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An Information-Based Dynamic Extrapolation Model
for Networked Virtual Environments
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Various Information Management techniques have been developed to help maintain a consistent shared virtual world in a
Networked Virtual Environment. However, such techniques have to be carefully adapted to the application state dynamics and
the underlying network. This work presents a novel framework that minimizes inconsistency by optimizing bandwidth usage to
deliver useful information. This framework measures the state evolution using an information model and dynamically switches
extrapolation models and the packet rate to make the most information-efficient usage of the available bandwidth. The results
shown demonstrate that this approach can help optimize consistency under constrained and time-varying network conditions.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Systems—distributed appli-
cations; H.1.1 [Models and Principles]: Systems and Information Theory—information theory; I.6.5 [Simulation and Mod-
eling]: Model Development—modeling methodologies; I.6.8 [Simulation And Modeling]: Types of Simulation—distributed

General Terms: Measurements, Performance, Theory
Additional Key Words and Phrases: Consistency, collaborative virtual environments, distributed interactive applications, dis-
tributed interactive simulation, networked multi-player computer games, networked virtual environments, information man-
agement techniques

ACM Reference Format:
Zhang, X., Ward, T. E., and McLoone, S. 2012. An information-based dynamic estrpolation model for networked virtual environ-
ments. ACM Trans. Multimedia Comput. Commun. Appl. 8, 3, Article 27 (July 2012), 19 pages.
DOI = 10.1145/2240136.2240140 http://doi.acm.org/10.1145/2240136.2240140

1. INTRODUCTION

With the rapid development of computation and networking technologies, Networked Virtual Environ-
ments (NVEs) have evolved to a group of software systems that allow multiple participants to collab-
orate and interact with each other simultaneously in a shared virtual environment, even if they are
from geographically distant separate locations. Significant deployments of NVEs include distributed
military simulations (e.g., SIMNET [Calvin et al. 1993; Miller and Thorpe 1995], DIS [IEEE 1998],
HLA [IEEE 2000]), academic virtual networked communities (e.g., DIVE [Frécon and Stenius 1998],
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NPSNET [Capps et al. 2000]), and large-scale online entertainment systems (e.g., Ultima-Online [Ori-
gin Systems 1997] and Quake [Kushner 2002]).

Generally, each human-user in an NVE controls a virtual entity (or avatar) through a host machine
to interact with others in the simulated virtual environment [Delaney et al. 2006]. The entities are
represented by a number of state variables (position, velocity, etc.). To maintain a consistent shared
view of the environment, which is vital for meaningful interactions among the participants, the local
controlling host periodically notifies the state changes of the corresponding entity by sending synchro-
nization messages (or update packets) across the underlying communication network to the remote
host machines. However, the data transmission is subject to finite network bandwidth and non-zero
network latency, which make absolute consistency impossible [Capps and Stotts 1997; Roehle 1997].
If the data is being transmitted at a rate that exceeds the available bandwidth of the link between
the local and remote host machines, the packets will be queued or even dropped, causing significant
increases in network latency and packet loss. In this case, the remote host has to maintain its ver-
sion of the virtual world with out-of-date state information and suffer from severe inconsistency. This
“Consistency-Throughput Trade-off” indicates that it is impossible to achieve a highly consistent and
dynamic world and low bandwidth usage at the same time [Singhal and Zyda 1999]. In this article,
we focus on the entity state distribution of NVEs where the avatar motion plays a central role and the
periodic state updates constitute the major part of the network traffic.

To deal with the tradeoff, one important group of consistency maintenance mechanisms, collectively
known as Information Management (IM) techniques have been proposed [Singhal and Zyda 1999; De-
laney et al. 2006; Marshall et al. 2008]. These techniques introduce a form of controlled inconsistency
by reducing the message transmission rate in order to minimize latency caused by an overloaded net-
work. On the remote hosts, the intermediate entity motion between two updated states is extrapolated
using some user behavioral model (notable examples include polynomial dead reckoning (DR) [IEEE
1998; Pantel and Wolf 2002b] and advanced statistical modeling techniques [Pantel and Wolf 2002b;
Hanawa and Yonekura 2006; McCoy et al. 2007]). In spite of the inconsistency introduced by the re-
duced number of updates, the reduction in network load should in theory result in reduced latency,
which should in turn improve the overall consistency.

However, IM techniques could have a negative impact on consistency maintenance unless carefully
adapted to the underlying network conditions and the participating user behavior. Existing works
only focus on either one of these two factors. For example, adaptive extrapolation models have been
proposed [Lee et al. 2000; Delaney et al. 2003; McCoy et al. 2005], in which an active extrapolation
equation that best suits the specific user behavior is dynamically chosen from a pool of candidates
solely based on application layer criteria such as local prediction error or object’s goal. Typically, differ-
ent extrapolations require various types of data (such as entity position and velocity) to be transmitted.
But the influence of changing the extrapolation model on the network traffic and, in turn, the overall
consistency is not considered. In contrast, in order to optimize consistency, Marshall et al. [2008] tune
the data transmission rate of an IM technique to match the available bandwidth. In this way, the band-
width usage is maximized to control the inconsistency introduced by insufficient updates, and in the
meantime the inconsistency caused by increased latency and packet loss on an overloaded network is
avoided. However, the maximized bandwidth usage alone cannot guarantee an optimized consistency
without considering the suitability of the prediction model for extrapolating the specific user behav-
ior. None of the existing works combines both application and network layer factors in optimizing
consistency.

In our previous work, a new approach to examine consistency maintenance mechanisms from the
perspective of information theory has been introduced. This method measures the amount of infor-
mation carried by the state derivatives in an update message that can be used to extrapolate remote
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entity motion [Zhang et al. 2008, 2009]. Concepts such as Entropy and Mutual Information are em-
ployed to examine the user behavior from the perspective of predictability and to measure the efficacy
of the network traffic generated in delivering such predictability to the remote model. The advantage
of such information-based measurement is that it does not require the assumption of a user behavior
model or pattern, and provides a general metric of the user motion predictability. The inconsistency
caused by the reduced updates and latency is modeled as information loss.

