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Abstract— Energy-maximising controllers for wave energy
devices are normally based on linear hydrodynamic device
models. Such models ignore nonlinear effects which typically
manifest themselves for large device motion (typical in this
application) and may also include other modelling errors. In
this paper, we present a methodology for reducing the sensitivity
to modelling errors and nonlinear effects by the use of a
hierarchical robust controller, which also allows good energy
maximisation to be recovered through a passivity-based control
approach.

I. INTRODUCTION

The use of energy-maximising control has been accepted
as crucial to the development of economic wave-energy
conversion (WEC) [1], allowing the effective bandwidth of
WECs to be increased, generating a near resonance condition
at a wide range of wave frequencies.

Despite the prevalent use of linear models in WEC
evaluation, simulation and control [2], [3], there is an ac-
knowledgement that such models are relatively simplistic
in their representation of many nonlinear effects, including
nonlinear Froude-Krylov forces [4], [5] and viscous drag
forces [6], [7]. In particular, the concept of linearisation
around an equilibrium point (the zero displacement point)
where operation is in the region of this equilibrium point
is often violated, since the objective is to amplify the WEC
motion (via resonance) in order to maximise energy capture.
The achievement of resonance also produces large device
velocities (particularly in large seas), resulting in significant
viscous drag forces and vortex shedding. The danger is
that energy maximising controllers based on linear models
may become significantly mismatched with the real WEC
dynamics over significant portions of the operational space,
if such controllers are sensitive to variations in the model.
The result of such a mismatch will be significant reduction
in energy capture, with consequences for the economic
performance of the WEC device.

However, linear models are attractive due to intuitive
connection with physical device quantities, their compact
algebraic representation (permitting model-based control de-
sign) and their relatively low computational overhead. An
ideal situation, therefore, is that we utilise a linear model for
WEC control, but address the issues associated with a lack
of fidelity of the model for more significant device motion.
This is addressed as follows:
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Fig. 1. One-degree of freedom floating system for wave energy conversion

• A optimal velocity reference generation controller is
determined which is only weakly dependent on the
WEC model, and

• A robust servo-controller is employed to address model
uncertainty.

Such a concept has the advantages that the poor sensitivity
and robustness properties of feedforward control (used in
reference generation) are minimised, since the reference
generation is only weakly dependent on the WEC model,
while model uncertainties can be directly addressed using a
robust feedback structure used to achieve the desired device
velocity.

The reference-generation feedforward component was
studied in [8]. The robust feedback controller, which deals
with system non-linearities, is based on the concept of
passivity and allows the achievement of robust stability as
well as performance, without requiring a model of the non-
linearities. While a less conservative non-linear controller
could be designed (for example by extending the linear
model predictive control (MPC) designs proposed in [9]–
[12]), an accurate model of the non-linearity, for control pur-
poses, is not always easy to obtain and model uncertainties
are still present, in practical situations. In addition, nonlinear
MPC controllers generally involve iterative calculations and
the inclusion of a nonlinear model accentuates the conver-
gence issues associated with WEC MPC controllers [12].

II. WAVE ENERGY CONVERTER MODEL

A. Hydrodynamic model

A single-body floating system oscillating in heave is
considered, as shown in Fig.1. Energy is extracted from the
relative motion with the sea bottom, through a generic PTO
mechanism. The external forces acting on the WEC are the
excitation from the waves and the control force produced by
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the PTO, namely fex(t) and fu(t). Additional hydrodynamic
and hydrostatic forces arising due to the motion of the body
in the water, are the radiation force, fr(t), the viscous force,
fv(t), and the buoyancy, fb(t) [3]. The equation of motion,
in one degree of freedom, excluding mooring forces, is
specified as follows:

Mv̇(t) = fr(t) + fv(t) + fb(t) + fex(t) + fu(t), (1)

where v(t) is the heaving velocity and, under the assumptions
of linear potential theory [3]:

fex =

∫ t

−∞
hex(τ)η(t− τ)dτ (2)

fr(t) = −
∫ t

0

zr(τ)v(t− τ)dτ (3)

fb(t) = −ρgSw
∫ t

0

v(τ)dτ (4)

fv(t) = 0. (5)

In (2), the excitation (including diffraction) force is related
to the incident wave, η(t), through the excitation kernel
function hex(t). Equation (3) expresses the radiation force
as a linear convolution of the radiation kernel, zr(t), with
the oscillation velocity. The buoyancy, fb(t), models the
hydrostatic equilibrium, related to the heave position through
a linear coefficient that depends on the acceleration due to
gravity, g, the water density, ρ and the surface area of the
body cut at the mean water level, Sw. Note the non-causality
of the expression for the excitation force, where hex(t) 6= 0
for t ≤ 0 [3].

