of various states of the same object
may fall into various situations identified. For example with the same object, one state is
defined by attribute values, but another state is defined with links between this object to
other objects In any cases, dynamic IRs are derived with respect to states and the related
order of state change specified in OLC. In this regard, the rule templates rest the same,

92

International Conference on Computer Systems and Technologies - CompSysTech’10

but the detail is changed regarding how a state is defined. In the following, we present
templates of derived rules based on this principals, and subsequently illustrate it with the
current example:
1. Value domain of status attributes must belong to the states specified in the OLC
In the above example, suppose the OrderStatus attribute in Order table defines different
states of an order object. Basing on its OLC, this rule, which is described in a similar form
of predicate logic, is obtained:
- ∀ order, order.OrderStatus ∈ (“Paid”, “Packaged”, “Shipped”, “Closed”, “Returned”,
“Cancelled”).
2. The order of value change of status attributes must respect the order of state changes
specified in the OLC
In the above example, OrderStatus attribute can not change from, for example, “Paid”
value to “Returned” value, or from “Shipped” value to “Paid” value:
- ∀ order, if order.OrderStatus.New = “Shipped” then order.OrderStatus.Old= “Packaged”,
etc.
3. The links establishments between objects must be consistent with the value of the
status attributes, if applicable
In the above example, basing on the correspondence specification in the previous section,
we can obtain these rules:
- if order. OrderStatus=”Paid” then ∃ receipt, receipt.OrderNo= order.OrderNo, and
- if order.OrderStatus=”Shipped” then ∃ delivery, delivery.OrderNo= order.OrderNo, etc.
4. The order of link establishments (and with or without attribute value) which represent

different states must respect the order of state changes specified in the OLC.
For example, the link between a delivery object to an order object must be established
after the link between that order object to a certain receipt object. This rule can be
described as follows:
- ∀ order, if ∃ delivery, delivery.Order = order.OrderNo then ∃ receipt, receipt.OrderNo=
order.OrderNo
5. If there are exclusive states and they correspond to link establishments (and with or

without attribute value) then these link establishments must be exclusive as well
For example, in the above example “Closed” and “Cancelled” are exclusive states, if there
is any links represent these states then they must be exclusive. Suppose there is a link
establishment between a X table to the Order table which corresponds to “Closed” state,
and there is a link establishment between a Y table to the Order table which corresponds
to “Cancelled” state, then we can obtain this rule: If ∃ x, x.OrderNo= order.OrderNo then
∀y, y.OrderNo ≠ order.OrderNo.

DISCUSSION

Based on our method described above, we have developed a tool that includes the
elements of the framework presented in Figure 1 for DQ analyzing with a dynamic integrity
constraints generating function. We designed the OLC repository according to our Node-
Star structure model, Correspondence repository for storing the correspondence definition
between states in OLC and elements in DB schema. We also have developed algorithms
for dynamic rules derivation based on defined rule templates. In this paper we do not
present the structure of these databases and the algorithms.
With the support of the tool this systematic method is east to apply. Actually the business
expert or system analysts solely need to specify the OLC of main business objects but not
whole business process. Furthermore they need to map correspondent elements in DB
schema to states in OLC before the deriving rules step can be automatically done.
Therefore it is obvious that the effectiveness of this approach also depend on OLC
modelling and state mapping. We have also discussed our approach with some DQ

93

International Conference on Computer Systems and Technologies - CompSysTech’10

solutions providers; actually they have met challenges in specifying IRs because this has
been manually done. Thus a systematic and semi-automatic approach sounds promising.
Furthermore, this approach is efficient because it is based on OLC which is a part of
business process and DB structure which is the root cause why such rules are needed. In
case of evolving business, OLC may be changed and then correspondent rules may be
changed as well; therefore this approach helps systematically managing rules. The
limitation of this approach is that business experts or system analyst must model OLC
according to the Node-Star structure. This can be avoided if we develop OLC templates in
different domain applications for references or reuse purpose.

CONCLUSION AND FUTURE WORK

DQ approaches based on BRs become increasingly promising. Current tools and
BRs based approach have met challenges in discovering rules. However, most
approaches are based on a manual process and significant domain expertise. We have
presented in this paper our rules-based approach for DQ analyzing. In this paper we
particularly focus on describing a method for deriving dynamic rules based on the OLC
concept. We also have developed a tool that implements our approach. In the future we
study constraints on different states of different OLC for automatic derivation. We also
study importing existing business process and use them for this purpose.

REFERENCES

[1] Halpin,Terry Krogstie John, Nurcan Selmin , Proper Erik, Schmidt Rainer, Pnina
Soffer and Ukor Roland, Discovering Business Rules through Process Mining, in:
Enterprise, Business-Process and Information Systems Modeling, Lecture Notes in
Business Information Processing, Springer, 2009.

[2] Leonard Michel, Information System Modelling (in French), Internal report -
University of Geneva, 2005

[3] Loshin David, Enterprise Knowledge Management, The Data Quality Approach,
Morgan Kaufmann Publishers, 2001.

[4] Pham Thi T.T., Dong Thi B.T, Bui M.T.D, Léonard M., Workflow specification with
the IASDO model (in French) IEEE the 4th International Conference on Research,
Innovation and Vision for the Future (RIVF'06), Information and Communication
Technologies, HoChiMinh city, February 2006

[5] Pham Thi T.T., Helfert M., Modelling Information Manufacturing Systems,
International Journal of Information Quality, InderScience Publisher, Vol. 1, No.1, 2007.

[6] Pham Thi T.T., Helfert M., A practical approach and tool for data quality
assessment, the 9th Annual Conference on Data Management and Information Quality,
London, October 2007.

[7] Smalltree Hannah, Gartner ranks data quality management software, reveals
trends, Site Editor, 11 Jul 2007 | SearchDataManagement.com.

ABOUT THE AUTHORS

Thanh Thoa Pham Thi is currently a Postdoctoral researcher in the Business
Informatics Group (BIG) at the School of Computing, Dublin City University. She holds a
PhD degree in Information Systems from the University of Geneva. She can be reached
at: Phone: +353 1 7005639, Email: thoa.pham@computing.dcu.ie

Markus Helfert is a Lecturer in Information Systems and Head of the BIG at the
School of Computing, Dublin City University. He holds a Doctor in business administration
from the University of St. Gallen, a Master-Diploma in business informatics from the
University Mannheim, and a Bachelor of Science from Napier University, Edinburgh. He
can be reached at: Phone: + 353 1 7008727, Email: markus.helfert@computing.dcu.ie

94

