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Abstract— The interface between skeletal muscle activation
through aerobic and anaerobic glycolysis is of key interest to
sportspeople and athletes who participate in medium to long
distance sports, such as middle- and long-distance running,
cycling, swimming, rowing, kayaking and a variety of other
events. To date, the gold standard for measuring anaerobic
threshold (AT) is a structured test to exhaustion where blood
lactate concentration is measured at regular intervals. However,
the need for invasive testing, requiring trained personnel and
specialist equipment, limits the availability of such tests. This
paper proposes a non-invasive AT measurement method, which
validates well against AT measured using lactate analysis.
In addition, the proposed test has a relatively loose set of
requirements on the exercise test protocol required and just
requires a measure of exercise intensity and heart-rate. While
the test is applicable to a range of sports, usage is demonstrated
in this paper for a set of cyclists, using velocity as a measure
of exercise intensity.

I. INTRODUCTION

Anaerobic threshold (AT) refers to the point at which the
predominant energy supply system in the body changes from
aerobic (with oxygen) to anaerobic (without oxygen). We use
the term ‘predominant’ here to indicate that the transition
from aerobic to anaerobic is not immediate, but happens
gradually. Fig.1 shows the amount of energy supplied by the
different energy systems with progressive increase in perfor-
mance time. In Region 1, corresponding to short duration
activities such as 100-200m sprinting, Andenosine Triphos-
phate (ATP), the basic chemical which effects muscular
contraction, is supplied via stored ATP with additional ATP
supplied using anaerobic degradation of glycogen (anaerobic
glycolysis), which produces lactic acid as a by-product. In
Region 2, for example involving 400m running, ATP is
predominantly supplied via the lactic acid system. Region 3
sees a predominant mix of lactic acid and aerobic systems,
while activities in Region 4 (e.g. marathon running) almost
exclusively use the aerobic system, where ATP is supplied
via the aerobic conversion of glycogen (aerobic glycolysis)
[1], [2].

Clearly, athletes need to train specific energy system in
order to optimise athletic performance and, in particular,
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Fig. 1. Energy supply systems for exercise

the boundary between aerobic and anaerobic production of
ATP is of significance. For athletes whose focus is aerobic
events, the production of lactic acid, which happens relatively
quickly, is highly undesirable since it impairs performance
and is slow to disperse. Thus, knowledge of this boundary, or
anaerobic threshold (AT) is key, if optimum training and per-
formance is to be achieved. The AT is usually specified either
in terms of a specific exercise intensity e.g. running/cycling
speed, or the steady-state heart rate associated with such an
exercise intensity. With modern sports instrumentation [3], it
is relatively straightforward to have a real time measure of
both exercise intensity and heart-rate.

Various scientific measures for AT have been proposed.
The somewhat ideal Maximal Lactate Steady State (MLSS)
[4], [5] identifies the exercise intensity point at which the rate
of lactic acid production starts to exceed that of dispersion,
resulting in a progressive increase in lactic acid. However,
the difficulty of an athlete retaining a constant exercise
rate to establish steady state lactic acid conditions, for a
large number of exercise intensity points, makes such a
physical test relatively impractical, resulting in a number of
alternatives [5]. A closely related measure to MLSS is Onset
of Blood Lactate Accumulation (OBLA) [6], which typically
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adopts a threshold (e.g. 4 mmol/L of lactate) to identify AT.
Ultimately, the current gold standard in AT measurement
involves the performance of a structured exercise programme
under controlled conditions in an attempt to establish quasi
steady-state conditions at a number of exercise intensities
and physical measurement of lactate, a salt closely connected
with production of lactic acid, concentration in the blood, is
sampled at each nominal intensity. Such experimental con-
ditions demand specialised equipment (exercise ergometer,
lactate analyser), a strict exercise protocol (which may be
difficult to achieve) and specialist medical personnel to take
blood samples.

Some non-invasive methods have been determined for AT
determination, the best known of which is Conconi’s method
[7], [8], which is not without its sceptics [9], [10] and also
suffers from an inherent difficulty in achieving steady-state
conditions [11]. However, the concept that the relationship
between exercise intensity and heart-rate is roughly propor-
tional up to the point of AT and nonlinear beyond AT is
interesting and provides the basic hypothesis for the current
work.

