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WITH MULTIPLE CONJUGATE POINTS
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Abstract: We investigate the phenomenon of multiple conjugate points along

a geodesic. In the first instance, we investigate conjugate points in the context

of the Jacobi equation, a second order ordinary differential equation, which cap-

tures precisely the geometry of conjugate points on surfaces. We then construct

geometric examples which exhibit similar properties in higher dimensions.

§1 Introduction.

In this note we will consider the following Jacobi equation:

y′′(t) +K(t)y(t) = 0 (J)

where t ∈ R and y(t) and K(t) are real-valued functions with K assumed smooth. The
motivation for studying this equation arises from its geometric significance. This begins
with the calculus of variations on surfaces, which we will now explain.

Consider a smooth curve c(t), t ∈ [a, b], on some smooth surface M2, joining points
P = c(a) and Q = c(b). By a variation of c(t), we will mean a smooth map

H : [a, b]× (−ǫ, ǫ) → M

such that c(t) = H(t, 0) for all t ∈ [a, b]. Such a variation is called a homotopy if in addition
we have H(a, s) = P and H(b, s) = Q for all s ∈ (−ǫ, ǫ). We can view any variation as a
one-parameter family of curves cs(t) := H(t, s) parametrized by s ∈ (−ǫ, ǫ). The length
function L(s) for this one-parameter family of curves is differentiable, and a basic result
in the calculus of variations states that L′(0) = 0 for every homotopy of c(t) if and only
if c(t) is a geodesic. The ‘second variation formula’ describes the second derivative L′′,
and can be used to determine whether a geodesic is unstable/stable, in the sense that
there is/is not a homotopy which descreases length. It turns out that the second variation
formula involves the Gaussian curvature of the surface. Intuitively, it is not difficult to see
that the appearance of curvature here is reasonable. For example, on the positively curved
round sphere, a rubber band stretched along the equatorial great circle will contract if
disturbed slightly, whereas it will not if stretched along the smallest equatorial circle on a
catenoid (such as a power station cooling tower), which is a classic example of a surface
with negative Gaussian curvature.
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Now suppose c(t), t ∈ R, is a geodesic, and consider a variation through geodesics so
that cs(t) is a geodesic for each s ∈ (−ǫ, ǫ). Differentiating with respect to the variation
parameter s produces a vector field

V (t) :=
∂

∂s
H(t, s)

along c(t), called a Jacobi vector field. Suppose that V (0) = 0, and let P := c(0). If V (t)
is everywhere orthogonal to c(t) then it is clear that V (t) is completely determined by
a (vector length) function y : R → R. Jacobi discovered that the function y(t) satisfies
the Jacobi equation (J) subject to the initial conditions y(0) = 0, y′(0) = |V ′(0)|, and
where the function K(t) is the Gaussian curvature of the surface at the point c(t). It is not
difficult to show that V (t) is orthogonal to c′(t) if, for example, there exists some t1 6= 0
for which V (t1) = 0. In this case, the point Q := c(t1) at which V (t) vanishes is said to be
conjugate to the point P = c(0), at which V (t) also vanishes.

In terms of the equation (J) we define a point t1 ∈ R to be conjugate to some t0 ∈ R

if there exists a non-trivial solution y of (J) for which y(t0) = y(t1) = 0. If there is no
solution with two zeros, then (J) is said to have no conjugate points.

For surfaces of constant curvature, it is easy to solve the Jacobi equation explicitly:
for example if the initial conditions are y(0) = 0 and y′(0) = 1, we have that if K ≡
k > 0 then y(t) = (1/

√
k) sin(t

√
k); if K ≡ 0 then y(t) = t; and if K ≡ k < 0 then

y(t) = (1/
√
−k) sinh(t

√
−k). Thus in the case of constant positive curvature k we obtain

conjugate points at a separation of π/(2
√
k), however in the case of non-negative curavture,

we clearly have no conjugate points.

