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Abstract: Optimal reactive control for maximum ocean wave power absorption from Wave
Energy Converters (WECs) consisting of oscillating systems, is based on the principle of tuning
their oscillation so that it is in resonance with the excitation force produced by the incident
waves. Reactive control, however, is non-causal and cannot be implemented in real time. This
paper analyses the prediction requirements of one possible solution, where predictions of the
excitation force are utilised to resolve the non-causality. The study is focused on the analysis
of the required forecasting horizon against the achievable prediction. Also, through the aid of
numerical simulations of a number of specific systems over several wave conditions, a link is
found between some fundamental properties of the system and the prediction requirements.
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1. INTRODUCTION

The efficiency of Wave Energy Converters (WECs), con-
sisting of oscillating systems, can be significantly increased
through an automatic control that tunes its oscillations
to the incident wave elevation, in such a way to improve
the power transfer from the ocean to the system. The
analytical optimal solution, for the maximisation of the
energy extraction, requires the system to be in resonance
with the wave force or pressure (Falnes, 2002), and it is
termed reactive control, or complex-conjugate control for
its analogy in electrical systems. Alternative sub-optimal
control solutions, formulated as constrained optimisation
problems, have also been proposed, where the limitation
imposed by the physics of the system (e.g. amplitude of
motion or velocity, applicable forces), ignored by reactive
control, are also taken into account. In particular, some
of these alternatives are latching (Babarit and Clement,
2006), where the oscillation in the system is delayed so
to be in phase with the excitation from the waves, and
Model Predictive Control (MPC) (Bacelli et al., 2009;
Cretel et al., 2010; Hals et al., 2011), which handles the
use of constraints.

The effectiveness of the different real-time control strate-
gies depends, among the others, on the possibility to
predict the future wave elevation or wave excitation force
acting on the system at least for a few seconds into the
future (Falnes, 2007; Babarit and Clement, 2006; Bacelli
et al., 2009). Short-term wave forecasting was studied
either with a deterministic approach (Belmont et al., 2006;
Tedd and Frigaard, 2007; Van Den Boom, 2009), and as
a purely stochastic univariate time series problem (Fusco
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and Ringwood, 2010). In the latter, in particular, it is
demonstrated how accurate predictions of the swell can
be achieved with simple autoregressive (AR) models for
more than one mean wave period ahead.

This paper is focused on the evaluation of the effect that
future knowledge of the excitation force has on the per-
formance of reactive control applied to a simple oscillating
system in one degree of freedom. Based on the preliminary
study reported in Fusco et al. (2010), a methodology is pre-
sented, that attempts to link the fundamental properties
of the conversion system (radiation and excitation in par-
ticular) to how much the system itself may be demanding
in terms of prediction as well as to the predictability of
the wave excitation force.

After an introduction to reactive control, in section 2,
the methodology for the analysis of the prediction re-
quirements is proposed in section 3. Results of numerical
simulation of a number of floating systems over a variety of
real wave data are then presented in section 4. Conclusive
remarks are outlined in section 5.

2. REACTIVE CONTROL

A generic floating body, in a single degree of freedom, is
considered, as simply schematised in Fig. 1. The system,
under the influence of the excitation force fex(t) from inci-
dent waves, oscillates according to the following dynamics:

mv̇(t) +

∫ t

0

z(t− τ)v(τ)dτ +Kfv(t) +Ksx(t)

= fex(t) + fu(t). (1)

Here, m is the mass of the body, v(t) and x(t) its velocity
and position, z(t) is the impulse response of the radiation
damping force, Kf is a constant modelling the friction, Ks
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WEC
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v

Fu(ω) = −K(ω)V (ω)

η Fex(ω)

Fig. 1. Heaving body oscillating with respect to sea bottom
under the influence of an incident wave.

is the buoyancy coefficient and fu(t) is a controllable force,
that can be produced through the power take-off (PTO)
mechanism. Zero initial conditions, namely v(0) = x(0) =
0, are assumed.