In this paper, we identify linear and nonlinear dynamical
models for the relationship between exercise intensity and
heart-rate, corresponding to regions of lower and higher ex-
ercise intensity, respectively. A Takagi-Sugeno-Kung (TSK)
[12] fuzzy interpolation between models is performed, with
that crossover point which corresponds to the overall model
minimum mean squared modelling error (MSE) returning the
non-invasive AT measure. The results from this method are
validated against AT measurements from lactate analysis.

The remainder of the paper is organised as follows:
Section II shows the modelling methodology, while Section
III show the test protocols followed in recording the exper-
imental data and how the data were processed. The model
results, validated against experimental AT determination, are
shown in Section IV, while conclusions are drawn in Section
V.

II. FUZZY MODEL INTERPOLATION

The overall concept of fuzzy interpolation of models is ar-
ticulated in Fig.2. Linear and nonlinear models, representing
the relationship between exercise intensity and heart rate, are
determined for data corresponding to low and high exercise
intensities, respectively. Fuzzy interpolation is carried out
between the models and optimal values for p1 anD p2,
in an overall minimum model mean square error (MSE)
are determined. The point at which the transition occurs
from linear to nonlinear, i.e. (p1 + p2)/2, is taken as the
nominal anaerobic threshold. In reality, steady state data is
rarely achieved. In the case of the original Conconi test,
where runners are required to run around a 400m track,
timing their arrival with 2 ‘beepers’ placed at 200 intervals
which set the pace, there is inevitably some constant speed
adjustment from the athlete in trying to arrive at the exact
instants of the audible ‘beeps’. If a treadmill is used, a
steady pace is not also exactly achieved, due to the constant
adjustment of a speed control loop for the treadmill belt, in

Fig. 2. Fuzzy interpolation concept

response to footfalls and other disturbances [11]. In the use of
cycling/kayak/rowing ergometers, test candidates are asked
to maintain a fixed speed, but must constantly adjust their
effort to achieve a constant average speed. Reflecting this
difficulty is obtaining steady state data, we utilise dynamical
linear and nonlinear models.

A. Linear model

The linear model is of the form:

y(k) = a0 + a1y(k − 1) + . . . + anay(k − na)

+ b0u(k − nk) + . . . + bnbu(k − nb− nk)
(1)

Eqn. (1) articulates the familiar AutoRegressive with eXoge-
nous input (ARX) model, with the exception that an affine
term a0 is included. This reflects the fact that a zero exercise
intensity does not elicit a zero heart rate i.e the baseline
resting heart rate is always superimposed. However, there
are a number of factors, including an anticipatory increase in
heart rate due to the onset of an intention to increase exercise
intensity [13] and other transient phenomena, which result in
a very small value for a0, especially on the operational part
of the steady state heart rate Vs exercise intensity curve.
The structural parameters of Eqn. (1) which need to be
determined are na, the order of the output regressor, nb,
the order of the input regressor and nk, the number of
steps (sampling period increments) of pure delay between
an increase in exercise and a corresponding reaction in
heart rate. In this study, we employ Rissanen’s minimum
description length (MDL) [14] to determine na and nb as 2
and 2, respectively.

B. Nonlinear model

The nonlinear model has a form not dissimilar to that of
Eqn. (1), with the exception that nonlinear terms in y and u
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are included, as:

y(k) = a0 + a1,1y(k − 1) + . . . + a1,nay(k − na) (2)
+ b1,0u(k − nk) + . . . + b1,nbu(k − nb− nk)

+ a2,1y(k − 1)2 + . . . + a2,nay(k − na)2

+ . . .

+ aoy,1y(k − 1)oy + . . . + aoy,nay(k − na)oy

+ b2,0u(k − nk)2 + . . . + b2,nbu(k − nb− nk)2

+ . . .

+ bou,0u(k − nk)ou + . . . + bou,nbu(k − nb− nk)ou

The additional structural parameters which must be deter-
mined for the NARX (nonlinear ARX) model in Eqn. (2) are
oy, the max. polynomial order of the output terms and ou,
the max. polynomial order of the input terms. We note that if
oy = 1, then the model in Eqn. (2) has a Hammerstein [15]
structure, with the steady state response particularly simple to
calculate. An orthogonal least squares algorithm for forward
selection [16] was used to determine oy and ou as 2 and 2,
respectively.

