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Abstract— This paper demonstrates that the effect of pulsatile
blood flow on the baroreflex is to effectively reduce the gain of
the baroreflex loop. This has important implications for both
the development of integrative physiology models, which do
not include pulsatile blood flow, and the use of non-pulsatile
ventricular assist devices with either replace the heart or assist
the heart in achieving adequate blood circulation. To elucidate
the effect of the pulsatile nature of blood flow, we utilise the
concept of an equivalent nonlinearity to replace the baroreflex
curve, driven by a pulsatile blood flow/pressure signal, with
an equivalent nonlinearity corresponding to a non-pulsatile
situation. Tests are performed on a feedback model for the
peripheral resistance baroreflex and conclusions made to the
stability implications, using a describing function analysis.

I. INTRODUCTION

The literature contains a vast array of mathematical mod-

els for the circulatory system, at various levels of detail

and focussing on a greater or lesser part of the complete

circulatory system, depending on the objective. In some

of these models, mostly those considering a fine level of

time resolution, the pulsitility of blood flow is modelled.

However, in the main, pulsitility is circumvented, either

by considering physiological quantities such as blood flow

(BF), or blood pressure (BP), on an averaged basis (eg.

mean arterial flow, pressure) or by modelling BP or BF

on a beat-to-beat basis. While a discrete-time (or, rather,

discrete event) beat-to-beat analysis avoids the need for

interpolation between measurement points, it precludes the

use of frequency-domain analysis tools based on regularly

sampled time signals. The averaging approach, for a great

number of applications, can be justified on the basis of the

filtering effect of arterial compliance. However, we also note

that some components involved in circulatory control, viz.

the baroreceptors, are especially sensitive to relatively high

frequencies, including the pulsatile frequency of the heart

[1], [2].

For example, the well-known integrative model of Guyton

[3] ignores pulsitility, though heart-rate is, of course, con-

sidered in terms of its impact on cardiac output. The focus

in Guyton’s model is the simulation of overall homeostasis

and longer-term transient effects, rather than sub-second

analysis. In contrast, the model of Monti et al [4] focusses

on short time scales and models each heart chamber, though
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cardiovascular control is subsequently considered on a beat-

to-beat basis.

Our contention is that, whether blood flow pulsitility is

explicitly modelled or not, the effect of pulsitility must be

accounted for. In particular, it has been shown [5], via

simulation analysis, that varying levels of blood pressure

pulsitility can have a significant effect on baroreflex gain,

a phenomenon which is confirmed by our analysis in this

paper. While it may usually be the case that baroreflex gains

and response curves are measured under pulsatile conditions,

the use of such parametric descriptions in non-pulsatile and

pulsatile models needs to be carefully monitored. For exam-

ple, if the gains around a baroreflex loop are experimentally

measured and subsequently modelled, care must be taken not

to further include the effects of pulsitility in the model.

Another area where the gain effects of pulsitility are

important is the area of artificial hearts or left ventricular

assist devices (LVADs). Typically, blood flow in an artificial

heart is provided by an axial turbine, resulting in an ab-

sence of pulsitility in blood flow and pressure, though some

devices (e.g. the AbioCor artificial heart) have a pumping

action. However, non-pulsatile artificial hearts generally have

advantages of greater durability and smaller size than their

pulsatile counterparts. Where a non-pulsatile LVAD is used

to supplement the output of an underperforming heart, some

residual pulsitility may be retained. It is apparent that it is

easier for nature to produce a pulsatile pump, but whether

pulsitility is a requirement for a number of important physio-

logical regulatory mechanisms remains a moot point, though

some studies have examined the relative effects of pulsatile

and non-pulsatile devices in animals [6], [7]. However, the

true long term effects of a pulseless circulatory system have

yet to be understood, though some progress has been made

[8].

This paper focuses on the impact of pulsitility on a

specific section of the circulatory system: the peripheral

resistance baroreflex. In particular, we develop an analytical

technique which can articulate how pulsatile blood flow can

modulate baroreflex gain. While previous simulation analysis

has shown there to be a modulating effect [5], to the best

of the authors’ knowledge no analytical tools currently exist

to examine such an effect. We would contend that, while

simulation can give some insight into phenomena which

occur under particular scenarios, analytical (and, in partic-

ular, algebraic) tools have a greater capability to give the

global picture and show the underlying characteristics which

generate the phenomenon. Some further evidence of the ap-

parent change in baroreflex gain can be ascertained from the
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relative increase in Meyer wave [9] activity following LVAD

insertion [10]. However, the authors in [10] use the Meyer

wave activity to support their contention that low frequency

(LF) oscillations emanate from a central source, while we

offer the increased activity as solid evidence of increased

baroreflex gain due to a reduction in pulsitility, following the

limit-cycle oscillation explanation for LF oscillations [11].