Note that there is one situation in which the conjugate points described by the equa-
tion (J) and those on the surface behave differently: the case of a geodesic loop. Consider,
for example, any great circle on a standard round sphere. This is a geodesic γ : R → S2(1)
(assuming a unit speed parametrization). It is straightforward to see that for (J), every
point in the set {πn |n ∈ Z − {0}} is conjugate to 0 ∈ R. On the other hand, on S2,
there is only one point conjugate to γ(0), namely γ(π), since all other points γ(πn) for
n ∈ Z conincide with either γ(0) or γ(π). With a view towards geometry, when counting
conjugate points we will adopt the convention that we count points on the manifold, that
is, without multiplicity.

Consider a geodesic from any point on a surface. Locally, this will minimize distance
from the initial point. This means that the geodesic represents the shortest path between
the initial point and any subsequent point which lies on the geodesic, provided this distance
is not too great. More precisely, any geodesic will minimize distance up to, but no further

than the first conjugate point. This is the basic geometric significance of conjugate points,
and is the starting point for many geometric and topological theorems. We can actually
say more [Ch; p108]: if a geodesic from p to q minimizes distance as far as, but no further
than q, then q is either conjugate to p, or is the mid-point of a geodesic loop from p.

Note that surfaces with no conjugate points have been extensively studied, see for
example [BBB], [BK], [G], [GG]. In terms of the equation (J), a basic result about the
non-existence of conjugate points is as follows:
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Theorem 1.1. [H; p351] Every non-zero solution of a Jacobi equation has at most one
zero if and only if there is a solution which never vanishes.

Theorem 1.1 is the motivating result for this paper. We ask: can anything similar be
said if there is more than one conjugate point? Although this question seems natural, to
the best of our knowledge no study of multiple conjugate points appears in the literature,
either in terms of the Jacobi equation or in terms of geometric realizations. We address
the first of these issues in Theorem 1.2 below, and the second in Theorem 1.3.

Theorem 1.2. Let S\{0} denote the set of non-zero solutions to a Jacobi equation. Then
either

(i) all solutions have infintely many zeros, or

(ii) there is an n ∈ N such that every solution has either n or n− 1 zeros, with both these
possibilities occuring.

It should be noted that part (i) and the first part of (ii) in Theorem 1.2 are actually
elementary consequences of the Sturm Separation Theorem, and thus are not new as such.
The new content in Theorem 1.2 is the claim that when the maximum number of zeros for
non-trivial solutions to a Jacobi equation is n, there must also be a solution with precisely
n − 1 zeros. This Theorem also raises the question of the existence, for each n ∈ N, of
Jacobi equations for which all non-trivial solutions have n or n− 1 zeros. Similarly we can
ask for Jacobi equations for which the solutions have infinitely many zeros. In §2 we give
examples to illustrate all of these cases.

In higher dimensions the geometry is more complicated. On any Riemannian manifold
we can still consider a variation through geodesics, and obtain a Jacobi field V (t) in the
same way along the central geodesic c(t). However, V (t) is no longer determined by a single
real-valued function. We obtain a Jacobi equation similar to (J), but this time it takes
the form

∇2
c′(t)V +K(c′(t), V (t))V = 0,

where ∇2 denotes the second covariant derivative of the vector field V in the direction c′(t),
and K(c′(t), V (t)) denotes the sectional curvature of the tangent plane spanned by c′(t)
and V (t). Conjugate points are defined in the analogous manner in terms of the vanishing
of the vector field V, and the results about distance minimizing properties of geodesics
continue to hold in this more general setting. However solving this Jacobi equation - now
a vector equation - is not so easy. On the other hand, given upper or lower bounds on
the sectional curavture, one can make some general comparison statements. The classical
Rauch Theorem, for example, gives upper respectively lower bounds on the lengths of
certain Jacobi fields in the presence of lower respectively upper bounds on the curvature,
see [doC; page 210].

