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ABSTRACT
The concept of a segmented wavemaker, in a two dimen-

sional tank, has been investigated analytically to see if it can
reduce the effect of parasitic evanescent waves in a wave tank.
Evanescent waves can contaminate test areas in tanks leading
to unreliable results, but are typically avoided by establishing
the test area two to three times the water depth away from the
wavemaker. This space requirement can be quite restrictive in
terms of the necessary tank size and, with the increasing interest
in off-shore renewable energy, many technology developers may
not be able to afford a workspace large enough to accommodate
a long tank. Previously, flexible wavemakers have been designed
to tackle the problem and, in some cases have proven very effec-
tive in eliminating evanescent waves at the wavemaker’s ”tuned”
frequency. However, flexible wavemakers have been shown to
have little benefit in modeling panchromatic seas. Discussed
here is the linear potential theory of a segmented wavemaker de-
signed to reduce the evanescent waves in a tank over a large
frequency range. Each segment in the segmented wavemaker is
programmed with an individual stroke, allowing the system to
best approximate the horizontal displacement of the fluid over
the depth of the water in a naturally occurring wave. A compar-
ison of the influence of evanescent waves created by segmented
wavemakers, piston and hinged paddle wavemakers, on the free
surface elevation is presented.

∗Address all correspondence to this author.

NOMENCLATURE

φ Velocity potential of fluid
ϕ Complex coefficient of of proportionality
u j Velocity of a body in the jth mode of motion
cn Coefficients of the nth term of the velocity potential
Zn(z) Functions describing the variation of the fluid’s motion

over depth for the nth term of the velocity potential
k Wavenumber for the progressive wave
mn Wavenumber for the nth evanescent mode
x Horizontal cartesian coordinate
z Vertical cartesian coordinate
Nn Normalisation function for the nth solution to the

dispersion relation
h Still water depth
c(z) Normalised profile of the segment’s displacement

over depth
v Velocity of the fluid
ω Angular frequency
g Acceleration due to gravity
η Free surface elevation
Zi, j Component (i, j) of the radiation impedance matrix
ρ Density of the fluid
v Generalised velocity vector
R(ω) Radiation damping
m(ω) Added mass
Fc Constrained radiation force
uq Velocity of the qth segment
s System’s independent speed
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F Radiation force vector
N Number of segments in a system
P Velocity transformation vector
Z Radiation impedance matrix
u Wavemaker’s velocity vector
Zc Constrained radiation impedance
Rc(ω) Constrained radiation damping
mc(ω) Constrained added mass
Sq Stroke of the qth segment

1 INTRODUCTION
The growing interest in off-shore energy has seen many new

research groups emerging in both academia and industry in re-
cent years. However, a number of these groups do not have
in-house tank testing capabilities and instead incur huge costs
when performing tank testing in off-site facilities, whereas, the
cost of housing a wave tank can be considerably less over time
and allows the group the freedom to preform frequent tank tests.
Consequently, many of these groups have found that progress is
suffering as a result. One difficulty preventing groups from hav-
ing an in-house wave tank is the lack of space necessary. In a
wave tank a considerable amount of space is not used for testing
devices but rather for allowing the wave field to resolve to a nat-
ural form. This paper aims to reduce the size of a wave tank by
investigating the methods used for generating waves.

A wavemaker forces a motion on the fluid which is differ-
ent from the fluid motion in a naturally occurring wave, lead-
ing to a distortion in the wave field near the wavemaker. This
distortion can be explained as an infinite number of evanescent
waves, which appear on the free surface as standing waves, su-
perimposed on the radiating wave. These evanescent waves are
so called as they vanish with distance away from the wavemaker.
The typical rule to avoid this distortion when performing tank
testing is to leave a distance of two to three times the water depth
between the wavemaker and the test area (Dean and Dalrym-
ple [1]). Furthermore, if the waves are being canceled out by
an active absorbing wavemaker at the far end of the tank, the
same provisions of leaving a distance of two to three times the
water depth between the test area and the wave absorber should
be adhered to. Since the motion of the fluid in a naturally occur-
ring wave decreases exponentially over depth, the perfect wave-
maker would be able to create a similar disturbance in the fluid.
However, this exponential is dependant on the wavenumber and
thus, the ideal wavemaker must be able to change its geometry
for each frequency. Banner and Peirson [2] used such a wave-
maker, based on a cantilever design, and Biesel and Suquet [3]
reported on a similar design using a flexible membrane actuated
at several points over the depth by geared wheels. In both cases,
however, the wavemakers were geometrically ”tuned” to a par-
ticular frequency. A CFD investigation into such a wavemaker
(Maguire [4]) showed that at either side of the system’s tuned

