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[1] We examine the sensitivity of modeled and observed
tropical tropospheric temperature trend amplification (the
ratio of T2LT ‘‘lower troposphere’’ to surface changes)
to several sources of uncertainty. Model behaviour is
robust across a large perturbed physics ensemble of
HadCM3, yielding a smaller amplification range (1.44 ±
0.06) than a previous multi-model ensemble (1.41 ±
0.24). The uncertainty of inter-satellite calibration implied
by available MSU T2 (mid-troposphere) estimates (s =
0.035K) is much greater than that required to adequately
resolve the trend (s < 0.01K), or the amplification
behaviour (implied amplification range ±0.95). Trend
amplification uncertainty in both models and observations
decreases as the timescale increases. Depending upon
choice of dataset and time period, uncertainty in trend
amplification estimates over 21 years lies between ±1.5 and
±0.2. Citation: Thorne, P. W., D. E. Parker, B. D. Santer, M. P.

McCarthy, D. M. H. Sexton, M. J. Webb, J. M. Murphy,

M. Collins, H. A. Titchner, and G. S. Jones (2007), Tropical

vertical temperature trends: A real discrepancy?, Geophys. Res.

Lett., 34, L16702, doi:10.1029/2007GL029875.

1. Background

[2] Since the original production of a tropospheric tem-
perature dataset from satellite-based Microwave Sounding
Units (MSU) [Spencer and Christy, 1992], there has been
intense debate over whether climate models adequately
capture observed changes in atmospheric vertical tempera-
ture structure [National Research Council, 2000; Folland et
al., 2001; Karl et al., 2006]. Most early versions of upper
air datasets (and even some more recent observational
analyses) exhibited little if any tropospheric warming, while
models amplified surface warming aloft, particularly in the
tropics. This was the primary motivation for several national
and international assessments; the most recent concluding
that, ‘‘While these [observed] data are consistent with the
results from climate models at the global scale, discrep-
ancies within the tropics remain to be resolved’’ [Karl et al.,
2006, p. 1]. If these discrepancies are real, they would cast
significant doubt on the reliability of climate models and on
the usefulness of model projections of future climate
change.
[3] Within the tropical troposphere, vertical mixing is

dominated by convective processes. Hence temperature
anomalies within the tropics (20�N – 20�S) should amplify
from the surface through the troposphere [Santer et al.,

2005, and references therein]. Santer et al. considered a
suite of coupled climate model simulations and observa-
tional records from the surface and the troposphere. The
modelled amplification (defined by a ratio DTtroposphere/
DTsurface whereby values >1 indicate amplification) was
found to be consistent with theoretical expectations on both
high-frequency (monthly, inter-annual) and low-frequency
(multi-decadal trend) timescales. Observations yielded simi-
lar high-frequency amplification, but a large spread in low-
frequency behaviour, with only one satellite dataset exhibit-
ing tropospheric amplification of surface trends.
[4] This analysis was key to the Karl et al. [2006] report.

Although there was some overlap between tropical ampli-
fication behaviour in models and the available climate
datasets, the panel were unable to rule out a fundamental
discrepancy between the two. However, this analysis was
not comprehensive in its consideration of uncertainties.
Here, we re-assess these findings in the context of three
additional specific sources of uncertainty: in selected phys-
ical parameters of one specific climate model, in the
construction of satellite datasets, and in temporal sampling.

2. Assessing Climate Model Uncertainties

[5] Climate model amplification estimates for the tropics
appear to be robust [Santer et al., 2005; Karl et al., 2006].
However, these analyses were restricted to an ‘‘ensemble of
opportunity’’ for 1979–1999 consisting of 49 runs made
using 19 different climate models. This ensemble combined
structural differences in model physics with differences in
the number and type of external forcings, forcing histories,
methods of applying forcings, etc. It encapsulates our best
current understanding of climate processes and of 20th
Century climate change, but may represent an underestimate
of the true uncertainty in model-based estimates. Each of the
models represents each contributing group’s optimal climate
model configuration, tuned to obtain a reasonably realistic
mean climate state (but importantly, not to recreate the
transient response to external forcings [Karl et al., 2006]).
[6] Other plausible model configurations can be generated

by simultaneously varying empirical parameters within an
individual model’s parameterisation schemes (which ac-
count for unresolved sub-gridbox scale physical processes).
Parameter variations are typically made within reasonable
ranges, while keeping all other aspects of model structure
and physics constant [Murphy et al., 2004; Stainforth et al.,
2005; Webb et al., 2006]. Such ‘‘perturbed physics’’ ensem-
bles sample a wide range of climate feedbacks, and hence
lead to a wide range of climate sensitivities [Webb et al.,
2006].
[7] It is this source of model structural uncertainty