Although it is not difficult to find Jacobi equations which illustrate the various situa-
tions described by Theorem 1.2, constructing Riemannian manifolds which geometrically
realize this multiple conjugate point behaviour is another issue. Our second main result
addresses this:
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Theorem 1.3. Let n ∈ N ∪ {0,∞} and d ∈ N, d ≥ 2.
a) If n is finite then on any smooth compact manifold M of dimension d there exists a

Riemannian metric g, a point x ∈ M, and a g-geodesic γ passing through x, such that
there are at least n points along γ conjugate to x.

b) There exists a Riemannian metric on R
d for which there is a geodesic γ passing through

some point x ∈ R
n, such that there are precisely n points along γ conjugate to x.

In the light of the above discussion, it is natural to ask about the conjugate point
phenomona occurring on a given complete Riemannian manifold as a whole, as opposed to
along a specific geodesic. We insist on completeness here as this ensures that the domain
of every geodesic can be taken to be the whole of R, thus each geodesic can be viewed
as a smooth map γ : R → M. With this in mind, define the set S ⊂ N ∪ {0,∞} to be
the set of extended natural numbers n such that there is a geodesic γ on M and a point
γ(t0) ∈ M which is conjugate to precisely n other points along γ. We might call S the
conjugate spectrum of the manifold. It is easy to see that for a standard round sphere, the
conjugate spectrum is precisely {1}, as all geodesics are closed loops. For any manifold
of non-positive sectional curvature, the spectrum is {0}. Thus it makes sense to ask the
following very general

Questions. What can be said about the conjugate spectrum of a Riemannian manifold?
In particular, given a subset S ⊂ N∪{0,∞}, can we find a Riemannian manifold M which
realizes this spectrum? How does curvature influence the possible spectra?

For the record, there are other interesting phenomena with topological and geometric
significance that one can study along geodesics besides conjugate points. For example, one
can study the way in which the mean curvature of distance spheres centred on the point
γ(0) evolves along γ(t). This is closely related to the study of conjugate points. Instead of
the equation (J), one has a Riccati inequality which describes the evolution. This inequality
relates the mean curvature of distance spheres to the Ricci curvature of the manifold. See
for example [W].

Our third main result concerns the derivatives of solutions to Jacobi equations, and
is analogous to Theorem 1.1.

Theorem 1.4. Suppose that the function K in the Jacobi equation (J) is nowhere zero.
If every non-zero solution of (J) has a derivative which vanishes at most once, then there
exists a solution for which the derivative never vanishes.

This paper is laid out as follows. In §2 we prove Theorem 1.2. In §3 we construct ex-
amples which establish Theorem 1.3. Finally, in §4 we turn our attention to the derivatives
of solutions to the Jacobi equation and prove Theorem 1.4.

The authors would like to thank A. Lytchak and G. Thorbergsson for helpful conver-
sations during the preparation of this paper.
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§2 The proof of Theorem 1.2.

Lemma 2.1. If f(t) is a non-zero (i.e. not identically zero) solution of a homogeneous
second-order linear ODE, and f(t0) = 0 for some t0, then f(t) changes sign through t0.

Proof. Suppose otherwise. Then we must have f(t0) = f ′(t0) = 0. But this means that f
is the zero solution, giving a contradiction. ⊓⊔

Let S denote the set of solutions to a homogeneous second order linear ODE. It is
well-known that S is a two dimensional vector space, and as such, has a natural topology
obtained by pulling back the standard topology on R

2 by a linear isomorphism. With
respect to this topology, we consider a continuous path fs in S \ {0}, where s ∈ I is the
path parameter and I an interval. Each fs(t) is at least a C2 function of t, and in particular
is continuous. We will be concerned with the number and location of the zeros of fs as s
varies.

Lemma 2.2. Suppose that fs0(z0) = 0 for some s0 ∈ I, z0 ∈ R. Then for any sequence
sn ∈ I with sn → s0, and for any choice of δ > 0, there is an N ∈ N such that for all
n > N , fsn(t) has a zero in the interval (z0 − δ, z0 + δ).