This work presents the design of a novel Information-Based Dynamic Extrapolation Model for IM
techniques. Using the information model as performance evaluation, the dynamic extrapolation model
first examines the capacity of the transmitted data to encapsulate information about the user behav-
ior, based on which the extrapolation method and the update packet rate are dynamically adjusted
by the local host such that IM techniques can achieve the maximum usage of the available network
bandwidth, and in the meantime deliver as much information as possible about the true entity motion
to the remote host. Such operations are transparent to the remote host. Instead of proposing a more
accurate prediction model, the purpose of this work is to demonstrate a novel information perspective
to regulate consistency maintenance in NVEs, which enables the proposed model to combine both ap-
plication and network layer factors when adjusting IM parameters and to provide a more thorough
optimization of IM techniques. Results collected from experimental studies on recorded user motions
from representative NVE scenarios demonstrate that the proposed approach can accurately switch
between extrapolation models and modify the packet generation rate to minimize inconsistency, even
with changing network conditions.

The remainder of this article is organized as follows. In Section 2, IM techniques are analyzed using
an information model, and the motivations for the proposed technique are demonstrated. The oper-
ation of the dynamic extrapolation model is detailed in Section 3. In Section 4, the dynamic extrap-
olation model is demonstrated through experiments on two user motions that are representative of
typical entity movement in NVEs, and the results show that the proposed approach can appropriately
switch between extrapolation models to minimize inconsistency. Finally, Section 5 offers conclusions
and discusses implications.

2. AN INFORMATION MODEL FOR IM TECHNIQUES

The information model for IM techniques [Zhang et al. 2008, 2009] provides a quantified metric of the
temporal dependence within the entity state that makes future states predictable from the current
motion status. This metric is independent of any presumed motion model. For the convenience of the
reader, concepts in information theory and the information model are briefly introduced. All the def-
initions and methods here are given in discrete terms, as state variables of all entities in a virtual
environment, however vivid, are finite and discrete.

2.1 Information Theory Concepts

Consider a random variable X with m possible states {x1, x2, . . . , xm}, each with probability p(xi). The
uncertainty of X is defined by the entropy H(X) of the variable [Cover and Thomas 2006], as shown
in (1):

H(X) = −
m∑

i=1

p(xi) · log p(xi). (1)

Entropy measures the degree of complexity and unpredictability of the variable. In an intuitive
illustration, entropy is the “quantity of surprise when a measurement specifies one particular value
xi”. If the binary logarithm is used, H(X) indicates the average number of binary questions needed to
determine the value of X, namely the data in bits to describe the variable. Consider an extreme case
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where X is completely determined to be xi, that is, p(xi) = 1 and all other probabilities are zero. We
have H(X) = 0, which means no extra data is required. On the other extreme, if X is equiprobable
with a uniform probability p(xi) = 1/m for all possible states, it is impossible to predict this completely
random variable since no state is more probable than the others. We have the maximal entropy H(X) =
log m.

For two interdependent variables X and Y with possible states {x1, x2, . . . , xm} and {y1, y2, . . . , yn} re-
spectively, knowing Y may also give some knowledge about X to reduce its uncertainty. The remaining
uncertainty of X after knowing Y is defined as conditional entropy:

H(X|Y ) = −
m∑

i=1

n∑
j=1

p(xi, yj) · log p(xi | yj), (2)

where p(xi, yj) is the joint probability and p(xi | yj) is the conditional probability. The difference in
entropy of X before and after knowing Y denotes the predictability about X provided by Y . Thus, the
mutual information I(X; Y ) is defined as

I(X; Y ) =
∑
xi ,yj

p(xi, yj) · log
p(xi, yj)

p(xi) · p(yj)
= H(X) − H(X | Y ). (3)

Mutual information measures the dependence between X and Y and how much information about X
can be learned from Y so that less data are required to determine X. The unconditional entropy H(X)
is also known as auto-mutual-information, namely I(X; X) = H(X).

To apply information theory to NVEs, the probability functions must be estimated from discrete data.
It should be noted that there exist sophisticated probability estimation algorithms, such as adaptive
partitioning methods [Fraser and Swinney 1986] and Kernel Density Estimation algorithms [Moon
et al. 1995; Steuer et al. 2002]. However, the accuracy of such algorithms depends largely on careful
selection of parameters such as sample space partitioning and kernel functions, which is a non-trivial
process that requires significant research efforts. For the purpose of this paper to demonstrate the
concept of using information metrics in optimizing IM techniques, a simple approach [Steuer et al.
2002] is employed. In sampled data x(k) and y(k) of size N, we have

p̂(xi) = ri

N
, p̂(xi, yj) = rij

N
, (4)

where ri is the number of cases that x(k) = xi, and rij is the number of occurrences that x(k) = xi and
y(k) = yj at the same time. An additional correction term has to be applied to (3) to eliminate the
“Finite-size Effect” [Steuer et al. 2002]:

I(X; Y ) ≈
∑
xi ,yj

p̂(xi, yj) · log
p̂(xi, yj)

p̂(xi) · p̂(yj)
− mxy − mx − my + 1

2N
, (5)

where mx, my denote the number of unique state values in x(k) and y(k), and mxy is the number of unique
values of [x(k), y(k)] combined as a vector variable. To make a good mutual information estimation, the
sample size N must be considerably larger than the number of possible state combinations [Roulston
1999].