frequency the distortion increases quickly and that, over a large
range of frequencies, the design shows little to no benefit over
the simpler piston or hinged paddle designs.

Typically, to reduce the effect of the distortion, wave tanks
are designed to suit a particular type of testing; for instance, a pis-
ton wavemaker is used for modeling shallow water waves, where
the relative depth value, given as the wavenumber, k, times the
average water depth is kh < π . Similarly, a hinged paddle is used
to model deep water waves, where kh > π , (Dean and Dalrym-
ple [1]). The concept of the segmented wavemaker, as illustrated
in Figure 1, was proposed by Naito [5] as a method which can ap-
proximate the fluid motion in any naturally occurring wave. Pre-
sented in this paper is an investigation into the distortion of the
free surface from segmented systems, ranging from a single seg-
ment system to a ten segment system. The segments in a system
are all of equal lengths and operate only in surge mode; hence,
the single segment system is a typical piston wavemaker. The
hydrodynamic coefficients of each system are also presented and
the results of the segmented wavemaker are compared to those
of a single hinged paddle.
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FIGURE 1. (a): Piston wavemaker, (b): hinged paddle wavemaker
where the hinge is fixed above the tank floor, (c): hinged paddle wave-
maker with a virtual hinge located below the tank floor, (d): segmented
wavemaker.

2 Wavemaker theory
2.1 Linear potential theory

Wavemaker theory, first developed by Havelock [6], has
been extensively documented in the literature; here we will fol-
low the methodology used by Falnes [7]. This study considers
a two dimensional wave tank with a depth, h, of 0.6 m. The
cartesian coordinate system is used where the x-axis is horizon-
tal, while the wavemaker’s mean position is at x = 0 and the z-
axis points vertically upwards with the mean free surface level at
z = 0, as shown in Figure 1, where S0 denotes the wavemaker’s
stroke.

Using potential theory, the fluid’s velocity can be expressed
as the gradient of a scalar potential function called the velocity
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potential,

~v = ∇φ . (1)

The velocity potential, φ , is given as:

φ̂ =
6

∑
j=1

ϕ jû j, (2)

where u j is the wavemaker’s velocity in the jth degree of free-
dom, and the hat, ,̂ denotes the complex amplitude of a function.
The complex coefficient of proportionality, ϕ , which is of the
form:

ϕ = X(x)Z(z), (3)

must satisfy the governing equation and boundary conditions on
the fluid domain. As potential theory assumes that the fluid is
incompressible, then the law of conservation of mass gives the
governing equation as:

∇~v = 0, (4)

which is the Laplace equation. The relavent boundary conditions
on the fluid are:

• The bottom boundary condition on the tank floor:

∂ϕ

∂ z

∣∣∣∣
z=−h

= 0. (5)

• The free surface boundary condition:

ω
2
ϕ +g

∂ϕ

∂ z

∣∣∣∣= 0, (6)

where ω is the angular frequency and g is the acceleration
due to gravity. The free surface boundary condition has
been linearly approximated about the position z = 0.

• The boundary condition on the surface of the wavemaker:

∂ϕ j

∂x

∣∣∣∣
x=0

= c j(z), (7)

which has been linearly approximated about the position
x = 0. The function c j(z) is the profile of the wavemaker’s
normalised displacement, in the jth degree of freedom, over
the z-axis. In the case of the segmented wavemaker pre-
sented here, each of the segments is restricted to operating
only in surge, where j = 1, so from here on the subscript will
be dropped and the profile for each segment set as: c(z) = 1.