Proof. First note that as sn → s0, the functions fsn converge pointwise to fs0 . Now
suppose the lemma is false, that is, there is a δ > 0 and a sequence sn ∈ I with sn → s0
such that fsn(t) 6= 0 for all t ∈ (z0 − δ, z0 + δ) and for all n ∈ N. Pick t1 ∈ (z0 − δ, 0)
and t2 ∈ (0, z0 + δ). By Lemma 2.1, either fs0(t1) > 0 and fs0(t2) < 0, or fs0(t1) < 0
and fs0(t2) > 0. If n is sufficiently large we must therefore have fsn(t1) and fsn(t2) with
opposite signs. As each fs is a continuous function, by the Intermediate Value Theorem
each fsn must have a zero in the interval (t1, t2) ⊂ (z0 − δ, z0 + δ), giving a contradiction.
⊓⊔
Corollary 2.3. With fs as above, suppose that fs0 has a zero at t = z0. Then there is a
continuous path zs, s ∈ (s0 − ǫ, s0 + ǫ) for some ǫ > 0, such that fs(zs) = 0.

Proof. It clearly suffices to show that we can choose zs for s sufficiently close to s0 so
that we have continuity at s = s0. By Lemma 2.2, for any δ > 0, we can choose some zero
in the interval (z0 − δ, z0 + δ) for all s sufficiently close to s0. If no path can be chosen to
be continuous at s0 then there must be a δ′ > 0 and a sequence {sn} converging to s0 such
that fsn has no zero in (z0 − δ′, z0 + δ′) for all n. But this contradicts Lemma 2.2, hence
the result. ⊓⊔
Corollary 2.4. With fs as above, suppose that I is a compact interval, and that for every
s ∈ I, fs has precisely n zeros z1s < ... < zns . Then there exists an ǫ > 0 such that for all
i = 1, ..., n− 1, we have zi+1

s − zis > ǫ.

Proof. The zeros of any fs, being finite in number are necessarily separated. By Corollary
2.3, this means that for each i = 1, ..., n, the zeros zis form a continuous path with respect
to s. By assumption, no two adjacent paths zis and zi+1

s meet as s varies, and so by
the compactness of the s-domain I, we obtain a non-zero minimum separation between
adjacent zeros. ⊓⊔
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Corollary 2.4 says that under the given hypotheses, zeros cannot ‘give birth’ to multi-
ple zeros as s varies, nor can zeros come together to coincide. In conjunction with Corollary
2.3, we further see that zeros cannot spontaneously appear or disappear, and thus each
zero remains isolated and continuously varying with s.

Proposition 2.5. For any f ∈ S \ {0}, there is no continuous path fs in S \ {0} with
s ∈ [0, 1], such that f0 = f and f1 = −f with the property that each fs has precisely n
zeros, for some n ∈ N.

Proof. Suppose otherwise. With the notation of Corollary 2.4, set Z(s) :=
∑n

i=1 |zis|.
Then for each s ∈ I, fs(Z(s)) 6= 0 since Z(s) > zns . Moreover, since zis is continuous for
each i we see that Z(s) is also continuous. Consequently, the composition fs(Z(s)) is
continuous with respect to s. But f(Z(0)) = f0(Z(0)) and −f(Z(0)) = f1(Z(1)) are both
non-zero and with opposite signs, which contradicts the Intermediate Value Theorem given
that fs(Z(s)) is never zero. Thus no such path can exist. ⊓⊔

We now specialise to the case where our second order linear ODE is of Sturm type,
that is, takes the form

p(t)y′′ + p′(t)y′ + q(t)y = 0

for some functions p(t) and q(t). As above, let S denote the solution set to this differential
equation. We will need the following Sturm Separation Theorem (see [H; p335]):

Theorem 2.6. Assume that the functions p(t) and q(t) in the Sturm equation above are
continuous on some interval I ⊂ R. Let f1 and f2 be linearly independent solutions of this
equation. Then the zeros of f1 separate and are separated by those of f2.

From this we obtain:

Corollary 2.7. Consider the set S \ {0} of non-zero solutions to a Sturm equation. Then
if some f ∈ S − {0} has infinitely many zeros then so does every solution. On the other
hand if f ∈ S − {0} has n zeros for some n ∈ N, and n is the maximum number of zeros
of any function in S − {0}, then every solution has either n or n− 1 zeros.

