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Abstract—Calcium ions act as messengers in a broad range of processes such as learning, apoptosis, and muscular movement. The

transient profile and the temporal accumulation of calcium signals have been suggested as the two main characteristics in which

calcium cues encode messages to be forwarded to downstream pathways. We address the analytical quantification of calcium

temporal-accumulation in a long, thin section of a nonexcitable cell by solving a boundary value problem. In these expressions we note

that the cytosolic Ca2þ accumulation is independent of every intracellular calcium flux and depends on the Ca2þ exchange across the

membrane, cytosolic calcium diffusion, geometry of the cell, extracellular calcium perturbation, and initial concentrations. In particular,

we analyse the time-integrated response of cytosolic calcium due to i) a localised initial concentration of cytosolic calcium and ii)

transient extracellular perturbation of calcium. In these scenarios, we conclude that i) the range of calcium progression is confined to

the vicinity of the initial concentration, thereby creating calcium microdomains; and ii) we observe a low-pass filtering effect in the

response driven by extracellular Ca2þ perturbations. Additionally, we note that our methodology can be used to analyse a broader

range of stimuli and scenarios.

Index Terms—Intracellular calcium dynamics, nonlinear reaction-diffusion systems, astrocytes, exact analytical solution, Ca2þ microdomains
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1 INTRODUCTION

CALCIUM ions (Ca2þ) are the most ubiquitous secondary
messenger mediating a large number of cellular func-

tions, such as cell growth and differentiation, membrane
excitability, and cell death [1], [2]. To regulate multiple
Ca2þ-dependent signalling cascades, cells have evolved
complex homoeostatic mechanisms that control both
dynamics and location of cytosolic calcium concentration
([Ca2þ]c). These mechanisms work at different time and
length scales and may be classified in three categories: Ca2þ

influx, Ca2þ buffering, and internal Ca2þ storage [3].
A delicate interplay of these processes allows multiple

Ca2þ signalling cascades to be regulated independently
within the same cell. Some Ca2þ-triggered processes
depend on the continuous presence of elevated cytosolic
Ca2þ or just require certain Ca2þ load to trigger specific
downstream mechanism [4], while other Ca2þ-dependent
processes are regulated separately through distinct signal-
ling pathways linked to specific routes/locations of Ca2þ

influx [3]. For example it is known that the duration and
extent of Ca2þ-influx may determine whether a cell sur-
vives, dies by apoptosis, or undergoes necrosis [5]. Here
excessive Ca2þ load mediates the activation of various
cytosolic hydrolytic enzymes (such as calpains implicated
in toxic cell death in the liver), ischemic damage, excito-
toxic neuronal damage [3], [6], and mitochondrial damage
with the subsequent release of cytochrome-c, SMAC,
and other protein factors related to apoptotic death [4],
[7]. However, the complexity of biochemical reactions
networks and transport phenomena at different time and
length scales usually hinder our understanding of how
Ca2þ ions selectively activate and modulate downstream
pathways.

To overcome this difficulty, in silico analyses have been
useful as forecast tools or hypotheses test-beds to study the
role of Ca2þ signalling in a wide variety of conditions and
prominent diseases, such as ageing [8], cardiac diseases [9],
or neurodegenerative disorders [10]. Unfortunately, in these
simulation-based studies it is unclear whether predictions
are a consequence of the parameter values used for simula-
tion or a consequence of a structural property of the studied
system. As an alternative, models may be simplified so they
become tractable by analytical methods and, thus, one can
study the structural properties of the underlying biological
system. In the rest of this paper, we opt for the later analyti-
cal approach.

A balanced simplification of the reaction-diffusion mod-
els is challenging, since both temporal and spatial distribu-
tion are essential. In this context, many examples in the
literature study analytical solutions of systems which only
exhibit wave propagation (see, e.g., [11] and references
therein) and, thus, only deal with spatial effects. In contrast,
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only a few works analyse systems with transient character-
istics in a spatial domain, for instance in protein cascades
[12], in tissue drug degradation [13], and in skeletal muscle
growth [14].

In order to analytically quantify the calcium load, in this
work we derive spatially distributed time-integrals of cyto-
solic calcium concentration, ccðt; xÞ, with respect to their
resting level, c�cðxÞ, which we denote as the [Ca2þ]c accumu-
lation:

IðccÞðxÞ :¼
Z 1

0

ccðt; xÞ � c�cðxÞ
� �

dt: (1)

[Ca2þ]c accumulation has been considered as a mechanism
to encode messages to downstream pathways as noted in
[4], [15]. In addition, experimentally measured [Ca2þ]c accu-
mulation has been used to assess the strength and location
of the response in cytosolic calcium due to different stimuli
such as extracellular cues in [16]; Ca2þ dynamics in den-
drites [17]; correlation between intracellular Ca2þ increase
and dilated cardiomyopathic myocardium [18]; and to
implicate Ca2þ uptake with neuron necrosis after ischemic
damage [19]. In fact, the quantification of time-integrated
responses was proposed in [20], where the authors used a
time-integral to discover an amplification effect in the
MAPK pathway.

We base our study on the model in [21] and adopt bio-
logically motivated assumptions, which allow us to
rewrite the integral above as the analytical solution of a
boundary value problem (BVP). We note that these con-
ditions are mild and allow us to compute the [Ca2þ]c
accumulation under the presence of nonlinearities repre-
senting different calcium fluxes in a thin and long nonex-
citable cell.

In Section 3, we tackle this problem with two different
approaches: iÞ by obtaining the Green’s function of the BVP
and iiÞ by means of the Laplacian Decomposition Method
(a type of projection method often employed to handle
PDEs) [22], [23]. We refer the interested reader to [24], [25]
for more details on general conditions for the computation
of the integrated response in a class of nonlinear reaction-
diffusion systems.

1.1 Nonexcitable Cells

Neurons are cells capable of reacting to electrical stimuli; to
propagate them; and interact with surrounding neurons.
This communication is supported by a group of voltage-
inert cells (nonexcitable cells) denoted glial cells. A member
of this family is the astrocyte, which is the most abundant
cell in the human brain.

Astrocytes play a major role by insulating axons; control-
ling blood flow; and providing energy and neurotrans-
miters to motivate signal transmission. In fact, malfunction
of Ca2þ regulation might be implicated in epilepsy [26]. In
addition, astrocytes may become cancerous, hence leading
to gliomas or can be affected by autoimmune attacks in mul-
tiple sclerosis [27], [28].