We also concede, of course that, following LVAD insertion,

baroreflex gain in the peripheral resistance loop may also

change due to higher average blood pressure and flow.
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Fig. 1. Essential baroreflex components

II. MODEL OF THE BAROREFLEX

Fig.1 shows the essential components of the baroreflex

which relate to the neural control of blood pressure, including

the dynamical system components (including delays), non-

linearities, and blood flow pulsitility. In this study, we will

concentrate solely on the sympathetic control of peripheral

resistance and assume that blood flow is relatively constant,

aside from the pulsatile component. We appreciate that this

is a significant approximation, but it is an important first

step in establishing the fundamental effect of pulsitility on

the neural baroreflex. We ignore arterial compliance in this

preliminary study for the simple reason that we model the

pulsatile signal in the ascending aorta, which is the region

in which blood pressure is measured via the baroreceptors

(aortic arch).

The central nervous system (CNS) is assumed to contain a

notional blood pressure set-point, psetb while fr( ) describes

the static (steady-state) characteristics relating blood pressure

to sympathetic resistance nerve activity, via the generic

arctan function description:

y = fr(x) = h tan−1(β(x− x∗)) + y∗ (1)

Note that the parameterisation of the static baroreflex char-

acteristic by an arctan function allows for a relatively simple

describing function to be calculated, facilitating straightfor-

ward stability analysis [12]. A set of parameters for the arctan

function for a rabbit in the normoxia case [12] is specified

in Table I, with a typical fit to experimental data shown in

Fig.2.

TABLE I

ARCTAN PARAMETER VALUES FOR NORMOXIA CASE

h β x∗ y∗

33 0.12 -71 55

The dynamic components of the model in Fig.1 are:
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Fig. 2. Arctan fit for experimental data [12]

Gv(s) =
e−sτe

1 + sτv
, Gb(s) = e−sτa (2)

Note that:

• τa represents afferent (both pre- and post-ganglionic)

nerve delay,

• τe represents efferent nerve delay,

• The dynamic lag of the vasculature, τv , is primarily due

to the dynamics of contraction of the smooth muscle

surrounding the arterioles, and

• For convenience, the gain term, kp, will be absorbed

into the input scaling term, β, of the arctan function as:

β∗ = β kp (3)

Note also that the steady-state (dc) gain of Gv(s) has been

normalised. This is partly due to the fact that there is some

ambiguity over the dc gain between efferent sympathetic

nerve activity (SNA) and mean arterial pressure (MAP) and

partly due to the fact that such gain has been absorbed

elsewhere (in kp and fr( )). The model, via the values in

Table II, is parameterised for the rabbit [13] and we note

that the model parameters are species dependent [11].

TABLE II

MODEL PARAMETER VALUES

kp τe τa τv
3.0 0.67 0.2 10.0

We complete the definition of the quantities in Fig.1 with:

r∗ is the baseline peripheral resistance not resulting

from neural influences,

qb is blood flow, or cardiac output, and

pp is the pulsatile component of the blood pressure

signal.
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Fig. 3. Blood pressure measurement in the ascending aorta of a rabbit

T (s) t1(s) t2(s) t3(s) A1(mmHg) A2(mmHg)

0.25 0.09 0.03 0.13 20 40

TABLE III

PARAMETERS FOR PULSATILE DITHER SIGNAL

A. The pulsatile blood signal

Here, we will specify the signal which describes the

periodic oscillations in blood pressure due to heart pulsatility.

Although blood pulsatility originally derives from flow varia-

tions, it is convenient for us to use a pressure representation.

Avolio et al [14] describes the blood pressure waveform for

a rabbit (the time calibration indicated by the dark horizontel

line corresponds to 1 s), shown in Fig.3 which we will

approximate using the piecewise constant function shown in

Fig.4. While the sharp corner at the diastole is somewhat

more acute that the signal measured by Avolio et al, this

approximation leads to a more simplified analysis and we

will show later that the effect of pulsatility on the baroreflex

is not so sensitive to small details in the shape of the pulsatile

pressure variations.
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Fig. 4. Piecewise linear approximation of blood pressure signal

In the forthcoming analysis, we will represent the blood

pressure signal by its slowly varying value r plus a zero

mean ‘dither’ signal, d(t), represented by the signal in Fig.4.

The measured parameters of the pulsatile pressure signal are

shown in Table III.

Note that, initially, b is specified as a free parameter and

then determined, using simple geometry, to ensure that the

dither signal has zero mean, resulting in b = 6.8 mmHg. We
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+
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Fig. 5. Equivalent non-linearity concept

also define:

A1 = b1 − b , A2 = b2 + b (4)

III. EQUIVALENT NON-LINEARITY

The concept of an equivalent non-linearity for a nonlinear

characteristic subject to a (relatively) high frequency dither

signal has been traced back to J.C. Lozier of Bell Labs in

1950 [15], [16]. It can be used both as an analysis technique

to examine the effect of a combination of a high frequency

dither signal and a non-linearity, or as a synthesis technique,

where a dither signal is specially constructed and injected

into a system in order to produce a more desirable (probably

less severe) non-linear function. It is the former case that is

addressed in this paper.