Combining Corollary 2.7 with Proposition 2.5 immediately gives:

Theorem 2.8. If n ∈ N is the maximum number of zeros for any solution of a given
Sturm equation, then there is also a solution with precisely n− 1 zeros.

Given that the zeros move continuously, it is natural to ask about the circumstances
under which the number of zeros drops from n for s < s0 say, to n− 1 at s = s0. It is not
difficult to see that the only possible situation in which this can happen is if z1s → −∞
or zns → ∞ as s → s−0 . It is also clear that z1s → −∞ and zns → ∞ cannot both occur
simultaneuously, as this would result in a solution with n−2 zeros, contradicting Corollary
2.7. The reason why these two possibilities cannot happen together can be seen from the
Sturm Separation Theorem: if for some fs0 and fs1 we have n zeros, and if zis0 > zis1 for
some i, then in order for the separation property to hold we must have zis0 > zis1 for all i.
In other words, all zeros must move in the same direction. So if zns → ∞ say, we cannot
have z1s → −∞, and similarly in the converse.

The following provides a converse to Theorem 2.8 in the case n = 1:

6



Theorem 2.9. ([H; p351]) Every non-zero solution of a Sturm equation has at most one
zero if and only if there is a solution which never vanishes.

In summary we have:

Theorem 2.10. Let S \ {0} denote the set of non-zero solutions to a Sturm equation.
Then either
(i) all solutions have infintely many zeros, or
(ii) there is an n ∈ N such that every solution has either n or n− 1 zeros, with both these

possibilities occuring.

If we now observe the that Jacobi equation (J) is a special case of the Sturm equation,
then Theorem 2.9 gives Theorem 1.1 of the introduction, and Theorem 2.10 immediately
implies Theorem 1.2.

It is not difficult to construct examples of Jacobi equations to illustrate that both (i)
and (ii) in Theorem 2.10 can occur.

Example 2.11. Consider the Jacobi equation

y′′ + y = 0.

The solution set is spanned by cos t and sin t, and clearly every non-zero solution has
infinitely many zeros.

Example 2.12. Consider the Jacobi equation

y′′ − y = 0.

The solution set is spanned by et and e−t which are both non-vanishing, but also contains
sinh t which vanishes at t = 0.

Example 2.13. For any n ∈ N, we construct functions K(t) and f(t) such that f(t) is a
solution of the Jacobi equation

y′′ +K(t)y = 0

which has precisely n zeros. As a preliminary, consider the piecewise linear function k(t)
defined to be 1 for t ∈ [−1/10, nπ + 1/10], and equal to -1 for all other t ∈ R. Now
smooth k(t) to a function K(t) in the obvious way over the intervals (−1/10 − ǫ,−1/10)
and (nπ + 1/10, nπ + 1/10 + ǫ) for some very small ǫ > 0. Consider the solution f(t) to
the resulting Jabobi equation with initial conditions f(0) = 0, f ′(0) = 1. Clearly, we must
have f(t) = sin t for t ∈ [−1/10, nπ+1/10], and f(t) has precisely n zeros in this interval.
On each of the intervals (−∞,−1/10 − ǫ) and (nπ + 1/10 + ǫ,∞), f(t) takes the form
f(t) = c1e

c2t for some constants c1 and c2. (The pair of constants for one of the intervals
will most likely be different from the pair for the other interval.) If c1 6= 0 then the function
c1e

c2t is never zero. The fact that f(−1/10) and f(nπ + 1/10) are both non-zero means
that provided ǫ is sufficiently small, f will not have any zeros on either of the smoothing
intervals and consequently the values for c1 will both be non-zero. Thus overall, f(t) will
have precisely n zeros.
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§3 Geometric realizations.

The aim of this section is to construct geometric examples which establish Theorem
1.3.