2.2 Information Model

The information model [Zhang et al. 2008, 2009] regards each message as an information carrier that
delivers information about the true entity motion to the remote host to improve the certainty of the
predicted state model. The information comes from the predictability encapsulated in the state deriva-
tives in the message.
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For a true entity state motion x (k) = {x (1), x (2), . . .}, where x (k) is the entity state (position) at the
kth simulation step, a message u(k) generated at the simulation tick k generally consists of the current
state and possibly additional state derivatives, depending on the extrapolation model under use. For
example, in linear extrapolation, an update packet contains the current position and velocity of the
object, that is, u(k) = [x (k), v(k)]. In IM techniques, a message is responsible for extrapolating states
at multiple steps in the future through the extrapolation model. The extrapolation model is typically a
deterministic mapping f (u(k), τ ) from the parameters in u(k) to the modeled state x̂ (k + τ ) at τ steps
later. To measure the information utilization of the prediction model, mutual information I(x; x̃τ ) is
defined between the true entity state x (k) and the prediction result x̃τ as

I(x; x̃τ ) = I(x (k); x̃τ (k))

=
∑

x (k),x̃τ (k)

pxx̃τ
(x (k), x̃τ (k)) · log

pxx̃τ
(x (k), x̃τ (k))

px(x (k)) · px̃τ
(x̃τ (k))

, (6)

x̃τ (k) = { f (u(1), τ ), f (u(2), τ ) . . .} for k > τ .

Notice that the message u(k) acts as an information carrier that encapsulates the predictability of
the true entity motion and conveys such predictability to the extrapolation model to build the remote
model. The mutual information in (6) measures the average information from the messages utilized
by the prediction model in producing the prediction result at a particular prediction span τ . In the
case where the prediction span τ = 0, I(x; x̃0) is essentially the auto-mutual information, and thus the
current state can be determined with absolute certainty. For τ > 0, the entity motion in the future is
generally less related to the current motion status. But the deterministic nature of the extrapolation
model ignores the potential possibilities of the future states other than the predicted value. Therefore,
only part of the uncertainty of the future state to be extrapolated could be eliminated and the extrapo-
lated information declines with increasing prediction spans. To keep the remaining uncertainty in this
article a tolerable level, the local host must keep sending update messages to the remote host.

The amount of information utilized is subject to the suitability of the extrapolation model in exploit-
ing predictability in user behavior. This predictability comes from user behavior patterns, real world
physics, and environmental constraints. For example, in a car racing game when an object is moving
steadily along a straight lane, the information I(x; x̃τ ) of the 1st-order extrapolation is expected to be
high because the entity velocity remains the same, and the position and velocity value in the message
is sufficient to determine the future entity state using linear extrapolation. In other words, high in-
formation value of the extrapolation model means strong predictability and low uncertainty about the
estimated state.

Aside from the extrapolation model, network conditions also constrain the utility of the extrapolated
information within the functioning period T f of the message, which is the time interval between two
packet arrivals on the remote host. Figure 1(a) illustrates the situation for general NVE scenarios with
the information extrapolated from a message for increasing prediction spans. Assuming a fixed latency
for the clarity of illustration, the length of the functioning period of a message is the constant packet
generation interval of the NVE. Therefore, the average rate of utilized information per simulation time
step is obtained by averaging the mutual information I(x; x̃τ ) for all the prediction spans within the
functioning period, as in (7):

MIu =
∑

τ∈T f
I(x; x̃τ )

T f
. (7)
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(a) (b)

Fig. 1. Illustration of (a) the information utilization in IM techniques and (b) the information trade-off between packet size and
update rate.

As shown in Figure 1(a), the true entity motion always has the perfect information rate H(x), but
this is reduced to the extrapolated information rate MIu on the remote host by IM techniques. The
down-sampling rate, extrapolation model, and network conditions are the three factors that introduce
information loss and cause inconsistency: the imperfect extrapolation model only utilizes a part of the
predictability in the user motion; network latency makes the information in the messages outdated by
the time they arrive on the remote host; network bandwidth constrains the packet update rate, and a
low update rate makes a message suffer from more information decay before the next message arrives.
From the information perspective, to maintain consistency using IM techniques, the extrapolated in-
formation rate must be optimized under the constraints of these three factors.

In the case where an IM technique uses a fixed extrapolation model, the optimal update rate can
be determined such that the overall data transmission rate matches the available network bandwidth,
and the functioning period of the messages is reduced to minimize information loss. However, the issue
arises when the IM technique can choose from several prediction methods to optimize the delivered
information rate. Since continuous entity states that evolve with the passage of time are predictable
from contextual dynamic, the impact of a lower update rate could be compensated by including more
information in the packet to, possibly, reduce prediction error. On the other hand, a higher update rate
could also make up for a reduced amount of information per packet. Consider two popular polynomial
equations for extrapolation, namely the linear and 2nd-order equations. The 2nd-order extrapolation
model uses the additional acceleration and is likely to produce higher prediction precision, because
physical laws are simulated in most continuous entity movements in NVEs [Singhal 1996; Lee et al.
2000; McCoy 2007]. But the update rate must be reduced accordingly to maintain the optimal data rate
under the larger packet size. Figure 1(b) illustrates the situation by comparing the functioning periods
of the two extrapolations. Although the 2nd-order model extrapolates more information than the 1st-
order equation, the extra functioning period due to the lower packet rate and higher latency due to the
larger packet size make it suffer more from out-of-date and declined information while the 1st-order
extrapolation has received a new packet with updated and higher information rate. Whether or not
the faster update rate of the 1st-order extrapolation can compensate for the lack of the acceleration
information depends on the information decay of the two extrapolations and the locations of their
functioning periods. In other words, IM techniques must adapt both packet rate and extrapolation
models to the user behavior and network conditions to optimize the overall information rate.

In the next section, an information-based extrapolation scheme that dynamically adjusts both ex-
trapolation model and update packet rate to optimize the remote information rate is discussed.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 8, No. 3, Article 27, Publication date: July 2012.
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Fig. 2. Illustration of the Information-Based Dynamic Extrapolation Model.