However, the assumptions of linear potential theory are
not necessarily valid for oscillating WECs which are subject
to significant motions around the mean water level. Several
studies have been carried out in order to include quadratic
terms of the fluid potential and the variations in time of
the wetted surface [5], [13]. Simulation results clearly show
how the linear model consistently over-estimates the body
motion, particularly in large waves. However, an explicit
expression of the hydrodynamic forces that account for such
non-linearities has not, to date, been derived.

Another unacceptable assumption, in practical situations,
is the absence of viscous forces. An experimental law was
proposed by Morison [14]:

fv(t) = ρRCd|v(t)|v(t) + ρπR2Civ̇(t), (6)

where ρ is the water density, R is the cylinder radius, Cd is
the drag coefficient and Ci is the inertia coefficient. The
Morison equation has been experimentally validated and
methods have been proposed to evaluate the coefficients Cd,
Ci for certain specific shapes [6], [7].

In this study, we assume that the non-linearity of the
system comes from the drag component of the viscous force
(the first term in (6)), noting that a non-zero Ci would only
result in an additive constant to the mass, M , in (1)). The
heaving cylinder of Fig. 1 is therefore simulated by the

following non-linear model:

Mv̇(t) +

∫ t

0

zr(τ)v(t− τ)dτ +Kv|v(t)|v(t)+

Kb

∫ t

0

v(τ)dτ = fex(t) + fu(t), (7)

where Kv , ρRCd, Kb , ρgSw, and it is assumed that
v(t) = 0 for t ≤ 0.

B. Linear model for control design

For convenience of control design, the force-to-velocity
model of a WEC is typically expressed using a linear model
in the frequency domain [3], [8]:

V (ω)

Fex(ω) + Fu(ω)
=

1

Zi(ω)
, Pn(ω), (8)

where Zi(ω) is termed the intrinsic impedance of the system
and Pn(ω) will be referred to as the nominal model. In (8),
V (ω), Fex(ω) and Fu(ω) represent the Fourier transform of
the velocity, v(t), excitation force, fex(t) and control force
fu(t), respectively. Note that, in the following, unless stated
otherwise, the Fourier transform of time-domain signals or
functions will be denoted by the corresponding capital letter,
namely X(ω) , F {x(t)} .

The intrinsic impedance, Zi(ω), of the model in (8) is
specified as (refer to [3], [8] for the full derivation):

Zi(ω) = B(ω) +K(0)
v + ω

[
M +Ma(ω) +M∞ −

Kb

ω2

]
,

(9)
where B(ω) is the radiation resistance (real and even [3],
[15]), Ma(ω) +M∞ is the added mass (the constant term at
infinite frequency, M∞, is separated to yield a well-defined
Fourier transform of zr(t) [3]) and K(0)

v is a linear damping
coefficient approximating the nonlinear viscous damping in
(7). By way of comparison with the nonlinear model shown
in (7), the time-domain version of the linearised model can
be expressed as:

Mv̇(t) +

∫ t

0

zr(τ)v(t− τ)dτ +K(0)
v v(t)+

Kb

∫ t

0

v(τ)dτ = fex(t) + fu(t), (10)

The model in (8) allows the derivation of conditions for
optimal energy absorption and the intuitive design of the
feedback controller in the frequency domain [3], [8]. This
study shows how the simple design of the controller based
on the linear model, can be made robust to uncertainties
stemming from unmodelled non-linearities.

The WEC system considered in this study consists of a
heaving cylinder with radius R = 7 m, height H = 20 m,
draught h = 16 m, mass M = 2.54× 106 Kg. The radiation
and excitation transfer functions, Hr(ω) and Hex(ω), are
identified numerically through the hydrodynamic software
Wamit [16]. The drag coefficient is set to Cd = 1, based on
the numerical study in [6]. The linear viscous coefficient is
set to K

(0)
v = 3.17 × 105 Kg/s, such that the linear model
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Fig. 2. Comparison between frequency response of linear system and
non-linear system at waves of different amplitudes.

WEC
v(t)

fex(t) ≈ Aeωt+ϕ

fu(t)
+

+K(s)
vref (t)

1
H(t)

EKF

ω̂(t)

Â(t)

Adaptive law

+
−

Fig. 3. Architecture of the hierarchical controller. The reference velocity
is calculated by applying the adaptive the gain 1/H(t) to the excitation
force, based on (13).

is accurate when excited by waves of about 2 meters in
amplitude.