We begin with the unit radius round metric on the sphere Sn. Now smoothly flatten
a small neighbourhood of each of the poles, in such a way that the resulting metric is still
rotationally symmetric about the north-south axis. Denote this metric by g. We can view
g as a warped product metric g = dt2+f2(t)ds2n−1 where the function f : [ǫ, π− ǫ] → [0, 1]
is given by f(t) = t− ǫ for t ∈ [ǫ, 2ǫ], f(t) = π− t− ǫ for t ∈ [π− 2ǫ, π− ǫ], and f(t) = sin t
for t ∈ [3ǫ, π − 3ǫ] for some very small ǫ > 0. Over the remaining subintervals assume f is
defined in a way that results in it being everywhere smooth and concave down, and such
that f(t) = f(π − t) for all t ∈ [ǫ, π − ǫ].

Note that the lines of longitude (that is, the t parameter lines on Sn) are geodesics of
(Sn, g), and that the poles are mutually conjugate points.

Now consider a small round ballB of some radiusR << π/2 in the equator Sn−1 ⊂ Sn.
Note that the equator, (which corresponds to t = π/2), is a unit round sphere. Finally let
S be the set of points in Sn which lie on the longitudinal minimal geodesics joining the
north to south poles which pass through B. Thus S resembles a segment of an orange with
flattened ends.

Take n copies of S, and label these S1, ..., Sn. We can form a union by identifying the
south pole of the segment Si with the north pole of the segment Si+1 for i = 1, ..., n − 1.
Moreover, we can do this in such a way that the resulting singular manifold X is smooth,
in the sense that the longitudinal geodesics extend smoothly across the singular points
where the poles have been glued. Considering a variation through such geodesics, it is
immediate that the north pole of S1 ⊂ X is conjugate to the other n singular points.

The task is now to create from X a genuine smooth Riemannian manifold-with-
boundary M which has the same conjugate point property. To do this, focus on an ǫ/2-
neighbourhood of any singular point in X. This neighbourhood either takes the form of a
flat solid cone (at the two end points of X) or the union of two such cones at their cone
points (at each intermediate singular point). Either way, we can embed these neighbour-
hoods isometrically into a flat ball of radius ǫ/2. The union of X with all of these balls now
contains a smooth ‘strip’ diffeomorphic (but not isometric) to the solid tube [0, 1]×Dn−1,
incorporating all the original singular points, which retains the desired conjugate point
property.

The manifold M can now be embedded into any smooth manifold, irrespective of
topology, and its metric extended so as to produce a smooth global Riemannian metric for
which we can find (at least) n points conjugate to some given point. A simple situation
where there are precisely n points conjugate to a given point can be created by embedding
M into R

n. If we extend the metric on M by first forming the union of M with two flat,
solid, infinite cones, which have cone points coincident with the original outer singular
points of X, and cone angle not greater than the cone angles of the segment S. We do this
in such a way that the longitudinal geodesics emerging from M continue into the infinite
cones. Away from the boundary (which in general will be non-smooth), the Riemannian
metric on this union is smooth. Moreover the longitudinal geodesics, which leave M in
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divergent fashion, will continue to diverge to infinity. Thus further conjugate points along
any of these geodesics is prevented. By removing a small neighbourhood of the boundary,
we obtain a new manifold with boundary diffeomorphic to the infinite solid tube R×Dn−1,
which we embed smoothly into R

n. Finally, extend the metric in any way to a smooth
metric on the whole of Rn.

For the case of infinitely many conjugate points in R
n, we can repeat the above

procedure starting with an infinite family of segments {Si}∞i=1, and subsequently forming
a union with a single cone at the north pole of S1. At the other extreme, any manifold
with non-positive sectional curvature is well-known to have no conjugate points (see [doC,
page 149]): for example R

n with its standard flat metric, or a flat torus Tn.

§4 Derivatives of Jacobi solutions.