3. OVERVIEW OF THE INFORMATION-BASED DYNAMIC EXTRAPOLATION MODEL

The technique proposed here is designed to optimize overall consistency of a Peer-to-Peer or Client/
Server NVE that uses IM techniques from an information perspective. In such scenarios, the “last mile
link” of the users Internet connection is typically the bottleneck that constrains the consistency main-
tenance the most. This Information-Based Dynamic Extrapolation Model operates by monitoring the
bottleneck link bandwidth and end-to-end latency to adjust the packet rate and extrapolation model
according to the estimated remote information rate. By dynamically switching the extrapolation model
and packet rate, the proposed technique not only maximizes the usage of the available bandwidth, but
also results in more efficient data transmission from an information perspective.

The diagram in Figure 2 presents the operation of the Information-Based Dynamic Extrapolation
Model. The model is a closed-loop consistency control technique that operates in an Observation-
Feedback-Adjustment manner. The information model works as the “forward observation” that eval-
uates performance of the extrapolation models, based on which one best suits the user behavior and
the underlying network conditions is selected through the “feedback control” mechanism. The model
consists of the following five major components.

(i) A pool of i candidate extrapolation models given by M = {m1, m2, . . . , mi} and state derivatives
U = {u1, u2, . . . , ui} used for these prediction models, respectively. The set of extrapolation models
also defines the size of the update packets PS = {ps1, ps2, . . . , psi} for each model. A default active
extrapolation model m0 is chosen from M for the application to start with.

(ii) A runtime estimation scheme that monitors network conditions on the application layer’s “logical
connection” for each user. The network condition estimation can be any algorithm that gives the
available bandwidth AB on the bottleneck link and the one-way network latency La from the local
host to the remote host. This is a relatively independent component and works as an interface of
the proposed technique to the underlying network. It should also be noted that since the network
conditions are estimated for each logical connection separately, the dynamic extrapolation model
operates on a per-user basis. It allows for multiple hosts under heterogeneous Internet to take
different strategies to optimize consistency according to their own situations.

(iii) An update rate control based on the available bandwidth. The optimal update rate P Ri for each
candidate is determined so that the bandwidth usage is maximized, that is, P Ri = AB

psi
.

(iv) An information model that characterizes information utilization of each extrapolation equation.
The information model is the core of the proposed technique, as it examines the capability of
each prediction model to extrapolate information about the true entity motion to build the remote
model, and how the extrapolated information decays with time. Along with the current network
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condition estimation and the optimal update rate, the remote information rate MIu,i that each
extrapolation model mi can produce is estimated by (7).

(v) An extrapolation selection based on the estimated information rate chooses whichever extrapola-
tion model that produces the highest information rate under the current network conditions as
the current active extrapolation m∗:

m∗ = arg max
mi

MIu,i. (8)

Ideally, in the face of network condition changes, a switch of the active model will always occur
when one of the inactive models is seen to be outperforming the rest. However, there are two con-
cerns that have to be considered for smooth user perception in practice. Firstly, the extrapolation
model change is deactivated within a time-out TO after the previous model switch to avoid ex-
cessive switchings in response to transient network condition fluctuations. This can also be done
by employing a smoothing operator to the network condition measurement. Second, to avoid a
sudden change in consistency level at the moment k0 of extrapolation model switch, a gradual
convergence algorithm described in (9) is defined for a smooth conversion to the new active model:

x̂(k0 + k) =
(

1 − k
TC

)
· m−(u−) + k

TC
· m+(u+) for k ≤ TC , (9)

where TC is the convergence period in simulation steps, m−(u−) is the state predicted for the
current step k0 + k by the previous model using the last received message before the switch, and
m+(u+) is the prediction made by the new active model using the most recently arrived message.

It should be noted that in real NVE systems, critical events (such as car crashing in a cay racing game
or explosions in a virtual battlefield simulation) are updated by non-periodic event updates, which are
relatively rare in terms of network traffic caused. These events will be communicated as they occur,
regardless of the bandwidth and update rate settings. Changes in network conditions caused by non-
periodic event transmissions are detected by the network estimation algorithm so that the operation
of the framework is always adjusted according to the actual bandwidth used for transmitting periodic
updates. Due to the scope of this article, this is not shown in our results.

On a final remark, the information model is trained in an off-line manner from pre-recorded tra-
jectory on the local host and is transparent to the remote host. Thus, the framework is easy to be
integrated in the current IM techniques. Information needed for notifying the switching decision to
the remote host is negligible compared to the state update traffic and not considered in the following
discussion.

In the next section, for the purpose to illustrate the proposed framework, the performance of the
Information-Based Dynamic Extrapolation Model is evaluated through experiments run on two user
motions that are representative of those entity motions for which higher-order extrapolations extrapo-
late more information, and there is the trade-off between “small-packet-fast-update” and “large-packet-
slow-update” schemes as illustrated in Figure 1(b). The results presented demonstrate that the pro-
posed technique can accurately choose the extrapolation model that gives the best information rate
and consistency.

4. EVALUATION AND DISCUSSIONS

The Information-Based Dynamic Extrapolation Model is implemented on user motions from two repre-
sentative NVE scenarios with simulated network conditions. For the purpose of this work to optimize
extrapolation model selection based on the information metric, the network condition estimation is
implemented merely as two control parameters, namely bandwidth and latency, instead of any par-
ticular estimation algorithm. This simple approach does not affect the applicability of the dynamic
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 8, No. 3, Article 27, Publication date: July 2012.
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Fig. 3. Plain views of part of the environment for (a) the FPS game and (b) the racing game.

extrapolation model to a real Internet environment. The information model just needs the available
bandwidth and latency to measure the information loss in transmitting data over a constrained net-
work connection. The specific estimation algorithm, however, is independent of the operation of the
dynamic extrapolation model and is therefore not discussed in detail in this article.