Figure 2 compares the magnitude and phase response of
the non-linear model in (7), calculated with waves of differ-
ent height and frequency, against the linear model in (8). The
‘frequency response’ of the non-linear system is evaluated
in the sense of a describing function [17], as the complex
amplitude-dependent ratio of the output fundamental to the
input sinusoid, evaluated based on time-domain simulations.

III. CONTROL SYSTEM DESIGN

The control system architecture, shown in Fig. 3, was
firstly introduced in [8], in the context of WECs. Based on
the wave excitation force, a high-level controller calculates
a reference velocity such that the energy absorption is
maximised and the motion is within desired constraints. The
reference velocity is then imposed on the WEC through a
low-level feedback controller that acts on the PTO force.

Section III-A gives an overview of the high-level controller
(the reader is referred to [8] for the full details). The design
of the low-level controller, which is the main focus of this
study, is then dealt with in section III-B.

A. High-level control

It is a well known result that maximum wave power
absorption from the WEC is achieved when [3]:

V (ω) =
1

2B(ω) + 2K
(0)
v

Fex(ω), (11)

which gives the optimal amplitude and phase of the oscil-
lating velocity in terms of the excitation force and the hy-
drodynamic properties of the system. However, non-causality
[3], [15], [18] and excessive requirements in terms of mo-
tion/forces [3], [8], [9] make condition (11) impractical for
many situations.

Based on the assumption that the wave excitation force is
a narrow-banded harmonic process with a time-varying fre-
quency, ω(t), and amplitude, Fex(t), the reference velocity
is calculated as a linear proportion of the wave excitation
force:

vref (t) =
1

H(t)
fex(t), (12)

where H(t) is adapted, on-line, according to the rule [8]:

1

H(t)
=


1

2B(ω̂) + 2K
(0)
v

if
ω̂Xlim

F̂ex
>

1

2B(ω) + 2K
(0)
v

ω̂Xlim

F̂ex
otherwise

,

(13)
such that optimal power absorption is achieved, under the
motion constraint |x(t)| ≤ Xlim [8]. The estimation of ω̂(t)
and F̂ex(t) are obtained by use of the extended Kalman filter
(EKF) applied to the true excitation force signal, fex(t),
assumed known [8], [18] (in practice it would have to be
estimated from motion and/or wave-elevation sensors).

The reference velocity, calculated from (12) and (13), is
weakly dependent on the model of the system, which will
result in close-to-optimal performance (assuming that the
estimates of the wave frequency ω̂ and excitation force F̂ex
are good). In fact:
• Velocity and excitation force are always in phase, inde-

pendent of the model.
• The amplitude of the velocity is optimal in the con-

strained region, i.e. the second condition in (13), inde-
pendent of the model.

• In the unconstrained region, i.e. the first condition in
(13), the amplitude of the velocity is suboptimal and
depends on the approximation 2B(ω) + 2K

(0)
v .

As already studied in [8], particularly in large waves (more
of interest for energy extraction), WECs will mostly work
in a constrained regime, so that the reference-generation
strategy in (13) will only depend on the model for relatively
small waves, where the linear model is more accurate. In
this sense, we consider the proposed high-level controller to
be weakly dependent on the model. Moreover, knowledge
of the response of the non-linear system at excitations of
different magnitude could be incorporated in (13) to improve
the accuracy of the amplitude relation, by adapting K(0)

v as
a function of both ω̂ and F̂ex, for example by means of a
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Fig. 4. Internal Model Control (IMC) structure [19].

look-up-table and experimental data of the type shown in
Fig. 2.

Note that alternative choices based, for example, on mod-
ifications of the classical MPC [9]–[12] could be considered
in the production of a velocity set-point, but these are not
considered, here, since the main focus of this paper is on the
servo-controller loop.

B. Low-level feedback control
The low-level servo controller is designed based on the

principle of internal model control (IMC) [19], shown in
Fig. 4. The feedback signal, d(t), can be interpreted as
the difference between the output of the system, P , and
the expected output based on the nominal model, Pn. IMC
exploits the idea that if a process and all its inputs are
known perfectly, there is no need for feedback control or,
in other words that, for stable processes, feedback control is
only needed because of uncertainty [19]. Note that IMC was
already proposed in the context of wave energy, [20], but the
robust design was not explicitly addressed.