that we consider here using a slab-ocean version of the
HadCM3 climate model [Murphy et al., 2004]. Each of the
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230 members of the ensemble has a unique set of parameter
choices. To estimate amplification factors from this ensem-
ble, we calculate changes in tropically-averaged surface and
lower tropospheric temperatures. The latter are derived by
using static weighting functions [Spencer and Christy,
1992] to compute synthetic MSU T2LT temperatures from
model vertical profiles of temperature. For each ensemble
member we consider the difference between two 20-year
averages obtained from a pre-industrial integration and an
equilibrium doubled CO2 integration [Murphy et al., 2004;
Webb et al., 2006].
[8] Figure 1 shows tight clustering of amplification

results from the ‘‘perturbed physics’’ ensemble. The
perturbed physics results suggest that HadCM3 model
uncertainties are highly unlikely to encompass damping
aloft, as is implied by some observational estimates [Santer
et al., 2005; Karl et al., 2006]. The perturbed physics
ensemble range is much smaller than in the ‘‘ensemble of
opportunity’’ considered previously [Santer et al., 2005;
Karl et al., 2006]. The larger spread in the transient runs is
likely because these involve smaller anthropogenic forcing
than the doubled CO2 experiments, so that estimates of
the true amplification behaviour are noisier and more
sensitive to temporal sampling effects (see penultimate
section). It may also relate, in part, to use of a slab ocean
model here instead of a fully coupled ocean model.

3. A Simple Model for Assessing Satellite Climate
Dataset Uncertainties

[9] A small number of groups have constructed climate
records from raw MSU radiances [Prabhakara et al., 1998;
Mears and Wentz, 2005; Mears et al., 2003; Christy et al.,
2003; Grody et al., 2004; Vinnikov and Grody, 2003; Zou et
al., 2006]. The construction methods differ in important
ways. Each group has tried to assess uncertainties arising

from their own specific processing choices. These uncer-
tainty estimates have been derived in very different ways,
and none is exhaustive in the sources of uncertainty con-
sidered. Structural uncertainty dominates [Thorne et al.,
2005b], and is poorly bounded [Karl et al., 2006].
[10] Without an independent reference set of high-quality

collocated data, there will always be ambiguity in climate
dataset construction [Thorne et al., 2005b]. For satellites,
the problem is not easy to resolve: periods of overlap
between satellites are often of limited duration, and only a
very small fraction of measurements are collocated in space
and time [Zou et al., 2006]. There are also poorly quantified
non-climatic influences, such as orbital and instrument drift,
which affect each satellite differently [Christy et al., 2003;
Mears et al., 2003]. Typically, MSU dataset production has
involved attempting to remove all suspected non-climatic
influences from each individual satellite record, and then
merging these individual records in a way that minimizes
remaining absolute offsets. Errors in all other aspects of
dataset construction are thus projected strongly onto the
calculation of satellite offset factors. These can be as large
as 1K [Mears et al., 2003]. Offset adjustment uncertainties
calculated internally by each group [e.g.,Mears et al., 2003]
are much smaller than dataset intercomparisons imply, at
least for some transitions [Mears et al., 2003; Karl et al.,
2006; Christy et al., 2007]. The uncertainty cannot be
resolved solely from the statistics of the inter-satellite
differences, as these are dependent upon the chosen intra-
satellite homogenisation procedure. The addition of each
new satellite therefore introduces to the overall time series a
constant non-climatic offset of unknown magnitude. Fur-
ther, the precise selection of satellites (and sub-sets of data
from particular satellites) to be inter-calibrated differs be-
tween research groups.
[11] We construct a statistical model of the uncertainties in

MSU trends, assuming that dataset construction uncertain-
ties project entirely onto the calculation of inter-satellite
offset adjustments. We then calculate the effect of offset
uncertainties of specified magnitudes on the resulting trends.
This approach is purely statistical, and does not replicate the
labor-intensive process of explicitly producing multiple
datasets. Our approach simply allows us to place bounds
on the likely magnitude of trend uncertainties for different
residual errors in inter-satellite offsets. We assume that the
error model applies to each MSU retrieval (T4, T2, and T2LT).
[12] Between 1979 and 2004, there were a total of 13

satellite transitions. We assume that all 13 satellites were
used in the generation of MSU datasets, and that the
properties of the errors in the offsets do not vary system-
atically over the satellite era. We use a Monte Carlo
approach to produce 10,000 error time series. This involves
randomly sampling an offset error from a normal distribu-
tion with mean zero and a prescribed standard deviation ssat
at each satellite transition, and then creating timeseries
based on these errors. Each realisation therefore consists
of a random walk with 13 steps, one at each satellite
introduction. We then calculate a median of pairwise slopes
linear fit for each synthetic time series [Lanzante, 1996]. We
vary ssat within the range 0.005K to 0.05K. This is based on
published satellite-satellite and satellite-radiosonde inter-
comparisons, which have yielded maximum differences
between RSS (Remote Sensing Systems) and UAH (Uni-