4.1 Experiment Set-Up

The two entity motion datasets used to evaluate the proposed framework are generated by a multi-
player First-Person Shooter (FPS) game [McCoy et al. 2007] and a racing game [Marshall et al. 2006]
developed using the commercially available Torque Game Engine. The plain views of the two game
environments are shown in Figure 3. In the FPS game (Figure 3(a)), an object can move around almost
the whole space, except the water area denoted by blue areas. The goal of the players is to disable the
opponent (programmed robots) by firing weapons. The disabled player is reborn at a random location
and the game resumes. The motion is recorded at 10Hz for 1600s, and is then re-sampled at 50Hz by
interpolating the recorded data using cubic spline interpolation. The re-sampling allows for evaluation
of the proposed approach at higher update rates so that its efficacy to general NVEs could be shown
through the results. We consider this data representative of those applications in which the simulation
of realistic physics plays a key role, since the cubical interpolation provides natural continuity. In
the racing game scenario (Figure 3(b)), a player can only run within the designed course denoted by
the yellow lane, and the goal is to be the first player to reach the finish point. The racing motion
is recorded in the game at 50Hz for 1600s. The two scenarios in Figure 3 are used to demonstrate
that the differences in user behavior under various gaming scenarios and rules can be reflected in our
information metrics. For illustrative purposes, the results presented are based on the x-coordinate x (k)
of the recorded motions.

The first half of the motions are used to build information assessments using (6) to measure the
characteristics of the entity motions and the candidate extrapolation models. The second half of each
motion is used as the test data to evaluate the dynamic extrapolation model. The training and test
data each has a sample size of N = 40000, which is considerably larger than the number of unique
entity states of 2226 and 1557 in the two games, respectively. The relative error ratio of the error
term in (5) to the estimated mutual information is kept below 5% throughout the experiment. Given
considerably larger amount of data, the information analysis can readily be applied to multidimen-
sional data in a similar manner, but at the cost of increased computation burden. For the scenarios
given in this work, the transition to a 2D dataset would require a sample size and computations about
3 orders of magnitude larger than the current settings. This seems bad, but the actual computation
could be much lower than that because in an NVE environment the states that are visited by an object
are typically sparse. The state space could be small. Also, computation cost can be reduced by using
some advanced estimation methods mentioned in Section 2. In addition, the offline training process is
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Table I. Network Condition Settings
Starting time (s) 800 880 960 1040 1120 1200 1280 1360 1440 1520

AB (kbps) 15 8 2 1 7 8 10 12 10 10
Lf (ms) 20 100 200 400 500 800 800 600 120 100

PPS 1st-order 30 22.7 5.7 2.8 19.9 22.7 28.4 30 28.4 28.4
2nd-order 30 19.2 4.8 2.4 16.8 19.2 24 28.8 24 24

La 1st-order 43 144 376 752 550 844 835 629 155 135
(ms) 2nd-order 48 152 408 816 559 852 842 635 162 142

Fig. 4. Packet structure for the two extrapolation models.

conducted separately and thus the increased computation does not affect the run-time performance of
the dynamic extrapolation.

The network conditions in the experiments are set up for a simplified but representative network
environment for NVEs transporting synchronization messages using UDP. Typically, NVE participants
are connected to each other via their residential broadband connection, also known as the “last mile
link”, and the core of the Internet, which has a much higher bandwidth. Therefore, the upstream link
of the broadband connection, with the typical bandwidth value around 100kbps [Marshall et al. 2008],
is the bottleneck link for this network. Considering the possibly multiple participants behind one last
mile link due to the large number of users involved in an NVE and cross traffic from other applications
such as internet video, the available bandwidth AB for a single NVE instance is set to be no more than
20kbps. The maximum update packet rate of the applications is 30 Packet Per Second (PPS). These
settings are in line with general NVE traffic [Färber 2002; Feng et al. 2005; Harcsik et al. 2007].

As the dynamic extrapolation model operates by controlling the overall data rate to match the avail-
able bandwidth, there should be no queuing packet on the logical connection for the NVE instance
on the bottleneck link. As shown in (10), the one-way network latency La from the local host to the
remote host is modeled as the sum of packet transmission delay LT on the bottleneck link and a delay
Lf in passing the packets through the network nodes outside the last mile link. Lf includes all other
factors in the overall latency except LT , such as bit propagation delay subject to the speed of light and
processing delay through hops in the core of the Internet. These elements in Lf are independent of the
bottleneck bandwidth changes and are therefore collectively modeled as a fixed delay in the experiment

La = LT + Lf = psi

AB
+ Lf . (10)

The upper panel of Table I shows the changing network conditions given by the two control param-
eters AB and Lf in the test simulation, reflecting wide variation of the realistic Internet [Pantel and
Wolf 2002a; Armitage 2003; Claypool 2005].

The rest of the experiment is set as follows. The set of candidate extrapolation models (as shown in
(11)) consists of two widely employed models: 1st and 2nd-order dead reckoning. The motion status pa-
rameters are entity position x, velocity v for the 1st-order extrapolation and an additional acceleration
a for the 2nd-order extrapolation, each recorded in a data unit of 8 bytes. Considering the overhead
in an UDP packet, the packet sizes for the two extrapolation models are respectively 44 bytes and
52 bytes (Figure 4). Such settings reflect the reality that periodic state updates are the dominating
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Fig. 5. Extrapolated information by the two candidate models for (a) the FPS motion and (b) the racing motion.

component of network traffic, and are representative of typical state updates in NVEs [Färber 2002;
Feng et al. 2005; Harcsik et al. 2007]. The optimal update rates and the overall latencies under each
of the network condition setting are summarized in the lower panel of Table I.