C. Parameter identification

A significant attraction of the nonlinear parameterisation
in Eqn. (2) is the fact that the model, although nonlinear, is
linear in the parameters. Therefore, we can employ simple
identification techniques, such as least squares, to determine
both linear and nonlinear model coefficients. For parameter
identification, a variety of objective criteria can be used,
including single-step or multi-step prediction criteria. While
prediction error methods employing multi-step criteria [17]
have been shown, in certain circumstances to have superior
performance to single-step methods, the important factor in
this study is the relative performance of linear and nonlinear
models, rather than absolute model performance. Therefore,
we employ a single-step criterion, permitting the use of
simple batch least-squares for parameter identification, where
the models represented by the equation:

Y = ΦΘ + E (3)

are solved using the familiar formula:

Θ̂ = (ΦT Φ)−1ΦTY + E (4)

where E is the equation error and Φ and Θ are the regressor
matrices and parameter vectors respectively, evaluated for
Eqs. (1) and (2).

D. Fuzzy model evaluation

A number of options are available in relation to the fuzzy
set shapes and how the unknown parameters, p1 and p2,
are determined. Initially, we choose trapezoidal sets, in the
absence of any specific knowledge to the contrary. A variety
of line or concurrent search techniques can be employed
for the determination of p1 and p2, depending on whether
the overall performance surface to be searched is uni- or
multi-modal. Initially, we employ a manual search, since
there are just 2 parameters to determine and we wish to

learn a little about the nature of the performance surface.
To further simplify matters, we specify a constant interval
between p1 and p2, resulting in just a single parameter
(e.g. (p1 + p2)/2 to be determined. The p2 − p1 interval
was determined considering the rate of aerobic to anaerobic
transition proposed in [18] and a value of 1.2 km/h was
employed.

III. TEST PROTOCOLS

In total, 9 candidates underwent a progressive loading
test, with data logged initially on a per crank revolution,
re-interpolated to a regularly sampled 0.5 s interval. The can-
didates were all male cyclists, aged 25 to 40 years old, with
various levels of cycling ability. Each candidate was asked
to follow an graded incremental test to volitional exhaustion,
starting at 120 W, with successive 30 W increments at 3
min intervals. Power variation was achieved via a cavitation
adjustment using a fan window on a Wattbike (Wattbike Ltd.,
Nottingham, UK), while velocity was recorded and used as
the measure of exercise intensity. A constant cadence, of 83-
84 RPM, was requested from test candidates.

A. Data logged

For each candidate, a wide variety of variables were
recorded, including cadence, power, speed, heart-rate and a
full respiratory gas analysis. A wide range of metabolic data
was recorded using a Cosmed Quark B2 respiratory analyser
(Cosmed, Rome, Italy), providing a breath-by-breath mea-
surement of volume and various gasses. These respiratory
measurements were not used in the current analysis but may
form the basis for future non-invasive AT tests. Fig.3 shows
the evolution in speed and heart-rate for Candidate 2, by
way of example. Lactate samples (from the ear) collected 2
min into each 3 min exercise element and analysed using a
YSI1500 Sport Lactate Analyser (YSI, Ohio USA), which
was pre-calibrated with a 5 mmol lactate standard prior to
each new candidate undertaking a test.

Fig. 3. Speed and heart rate evolution for Candidate 2

It is clear from Fig.3 that speed (or, indeed, power)
is not nearly constant, with the variance increasing with
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increasing average velocity, due to the increased difficulty
of maintaining a constant speed/power at high effort levels.

B. Data preprocessing

For much of the data, both heart-rate and speed signals
contain some drop-outs, or outliers, and these must be
removed prior to modelling. In general, such outliers occur
as single point events, as evidenced from Fig.3, allowing a
simple linear interpolation to be performed between immedi-
ately previous and following points to determine a reasonable
value for the erroneous point.

C. Lactate-based AT determination

Fig.4 shows the lactate recordings, by way of
example, for one of the test candidates (Candidate
3). The black dash-dot construction lines show
the determination of AT as (Power,Lactate, HR) =
(308(W),3.1(mmol/L),178(beats/min)). There are a few
potential sources of error in such a determination:

• Portable lactate analysers, such as the YSI1500 have
inherent, if small, measurement errors of the order of
±0.5mmol/l [19],

• There are a relatively small number of lactate mea-
surement points (typically 8-10) from which to derive
asymptotes, and

• Since the lactate measurements are taken 2-min. into
each effort incremental level and the power/speed is
not constant (as evidenced from Fig.3), there may be
inconsistencies in the lactate concentration measured at
various nominal exercise intensities.