In the frequency domain, equation (1) becomes:

Zi(ω)V (ω) = Fex(ω) + Fu(ω), (2)

where the intrinsic mechanical impedance Zi(ω) is defined
as:

Zi(ω) , mω + Z(ω) +Kf +
Ks

ω
(3)

In (3), the radiation impedance Z(ω) was introduced,
which is conveniently expressed in terms of radiation
damping, B(ω), and added mass, M(ω), as:

Z(ω) , B(ω) + ωMa(ω) (4)

Note that Z(ω) can be defined as the Fourier transform of
the radiation force kernel, z(t), but only in a generalised
sense, as Ma(ω) does not, in general, vanish in the limit
ω → +∞ (Falnes, 2002). This singularity is usually made
explicit through a constant Ma(∞), the added mass at
infinite frequency.

From (3) and (4), the intrinsic mechanical impedance can
finally be written as:

Zi(ω) = B(ω) +Kf + ω

[
m+Ma(ω)− Ks

ω2

]
, (5)

The external excitation from the waves, fex(t), is deter-
mined by the excitation transfer function Hex(ω):

Fex(ω) = Hex(ω)Ξ(ω), (6)

where Ξ(ω) = F{η(t)}.
Given the system in equations (1) and (2), the control
objective, for a WEC, is to choose a load force, Fu(ω) =
F{fu(t)}, such that the mechanical energy transfer from
the waves to the load is maximised. The PTO is left
unspecified at this stage, the only assumption being that
it is able to provide a force of the form

Fu(ω) = −K(ω)V (ω), (7)

where K(ω) is the load impedance. The control strategy
can be represented as in the block scheme of Fig. 2.

The average power absorbed at the load is the time integral
of the product of the load force and the system velocity,
which can be also expressed in the frequency domain, in
terms of cross-spectral power densities, φfuv(ω), of the two
real signal fu(t) and v(t) (MacMartin and Hall, 1991):

−K(ω) 1
Zi(ω)

fex(t)

v(t)fu(t) ++

Fig. 2. Block diagram of reactive control

Pu = − lim
T→∞

1

2T

∫ T

−T
fu(t)v(t)dt =

− 1

2π

∫ ∞
0

[φfuv(ω) + φvfu(ω)] dω, (8)

The integrand of the right hand side (with the minus sign)
represents the average power flow going out of the system
through the load as a function of the frequency, so that
the average wave power absorbed at each frequency can
be defined as:

Pu(ω) = − [φfuv(ω) + φvfu(ω)] (9)

Using (2) and (7), it is possible to express Pu(ω) in terms of
the spectral power density of the excitation force, φex(ω):

Pu(ω) =
K +K∗

(Zi +K) (Zi +K)
∗φex, (10)

where the explicit dependance on the frequency has been
dropped for clarity. Note that the ∗ symbol denotes the
complex-conjugate operation.

Maximisation of (10) gives the optimal load impedance:

Pu(ω) = max ⇔ K = Kopt = Z∗i , (11)

where the maximum of the average absorbed power is:

Pu,opt(ω) =
φex(ω)

2B(ω) + 2Kf
. (12)

Pu,opt(ω) can be shown to be half the excitation power and
equal to the sum of the radiated power and the power due
to friction (Falnes, 2002).

The control law in (11) is termed, in the wave energy
literature, complex-conjugate control because the optimal
load impedance has to match the complex-conjugate of
the intrinsic impedance (note the analogy with electrical
circuits). The name reactive control is also used, to high-
light the presence of a reactive power and therefore the
necessity to inject power into the system during part of
the cycle. This requirement of a reversible power flow has
major implications on the effective practical implementa-
tion of reactive control. Although maximum mechanical
energy is ensured, in fact, losses in the bi-directional flow
implemented by a non-ideal PTO mechanism may in fact
result in a poor overall efficiency of the system, if one
considers the useful (electrical) energy produced.