Our aim in this section is to prove Theorem 1.4, which is a result analogous to Theorem
1.1 (though a little more restrictive) for the derivatives of solutions to (J). It is easy to
find examples of Jacobi equations of the type described by Theorem 1.4. For instance,
consider again Example 2.12, in which K ≡ −1. Any solution to this Jacobi equation has
the form aet + be−t for some a, b,∈ R. A non-zero solution either has a derivative which
vanishes exactly once (at the point t = 0.5 ln(b/a) if a, b > 0 or a, b,< 0), or fails to vanish
(if a and b have opposite signs, or one of them is zero).

Note that the behaviour of derivatives of Jacobi equations is not without geometric
significance. For example, the vanishing of such derivatives is a crucial ingredient in the
definition of focal points: in terms of the equation (J), the point t0 ∈ R is said to be a
focal point of t1 ∈ R if there is a solution y(t) of (J) such that y(t1) = 1, y′(t1) = 0 and
y(t0) = 0. More geometrically, a point p in a Riemannian manifold M is a focal point for
a submanifold N ⊂ M if, roughtly speaking, there is a one-parameter family of geodesics
issuing normally from N which all meet at the point p. For a precise definition see for
example [doC; p230].

Before proving Theorem 1.4 we need a lemma, which is an analogue of Lemma 2.1 for
the derivatives of Jacobi solutions.

Lemma 4.2. Suppose that f(t) is a non-zero solution to a Jacobi equation (J) for which
K is nowhere zero. If the derivative f ′(t0) = 0 for some t0 ∈ R, then f ′(t) changes sign
through t = t0.

Proof of 4.2: Suppose that f ′(t) fails to change sign through t = t0. The only way this
can happen is if f ′ has a local maximum or minimum there, which implies that f ′′(t0) = 0.
By (J) we then have K(t0)y(t0) = 0, and by our hypothesis K(t0) 6= 0, so we conclude
that y(t0) = 0. However, the conditions y(t0) = y′(t0) = 0 mean that y is the zero solution,
giving a contradiction. Thus f ′ must change sign through t0. ⊓⊔
Corollary 4.3. Suppose that K is nowhere zero, and that every non-zero solution to
(J) has a derivative which vanishes precisely once. Let fs, s ∈ I, be a continuous one-
parameter family of non-zero solutions to (J), and let z′s be defined by f ′

s(z
′

s) = 0. Then
z′s varies continuously with respect to s.
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Proof of 4.3: The proof is an easy analogue of the proof of Corollary 2.3 (and Lemma
2.2) with f ′

s replacing fs, and with Lemma 4.2 playing the role of Lemma 2.1. ⊓⊔
Note that we need to impose conditions on (J) in order for the conclusion of Corollary

4.3 to be true, as a smooth family of smooth functions each with a single zero need not
have the zero varying continuously. For example consider the family of functions fs(t) with
s ∈ [0, 1/10], where fs(t) := et − s for t ≤ 0 and fs(t) = (1− s)(t− 1)2 + ts for t > 0. This
is only C0 at t = 0, but can clearly be smoothed for each s in a very small neighbourhood
of t = 0 to give a smooth path with all fs having a unique zero. However, this path of
zeros is not continuous, as it has a discontinuity in the limit as s → 0+.

Proof of 1.4: We proceed by contradiction: suppose that the derivative of every solution of
(J) vanishes. As before, let S denote the set of all solutions to (J), and let S′ := {y′ | y ∈ S}.
Consider the function

F : S \ {0} → S′ \ {0} × R

given by F (y) := (y′, z′y) where z′y is the unique zero of y′. Also consider the function

G : S′ \ {0} × R → R \ {0}

given by G((y′, z′y)) := y(z′y). Note that y(z′y) 6= 0, since y(z′y) = y′(z′y) = 0 would force
y to be the zero solution. By Corollary 4.3, we see that both F and G are continuous
functions, hence so is the composition

G ◦ F : S \ {0} → R \ {0}.

Now S \ {0} ∼= R
2 \ {0}, and is therefore a connected space. Observe that the image of

G ◦ F lies in both components of R \ {0}, since if y is a solution of (J) then so is −y.
We therefore have a continuous map from a connected domain with a disconnected image,
giving the desired contradiction. ⊓⊔
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