In contrast to neurons or neuroendocrine cells, mature
astrocytes lack voltage-gated Ca2þ channels [29] and are
unable to generate action potentials. Instead, they sense neu-
ronal activity by increasing Ca2þ intracellular levels in

response to ligand binding and 1, 4, 5-trisphosphate (IP3)
mediated mobilisation of Ca2þ from intracellular stores [30].
This phenomenon is denoted Ca2þ excitability. Subsequent
increases in intracellular Ca2þ from endoplasmic stores
elicit gliotransmitter release such as glutamate, ATP and D-
serine. This bidirectional communication between neurons
and astrocytes has been denoted as “tripartite synapse.”

Although early evidence of bidirectional communication
between neurons and astrocytes goes back to 1990s, the
“tripartite synapse” still is an active research topic. One of
the main reasons is the spatial heterogeneity observed in
the distribution of astrocytic Ca2þ [31]. This intracellular
Ca2þ heterogeneity depends greatly on the area and layer
of the brain. For instance, [Ca2þ]c microdomains depend on
the characteristics of the neuronal input in cerebellum [32],
whereas amplitude of [Ca2þ]c in astrocytes in hippocampal
CA1 region is correlated with the number of simultaneously
activated synapses. In addition, Ca2þ microdomains have
been implicated in mechanisms controlling cellular process,
such as the release of gliotransmitters [30], [32].

In this paper, we derive mathematical expressions to
quantify the [Ca2þ]c accumulation for a long, thin astrocyte
dendrite. We avail of these formulae as a proxy to identify
Ca2þ microdomains due to localised initial concentrations
of cytosolic Ca2þ (Section 4.1). Additionally, we assess the
effect of extracellular Ca2þ spatio-temporal perturbation in
cytosolic Ca2þ concentration (Section 4.2).

2 SPATIALLY DISTRIBUTED MODEL FOR CA2þ

IMPORT AND STORAGE

We base our study on a mechanistic model describing Ca2þ

fluxes to and from the cytosol, along with diffusion of cyto-
solic Ca2þ. This model is a modified version of that
described in [21, Ch. 7, p. 305]. In this section, we first
describe the original model and the additional biological
assumptions we consider. Later, in Section 2.2 we show that
its resting (i.e., equilibrium) concentrations are spatially
homogeneous.

2.1 Model Description

Cytosolic Ca2þ homoeostasis results from the interaction of
biochemical reactions and fluxes through different organ-
elles and the cellular membrane. The main fluxes are
depicted in Fig. 1. There we show the processes by which
Ca2þ enters the cell (Jin) through open Ca2þ ion channels
depending mainly on inositol 1, 4, 5-trisphosphate (IP3). We
also show howCa2þ ions are expelled (Jout) by Ca

2þ pumps,
usually combined with Naþ/Ca2þ exchangers. Ca2þ ions
are pumped into the sarcoplasmic/endoplasmic reticulum
(ER) by means of Ca2þ pumps (Jserca) and released through
IP3 receptors (JIPR) or ryanodine receptors (JRyR). In addi-
tion, Ca2þ can be buffered by different proteins either
endogenous, such as calmodulin, or exogenous buffers
added to measure the quantity of Ca2þ (Jon and Joff).

In recent years, there have been many efforts to define
mathematical models able to represent the main spatio-
temporal progression of [Ca2þ]c. A well-known model was
developed by Keener and Sneyd [21, Ch. 7, p. 305], which
assumes intertwined cytoplasmic and endoplasmic reticu-
lum spaces and a long, thin cylindrical cell. In addition, it
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considers influx and pumped Ca2þ fluxes across the mem-
brane Jin and Jout, respectively:

@

@t
cc ¼ Dc

@2cc
@x2

þ JIPR þ JRyR � Jserca þ r

A
ðJin � JoutÞ

� Jon þ Joff þ Jpert;
(2a)

@

@t
ce ¼ De

@2cc
@x2

� g JIPR þ JRyR � Jserca
� �� Jon;e þ Joff;e;

(2b)

with the appropriate initial conditions and subject to the
boundary conditions

@cc
@x

¼ @ce
@x

¼ 0; at x ¼ 0 and x ¼ L: (2c)

Here cc and ce are the Ca2þ concentrations in the cytosol
and ER; whereas L, r, A and g represent geometrical param-
eters of the cell (length, circumference, cross-sectional area,
and the ratio of cytoplasmic to ER volumes, respectively).
The constants Dc and De denote the cytosolic Ca2þ and ER
Ca2þ diffusivity, respectively. Furthermore, the fluxes Jon;e
and Joff;e represent the buffering mechanism within the ER.
We additionally include a perturbation flux Jpert in the
model, representing transient spatial perturbations of extra-
cellular Ca2þ. This type of spatial whole-cell model in which
the cytosolic and ER coexist are often referred to as
“bidomain” models, and are commonly used to study Ca2þ

homoeostasis (see [33], for example).
The full model can be complemented with kinetic expres-

sions for the import and buffering fluxes, leading to a non-
linear PDE that is typically intractable with analytical
methods. To tackle this difficulty, we incorporate the fol-
lowing additional biological observations into the model:

1. Dominant cytosolic diffusion. The spatial dynamics are
dominated by cytosolic diffusion. We thus assume a
negligible diffusion coefficient within the ER. This is
a standard assumption [21], and even in those mod-
els that consider diffusion within the ER, it is
assumed that it is negligible compared to its cyto-
solic counterpart (i.e.,De � Dc).

2. Calcium buffering due to immobile buffers. Buffering of
[Ca2þ]c is mainly carried out by immobile buffers in
the cytosol. It has been shown that only �1-5 percent
of Ca2þ in the cytosol is free and �75 percent of total
cytoplasmic buffers are immobile [34]. The cyto-
plasmic buffers are either large proteins, such as cal-
modulin, with low diffusion coefficients or are
anchored to the cytoskeleton and membrane [35,
Ch. 1]. In addition, since Ca2þ buffering in the ER is
negligible compared to cytosolic buffering, the
majority of models in the literature assume that
Jon;e ¼ Joff;e ¼ 0 (see, e.g., [21], [33], [36]). We also
consider that the only process that affects the buffer
concentration is its turnover, i.e., neither the buffer
nor the Ca2þ-buffer complex interact with other
pathways (or they do it in different spatio-temporal
scales or locations). Under these assumptions, the
concentration of free buffers, b, can be described by

@

@t
b ¼ �Jon þ Joff ; (3)

with the Ca2þ-buffer complexes given by bT � b,
where bT denotes the sum of free and bound buffer
molecular concentrations.