It can be easily shown [19] that the conceptual scheme in
Fig. 4 is equivalent to the classical feedback loop of Fig. 3,
when:

K(s) =
Q(s)

1− Pn(s)Q(s)
. (14)

As is typical in control systems design, in (14) and in the
following, s ∈ C denotes the complex frequency in the
Laplace domain, on which transfer functions of finite-order
linear systems are defined. The nominal model Pn(s) is a
finite order approximation of Pn(ω), defined in (8), such
that Pn(s = ω) ≈ Pn(ω). The approximation is based on
a finite-order approximation of the system radiation defined
in [21] and more details can also be found in [8].

While K(s) is the actual feedback controller to be im-
plemented in practice, the filter Q(s) is the only design
parameter of the IMC controller. Due to the special structure
of IMC, Q(s) can be quite intuitively chosen, based on
performance and robustness specifications, as will emerge
in the following.

The relation between the output, v(t), the control input,
vref (t), and the external excitation (disturbance), fex(t), of
the system in Fig. 4 is:

v =
PQ

1 +Q(P − Pn)
vref +

1− PnQ
1 +Q(P − Pn)

Pfex

= Tvref + SPfex, (15)

where the dependence on the complex variable, s, has been
dropped for brevity. The sensitivity function, S(s), and the
complementary sensitivity function, T (s), are defined [19]
as:

S ,
1− PnQ

1 +Q(P − Pn)
=

v

Pfex
(16)

T ,
PQ

1 +Q(P − Pn)
=

v

vref
. (17)

The sensitivity function expresses the response of the feed-
back system to the external disturbance. The complementary
sensitivity indicates the tracking ability of the closed-loop
system, as well as the sensitivity to measurement distur-
bances [19]. When the plant coincides with the nominal
model, Pn(s) = P (s), the ideal choice for Q(s) is:

Q̃(s) = P−1n (s), (18)

such that perfect control is achieved: S = 0 (perfect
disturbance rejection) and T = 1 (perfect reference tracking).
However, the resulting K = Q̃/(1− PnQ̃) is not physically
realisable, since Pn(s) can be shown to be strictly proper,
with relative degree 1, and non-minimum phase, with a zero
at s = 0 [8], [15].

Therefore, the filter Q(s) is augmented as:

Q̃(s) = F (s)P−1n (s), (19)

where F (s) should be proper with relative degree of at least
1 and a zero at s = 0, in order to remove the unstable pole
at s = 0 appearing from the inversion of Pn(s). As already
proposed in [8], and similarly in [20], F (s) is designed as
follows:

F (s) =
s

(s+ 0.2)
· 5

s+ 5
, (20)

i.e., a band-pass filter which approximates perfect control in
the frequency range [0.3, 2] rad/s (wave period of [21, 6.28]
s). Note that this choice of F (s) is somewhat arbitrary.

The controller thus-far obtained, namely K̃(s), does not
ensure closed-loop stability because the nominal model,
Pn(s), is only a linear approximation of the actual behavior
of the WEC. In the following, we investigate an approach
to adjust K̃(s) such that the final controller, K(s), yields a
robustly-stable feedback loop.

1) Robustness based on passivity: An important result
from input-output stability theory is the passivity theorem,
confirming that the feedback interconnection of a passive
system and a strictly passive one is always input-output stable
[22], [23].

Definition 1: A (possibly non-linear) system y(t) =

f(ẏ, u, t) is passive if
∫ T
0
y(t)u(t)dt ≥ 0 ∀T ≥ 0 and for

any u(t).
Definition 2: A function G(s) of a complex variable s is

positive real if G(s) is analytic for <{s} > 0, G(s) is real
for real s and <{G(s)} ≥ 0 ∀<{s} > 0. We say that G(s)
is strictly positive real (SPR) if <{G(s)} > 0 ∀<{s} > 0
A linear time-invariant system is (strictly) passive if its
transfer function is (strictly) positive real [23].
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Fig. 5. SPR approximation of the nominal controller, K̃(s), based on (21).

Based on Definition 1, a passive system always dissipates
energy (energy always positive). It can be immediately
verified that the non-linear model of the WEC, given in
(7), is passive. The linear part of the system (radiation and
buoyancy effects) is positive real [3], [21] and therefore
passive, while the non-linear viscous force in (6) is passive,
since fv(t) · v(t) > 0 always. In addition, other non-linear
effects that may arise in the generic WEC model, given in
(1), are all of a dissipative nature.