Under optimality condition (11), the velocity and the
load force are related to the excitation force through the
following relations:

Vopt(ω) =
1

2B(ω) + 2Kf
Fex(ω) (13)

Fu,opt(ω) = −Z∗i (ω)V (ω) = − Z∗i (ω)

2B(ω) +Kf
Fex(ω) (14)
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Conditions (14) and (13), as well as the optimal com-
pensator in (11), however, are non-causal and cannot be
implemented (Falnes, 2002; MacMartin and Hall, 1991).
Prediction of the excitation force or velocity of the system,
though, could allow for a suboptimal realisation. While
this paper is focused on a solution based on prediction of
the excitation force, a possibility to implement reactive
control, where condition (14) is approximated through the
prediction of the oscillation velocity of the system, was
proposed by Korde (2000).

3. METHODOLOGY

Either of the reactive control optimality conditions (13)
and (14), which apply when the WEC is in the state of
absorbing the maximum energy from the waves, can be
utilised in order to provide the reference velocity, v(t), or
PTO force, fu(t), that shall be imposed on the system,
eventually through one or more lower level control loops.

For the present study, it is supposed that an optimal
reference velocity is generated from the non-causal relation
(13), using future values of the excitation force. Note
that the control variable of the system is the PTO force,
fu(t), so that an additional lower level loop imposing the
reference velocity through the force is required. The force
is then realised in the PTO mechanism by means of a
further low level control loop. The whole control strategy
is depicted in Fig. 3.

The study of the prediction requirement is divided into
two main sub-problems. First, in section 3.1, the non-
causality of the optimal transfer function, relating the
excitation force to the oscillating velocity, is analysed
and linked to fundamental properties of the system. In
particular, a quantification of the effects that knowledge
of the future excitation force, over a limited time horizon,
has on the control performance (absorbed wave power),
is proposed. Then, in section 3.2, the ability to predict
the excitation force is studied and, again, linked to a
fundamental property of the WEC.

3.1 Effects of future knowledge of the excitation force on
absorbed power

The optimal reference velocity for the WEC, from Fig. 3
and eq. (13), is calculated, in the time-domain, as:

vopt(t) =

∫ t

−∞
hopt(τ)fex(t− τ)dτ, (15)

where

hopt(t) = F−1
{

1

2B(ω) + 2Kf

}
= F−1 {Hopt(ω)} (16)

When ω →∞, the radiation resistance B(ω) goes to zero
and therefore Hopt(ω) tends to the constant value 1/2Kf .
This means that the transform relationship in (16) is only
valid in a generalised sense and, more properly,:

hopt(t) =
1

2Kf
δ(t) + F−1

{
Hopt(ω)− 1

2Kf

}
, (17)

where the inverse Fourier transform in the right-hand term
is now well defined. Note that B(ω), in general, is only
known numerically for some frequencies, and hopt(t) need

to be derived numerically with the inverse discrete Fourier
transform, where the sampling frequency is determined by
the maximum frequency for which B(ω) is available. Zero-
padding can be applied to obtain any desired sampling
frequency with no loss of accuracy, once the singularity is
removed, as in (17). Note that, if no friction is considered,
the Fourier inversion would be much more complicated.

As previously stated, the optimal velocity can only be
calculated from (15) if the excitation force is known
infinitely far into the future. In practice, only knowledge
over a limited time horizon L can be assumed, which
will determine an imperfect reference and non-optimal
performance of the system:

vLref (t) =

∫ t

−L
hopt(τ)fex(t− τ)dτ ≈ vopt(t). (18)

For a given L, the performance of the control can be
measured in terms of Relative Capture Width (RCW),
defined as the average absorbed power divided by the
average wave power available over the physical width, D,
of the device:

RCW (L) =
Pu(L)

Pw ·D
(19)

Here, we explicitly include the dependance on the future
horizon L. The average absorbed power, Pu(L), can be
directly calculated from (8), while the average wave power
per meter of wave front, Pw, is determined as usual:

Pw =
1

2
ρg2

∫ +∞

0

Sηη(ω)

ω

∗
dω, (20)

where Sηη(ω) = Ξ(ω)Ξ∗(ω) is the wave spectrum. Also,
deep water is assumed, that is kh >> 1, where k is the
wave number and h is the water depth.