3. Linear calcium cycling across the membrane. We assume
that Ca2þ cycling across the cellular membrane is an
affine function of [Ca2þ]c. Although this is generally
a valid assumption when modelling Ca2þ influx, see
for example [36], this might not be accurate enough
when modelling Ca2þ efflux carried out by the joint
effect of Ca2þ pumps and Naþ/Ca2þ exchangers.
This is usually the case for excitable cells and most
non-excitable cells, as other non-excitable cells might
employ only Ca2þ pumps [37]. In these cases the
efflux is usually modelled via Michaelis-Menten or
Hill kinetics. However, it is commonly assumed that
Ca2þ pumps present high affinity and low capacity
for Ca2þ, in contrast to Naþ/Ca2þ exchangers, with
low affinity and high capacity [6], [38]. Due to the
difference in capacity, pump efflux is usually small
compared to exchanger efflux. Hence this flux can be
considered affine in Ca2þ (see the experimental

Fig. 1. Main Ca2þ fluxes in a nonexcitable cell. (A) depicts the IP3-mediated influx of Ca2þ to the intracellular domain (Jin); whereas (B) represents
the efflux of [Ca2þ]c due to membrane pumps (Jout) triggered by the presence of Naþ (not shown); (C) shows the fluxes of Ca2þ to/from the Endo-
plasmic or Sarcoplasmic Reticulum (Jserca and JIPR or JRyR). Ca

2þ buffering flux (Jon) and its release from the buffers (Joff ) are shown in (D).
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results in [39]). That is, we assume the functional
form Jout ¼ kecc þ kp. With this approximation, the
cycling of Ca2þ across the membrane can then be
expressed as

r

A
ðJin � JoutÞ ¼ �acc þ b; (4)

for some a, b > 0.
Under the three assumptions above the model in (2)

takes the following form:

@

@t
cc ¼ Dc

@2cc
@x2

þ JIPR þ JRyR � Jserca � Jon þ Joff

þ Jpert � acc þ b;
(5a)

@

@t
ce ¼ �g JIPR þ JRyR � Jserca

� �
; (5b)

@

@t
b ¼ �Jon þ Joff ; (5c)

subject to the boundary conditions

@cc
@x

¼ @ce
@x

¼ @b

@x
¼ 0; at x ¼ 0 and x ¼ L: (6)

Although this model is not as general as (2), it comprises
a large variety of scenarios that align with the biological
assumptions above, including cases with highly nonlinear
intracellular fluxes or, even, when their mathematical for-
mulations are unknown. In the following section we will
obtain the steady state concentrations of (5) and show that
the only admissible equilibrium for cc is homogeneous in
the spatial coordinate.

2.2 Resting Levels of the System

We denote the resting levels (i.e., the steady state concentra-
tions) of the respective species as c�c , c

�
e and b�, which satisfy

@c�cðx; tÞ
@t

¼ @c�eðx; tÞ
@t

¼ @b�ðx; tÞ
@t

¼ 0: (7)

Note that the only diffusing state is ccðx; tÞ, and that the
spatial distributions of the remaining species depend on
this field. Since the perturbation Jpert is transient, we have
that limt!1Jpert ¼ 0 and thus from the model (5) we get the
following boundary value problem for the resting level of
cytosolic Ca2þ:

Dc
@2c�cðxÞ
@x2

� ac�cðxÞ þ b ¼ 0;
@c�cðxÞ
@x

����
x¼0;L

¼ 0: (8)

In the absence of diffusion, the stationary concentration
of [Ca2þ]c is b=a. This suggests the following functional
form for the resting level of cytosolic calcium

c�cðxÞ ¼
b

a
þ wðxÞ; (9)

where wðxÞ is a function that represents the spatial distribu-
tion of the steady state. Therefore, the boundary value prob-
lem in (8) can be reduced to

Dc
@2wðxÞ
@x2

� awðxÞ ¼ 0; subject to
@wðxÞ
@x

����
x¼0;L

¼ 0: (10)

To find an analytical solution for (10) we use the Lapla-
cian Spectral Decomposition method [22], [23]. This method
is based upon the assumption that the spatially distributed
function wðxÞ belongs to a Hilbert space, hence admitting a
series expansion of the form

wðxÞ �
Xn
i¼1

fiðxÞmi; (11)

where fiðxÞ, i 2 ½1; n�, are the elements of the spatial basis of
the Hilbert space and mi, i 2 ½1; n� are the coefficients or
weights of each basis element. We note than when n ¼ 1,
(11) is exact. The elements in ffiðxÞgni¼1 are orthonormal;
invariant w.r.t. the Laplacian operator, as required by the
Laplacian Spectral Decomposition Method; and subject to
the boundary conditions described in (10). That is

@2fiðxÞ
@x2

¼ ��ifiðxÞ; 8 i ¼ 1; 2; . . . ; n;

subject to
@fiðxÞ
@x

� �
x¼0;L

¼ 0:
(12)

In the case of a unidimensional domain V ¼ ½0; L�, a set of
eigenfunctions and eigenvalues is given by

�i ¼ ði� 1Þ p
L

h i2
; (13a)

fiðxÞ ¼ ki
1ffiffiffiffi
L

p cos ði� 1Þ p
L
x

� 	
; (13b)

where

ki ¼ 1; if i ¼ 1;ffiffiffiffi
2;

p
if i 6¼ 1:




By combining equations (10)-(12), we get

X1
i¼1

Dc�ifiðxÞmi ¼
X1
i¼1

�afiðxÞmi;

which projected over the basis functions and exploiting its
orthonormality (i.e.,

R L
0 fifjdx ¼ dij with dij being the Kro-

necker delta) leads to

ðDc�i þ aÞmi ¼ 0; 8 i ¼ 1; 2; . . . ; n: (14)

We see that provided a 6¼ �Dc ði� 1ÞpL½ �2; 8 i the only solu-
tion to (10) is mi ¼ 0, 8 i ¼ 1; 2; . . . ;1. As per our assump-
tion 3 in Section 2.1, a > 0 and, hence this condition is
always satisfied. This implies that wðxÞ ¼ 0, and therefore
the resting level of cytosolic calcium is unique, spatially
homogeneous, and given by
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c�c ¼
b

a
: (15)