Based on the passivity theorem, it is therefore sufficient to
design a SPR K(s) in order to ensure closed-loop stability.
While it is difficult to approach the design of a controller
with the SPR constraint, it is indeed possible to obtain a SPR
approximation of an initial controller, K̃(s). In particular, the
nominal controller obtained in (19) and (14) is approximated
based on the procedure proposed in [23]:

K̂(s) = argmin
1

2π

∫ +∞

−∞
|K̃(ω)−K(ω)|2dω

subject to: K(s) is SPR.
(21)

The SPR constraint is formally expressed in terms of the
coefficients of the denominator of the transfer function K(s)
and the problem in (21) is solved with non-linear convex
programming [23]. Figure 5 compares the real parts of K̃(s)
(negative at times) and the resulting K(s) (always positive).

Note that the design does not need any knowledge of the
non-linearity of the system. In addition, one can increase
the gain of K(s) while not worrying about the closed-loop
stability (K is still SPR) and independently improve the
reference-tracking and excitation-force-rejection properties
of the servo controller. We apply an additional multiplicative
gain of 20 to the final K(s), based on intuitive design (the
gain is increased until the velocity tracking is acceptable).
The resulting controller is referred to as KSPR(s):

KSPR(s) = 20K̂(s). (22)

IV. RESULTS

A. Wave data

Simulation results are produced under several wave con-
ditions. Random waves are generated from single-peaked,
three-parameters Ochi spectral distributions [24]:

Sηη(ω) =

(
4λ+1

4 ω4
0

)
Γ(λ)

· H2
s

ω4λ+1
e−(4λ+0.25)(ω0/ω)

4

, (23)
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Fig. 6. Performance of the proposed robust controller against the open-loop
controller based on the nominal model.

where ω0 is the peak frequency, Hs is the significant wave
height and λ is the sharpness.

The peak frequency is varied from 0.3 to 1.2 rad/s, with
step 0.05, the significant wave heights are 0.5, 1, 2 and 4 m,
and λ = 5 (not important for the purposes of this study; the
reader may refer to [8] to verify how the bandwidth affects
the high-level control strategy). Random-wave time series of
7200s, sampled at 2.56Hz, are generated for each simulation,
from Sηη(ω), based on the method proposed in [25] and also
described in [8].

B. Results

The performance of the hierarchical control system of
Fig. 3 is evaluated across the range of waves described in
section IV-A, over which the linear model of WEC has a
quite limited accuracy, as highlighted in Fig. 2. By way of
comparison, for the servo-controller component, we consider
the nominal controller designed in section III-B, denoted as
Kn(s), although this should not be implemented in practice,
since it could cause instability.

A first general measure of the robustness, shown in Fig.
6, is the overall energy extraction, in terms of relative
capture width (RCW) [8], obtained by the controllers over
the whole range of wave conditions. Clearly, the open-
loop nominal controller produces unwanted results (negative
energy extraction) over a wide range of frequencies around
resonance ( 0.7 rad/s), where the largest model uncertainty is.
Both of the proposed servo-controllers, on the other hand, are
clearly robust in all sea conditions, producing the expected
RCW. KSPR(s) is seen to be superior, particularly for low-
frequency waves, and this is due to the superior velocity-
tracking performance, highlighted in section III-B. Figure
7 shows the lower loop velocity tracking performance of
KSG(s). Clearly, there is minimal velocity tracking error.

The importance of accurately following the desired ref-
erence velocity is not only evident in the energy-capture
performance of the WEC, but also in the ability to satisfy
the desired motion constraints. The proposed strategy for
the generation of the velocity setpoint, given in (13), also
accounts for the motion constraint Xlim = ±2m. Figure 8
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shows the distribution of the heaving position over the whole
range of proposed simulations. The given constraint is ex-
ceeded about 6.5% of the times with the open-loop nominal
controller, while less than 2% of the times with the proposed
robust controllers. Given the very accurate reference-tracking
performance of the controller KSPR(s), such constraint
violations are mostly due to the monocromatic time-varying
approximation of key system variables and instantaneous
frequency/amplitude estimation of the high-level controller,
already discussed in [8].

V. CONCLUSION

The adopted procedure seeks a sensible trade-off between
performance and simplicity, resulting in a fixed parameter
controller with no requirement for wave forecasting, while
directly addressing linear modelling errors due to non-linear
viscosity effects. The design procedure is both intuitive
and straightforward; yet, physical system constraints can be
directly addressed. While the performance of the resulting
controller is sub-optimal, with some conservatism due to
the robust formulation, we feel that the performance penalty
over a nonlinear controller which deals explicitly with sys-
tem nonlinearities is more than compensated by the linear
controller simplicity.
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