Intuitively, we can expect RCW (L) to increase with L
but only up to a critical future horizon, beyond which the
power gain from considering extra future information is
negligible. Such a critical horizon is related to the time
interval after which the non-causal (but stable) impulse
response hopt(t) is almost zero and, ultimately, to some
fundamental property of the system’s radiation resistance
B(ω).

In order to determine such a basic property of the system,
consider the transform pair hopt(t) and Hopt(ω) of Fig.
4. From well known relations between (stable) impulse
response functions and correspondent transfer functions,
the decay towards zero is dominated by an exponential
connected to the dominant time constant of the system,
that is the pole with the lowest frequency. If we consider
Hopt(ω) as a transfer function, the lowest frequency pole
may be thought of as the cut-off frequency of the first lobe
with a low-pass-filter like characteristic, as indicated in
Fig. 4. It may be expected, therefore, that the lower the
frequency of this dominant pole, the longer the decay of
hopt(t) and therefore the longer the future horizon L for
which a close approximation of the optimal power capture
is obtained. The dominant time constant, thus identified,
will be referred to as τ1 in the remainder of the paper.

3.2 Predictability of the excitation force

In practice, the wave excitation force needs to be predicted.
As mentioned in section 1, several studies have been pro-
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1
Zi(ω)

Hex(ω)

v(t)

η(t)

fex(t)

fu(t)
++

Gu(ω)Kf (ω)
fu,ref (t) +

−

PTO

WEC
1

2b(ω)+2Kf

Kv(ω)
+

−

vref (t)

v(t)

fex(t)

Fig. 3. Realisation of reactive control imposing the optimal velocity on the system. Two additional lower level control
loops are required to decide the appropriate load force and then realise it on the power take-off (PTO).
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Fig. 4. Hopt(ω) and inverse discrete Fourier transform
hopt(t) for a floating cylinder with radius 5m, draught
of 20m and mass of 1.62×106Kg. Sampling frequency
is fs = 2.56Hz (Nyquist frequency 4.02 rad/s).

posed for the problem of short-term wave forecasting, and
they can be extended to the prediction of the excitation
force, which is the wave elevation force low-pass filtered by
the system’s excitation transfer function Hex(ω), as from
(6). For a given sea state, the properties of Hex(ω) have
an influence on the predictability of the excitation force.
The purpose of this study is to give a quantification of the
achievable forecasting horizon (within a certain accuracy
of the prediction), possibly to connect it to a fundamental
property of the system, and to compare it against the
required prediction, determined as from section 3.1.

AR models are adopted here, whose identification and
estimation are operated accordingly to the methodology
presented in Fusco and Ringwood (2010). In particular,

at instant k, the l-step ahead prediction, f̂ex(k + l|k), is
calculated as:

f̂ex(k + l|k) =

n∑
i=1

ai(k)f̂ex(k + l − i|k), (21)

where ai, i = 1, . . . n are the coefficients of the AR model,

of order n, and, obviously, f̂ex(k+ l−i|k) = fex(k+ l−i) if
k+ l− i ≤ k (information acquired, no need of prediction).

The performance of the prediction algorithm is measured
in terms of the following index of goodness-of-fit:

F(l) =

1−

√∑T
k=1

[
fex(k + l)− ˆfex(k + l|k)

]2
√∑T

k=1 fex(k)2

 · 100,

(22)
where T is the time of simulation.