The resting levels of the remaining species, i.e., buffer and
Ca2þ concentration in the ER, depend on the buffer binding
kinetics and cycling through the ER. Hence, they need to be
computed with particular fluxes describing the buffering
and cycling through the ER. We will further assume that
these are also unique and homogeneous. By defining the
deviation variables (relative to the resting levels)

ec ¼ cc � c�c ; (16a)

ee ¼ ce � c�e; (16b)

eb ¼ b� b�; (16c)

we can rewrite the model (5) as

@

@t
ec ¼ Dc

@2ec
@x2

þ JIPR þ JRyR � Jserca

� Jon þ Joff þ Jpert � aec þ b;
(17a)

@

@t
ee ¼ �gðJIPR þ JRyR � JsercaÞ; (17b)

@

@t
eb ¼ �Jon þ Joff ; (17c)

subject to the boundary conditions

@ec
@x

¼ @ee
@x

¼ @eb
@x

¼ 0; at x ¼ 0 and x ¼ L: (18)

Here the buffer binding kinetics and cycling fluxes now
depend on the respective deviation coordinates and resting
levels. In the forthcoming section we derive the analytical
expressions for [Ca2þ]c accumulation.

3 ANALYTIC DERIVATION OF THE [CA2þ]cc
ACCUMULATION

We now focus on deriving a general analytic formulae for
the [Ca2þ]c accumulation based on the reaction-diffusion
model of the previous section. In order to compute these
integrals the key observation is that in the model (17) an
auxiliary variable defined as

qðt; xÞ :¼ ecðt; xÞ þ g�1eeðt; xÞ � ebðt; xÞ; (19)

satisfies the following linear PDE

@

@t
qðt; xÞ ¼ Dc

@2

@x2
ecðt; xÞ � aecðt; xÞ þ Jpertðt; xÞ: (20)

Integrating (20) from t ¼ 0 to t ¼ 1we obtain

�qð0; xÞ ¼
Z 1

0

Dc
@2

@x2
ecðt; xÞ dt�

Z 1

0

aecðt; xÞ dt

þ
Z 1

0

Jpertðt; xÞ dt: (21)

By swapping the integral and Laplacian operators in the
first term of the r.h.s. of the equation above we obtain

� d2

dx2
IðccÞðxÞf g þ u2IðccÞðxÞ ¼ fðxÞ; (22a)

d

dx
IðccÞð0Þ ¼ d

dx
IðccÞðLÞ ¼ 0; (22b)

where IðccÞðxÞ is the [Ca2þ]c accumulation defined in (1)
and

u :¼
ffiffiffiffiffiffi
a

Dc

r
; (23a)

fðxÞ :¼ D�1
c qð0; xÞ þ

Z 1

0

Jpertðt; xÞ dt
� �

: (23b)

The boundary conditions in (22b) arise, in turn, from the
no-flux boundary conditions in (6) of the original problem.

The differential equation in (22) is a linear, second order,
ordinary boundary value problem. We will proceed in two
different ways to obtain the solution for IðccÞðxÞ. The first
approach is based on obtaining the Green’s function gðx; �Þ
of this BVP. From this perspective we will be able to derive
exact close-form solutions for IðccÞðxÞ, whenever the convo-
lution of fðxÞ and gðx; �Þ, as described below, can be readily
computed. In the second approach, we avail of the LSD
method to express the solution of IðccÞðxÞ as an infinite
series in terms of the eigenfunctions of the spatial domain
ffiðxÞg1i¼1 in (13). This approach is useful, when an analyti-
cal solution cannot be easily obtained by the previous
approach or when fðxÞ in (23b) is expressed in terms of the
eigenfunctions of the spatial domain.

3.1 Green’s Function Approach

In this first approach, we will derive a solution to (22) by
means of the Green’s function associated with the relevant
homogeneous differential operator [40]. That is to say, for a
Green’s function gðx; �Þ that satisfies

� @2

@x2
gðx; �Þ þ u2gðx; �Þ ¼ dðx� �Þ; (24a)

@

@x
gð0; �Þ ¼ @

@x
gðL; �Þ ¼ 0; (24b)

where dðx� �Þ is the Dirac delta. In turn, the solution for
IðccÞðxÞ in (22) due to the forcing term fðxÞ in (23b) is given
by

IðccÞðxÞ ¼
Z L

0

gðx; �Þfð�Þd�: (25)

In Appendix A we show that, for our problem, gðx; �Þ in (24)
has the form

gðx; �Þ ¼ 1

u sinh ðu LÞ
	 cosh u½� � L�ð Þ coshðuxÞ; 0 
 � < x;

cosh ðu�Þ cosh u½x� L�ð Þ; x 
 � 
 L:



(26)
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Moreover, when the forcing term fðxÞ in (25) is symmetric
with respect to the centre of the spatial domain, i.e., L=2, the
solution for IðccÞðxÞ is symmetric. In this case, we can
obtain the symmetric solution for IðccÞðxÞ by replacing L
with L=2 in (26) and in (24b), as the choice for L was arbi-
trary during the derivation of gðx; �Þ in Appendix A. Sum-
marising, when fðxÞ is symmetric with respect of the axis
x ¼ L=2, the solution for (24a) x 2 ½0; L=2� is

gsðx; �Þ ¼ 1

u sinh ðu L
2Þ

	 cosh u½� � L
2�

� �
cosh ðuxÞ; 0 
 � < x;

cosh ðu�Þ cosh u½x� L
2�

� �
; x 
 � 
 L

2 :

(
(27)

Therefore, the solution for IðccÞðxÞ in (22) is given by

IðccÞðxÞ ¼
Z L=2

0

gsðx; �Þfð�Þd�; 0 
 x 
 L

2
; (28a)

IðccÞðx� L=2Þ ¼ IðccÞðL=2� xÞ; 0 
 x 
 L: (28b)

When a closed form solution to (28a) cannot be easily
obtained, it is still possible to obtain a solution in terms of
an infinite series as described in the forthcoming section.