Figure 1. Frequency histogram for the modelled ratio of
tropical T2LT to surface temperature change for doubling of
CO2 in a perturbed physics HadCM3 ensemble [Murphy et
al., 2004] (black) and from transient runs for 1979–1999
from 19 models [Santer et al., 2005] (orange). Those
transient runs which exhibited absolute trends <0.05K/
decade in surface temperatures (4 of 49) are excluded. The
legend shows means and 2s ranges. For the transient model
runs these were calculated by averaging all ensemble
members (ensemble sizes range from 1 to 5) for each model,
then taking the mean and standard deviations from these
averaged populations, giving each model equal weighting
[Santer et al., 2005].
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versity of Alabama in Huntsville) of about 0.1K for NOAA-
9 transitions in T2 [Mears et al., 2003] and NOAA-11 to
NOAA-14 in T2LT [Christy et al., 2007].
[13] In this model, the uncertainty in the long-term tem-

perature trend grows linearly with increasing ssat. For MSU
for 1979–2004 the 95% confidence interval is 4.3 ssat K/
decade (Figure 2, this will differ for other instruments/
satellites). Robustly resolving any tropospheric warming
trend in MSU (uncertainty <20% of �0.15K/decade
expected given the surface trend) requires minimal uncer-
tainty (ssat � 0.01K) in inter-satellite offset biases. As the
tropical amplification estimates involve division by the
surface trend (0.11K/decade), uncertainties in the amplifica-
tion factor grow much more quickly than those for the T2LT

trends (Figure 2). So adequately resolving the amplification
behaviour requires even stricter criteria to be met. More
groups have tried to create trend estimates for T2 than for
T2LT, so we use their range to estimate what the true value of
ssat may be for T2LT. The range of estimates for global T2 of
0.16K/decade implies a ssat of 0.035K, and amplification
uncertainty of ±0.95. Therefore, unless several of these
datasets are fatally flawed, we are nowhere near attaining
the required degree of accuracy from the historical data.

4. Temporal Sampling Uncertainty

[14] Amplification should be relatively independent of
time scale [Santer et al., 2005; Karl et al., 2006]. Reliable
estimation may be problematic for relatively short trends,
however, since the slowly-evolving externally-forced sig-
nals are embedded in background noise arising from natural
internal climate variability. This noise receives contributions
from modes of variability operating on a range of time-
scales. Hence trends are sensitive to the choice of trend

length L and trend period relative to the exact phasing of the
noise, a problem that is compounded when one considers
the ratio of noise-contaminated surface and T2LT trends.
Furthermore, linear trends are probably a sub-optimal model
of longer-term changes in surface and upper-air temper-
atures [Seidel and Lanzante, 2004; Thorne et al., 2005a].
[15] We assume that the temperature response to slowly-

evolving changes in anthropogenic forcings can be approx-
imated by a linear signal plus noise with complex structure.
As L increases, the anthropogenic forcing, signal amplitude,
and signal-to-noise ratio also tend to increase [Santer et al.,
1996]. For each value of L, therefore, we expect to see a
spread of amplification estimates, characterized by the mean
�A(L) and the standard deviation sA(L), with sA(L) decreas-
ing as L increases.
[16] We have estimated tropical amplification using Had-

CRUT3 surface temperatures [Brohan et al., 2006] and T2LT

changes obtained from various radiosonde and satellite
products and from an ensemble of the HadCM3 climate
model run with anthropogenic and natural forcings over
1958–1999 [Stott et al., 2000]. The radiosonde records
begin in 1958, while satellite records commence in 1979,
and all continue through 2006. For the HadAT radiosonde
record and HadCM3 model we calculated all possible
overlapping trends of length L, with L varying from 30 to
10 years in length, and with overlaps by all but one year
(e.g., the first 30-year trend for the HadAT2 data is over
1958 to 1987, the second is over 1959 to 1988, etc.) For the
remaining radiosonde records, the same calculations were
made for 11, 16, 21, and 26 year periods. Trends for the
satellite records were calculated over 11, 16, and 21 year
periods only.
[17] Both the model and observational results in Figure 3