As discussed in Fusco et al. (2010), the ability to predict
the excitation force acting on a system is connected to the
filtering capability of the transfer function Hex(ω). The
latter has a low-pass characteristic, so that its cut-off fre-
quency is the same as its bandwidth. As a consequence sys-
tems with narrower excitation bandwidth will experience
excitation forces from waves at lower frequencies, that, in
general, have better predictability properties (Fusco and
Ringwood, 2010). Ultimately we would expect that the
achievable prediction horizon for the excitation force is
inversely proportional to the bandwidth of Hex(ω).

4. RESULTS

The methodology outlined in section 3 is tested over a
range of bottom-referenced floating cylinders (Fig. 1),
whose characteristics are shown in Table 1. For each
cylinder, the value of the time constant τ1, which is
expected to influence the prediction requirements, and the
bandwidth of Hex(ω), namely ∆ωex, which should have an
influence on the predictability, are also shown. Note how
the value of τ1 is almost entirely influenced by the radius.
A friction Kf = 100Ns/m is also introduced, its absolute
value not affecting the generality of the results. The
excitation frequency response, Hex(ω), and the radiation
impedance, Z(ω), were calculated, for some frequencies,
with the hydrodynamic software WAMIT Inc. (2008).

The systems are simulated, in the time domain, under
several sea conditions. The wave data was provided by the
Irish Marine Institute and comes from real measurements
collected from a data buoy deployed off the West coast
of Ireland, in the Belmullet wave energy test site, at
approximately 54o 130N ; 10o 80W . The data consists of
two consecutive 30 minutes sets for each hour, sampled
at 1.28Hz, covering the year 2010. Fig. 5 shows the
distribution of peak frequency and significant wave height,
to give an idea of the wave climate at the location.
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cylinder R [m] h [m] m [Kg] ∆ωex τ1 [s]

1 3 4 0.93 × 105 1.03 7.42
2 3 8 1.86 × 105 0.79 7.39
3 3 12 2.80 × 105 0.66 7.35
4 3 16 3.73 × 105 0.59 7.32
5 3 20 4.66 × 105 0.53 7.27
6 5 4 2.59 × 105 0.98 14.75
7 5 8 5.18 × 105 0.75 14.73
8 5 12 7.77 × 105 0.63 14.71
9 5 16 10.40 × 105 0.56 14.68
10 5 20 12.90 × 105 0.51 14.66
11 7 4 5.07 × 105 0.95 23.09
12 7 8 10.10 × 105 7.2 23.09
13 7 12 15.20 × 105 0.62 23.09
14 7 16 20.30 × 105 0.54 23.09
15 7 20 25.40 × 105 0.50 23.09

Table 1. Heaving cylinders analysed. R: radius;
h: draught at rest; m: submerged mass at rest.
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Fig. 5. Distribution of peak frequency, ωp, and significant
wave height, Hs, of the data sets selected among the
available ones, collected at Belmullet during the year
2010.

The performance of reactive control when a limited future
horizon L is considered, in the calculation of the refer-
ence velocity, is assessed with the methodology of section
3.1. Fig. 6 shows the behavior of RCW (L) for three of
the cylinders in Table 1, with same height but different
radius. As expected, the RCW (L) increases when more
and more future information about the wave excitation
force is included in the reference velocity calculation. More
interestingly, the curves approach the maximum at dif-
ferent time horizons and, in particular, the prediction re-
quirements are more demanding for systems with a larger
time constant τ1 (bigger radius). While the maximum of
the curve RCW (L) depends on the specific sea state, its
general behavior only depends on the systems properties,
hopt(t) and the radiation resistance in particular.