3.2 LSD Approach

In this approach, as in Section 2.2, we rewrite each field of
the model (17) in terms of time-dependent coefficients and
spatial basis functions:

ejðt; xÞ ¼
X1
i¼1

fiðxÞmj
iðtÞ; for j 2 fc; e; bg: (29)

The [Ca2þ]c accumulation defined in (1) becomes

IðccÞðxÞ ¼
Z 1

0

ecðt; xÞ dt ¼
X1
i¼1

fiðxÞ
Z 1

0

mc
iðtÞ dt; (30)

and therefore the [Ca2þ]c accumulation can be computed
from the integrals of the coefficients mc

i . These integrals can
be computed by expressing ecðt; xÞ in (21) by its series repre-
sentation and then project it on each of the basis functions.
From this procedure the integral of the coefficientsmc

iðtÞ areZ 1

0

mc
iðtÞ dt ¼

mf
i

�i þ u2
; (31)

where �i are the eigenvalues of the Laplacian operator as in
(13a),

mf
i :¼ D�1

c mc
ið0Þ þ g�1me

i ð0Þ �mb
ið0Þ þ

Z 1

0

mg
i ðtÞ dt

� �
;

(32)

and mg
i are the coefficients of Jpert (i.e., Jpertðt; xÞ ¼P1

i¼0 fiðxÞmg
i ðtÞ). Substituting (31) back into (30) we get the

following expression for the [Ca2þ]c accumulation:

IðccÞðxÞ ¼
X1
i¼1

fiðxÞ
mf

i

�i þ u2
: (33)

The Green’s function in (26) and the expression (33),
obtained with the LSD method, indicate that [Ca2þ]c accu-
mulation depends only on:

� the cycling terms proportional to [Ca2þ]c through
the cellular membrane collected in a and the Ca2þ

diffusivity Dc, both included in the term u defined in
(23a),

� the boundary conditions and spatial geometry inher-
ent to the solution of the Green’s function in (26) (or
explicitly comprised in fiðxÞ and �i),

� the initial conditions and resting values, and the total
inflow of extracellular Ca2þ contained in the pertur-
bation Jpertðt; xÞ and contained in the term fðxÞ in
(23b) or its expansionmf

i in (32).
This analysis suggests that the [Ca2þ]c accumulation is

independent of the buffering and cycling through the ER.
Therefore, any Ca2þ-dependent downstream cascade acti-
vated only by the [Ca2þ]c accumulation is independent of
other intracellular processes, while these processes can
modulate or trigger other downstream cascades. In the next
section we use the results in this section to quantify the
impact of different types of perturbations on the [Ca2þ]c
accumulation in non-excitable cells.

4 [CA2þ]cc ACCUMULATION IN NON-EXCITABLE

CELLS

In this section, we make use of a mathematical model
inspired on the one in [36], to study the [Ca2þ]c accumulation
in different example biological scenarios. There, the authors
defined the Ca2þ fluxes as

JIPR þ JRyR ¼ k1ðT þ T0Þðce � ccÞ; (34a)

Jon ¼ k2ccb; (34b)

Joff ¼ km2 bT � bð Þ; (34c)

Jserca ¼ V3
c2c

k24 þ c2c
; (34d)

Jin ¼ k5ðT þ T0Þðcout � ccÞ; (34e)

Jout ¼ V6
c2c

k27 þ c2c
: (34f)

Definitions and values for the constants can be found in
[36, (pp. 660-662)] and are repeated in Table 1 for
convenience.

With the definition of Ca2þ fluxes as defined in (34) and
considering a bidomain model in a long, thin cell we can
express the model in (5) as

@

@t
cc ¼Dc

@2cc
@x2

þ k1ðT þ T0Þðce � ccÞ

� V3
c2c

k24 þ c2c
� k2ccbþ km2ðbT � bÞ

þ r

A
k5ðT þ T0Þðcout � ccÞ � V6

c2c
k27 þ c2c

� �
;

(35a)
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@

@t
ce ¼ g �k1ðT þ T0Þðce � ccÞ þ V3

c2c
k24 þ c2c

� �
; (35b)

@

@t
b ¼ �k2ccbþ km2ðbT � bÞ; (35c)

subject to the boundary conditions in (6). Korngreen’s

model uses a unique Hill equation to simulate the Ca2þ

extrusion ðV6
c2c

k2
7
þc2c

Þ representing the Ca2þ pump without

any Naþ/Ca2þ exchangers nor Ca2þ leak. However, we

note that for the range [Ca2þ]c 2 ½0:1; 0:6�½mM� the character-
istic of the pump may be approximated by the following

affine function in [Ca2þ]c

V6
c2c

k27 þ c2c
� kecc � kp: (36)

Here ke ¼ 1:4953½s�1� and kp ¼ 0:1396½mM=s� are obtained

for the linearisation of the pump characteristic around c�c .
By substituting (36) in (35a) we have

@

@t
cc ¼ Dc

@2cc
@x2

þ k1ðT þ T0Þðce � ccÞ

� V3
c2c

k24 þ c2c
� k2ccbþ km2ðbT � bÞ

þ r

A
k5ðT þ T0Þðcout � ccÞ � kecc þ kp
� �

;

(37a)

@

@t
ce ¼ g �k1ðT þ T0Þðce � ccÞ þ V3

c2c
k24 þ c2c

� �
; (37b)

@

@t
b ¼ �k2ccbþ km2ðbT � bÞ; (37c)

subject to the boundary conditions in (6). We note that by
letting

a ¼ r

A
k5 T þ T0ð Þ þ keð Þ; (38a)

b ¼ r

A
k5 T þ T0ð Þcout þ kp
� �

; (38b)

defined in (4), we can express the PDE set in (37) as the gen-
eral model in (5) and the [Ca2þ]c accumulation can be com-
puted by means of (33).

In the following, we will analytically derive and study
the [Ca2þ]c accumulation in astrocytes by studying Ca2þ

accumulation in two different scenarios: a localised initial
concentration of cytosolic Ca2þand a spatio-temporal per-
turbation of extracellular Ca2þ.

4.1 Localised Initial Concentration of [Ca2þ]cc
Proteins buffer Ca2þ more rapidly than these ions are
sequestrated by the endoplasmatic reticulum. The former
scatters elevated Ca2þ along the spatial domains, whereas
the latter prolongs the duration of the Ca2þ signal in a
particular location [34], resulting in what it is usually
called biphasic response. Moreover, buffering proteins are
usually categorised depending on their capacity to dif-
fuse. Here we will focus on immobile buffers and their
effect on [Ca2þ]c since 75 percent of total cytoplasmic buf-
fers cannot diffuse [34]. For a study of mobile Ca2þ buf-
fers we refer the interested reader to [41], where an
effective diffusion is derived as a function of Ca2þ and
buffer concentrations.