exhibit the expected decrease in sA(L) with increasing L.
The HadCM3 data exhibit relatively little variation with L in
the central values of �A(L), consistent with previous results
showing timescale-invariant behaviour [Santer et al., 2005]
(Figure 3, top plot). In contrast, �A(L) decreases with
increasing L in the HadAT data.
[18] Over the radiosonde era as a whole there is better

agreement between all radiosonde records and the model than
for the satellite era alone (Figure 3, bottom plots). But the
satellite era contains at most a few degrees of freedom in the
observational results given the substantially overlapping seg-
ments, and the ranges over this era from all datasets are likely
to be an under-estimate. The non-overlap between the UAH
and RSS ‘‘envelopes’’ of amplification estimates on the
longest timescales implies pervasive differences in low-fre-
quency characteristics between them, consistent with our
MSUerrormodel (Figure 2). Depending upon choice of period
and dataset, uncertainty on previously considered 21-year
timescales ranges between ±1.5 (radiosondes for the full
radiosonde era) to ±0.2 (RSS). HadCM3, for which the range
will solely result from model internal and forced variability,
exhibits a range of comparable magnitude to the observations.
[19] If the physical mechanisms that control ‘‘real world’’

amplification factors have changed markedly over time,
then it is necessary to examine amplification behaviour
over specific periods (rather than over all possible periods
of a particular trend length). But we currently lack any
evidence of changes in the basic physics governing tropical
amplification behaviour. We do, however, have ample

Figure 2. Impacts of different inter-satellite bias offsets
ssat (sigma) on resulting 95% ranges of estimates of tropical
trends (left hand y-axis) and amplification factors (right
hand y-axis). Amplification is based on temperature trends
at the surface [Brohan et al., 2006].
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evidence of the existence of observational measurement and
sampling errors [Free and Seidel, 2005] and of residual non-
climatic influences in satellite and radiosonde data [Karl et
al., 2006; Sherwood et al., 2005; Randel and Wu, 2006;
Christy et al., 2007]. Clearly, these factors must contribute
both to the ‘‘between dataset’’ differences in amplification
behaviour shown in Figure 3, and amplification differences
across timescales in individual datasets.

5. Discussion

[20] A perturbed physics ensemble, encompassing a large
range of climate sensitivities, shows robust amplification

behaviour within the tropical troposphere. Conversely, we
find much greater uncertainty in amplification behaviour
when the same model is run in transient mode with 20th
century forcings. We conclude from this that much of the
spread in previous tropical amplification estimates from
transient model runs [Santer et al., 2005] arises from natural
climate variability in the models rather than from structural
differences between them. Hence our results imply that
tropical amplification of surface temperature changes is
very strongly constrained in all current climate models,
and unlikely to arise through choices of sub-gridbox scale
parameterisations.

Figure 3. Sensitivity of estimates of tropical trend amplification ratio to period length and start date. Start dates are
separated by a calendar year. In the top panel lines connect median values of the estimates for each trend length. The orange
error bar at 21 year trend length denotes the mean and 2s range of model trend ratios calculated from transient runs from a
range of climate models (see Figure 1). The black cube denotes the 1979–1999 value for radiosondes. The bottom plots
incorporate information from RATPAC [Free et al., 2005], RAOBCORE [Haimberger, 2007] (radiosondes), RSS and UAH
datasets, and consider (middle) the full radiosonde era (1958–2006) and (bottom) satellite era (1979–2006). The 90%
range is indicated by the whiskers and the median value by diamonds.
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[21] Uncertainties in observed MSU dataset trends are
large relative to the emerging climate change signal. This is
despite the satellite era being the best-observed period in
Earth’s climate history. There are important implications for
the design of current and future satellite-based temperature
monitoring systems. For current polar-orbiters, individual
inter-satellite offsets after removing all intra-satellite non-
climatic influences need to be constrained to well within 10%
of the expected decadal trend magnitude for any 25-year
emerging signal to be robustly detected. To ascertain ampli-
fication behaviour, which depends upon relative trends
between the troposphere and surface, requires even smaller
uncertainties to be attained.
[22] Consideration of amplification behaviour across a

range of different periods yields large uncertainties in both
models and observations. The choice of period and period
length impacts conclusions regarding the existence of a
discrepancy. Assessment in the context of all possible
choices yields lower confidence in the significance of any
discrepancy over the satellite era.
[23] Analyses of differences in trends between the surface

and the troposphere for an emerging climate change signal
remain highly uncertain. Although we cannot rule out ‘‘real
world’’ amplification factors being different on different
timescales, and hence problems common to all climate
models, uncertainty arising from residual observational
errors and choice of analysis period need to be carefully
discounted if such a discrepancy is to be proven.
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