Fig. 4. Lactate test results for Candidate 3

In spite of these difficulties, AT determination using lactate
measurements is still the gold standard.

IV. RESULTS

In this section, we show some individual modelling and
fuzzy parameter determination results (Section IV-A), by
way of example, while Section IV-B gives the summary
results, which compare the AT results achieved using the
fuzzy model to those measured using lactate analysis.

Fig. 5. Example fit (Candidate 4) of fuzzy model to recorded heart-rate
data

A. Sample individual results

Fig.5 shows the fit of the fuzzy model to the measured
heart rate data for Candidate 4. Clearly, the model provides
a good fit over the full HR range, though it must be borne in
mind that only 1-step prediction is performed by the model.
However, Fig.5 validates the use of the 1-step criterion as a
comparative measure for balancing the linear and nonlinear
model components.

Fig.6 shows the variation in the fuzzy model MSE for
Candidate 7, as the centre point of the fuzzy parameters
(i.e. (p1 + p2)/2) is varied, and is indexed according to
speed. A value of AT, the transition point between the linear
and nonlinear model, is indicated as 36 km/h. Note that the
sensitivity of the MSE to variations in (p1 + p2)/2) reduces
considerably in the region of the minimum point. In fact, the
profile of the MSE variation with (p1 +p2)/2) was found to
have a strong dependence on (p2 − p1).

Fig. 6. Typical (Candidate 7) fuzzy model MSE profile variations with
fuzzy crossover point

B. Summary results

Table I shows the comparative results achieved by the
fuzzy parameter optimisation, compared to the reference
measurement provided by lactate analysis. In general, the
correlation is good and probably close to within the total
experimental error of the lactate-derived AT measurements,
considering the factors outlined in Section III-C. The mean
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Candid. 1 2 3 4 5 6 7 8 9
Lactate 184 170 163 174 155 156 160 157 173
Fuzzy 180 160 159 170 155 151 160 170 167

TABLE I
COMPARATIVE AT HEART-RATE VALUES FOR FUZZY- AND

LACTATE-DETERMINED METHODS

difference between the AT values determined by lactate anal-
ysis and the fuzzy interpolation approach is 5.11 Beats/min
and the correlation coefficient between the two measures is
0.77 over the 9 points. Broadly speaking, it can be reasonably
concluded that the concept of using fuzzy interpolation
between linear and nonlinear dynamical models to non-
invasively determine AT has been proven.

V. CONCLUSIONS

The paper presents a non-invasive method to deter-
mine AT, based only on measurement of exercise inten-
sity(speed/power) and heart rate. It appears to validate well
against gold standard measurements made using invasive
lactate analysis, with some explanation for the variance
possibly attributable to the difficulty in obtaining an exact
AT value from lactate measurements. While the results
confirm the validity of the approach, there are a number of
possible enhancements which could be considered, including
independent optimisation of p1 and p2, employing a different
measure of exercise intensity (e.g. power, instead of speed),
use of a multi-step prediction error criterion, alternative fuzzy
set shapes, etc.

Even if the AT determination using the fuzzy interpolation
approach is not completely exact, the fact that it is non-
invasive and requires, for the most part, readily available
measurements, is a major advantage. In addition, the fact that
the composite model is based on dynamical data places much
less restriction on the type of experimental protocol required
for AT determination. While a relatively rigid test protocol
was employed for the data used in this study, necessitated
by the requirement for steady-state lactate measurement, the
fuzzy interpolation approach can be used with a much looser
test protocol, extending its potential use to any situation
where a protocol employing a generally monotonically in-
creasing exercise intensity profile is used (since the forward
and reverse dynamics of lactic acid production are different).
This increases the accessibility of AT estimation for recre-
ational athletes, for example for cyclists, runners, kayakers,
rowers, etc where test conditions are controlled i.e. where no
additional forces (e.g. wind, gradient, water current, etc) are
present, without the explicit need for an ergometer.
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