In order to have a more general picture about the relation
between prediction requirements and properties of the
WEC, the behavior of RCW (L) was calculated for each
of the 15 cylinders over the selected sea states. For each
system, the average value of the forecasting horizon L,
required to obtain a RCW (L) ≥ 0 was determined, and
this is shown in Fig. 7 against the corresponding τ1 of
the cylinder. The prediction requirements increase almost
linearly with the dominant time constant of the function
hopt(t). The standard deviation for each point is also shown
as the length of a bar centered about the mean value (the
circle). Its value is relatively small and this fact highlights
the independence of the prediction requirements from the
specific sea state. Note, from Fig. 7, that the height
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Fig. 6. RCW (L) obtained with three cylinders, over a
specific sea state.
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Fig. 7. Average prediction horizon required to obtain a
RCW ≥ 0, calculated for each cylinder over the
selected data sets.
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Fig. 8. Prediction accuracy, with AR models, of the exci-
tation force acting on three different cylinders.

of the cylinder also has an influence on the forecasting
horizon required for a positive RCW . In particular, for a
given radius (or τ1), when the height increases, the device
becomes less demanding in terms of prediction. The main
parameter, though, remains as τ1.

Regarding the prediction of the excitation force, based
on the discussion in section 3.2, AR models are utilised
(Fusco and Ringwood, 2010) and it is expected that, for
a given sea state, systems with smaller excitation band-
width, ∆ωex, experience a more predictable excitation
force signal. In Fig. 8, the accuracy of the prediction, ex-
pressed through the quantity F(l) defined in (22), is shown
in detail for three different cylinders, for a particular sea
state. Obviously, the accuracy of the prediction decreases
with the prediction horizon, but, more interestingly, in the
case of cylinders with smaller ∆ωex, the prediction is more
accurate over a longer future horizon.

Again, a more general picture is offered, in Fig. 9, where,
for each device, the average forecasting horizon below
which the prediction has an accuracy of F(l) ≥ 60%,
calculated over several sea states, is shown. The variance
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racy of F ≥ 60%, calculated for each cylinder over
the selected data sets.

of each value is also shown through the length of a bar
centered about the mean value. The prediction accuracy
increases almost linearly as the bandwidth of the systems
decreases. In most of the cases, more than half a wave
period can be predicted with an accuracy above 60%.
Note, however, that the variance of such a prediction
horizon, for each device, is quite significant as external
parameters (wave properties) also have a strong influence
on the prediction.

5. CONCLUSION

The prediction requirements of reactive control for max-
imum wave energy extraction from a Wave Energy Con-
verter (WEC) in a single degree of freedom were discussed.
In particular, we investigated the possibility of realising
the non-causal relationship between the optimal oscillation
velocity and the excitation force induced by the incident
wave, using predictions of the excitation force itself.

The study of the prediction requirements was focused on
two main properties: the forecasting horizon required and
the achievable accuracy of the prediction. An attempt was
made to link these two properties to fundamental charac-
teristics of the wave energy conversion system, on the basis
of the preliminary work presented in Fusco et al. (2010).
From time-domain simulations of a number of floating
cylinders over a variety of sea states, one parameter in
particular was found to have the main influence (nearly
proportional) on the required forecasting horizon for the
achievement of a certain performance. Such a parameter is
the main time constant of the non-causal transfer function
for the calculation of the reference velocity, which depends
only on the shape of the system’s radiation resistance
and is not shape-specific. Regrading the actual ability
to predict, the system parameter highlighted was, as ex-
pected, the bandwidth of the excitation transfer function,
which is, in general, a lowpass filter. Systems with smaller
bandwidths allow for better predictions longer into the
future when purely stochastic and regressive models are
utilised. In this case, however, environmental parameters,
such as bandwidth and resonance frequency of the wave
system, also have an influence.

By comparing the required prediction horizons, between 10
and more than 60 seconds, and the actual predictability,
between 0.5 and 1 wave period with more than 60% of
accuracy (6 to 13 seconds for most sea states), one cannot
fail to notice that in some cases the realisation of reactive
control is impractical, unless a significantly better solution
for the wave prediction problem is found. This is true, in
theory, but there actually exists the possibility to properly

shape the reference generation function, Hopt(ω), by also
considering at what frequencies the waves appear, such
that the correspondent impulse response has a less non-
causal behavior. An extreme example of such manipula-
tion, resulting in a causal solution, is proposed in Fusco
and Ringwood (2011).
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