TABLE 1
Parameters Definition of the Model (35), Taken from [36]

TABLE 2
Geometric and Additional Kinetic Parameters for the Model (37)
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Immobile buffers tend to immobilise Ca2þ in localised
areas of a cell. The main function of this immobilization is
to confine Ca2þ and avoid triggering unwanted signalling
routes [30]. The influence of these kind of buffers is particu-
larly relevant to regulation of the redistribution of Ca2þ

entering the cell by ion channels via diffusion [41]. We
study these Ca2þ microdomains by assessing the response
of an initial condition of [Ca2þ]c representing entry of Ca2þ

through membrane ion-channels. We model this initial pro-
file as a square pulse centred in the spatial domain. This
profile can be mathematically expressed in terms of the step
function hð�Þ as

ccð0; xÞ ¼ c�c þ c h x� L

2
� "

� �� �
� h x� L

2
þ "

� �� �� �
:

(39)

Here 2" is the width of the square pulse, whereas c repre-
sent its magnitude. By assuming the rest of the species in
equilibrium at t ¼ 0 and no perturbation of [Ca2þ]c (i.e.,
Jpert ¼ 0), the forcing term fðxÞ in (22a) becomes

fðxÞ ¼ c

Dc
h x� L

2
� "

� �� �
� h x� L

2
þ "

� �� �� �
; (40)

which is a symmetric function w.r.t. the axis x ¼ L=2. Hence
we use the Green’s function in (27) to obtain IðccÞðxÞ. This
solution is

IðccÞðxÞ ¼ c

a

	 1� sinh u L=2�"½ �ð Þ
sinh uL=2ð Þ cosh u x� L

2


 �� �
; x� L

2

�� �� 
 ";

%cosh u x� L
2

�� ��� L
2


 �� �
; x� L

2

�� �� > ";

(
(41)

where

% ¼ 1

cosh u L
2 � "

 �� � 1� sinh u L

2 � "

 �� �

sinh u L
2

� � coshðu"Þ
" #

: (42)

The details of this derivation are in Appendix B. We note
that IðccÞðxÞ is proportional to the magnitude of the initial
pulse of [Ca2þ]c (i.e., c) and inversely proportional to the
cycling fluxes of Ca2þ through the cellular membrane in the
term a. In addition, the semi-width of the pulse, ", deter-
mines the size of the magnitude of IðccÞðxÞ as described in
the definition of % in (42).

Fig. 2 shows that the progression of Ca2þ is confined to a
vicinity of the original location of the initial concentration.
Consequently, every physiological event triggered by this
initial Ca2þ spatial distribution will be located close to the
original location of the initial condition. This supports the
observation that Ca2þ acts locally, having multiple spatially
segregated Ca2þ subdomains [35, Ch. 2]. In addition, this
approach can be used to determine the spatial extension of
this Ca2þ initial stimulus. Of note, the activity localisation
is specially relevant not only in Ca2þ astrocytes [32], but in
exocitotoxic Ca2þ overload in neurons, where a subpopula-
tion of mitochondria are damaged by Ca2þ overload due to
a localised increases in [Ca2þ]c [43]. In the following section

we consider the effect of extracellular spatiotemporal per-
turbations of [Ca2þ]c on [Ca2þ]c accumulation.

4.2 Spatio-Temporal Perturbation of Extracellular
Ca2þ

Extracellular Ca2þ may modulate cellular functions, such as
dentinogenesis (formation of dentin, a substance that forms
the majority of teeth) in odontoblasts [44] or cell fusion and
growth on myoblasts [45]. In addition, there exist evidence
suggesting that extracellular Ca2þ can be involved in cell
death by intoxication [46]. In these experiments, cumene
hydroperoxide seems to induce an influx of extracellular
Ca2þ, which leads to spatially heterogeneous disturbances
in [Ca2þ]c. Moreover, in astrocytes extracellular Ca2þ

changes may depend on other astrocytes and neurons rely-
ing on Ca2þ-voltaged channels to generate their action
potentials [10].

With our previous results in Section 3, we will derive an
analytical formula for [Ca2þ]c accumulation under spatially
heterogeneous influx of Ca2þ and determine whether it
translates into a localised increase of [Ca2þ]c. To this end,
we consider the response due to spatial and temporal aniso-
tropies of extracellular Ca2þ (cout). Suppose that several
cells release calcium close enough of the modelled astrocyte,
and that the extracellular Ca2þ perturbation may be repre-
sented by

cout ¼ cout þ n exp �k1tð Þ cos ½k2 � 1� p
L
x

� 	
; (43)

here cout denotes the constant unperturbed extracellular
Ca2þ concentration, whereas the second term in (43) repre-
sents a temporal transient fluctuation. When the effect of
the perturbation has vanished, ccðtÞ will eventually return
to c�c . The constant n in (43) is the initial magnitude of the
perturbation; k1 represents the perturbations temporal
decay rate; and k2 defines the frequency of the cosine func-
tion in (43). The profile for coutðt; xÞ in (43) leads to a pertur-
bation term Jpert in (20) of the form

Fig. 2. Spatiotemporal and time-integrated response to a localised initial
[Ca2þ]c stimulus. Panel (a) represents the cytosolic calcium response
due to the initial [Ca2þ]c concentration in (39), whereas panel (b) shows
the integrated [Ca2þ]c response in (41); in turn panels (c) and (d) show
the spatiotemporal concentrations of the calcium in storage and buffer,
respectively. The kinetic parameters are given in Tables 1 and 2; in addi-
tion, " ¼ 7:5 ½mm� and c ¼ 1 ½mM�.
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Jpertðt; xÞ ¼ k0 exp �k1tð Þ cos k2 � 1½ � p
L
x

� 	
; (44)

where k0 :¼ rk5ðT þ T0Þn=A. The space-integral of Jpert can
be easily expressed in terms of the orthonormal basis (13).
In this representation the coefficients for Jpertðt; xÞ are

mg
i ðtÞ ¼ k0

ffiffiffiffi
L

p

ki
exp �k1tð Þdk2;i;

where dk2;i denotes the Kronecker delta. Integrating the fore-
going expression with respect to time yields

Z 1

0

mg
i ðtÞ dt ¼

k0

k1

ffiffiffiffi
L

p

ki
dk2;i:

By assuming all the species concentrations are initially in
equilibrium, the coefficients of the forcing function fðxÞ in
(32) are mf

i ¼ D�1
c

R1
0 mg

i ðtÞ dt and, from (33), the analytical
expression for [Ca2þ]c accumulation becomes

IðccÞðxÞ ¼
X1
i¼1

kiffiffiffiffi
L

p 1

Dc

cos ði� 1Þ p
L x

� �
ði� 1Þ p

L


 �2þ a=Dc

Z 1

0

mg
i ðtÞ dt

¼ 1

Dc

k0

k1

1

v2
k2
þ a=Dc

cos vk2x
� �

;
(45)

where vk2 :¼ ðk2 � 1Þ p
L


 �
. We note that the factor multiply-

ing the cosine function above is a monotonically decreasing
function of the modal frequency vk2 . This suggests a low-
pass filtering effect of spatial ‘noise’, which may prevent the
accidental triggering of downstream physiological events
by fast stochastic fluctuations. As is common in frequency
domain analysis, the magnitude of the cosine function in
(45) will decrease slowly until the cut-off frequency

ffiffiffiffiffiffiffiffiffiffiffi
a=Dc

p
.