The general solutions to the Laplace equation, Equation (4), are:

X(x) = c+ekx + c−e−kx, (8)

and

Z(z) = c+ekz + c−e−kz, (9)

where k is the wavenumber. Considering that we are only inter-
ested in the wave propagating in the positive x direction away
from the wavemaker, i.e., no reflected waves, the second term in
Equation (8) can be ignored, giving X(x) = cekx. By applying the
bottom boundary condition, Equation (5), to Equation (9) and af-
ter carrying out some algebra (Falnes [7]) the function Z(z) can
be found as:

Z(z) = N−
1
2 cosh [k(h+ z)], (10)

where the normalisation constant N is:

N =
1
2

[
1+

sinh(2kh)
2kh

]
. (11)

By applying the free surface boundary condition, Equation (6),
to Z(z) the dispersion relation is derived:

ω
2 = gk tanh(kh), (12)

for which there is only one real solution, k. However, there is an
infinite number of imaginary solutions that satisfy the dispersion
relation, and these are the wavenumbers of the evanescent waves.
So the dispersion relation, Equation (12), can be more generally
writen as:

ω
2 =−gmn tan(mnh), (13)

where the first solution is m0 = ik. Similarly the general forms
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of Equations (10) and (11) are:

Zn(z) = N
− 1

2
n cos [mn(h+ z)], (14)

and

Nn =
1
2

[
1+

sin(2mnh)
2mnh

]
. (15)

Since all possible solutions must exist then ϕ can be expressed
as the superposition:

ϕ1 =
∞

∑
n=0

cnZn(z)emnx, (16)

where the first term in the summation coorespondes to the pro-
gressive wave and all the other terms represent evanescent waves.
The coefficient cn can be found by applying the wavemaker
boundary condition, Equation (7), to ϕ:

c(z) =
∂ϕ

∂x

∣∣∣∣
x=0

=
∞

∑
n=0

mncnZn(z), (17)

multiplying across by Z∗m(z), integrating over the z-axis and using
the orthogonal condition (Falnes [7]), the cn coefficient can be
found as:

cn =
1

mnh

∫ 0

−h
c(z)Z∗n(z)dz. (18)

The complex conjugate of a function is denoted by ∗. The com-
plex amplitude of the free surface is given by,

η̂ =− iω
g
[φ̂ ]z=0, (19)

The distortion of the free surface is obtained as the additional
amplitude of the free surface due to the evanescent waves,η̂evan,
as a percentage of the free surface elevation due to the radiating
wave, η̂0, where,

η̂evan =−
iω
g
[û1

∞

∑
n=1

cnZn(z)]z=0, (20)

and

η̂0 =−
iω
g
[û1c0Z0(z)]z=0. (21)

The distortion is then calculated from:

Distortion =
|η̂evan|
|η̂0|

× 100
1

. (22)

2.2 Radiation impedance

The component of the radiation impedance matrix due to the
wave being radiated by the wavemaker’s jth segment acting on
the ith segment is given as:

Zi j(ω) =−iωρ

∫ a

b
ϕ jnidz, (23)

where the segments surface is defined over the region
− a > z > − b, and ni is the unit vector pointing normally
into the fluid domain from the surface of the ith segment. The ra-
diation damping and added mass of the wavemaker can be found
from the real and imaginary parts of the radiation impedance re-
spectively as,

R(ω) = Re{Z(ω)}, (24)

and

m(ω) =
1
ω

Im{Z(ω)}. (25)

2.3 Equivalent constrained parameters

In order to be able to compare the hydrodynamic coefficients
of systems with different numbers of segments, the Newton-
Euler equations of motion with Eliminated Constraints (NE-EC)
are used, to reduce the number of degrees of freedom in the
multi-body system. This provides frequency dependant scalar
values of the hydrodynamic coefficients for each system, ref-
ered to here as equivelent constrained parameters, which are then
comparable to the hydrodynamic coefficients of a single body
system. The NE-EC is given (O’Cathain [8]) as:

Fc =
N

∑
q=1

∂uq

∂ s
F = PF. (26)
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Here, Fc is the N-segment system’s equivelent constrained force,
while uq is the velocity of the qth segment. The segmented wave-
maker’s independent velocity, s, is set to the velocity of the seg-
ment closest to the free surface, s = u1. The partial derivative,
∂uq
∂ s , is the velocity of the qth segment with respects to the inde-

pendent velocity. The force vector, F, is a column vector where
the qth component is the radiation force on the qth segment and
the velocity transform vector, P, is:

P =

(
∂u1

∂ s
, . . . ,

∂uq

∂ s
, . . . ,

∂uN

∂ s

)
. (27)

The segmented wavemaker’s generalised velocity vector is given
as:

v = PT s. (28)

The radiation force on the wavemaker system is obtained by the
product of the radiation impedance and the wavemaker’s veloc-
ity; in matrix form this is:

F = Zv. (29)

Similarly, this can be expressed in the form of the equivalent
constrained parameters:

Fc = Zcs. (30)

Substituting Equations (29) and (28) into Equation (26) and
equating with Equation (30), the equivalent constrained radiation
impedance, Zc, can be obtained as:

Zc = PZPT . (31)

Thus, the equivalent constrained hydrodynamic coefficients are
found to be:

Rc = PRPT , (32)

and

mc = PmPT , (33)

where R and m are the radiation damping and added mass matri-
ces, respectively.

In order to minimise the effect of the evanescent waves a
control system should be implemented, which uses feedback to
calculate the optimal velocities of the segmentes relative to each
other, i.e., the velocity transform vector P, to absorb any reflected
waves. However, as this paper makes the simplification of as-
suming that there are no reflected waves; the use of a control sys-
tem can be avoided by prescribing the qth segment with a stroke
that matches the displacement of the fluid in a progressive wave,
giving the stroke:

Sq =
cosh[k(h+ h(q−1)

N )]

cosh(kh)
. (34)

In the case of the segment closest to the free surface, where q= 1,
the stroke is: Sq = 1. Thus, the velocity of the qth segment is:

uq = iω
cosh[k(h+ h(q−1)

N )]

cosh(kh)
, (35)

and the velocity transformation vector, P, can be found to be:

P =

(
1, . . . ,

cosh[k(h+ (q−1)h
N )]

cosh(kh)
, . . . ,

cosh[k(h+ (N−1)h
N )]

cosh(kh)

)
.

(36)

3 Results
3.1 Wave field distortion

The distortion of the wave field, given in Equation (22),
is plotted as a function of the relative depth, kh, for ten differ-
ent segmented systems as well as the hinged paddle in Figure 2
where it is evident that, by increasing the number of segments
in the system, the wave field’s distortion can be significantly re-
duced. From Figure 2, it is clear that the more segments there
are in a system, the less benefit is achieved by including an ad-
ditional segment. However, it must be appreciated that the three
segment system offers very little benefit over the simpler design
of the hinged paddle system for kh > 3. However, for kh < 1.3,
the distortion caused by the single segment system is less than
10%, agreeing with the common practice of using a piston sys-
tem for modeling shallow water waves and a hinged paddle for
modeling deep water waves.
The normalised distance from the wavemaker of 10%, 5% and

1% distortion for all the wavemaker systems are shown in Fig-
ures 3, 4 and 5, respectively. What is clear from Figures 3, 4
5, and 2 is that the hinged paddle, and some of the segmented
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FIGURE 2. The distortion of the free surface at x = 0 as a function of
relative depth, kh.

wavemaker systems have an optimal, or ”tuned”, frequency. This
is due to some of the evanescent waves undergoing a phase shift
of π radians. This phase shift is caused by a change of sign in
the cn coefficient, resulting in destructive interference. By im-
plementing a control system, it may be possible to induce this
phase shift for a range of frequencies by controlling the stroke of
each segment. Effectively, this could use some of the evanescent
waves to cancel out the other evanescent waves, thus, reducing
the distortion for a larger range of frequencies.

FIGURE 3. The normalised distance, x/h, from the wavemaker,
where 10% distortion occurs over the range of relative depth, kh, val-
ues.