A. Equivalent non-linearity concept

The equivalent nonlinearity concept addresses the system

as shown in Fig.5. The original non-linear block is specified

by y = f(u), while the equivalent non-linearity of f( ) with

the addition of the dither signal is specified by ȳ = g(r). We

note that the equivalent nonlinearity method requires that the

dither signal appear at the input to the nonlinearity. To this

end, we can easily move the pulsatile component of blood

pressure, pp, in Fig.1 to the input of fr( ), with the following

observations:

• The effect of Gb(s) is simply a pure delay, resulting in

a phase shift in the pulsatile signal, which has no effect

on the equivalent nonlinearity calculation,

• The effect of the summation junction results in just a

sign change, and

• k, representing the central nervous system ‘gain’ has a

scaling effect on the dither signal.

It can be shown that the equivalent non-linearity of the

single-valued function y(t) = f(u(t)), with u = r + d(t),
where r is a (relatively) low frequency signal and d(t) a
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(relatively) high frequency dither signal, is given by g(r),
where:

ȳ = g(r) =

∫

∞

−∞

f(u)p(u− r)du (5)

where p( ) is a weighting function related to a probability

density function on d(t). The technique relies on two as-

sumptions:

• The frequency of the dither waveform, d(t), lies above

the bandwidth of the dynamic system, Gv(s), which

follows the non-linear element, and

• The spectral difference between r(t) and d(t) is such

that, over a dither period, T , no significant error is

incurred by regarding r(t) = r as constant.

B. Equivalent non-linearity calculation method

In general, for a single-valued non-linearity, f( ), with

input u(t) = r+d(t), with d(t) being the dither signal [16],

and r being relatively constant over the dither period,

y = f(r + d(t)) (6)

Let p(q)dq be the probability that, for any time t, chosen at

random, d(t) lies in the range q to q + dq, with p(q) being

the probability density function for the dither. When d(t) has

the value q,

y = f(r + q), (7)

the expected value for y is:

ȳ =

∫

∞

−∞

f(r + q)p(q)dq (8)

To calculate p(q), let F (q) be the probability that d(t) lies

above q,

F (q) =

∫

∞

q

p(q)dq = −

∫ q

∞

p(q)dq (9)

and p(q) can now be determined from:

dF (q)

dq
= −p(q) (10)

C. Equivalent nonlinearity calculation

Since the pulsatile signal has three distinct component

parts, with durations t1, t2 and t3 as shown in Fig.4, the

equivalent nonlinearity y can be calculated as the sum of the

equivalent nonlinearities associated with each component,

weighted by their time duration. The weighting factors,

αi, are the portions of the total period occupied by the

ith pulsatile component, so that αi = ti/T . Initially, we

calculate the function F (q), which is the probability that

d(t) lies above value q. For the first component of the dither

signal in Fig.4, i.e. a triangle with offset b and amplitude

A1, F (q) is calculated as:

F (q) =
A1 + b− q

2A1

if b < q < A1 + b

= 0 if q > A1 + b

= 1 if q < b

Now, from (10),

p1(q) = −

dF (q)

dq
=

1

2A1

(11)

and the equivalent nonlinearity for component 1 is:

y1 = G1(r) =

∫ +∞

−∞

1

2A1

[

h tan−1(β(r + q)) + y∗
]

dq

=

∫ b+A1

b−A1

1

2A1

h tan−1(β(r + q))dq

+

∫ b+A1

b−A1

1

2A1

y∗dq

=
h

2A1β

∫ b+A1

b−A1

β tan−1(β(e+ q))dq +
y∗

2A1

q

∣

∣

∣

∣

b+A1

b−A1

=
h

2A1β
(β(r + q)) tan−1(β(r + q))

∣

∣

∣

∣

b+A1

b−A1

−

h

4A1β
ln(1 + β2(r + q)2)

∣

∣

∣

∣

b+A1

b−A1

+ yast

The second dither component is a straight line with

offset b, so the equivalent nonlinearity for this signal is

simply the original nonlinearity offset by b. In this case, the

probability function F (q) is constant, with zero derivative.

The equivalent nonlinearity for this component is:

ȳ2 = G2(r) = h tan−1(β(r + b)) + y∗ (12)

The third dither component is an inverted triangle with

offset b, which can be evaluated in a manner similar to com-

ponent 1. Finally, we can determine the overall equivalent

nonlinearity as:

ȳ = G(r) = α1G1(r) + α2G2(r) + α3G3(r) (13)

with α1 = 0.36, α2 = 0.12 and α3 = 0.52 and noting that:

3
∑

i=1

αi = 1 (14)

IV. MAIN RESULT

For the set of parameters described in Section II, the

original arctan function and the equivalent nonlinearity, using

a pulsatile dither signal as in Fig.4, are shown in Fig.6.