As the value of vk2 increases beyond this value, the term
ðv2

k2
þ a=DcÞ�1 will rapidly decrease. That is, if

k2 þ 1 � u

p
L;

the perturbation flux Jpertðt; xÞ will be filtered out. Finally,
we note that the time integral in (45) is inversely propor-
tional to the decay rate k1 of the perturbation term Jpertðt; xÞ
in (44); that is to say, if k1 has a large value, then Jpertðt; xÞ
vanishes quickly and, hence, IðccÞðxÞ in (45) is small.

Fig. 3 shows the spatiotemporal and accumulated
response due to the perturbation of coutðt; xÞ in (43). There,
we note that although having an intricate transient
response, the [Ca2þ]c accumulation is a sinusoidal, the ampli-
tude of which is closely related by (45) to the spatial fre-
quency of the extracellular promoting signal.

5 DISCUSSION AND CONCLUDING REMARKS

Ca2þ cues are of paramount relevance as they trigger a
large variety of physiological phenomena, some of which
may determine cellular fate. For example, malfunction of
glutamate or Ca2þ release in the astrocyte-mediated synap-
ses [47] has been implicated in simultaneous neuronal firing
underlying epileptic seizures [26]. In mice, downregulation

of the apoptotic process in neurons and astrocytes leads to
the appearance of tumours termed gliomas [48]. Although
Ca2þ can trigger apoptosis, the thresholds of Ca2þ that lead
to cellular damage depend on the cell type and pathological
conditions [6]. This suggests the existence of tight regula-
tory mechanisms that modulate the Ca2þ progression in
time and space. To understand these spatiotemporal pat-
terns, cytosolic calcium concentration has been measured
using different indicators such as Fura-2. Experimental
technologies, such as photon counting multispectral video
microscopy combined with calcium aequorin indicator,
allow us to get accurate data of cytosolic calcium spatio-
temporal concentrations [49]. We consider that mathemati-
cal models can be a powerful tool to interpret such data and
shed light on cellular regulatory mechanisms. In this work,
we focused on the derivation of analytical formulae that
describe the [Ca2þ]c accumulation in astrocytes; and further
analysed them to determine its relationship with cellular
processes. The assumptions and predictions derived from
this theoretical study could potentially be validated using
these experimental techniques.

For our analysis, we have used a modified version of
Keener’s model [21]. The assumptions we adopted (Sec-
tion 2.1) are that

� Ca2þ diffusion is dominated by diffusion in the
cytosol;

� all relevant buffers are immobile; and

� the cycling of Ca2þ through the membrane can be
approximated by an affine function on [Ca2þ]c.

Assumptions 1 and 2 are supported by experimental evi-
dence [21], [33], [34], [35], [36] and are widely adopted in
the available models. The main limitation of our model is
the validity of Assumption 3, as usually membrane calcium
pumps follow Michaelis-Menten or Hill kinetics. Our model
is valid in cases where pumps have high affinity and low
capacity for calcium ions, as typically considered for cal-
cium pumps [6], [37], [38]. In this case, we may approximate
the dynamics by a function affine in cytosolic calcium con-
centration. Assumption 3 is also valid when the concentra-
tions are close to the resting Ca2þ levels, even when the
characteristic of the pumps are nonlinear.

To analyse [Ca2þ]c accumulation, we first characterised
the resting state of [Ca2þ]c. For a unidimensional
spatial domain with no-flux boundary conditions and

Fig. 3. [Ca2þ]c response in (37), due to the sinusoidal spatiotemporal
perturbation of extracellular calcium, cout, in (43), and initial conditions in
equilibrium. Panel (a) depicts the cytosolic calcium [Ca2þ]c progression
in time and space, whereas panel (b) shows the time integral of this pro-
gression (45). The additional parameters for simulation are n ¼ 1;000,
fk0; k1; k2g ¼ r

A ðk5n½T þ T0�Þ; 0:0025; 5
� �

.
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spatially-homogeneous parameters, this equilibrium is
unique and spatially-homogeneous. Moreover, this equilib-
rium point is solely a function of the constants describing
the linear Ca2þ cycling across the cellular membrane. It is
important to note that for different boundary conditions or
even when some parameters are spatially distributed the
resting state of [Ca2þ]c is not longer homogeneous. In these
cases, we suggest the use of the Laplacian Spectral Decom-
position method to estimate the [Ca2þ]c resting level.

By using a Green’s function approach or the Laplacian
Spectral Decomposition method, we derived exact formu-
lae for the [Ca2þ]c accumulation. These formulae show
explicit dependence on the diffusion constants, geometric
constrains gathered in the eigenfunctions and eigenvalues
(fiðxÞ; �i), initial conditions, external fluxes and/or pertur-
bations, and Ca2þ cycling terms proportional to [Ca2þ]c.
Interestingly, our analysis suggests that [Ca2þ]c accumula-
tion is independent of the remaining cellular processes, so
we can use our methodology even when the analytical
expression for these fluxes are unknown, in contrast to the
commonly used numerical simulations. We considered a
finite unidimensional domain, for which the eigenfunc-
tions and eigenvalues used in the LSD method have an
analytical closed form. However, it is not always possible
to achieve such expressions. Alternatively, they can be
obtained numerically for complex spatial geometries by
exploiting the Finite Element Method [50] and use analyti-
cal functions that numerically approximate the eigenvec-
tors and eigenvalues.

Although a pure computational approach may yield the
spatial distribution for [Ca2þ]c accumulation, it is difficult to
identify the impact of the involved cellular processes on the
[Ca2þ]c accumulation. In contrast, our analytical approach
provides a means to link cellular processes with their
impact on cytosolic Ca2þ accumulation. Moreover, our
methodology overcomes usual problems that arise from the
numerical solution of PDEs, such as accuracy errors and
computational load.