M = {m1 = 1st-order DR, m2 = 2nd-order DR}
m0 = m2

U = {u1 = [x, v], u2 = [x, v, a]} (11)
PS = {ps1 = 44 bytes, ps2 = 52 bytes}.

The determination of the model switching time-out TO mostly relies on the specific connection. In
typical residence broadband connections, a short change that lasts for only seconds is regarded as tran-
sient [Marshall et al. 2008]. Therefore, TO is set to be 5 seconds in our experiment. The convergence
period TC is arbitrarily set to be 2 seconds in this conceptual experiment, since there is no well-accepted
threshold for user perception of model convergence.

4.2 Extrapolation Selection Based on the Information Measurement

The key component of the dynamic extrapolation model is the information model that serves as a per-
formance measurement to pick one of the candidate prediction models delivering the highest informa-
tion rate to the remote host under changing network conditions. The information model characterizes
how much of the predictability of the true motion can be extrapolated from state derivatives by an
extrapolation model.

Using (6), the information extrapolated by each of the two candidate models for increasing prediction
spans is compared in Figure 5. The extrapolated information in bits measures the amount of knowledge
that is used by the extrapolation model to predict an entity state with a certain level of certainty
or confidence. Therefore, for a specific scenario, a higher extrapolated bit value indicates a higher
probability that the predicted value is correct (i.e., the same as the true entity state). This is because
that based on the information acquired from the latest update and the patterns in the user behavior,
the possible value of the true state is narrowed down to a very limited set, which generally leads to
very high fidelity.

For typical user motion from the FPS game (Figure 5(a)), an average amount of 10.2 bits data is
needed to fully determine an entity state, among which over 9 bits can be extracted from the current
2nd-order packet using standard 2nd-order DR to estimate a future state at 200 ms later. Because of the
information that is missing, the future state can never be determined completely by the extrapolation
equation, and thus inconsistency arises from uncertainty. As expected, including the additional acceler-
ation component does give the 2nd-order extrapolation some advantage over the 1st-order equation. The
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Fig. 6. Extrapolation choices based on information rate under varying network conditions for (a) the FPS motion and (b) the
racing motion.

2nd-order extrapolation utilizes more information in most of the prediction spans presented, indicat-
ing that higher-order derivative provides a notable amount of knowledge about the entity states in the
near future. However, the information extrapolated by the 2nd-order equation decays faster because of
the sensitivity of the higher-order derivative to the rapid changes in motion status of the player, who
moves in a wide territory chasing a moving target (Figure 3(a)). Therefore, the 1st-order extrapolation
is generally expected to be preferred for predicting future states on longer time scales. Notice that
the fact that the 2nd-order extrapolation utilizes more information than the 1st-order method over a
extended range of prediction spans, which demonstrates that the interpolation has little effect on the
overall motion since it only impact the data in time scale under 100 ms. The information metric results
reflect the characteristics of human actions in the game.

From the measured extrapolated information in Figure 5(a), the motion in the racing game is gen-
erally smooth and stable since only less than 7.5 bits data could determine an entity state. In this
scenario, players only move within the designed course and thus their motions are largely predictable.
This feature is reflected by the information metric that 1st-order DR exhibits nearly equal predictabil-
ity as 2nd-order DR for short prediction spans. In contrast to the FPS motion, 2nd-order DR exhibits
information advantage over extended future period. In the racing game, with a static finishing point
and the constrained path (Figure 3(b)), the entity motion would typically involve steady accelerations
over extended periods. Notice that the extrapolated information converge for the two DR models during
some prediction spans (e.g., between 800ms and 1000ms for the FPS game and 0ms to 500ms for the
racing game). This indicates that the two extrapolations methods provide roughly the same amount
of information. The additional data in the 2nd-order DR does not bring more information due to the
patterns in the user behavior. The information metric shown in Figure 5 accurately captures features
of the game motions, which eventually depend on the user behavior under specific scenarios and rules.

In spite of the disadvantage in utilizing information at specific time instances, the 1st-order extrap-
olation model may compensate for the average information rate by faster update generation. For any
given available bandwidth and fixed latency, the overall information rate can be estimated from the
information model, and the dynamic model switches the active extrapolation model to whichever pro-
duces the higher information rate. Figure 6 shows the selected active models for varying bandwidth
and latency settings based on the trained information models for the two motions. To put the data
rate setting in some perspective, bandwidth is presented by packet rate (PPS) instead of absolute
bandwidth value. The difference of extrapolation choices between the two game scenarios comes from
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the information characteristics of the particular user motions (Figure 5). The model selection is deter-
mined by the extrapolated information within the functioning periods of the two models for a specific
network condition. For the FPS motion, the 2nd-order extrapolation model is generally preferred in
high-bandwidth and low-latency situations. The information advantage of the 2nd-order update mes-
sage comes with the cost of a larger packet size. Unless the packets are transmitted to the remote host
in time, the additional information and traffic load will be wasted. In low-bandwidth and high-latency
scenarios, the 1st-order extrapolation is preferred because it provides simple but stable motion trends
that outperform the sensitive higher-order derivative information in longer term prediction. For the
racing motion, on the other hand, 2nd-order DR is mostly the favorable model due to its extended
information advantage over 1st-order DR. However, a few exceptions can be found in situations with
high bandwidth and low latency, where the functioning periods of the update messages reside in small
prediction spans and the difference in information extrapolation between the two models is negligible.
1st-order DR is preferred for higher update rates. The contrast between the two game scenarios demon-
strates that the information measurement is capable of capturing different types of user behavior and
combining this factor with network conditions in making decision on selecting the best extrapolation
model.