3.2 Hydrodynamic coefficients
The equivalent constrained radiation damping, given by

Equation (32), is plotted as a function of the relative depth in
Figure 6 for all the wavemaker systems. It can been seen that,
the more segments there are in the system, the harder it is for the
wavemaker to radiate large amplitude waves. This is due to the
wavemaker displacing less fluid and is accounted for when cal-

FIGURE 4. The normalised distance, x/h, from the wavemaker,
where 5% distortion occurs over the range of relative depth, kh, values.

FIGURE 5. The normalised distance, x/h, from the wavemaker,
where 1% distortion occurs over the range of relative depth, kh, values.

culating the distortion in Figures 2 to 5 by adjusting the stroke
of each system so that the amplitude of the radiated wave equals
that generated by a single segment system with a unit stroke.
As expected, the equivalent constrained added mass of the wave-

maker system, Equation (33), which is related to the distortion
of the wave field, decreases as more wavemaker segments are
included; this is illustrated in Figure 7.

3.3 Hydrodynamic model verification
In order to show that the hydrodynamics were calculated ac-

curately according to linear potential theory, the horizontal ve-
locity components, due to the first 150 terms of Equation (16),
of the fluid on the surface of the wavemaker, for a wave of:
k = 12 m−1, have been plotted against the z-axis in Figure 8 for
the single, two, and ten segment wavemaker systems. It can be
seen in Figure 8 that the fluid’s horizontal velocity is close to that
of the wavemaker. In fact, if the infinite number of evanescent
waves were to be included when calculating the velocity poten-
tial in Equation (16), the fluid’s horizontal velocity at x = 0, and
that of the wavemaker, would be equal. All the results presented
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FIGURE 6. Constrained radiation damping as a function of relative
depth, kh.

FIGURE 7. Constrained added mass as a function of relative depth,
kh.

in this paper, except for Figure 8, have been calculated from a
truncated velocity potential limited to the first fifty terms of the
summation in Equation (16). The ratio of the free surface ele-
vation amplitude at the wavemaker, including the first ten, fifty
and one hundred terms, to the free surface elevation amplitude
caused by the radiated wave, has been plotted as a function of
frequency for both the single and ten segment systems in Fig-
ure 9. It is evident from Figure 9 that just including the first ten
terms of the summation in Equation (16) is not enough to provide
an accurate calculation of the velocity potential in the case of the
single segment system; however, it is also clear that there is little
point in including more than the first fifty terms.

4 Conclusion
The quality of the wave field created by a segmented wave-

maker consisting of one to ten segments was investigated. The
level of distortion was assessed by the amplitude of the evanes-
cent waves as a precentage of the amplitude of the radiating
wave. The results presented here show clearly that, by increasing

FIGURE 8. The horizontal velocity components for: (a) single, (b)
two and (c) ten segment system, plotted over depth.
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FIGURE 9. The absolute value of the ratio of the free surface eleva-
tion including the first ten, fifty and one hundred terms of the velocity
potential to the free surface elevation due to the radiated wave at x = 0
as a function of frequency, for both the single and ten segment system.

the number of segments in the wavemaker, the distortion of the
wave field can be greatly reduced. However, the benefit of an ad-
ditional segment decreases as more segments are added. The re-
sults presented show that, for deep water waves, the distortion to
the wave field created by the simple hinged paddle wavemaker is
between that created by the more complicated two and three seg-
ment wavemakers. However, it is worth noting that the segments
are restricted to operating in surge. Following on from this, fur-
ther improvements could be made to the segmented system, such
as allowing each segment to operate in pitch as well as surge, and
optimising the lengths of the individual segments, both of which
could make the segmented wavemaker much more effective.
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[8] ÓCatháin, M., Leira, B. J., Ringwood, J. V., and Gilloteaux,
J.-C., 2008. “A modelling methodology for multi-body sys-
tems with application to wave-energy devices”. Ocean En-
gineering, 35(13), Sept., pp. 1381–1387.

8 Copyright © 2014 by ASME