We considered two biological scenarios that impel the
progression of Ca2þ signals, namely: iÞ localised initial
concentration of cytosolic Ca2þ; and iiÞ spatial anisotro-
pies of extracellular Ca2þ. From these experiments, we
noted that

� downstream signalling remains localised to the orig-
inal location of the initial Ca2þ distribution under
immobile Ca2þ buffers. Therefore, creating calcium
microdomains and potentially triggering down-
stream phenomena in space selectively. This agrees
with observations that release of Ca2þ by the endo-
plasmic reticulum remains confined close to IP3 and
ryanodine receptors.

� Moreover, the fluctuations of extracellular Ca2þ will
yield an effect on the intracellular [Ca2þ]c , yet the
diffusion of species will act as a low-pass filter that
vanishes the effect of higher order harmonics, poten-
tially reducing the impact of fast stochastic fluctua-
tions. Therefore, in order to promote Ca2þ

microdomains, nearby cells releasing calcium may
need to sustain Ca2þ signals with low spatial fre-
quency for a period of time.

We foresee that the methodology presented here will aid
on the analysis of a broader range of stimulus and, conse-
quently, for more specific physiological phenomena.

APPENDIX A

Green’s Function for BVP in Eq. (24)

In this section, we obtain the solution of gðx; �Þ that satis-
fies the boundary value problem in (24). First, we note that
close to the boundaries of the spatial domain dðx� �Þ ¼ 0.
Hence, in the vicinity of the boundaries, gðx; �Þ is the solu-
tion of a second order, linear, unforced ODE. This solution
is given by

gðx; �Þ ¼
c0ð�Þ cosh ðuxÞ þ c1ð�Þu�1 sinh ðuxÞ;

close to x ¼ 0;
c2ð�Þ cosh u½x� L�ð Þ þ c3ð�Þu�1 sinh u½x� L�ð Þ;

close to x ¼ L:

8>><
>>:

(46)

By differentiating the equation above and considering the
no-flux boundary conditions in (24b), we conclude that

c1ð�Þ ¼ c3ð�Þ ¼ 0: (47)

In addition to satisfying the boundary conditions, the
Green’s function gðx; �Þ is a continuous function of x and �,
especially at x ¼ � [40]. That is, from (46) and taking into
account (47), gð�; �Þ satisfies

c0ð�Þ cosh ðu�Þ ¼ c2ð�Þ cosh u½� � L�ð Þ:

However, the derivative of gðx; �Þ w.r.t x evaluated at the
x ¼ �, must be a discontinuous function [40]:

c0ð�Þ u sinh ðu�Þ � c2ð�Þu sinh u½� � L�ð Þ ¼ 1:

By combining the two last expressions we obtain the alge-
braic system

coshðu�Þ �cosh u½� � L�ð Þ
u sinh ðu�Þ �u sinh u½� � L�ð Þ

� �
c0ð�Þ
c2ð�Þ

� �
¼ 0

1

� �
;

whose solution is

c0ð�Þ
c2ð�Þ

� �
¼ 1

u sinh ðuLÞ
cosh u½� � L�ð Þ

coshðu�Þ
� �

:

By substitution of the solutions for cið�Þ above and in (47)
into (46), the to the Green’s function becomes

gðx; �Þ¼ 1

u sinhðuLÞ 	
cosh u½� � L�ð Þ coshðuxÞ; 0 
 � < x;
coshðu�Þ cosh u½x� L�ð Þ; x 
 � 
 L:




APPENDIX B

Solution for IðccÞðxÞIðccÞðxÞIðccÞðxÞ with fðxÞfðxÞfðxÞ as in Eq. (40)

Let us consider now the forcing function in (40) so as to
evaluate the integral in (28a) for the interval x 2 ½L2 � "; L2�.
This derivation is given as follows:
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IðccÞðxÞ ¼
Z L

2

L
2�"

gsðx; �Þfð�Þd�;

¼ c

uDc sinh u L
2

� � Z x

L
2�"

cosh x� L

2

� �� �
coshðu�Þd�

þ c

uDc sinh u L
2

� � Z L
2

x

cosh u � � L

2

� �� �
coshðuxÞd�

¼ c

u2Dc sinh u L
2

� � cosh u x� L

2

� �� �


 sinhðuxÞ � sinh u
L

2
� "

� �� �� �

� c

u2Dc sinh u L
2

� � coshðuxÞ sinh u x� L

2

� �� �

¼ c

a
1� sinh u L

2 � "

 �� �

sinh u L
2

� � cosh u x� L

2

� �� �" #
;

x 2 L

2
� ";

L

2

� �
:

(48)

There, we used the definition u :¼ ffiffiffiffiffiffiffiffiffiffiffi
a=Dc

p
. Also, we used

the identities

1 ¼ cosh2ðxÞ � sinh2ðxÞ;
sinhðxþ yÞ ¼ sinhðxÞ coshðyÞ þ coshðxÞ sinhðyÞ;
coshðxþ yÞ ¼ coshðxÞ coshðyÞ þ sinhðxÞ sinhðyÞ:

Now, for the interval x 2 0; L=2� "½ Þ, we have to satisfy
the boundary value problem in (22). In this interval
fðxÞ ¼ 0 and the solution for (22a) with the no-flux bound-
ary condition at x ¼ 0 is given by

IðccÞðxÞ ¼ c4 cosh ðuxÞ; x 2 0;
L

2
� "

� �
; (49)

as we noted earlier during the derivation of gð�Þ. To ensure
continuity of the solution for all x, we finally require the
right and left limits of IðccÞðxÞ as x tends to L

2 � " to be
equal. By evaluating the equation above and (48) at
x ¼ L

2 � "we can show that continuity is guaranteed by

c4 ¼ c

a cosh u L
2 � "

 �� � 1� sinh u L

2 � "

 �� �

sinh u L
2

� � cosh u"ð Þ
" #

:

Summarising and considering the solution IðccÞðxÞ in
the full spatial domain ½0; L� with symmetry w.r.t. the axis
x ¼ L=2, the integrated accumulation of Ca2þ is given by

IðccÞðxÞ¼ c

a
	 1� sinh u L=2�"½ �ð Þ

sinh uL=2ð Þ cosh u x� L
2


 �� �
; x� L

2

�� �� 
 ";

% cosh u x� L
2

�� ��� L
2


 �� �
; x� L

2

�� �� > ";

(

where % :¼ c4
a
c
.
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