To evaluate the information model, the Information-Based Dynamic Extrapolation Model is carried
out on the test data using the changing network settings listed in Table I. The varying available band-
width and latency reflects variations in network conditions due to players that share the same last
mile link joining in and leaving, or cross-traffic from other applications. For any given bandwidth, the
overall data rates of the two extrapolations are tuned at the same level as the available bandwidth
to send as much data as possible and in the meantime avoid queuing delay. It is obvious from Table I
that the 2nd-order extrapolation always sends update packets at a rate about 20% lower than the 1st-
order extrapolation because of the larger packet size, except the cases where the bandwidth is high
enough to allow both the two extrapolations to update at the highest rate of 30 PPS. In addition, the
2nd-order extrapolation suffers from higher latencies than the linear extrapolation since it takes more
time to transmit the larger packets through the bottleneck connection. It is then clear that the 2nd-
order extrapolation faces negative impacts on both update rate and latency from the larger packet size.
The overall effect of the two extrapolations under limited network resources depends on the tradeoff
between packet size and update rate.

The implications of varying the active extrapolation model and packet rate on the remote informa-
tion rate and inconsistency is shown in Figure 7 and Figure 8. First, for each of the 10 sections with
different network settings, an active extrapolation model is selected based on the trained information
model to deliver the higher information rate (Figure 6). The selected model is shown in Figure 7(a)
and Figure 8(a) with numbered notations ( 1© for the 1st-order extrapolation and 2© for the 2nd-order
extrapolation). Along with the average information rates rebuilt on the remote host by the two candi-
date models, the information rate of the dynamic model is also highlighted. The extrapolation model
selection based on the trained information model (the numbered notations) is consistent with the ac-
tual information characteristics of the test data, and the dynamic model can accurately select the
extrapolation model with higher information rate for different network conditions. Figure 7(b) and
Figure 8(b) compare the remote inconsistency arising from using the two fixed extrapolation models
and the dynamic model. Remote inconsistency is measured by simulation units, and averaged over
every second. The interaction of the inconsistency that arises from employing either of the two fixed
extrapolation models justifies the motivation of the dynamic extrapolation model because neither of
the two fixed models minimizes remote inconsistency for all the network condition changes. Under
changing network conditions, the 20% higher update rate of the first-order extrapolation could lead
to contrary results in information rate and inconsistency compared to the second-order extrapolation.
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Fig. 7. Comparisons of (a) Average information rate (b) Remote inconsistency among the two fixed extrapolation models and
the dynamic extrapolation model for the FPS motion. A highlighted section of (b) is shown in (c).

This also depends on the user behavior (evident contrast can be found between frames after 1040s
and 1120s in Figure 7(b)). It is then evident that by dynamically switching to the extrapolation model
that produces the higher remote information rate, the proposed technique minimizes remote incon-
sistency for varying network conditions. The dynamic extrapolation model accurately chooses the ex-
trapolation model that produces lower inconsistency and thus outperforms statically employing either
of the two fixed extrapolation schemes. In our results, a 0.2-bit increase in extrapolated information
leads improvements in remote inconsistency at about 2-3 game state units. However, the improvement
of a higher extrapolation information value depends on the specific application under consideration.
For the purpose of clarity, model switchings over highlighted periods are shown in Figure 7(c) and
Figure 8(c).

It is worth noting that in Figure 7(c), although the 1st-order extrapolation is the active model for the
period starting from 1200 second, the 2nd-order extrapolation gives lower inconsistency at around 1210
second. The dynamic extrapolation model fails to pick this transient exception because the information-
based model selection is the optimum in a statistical sense. It does not guarantee the best consistency
at every time instance, but provides the most probable best model for long time implementation. Sim-
ilar situations can also be found in Figure 8(b).

4.3 Discussion

The core of the proposed framework is the information model that relates predictability in user be-
havior and transmitted data, and hence combines both application and network layer elements in
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Fig. 8. Comparisons of (a) Average information rate (b) Remote inconsistency among the two fixed extrapolation models and
the dynamic extrapolation model for the racing motion. A highlighted section of (b) is shown in (c).

adjusting system parameters. Under a certain bandwidth, there is one optimal update rate for each
extrapolation (or ESU type) to transmit the highest information rate. Based on the information met-
rics, such an optimal update rate, together with latency, determines the information rate for each
extrapolation model. The extrapolation method with the highest information rate is then chosen by
the framework and the corresponding update rate is also employed. Such an approach guarantees that
the usage of the available bandwidth is maximized for a given set of extrapolation models, and the
highest information about the true entity motion is reconstructed by the selected extrapolation model
that best suits the user behavior.

Using information and uncertainty instead of spatial or any other form of inconsistency provides a
number of insights in examining and improving consistency maintenance. The information model first
gives a novel perspective towards the trade-off between consistency and bandwidth usage: the synchro-
nization messages are seen as providing partial information to reduce uncertainty about the remote
entity state model; better consistency requires more information and thus update messages must be
transmitted more often, which increases bandwidth usage. A quantified measure of this information
perspective is provided by the information model. Second, the information metric of the synchroniza-
tion messages takes into consideration both factors that affect consistency maintenance, namely the
suitability of the extrapolation model and network conditions. If an extrapolation model gives poor
remote consistency, the information measurements can help identify whether the problem is the ex-
trapolation equation failing to utilize the predictability in the entity motion (a fast information decay)
or a poor network connection that cannot support the necessary data transmission. In the former case,
improving the underlying network connection alone would be of little help. One could either replace the
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state derivatives in the messages with some parameters containing more information about the entity
state without changing the extrapolation algorithm [McCoy et al. 2007], or switch to a better algorithm
that extrapolates the predictability into the remote state model. Finally, from the point of view of com-
munication, a variable with lower uncertainty can be described and transmitted with less amount of
data if properly encoded. The information metric of the user motion gives a quantified measurement
of how much data is needed to rebuild the entity motion and how the level of rebuilt fidelity declines
with time delay. Such an approach facilitates NVE deployment in that NVE designers can link desired
application layer parameters, such as information rate, to network layer QoS requirements such as
bandwidth and latency.