It is clear that there is a significant gain reduction, in the

area between the saturation limits, due to the presence of

the pulsatile blood flow. More importantly, the converse is

true; there is a significant gain increase when pulsatility

is removed. For the case considered, the gain changes by

approximately a factor of 3.

Thus, we can reasonably conclude that one of the effects

of pulsatility is to moderate the gain in the neural baroreflex.
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effect

V. STABILITY IMPLICATIONS

The amount of gain in the neural baroreflex has also been

shown to be potentially important in the modulation of low

frequency oscillations in blood pressure [11], often termed

Meyer waves. A plausible theory for the generation of Meyer

waves using a limit cycle analysis was proposed in [11] and

the evidence of Cooley et al [10] would seem to provide

further verification of this explanation, considering the clear

increase in baroreflex gain in the absence of the pulsatile

signal, as shown in Fig.6.

In [12], a simple describing function is developed for

the arctan function, allowing some transparency between

the nature/presence of potential low frequency baroreflex

oscillations and the parameters of the system, including

the baroreflex curve. Unfortunately, the calculation of the

equivalent nonlinearity, to include the effect of pulsatility, in-

troduces some mathematical complexity to the description of

the effective nonlinearity (via (13)) which impairs the devel-

opment of any simple relationships between nature/presence

of potential low frequency baroreflex oscillations and the

parameters of the system. However, if a reasonable (simple)

approximation to the equivalent nonlinearity can be found,

there is hope that the original transparency can be restored.

To this end, we propose to approximate the equivalent

nonlinearity as the weighted sum of the original nonlinearity

and a saturation characteristic as:

NLtot(r) = γaNLa(r) + γsNLs(r) (15)

This corresponds to a parallel combination of both non-

linearities and the resulting overall describing function is

straightforwardly evaluated [17] as:

DFtot(M) = γaDFarctan(M) + γsDFsat(M) (16)

The describing function for the arctan function is given [12]

as:

DFa(M) =
2h

βM2

(

√

1 + β2M2
− 1

)

(17)
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Fig. 7. Approximation to the equivalent nonlinearity

where M is the amplitude of the input sinusoid, while that

for a saturation characteristic [17] is:

DFs(M) = (ks/π)(2λ+ sin(2λ)) (18)

where (−δ, δ) are the saturation limits referred to the input

side, ks is the gain (slope) of the saturation characteristic in

the linear region and λ = sin−1(δ/M).

βnew δ ks γa γs
0.4 40 2.6 0.5 0.5

TABLE IV

PARAMETERS FOR COMPOSITE APPROXIMATING NONLINEARITY

With the specification as shown in Table IV, the resulting

approximation to the equivalent nonlinearity as shown in

Fig.7 is achieved and the describing function for the combi-

nation is easily specified, from (16 as:

DFtot(M) = (ks/π)(2λ+ sin(2λ))

+
2h

βM2

(

√

1 + β2M2
− 1

)

(19)

which has a simple form for the stability analysis of low

frequency oscillations.

VI. CONCLUSIONS

This paper has used the equivalent nonlinearity concept as

an analytical tool to investigate the effect of pulsatility, or ab-

sence of pulsatility, in the neural baroreflex. The analysis has

made some simplifying assumptions, including a focus on

the peripheral resistance system, to examine the fundamental

characteristics of the system with pulsatility. The main result

is that there is a significant gain reduction (a factor of 3

in the case considered) which, at least, has implications for

the presence/absence of low frequency oscillations in blood

pressure. However, more important issues may be identified

in relation to the permanently elevated baroreflex gain in

LVAD patients.
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This study is preliminary, and further work is required

with a more complete model of the baroreflex, to include the

effects of (sympathetic and parasympathetic) heart response,

a more careful consideration of arterial compliance (possibly

through the use of a Windkessel model) and more authentic

models of the baroreceptors and the central nervous system

dynamics.

Significant differences between the shape of the blood

pressure wave in different species [14], [18] would also

require re-working of the equivalent nonlinearity. However,

we have shown that the reduction in baroreflex gain is not so

sensitive to the particular shape of the pressure wave, since

the equivalent nonlinearity calculation principally relies on

the relative areas of the signals above and below the mean.

Finally, we can suggest that other physiological control

loops, all of which contribute to homeostasis and subject

to blood flow/pressure pulsatility, could also potentially be

examined by the equivalent nonlinearity principle. The main

advantage of this method is that it gives analytical insight

into the mechanisms at play and can lead to relatively simple

nonlinear descriptions which can be further used in, for

example, stability analysis.
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