In our experimental studies, the active extrapolation model changes with network conditions. For
the 1st-order extrapolation, the disadvantage of less information per packet can be compensated for
by a faster update rate under some network conditions. The results presented here are representa-
tive of applications where more accurate physics are integrated for higher fidelity simulation (such
as aircraft simulations and games that incorporates real world physics). In such applications, entity
motion is simulated at a frequency higher than human perception, reaction and manipulation. So the
entity dynamic is more affected by the physical law than human behaviors on very short time scales.
These applications would thus have similar 2nd-order dynamics on the interpolation scales of interest
to human perception, and the effects of the player manipulations probably only manifest themselves
on longer time scales. For these applications, the 2nd-order extrapolation model would have an infor-
mation advantage as shown in our experiment. However, it should be mentioned that including more
data in the update packets does not always guarantee better consistency [McCoy et al. 2007], because
whether or not a higher-order extrapolation can utilize the additional information in the messages de-
pends on how well the model fits the entity motion. It is then fairly possible that for some application
types a simple prediction method such as the linear model would utilize more information and there-
fore be always selected as the active model since it provides higher information rate without causing
heavier traffic load. In such cases, employing the proposed dynamic framework, which would make a
correct but static choice of the active model, seems unnecessary.

In the experiment results presented, the information model built from the training data exhibits
good generalization on the test data. Using the information model built using the training data, the
dynamic extrapolation model can precisely pick the active extrapolation model that gives higher infor-
mation rate on the test motion. This provides a good indication that the information model successfully
captures the dependence, or predictability, of the entity motion. Generally speaking, in order for the
trained information model to be used in the dynamic extrapolation model, the application state dy-
namic is required to be stationary so that the training and test data may be considered statistically
homogeneous. This is unlikely to be problematic for most NVEs, as sufficient user data can be collected
over long time periods such that the limited spatial environment is well explored. Consequently the
required data can be collected for accurate information calculation.

The consistency regulation in this work is based on network conditions of each individual user.
Therefore, it is possible that the user using a poor connection is updated of the “true” situation later
than others and so will be suffering from worse inconsistency. This is a consequence of how mod-
ern systems work. Heterogeneous clients making different extrapolation choices does not affect the
quality (or user experience) and is more “fair” because every user experiences what is best based
on its own connection. Taking a unanimous choice, on the other hand, would compromise the per-
formance of the users with fast connections. In terms of fairness, our model does not make things
any more unfair. In fact, it may make things more fair by not allowing congestion due to excessive
traffic load. It is true that performance of the proposed framework as presented has assumed eq-
uitable router prioritization policies. However, extension of the work based on fairness as a result
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of more sophisticated router prioritization should not be a problem for interested adopters of the
approach.

5. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, the information management problem in NVEs is examined from an information theory
perspective. By regarding update messages as an information carrier that delivers predictability of the
future states to the remote host, the information model provides an analytical measurement of whether
the data included in a message is worthy of the network traffic load it causes. Based on the information
model, a dynamic extrapolation model is proposed to select the extrapolation model that can most
efficiently make use of the available network bandwidth to reduce the uncertainty of the remote entity
state model and optimize consistency. Results from experimental studies show that the Information-
Based Dynamic Extrapolation Model can minimize inconsistency by making the maximal and most
efficient use of the underlying network connection. Although only two polynomial extrapolation models
are examined, the proposed dynamic extrapolation model is a general framework that can include any
form of extrapolation algorithm.

Our future work shall focus on examination of the impact of jitter to the information model, and in-
corporating some practical bandwidth estimation so that the framework can be implemented for more
realistic network conditions. More advanced extrapolation techniques could be included as part of the
dynamic extrapolation model to achieve better consistency maintenance. Further improvement could
be achieved as long as there is structure in the entity dynamics. For example, correlation of activities
in multiple motion axis provides more information sources to aid entity state prediction. Although the
framework is currently designed for regulating periodic updates and non-periodic events are simply
sent immediately, it is worth noting that in case of a scenario where non-periodic events are not irreg-
ular (such as frequent weapon firing in a massive combat in military simulations). Then they become
regular, which means they are very predictable and one need only transmit events corresponding to
when the events are not triggered. The traffic for such “counter-events” would be thinner. Also, the
idea of this work could also be generalized to any scenarios other than traditional movement (such as
collaborative white board and media distribution) where approaches employed are predictive in na-
ture. Although the exact procedure may not be directly applied to those scenarios, the basic philosophy
to evaluate the efficiency of the transmitted data, that is, the consumed bandwidth, using information
theory could be employed in general NVEs. In addition, the information characteristics of the entity
motion is dependent on the specific user behavior of interest. To account for possible changes in user
behavior during NVE deployment, an adaptive information model that can be trained in real-time us-
ing historical motion data within a sliding-window would be necessary. In such a case, the issue of the
computational cost of the information calculation must be considered since, unlike the off-line training
considered in this work, a computationally costly calculation may induce extra delay for state update
in NVEs.

Aside from changing the amount of information inside the message, packets could also be dropped
under constrained network bandwidth for a better consistency regulation. In fact, the regulation on
periodic state updates can be seen as a special case of an optimistic game event synchronization scheme
where a game server drops obsolete game events that lose their importance (i.e., executing them does
not affect the final game state) by the time they arrive [Ferretti and Roccetti 2005]. Entity state update
can be seen as a very simple case where the “event” to be considered is the latest position and motion
status of the entity. Such information is always non-obsolete and must be delivered. The assessment
of event obsoleteness is currently done by semantic analysis of the game, while information theory is
also capable of measuring the correlation of the events in the evolution of the game. In other words,
information metrics could aid the design of a novel selection scheme on game packet transmission.
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