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AD in Fortran
Part 1. Design

Alexey Radul, Barak A. Pearlmutter, and Jeffrey Mark Sigkin

Abstract We propose extensions t@RTRAN which integrate forward and reverse
Automatic Differentiation (AD) directly into the prograning model. Irrespective
of implementation technology, embedding AD constructedtly into the language
extends the reach and convenience of AD while allowing abstn of concepts
of interest to scientific-computing practice, such as raudifig, optimization, and
finding equilibria of continuous games. Multiple differesubprograms for these
tasks can share common interfaces, regardless of whettiéroanthey use AD in-
ternally. A programmer can maximize a functieiy calling a library maximizer,
XSTAR=ARGMAX(F, X0), which internally constructs derivatives bfoy AD, with-
out having to learn how to use any particular AD tool. We titate the utility of
these extensions by example: programs become much morseara closer to
traditional mathematical notation. A companion paper dbss how these exten-
sions can be implemented by a program that generates inpyisiing FORTRAN-
based AD tools.

Key words: Nesting, multiple transformation, forward mode, reverssls TAPE-
NADE, ADIFOR, programming-language design
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The invention of BRTRAN was a major advance for numeric computing, allowing
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Ba Xa—lefﬁx

r(a)

to be transcribed into a natural but unambiguous notation

gxa,B)=

FUNCTI ON G(X,ALPHA,BETA)
G=BETA* ALPHA/GAMMA(ALPHA) X++ (ALPHA-1) * EXP(-BETA* X)
END

which could be automatically translated into an executpldgram. However, tran-
scribing

X1 =X —f(x)/ (%)
to FORTRAN Iin

FUNCTI ON RAPHSN(F, FPRIME, X0, N)
EXTERNAL F, FPRIME

X = X0
DO 1690 I=1,N

1690 X = X-F(X)/[FPRIME(X)
RAPHSN = X
END

requires that thealler provide bothF andFPRIME. Manually coding the latter from
the former is, in most cases, a mechanical process, butuizdiud error prone.

This problem has traditionally been addressed by arranfgingn AD prepro-
cessor to produdePRIME (Speelpenning, 1980; Wengert, 1964). That breakthrough
technology not only relieves the programmer of the burdenethanical coding of
derivative-calculation codes, it also allows the derxatode to be updated auto-
matically, ensuring consistency and correctness. Howévisicaller derivesdisci-
pline has several practical difficulties. First, the usestiearn how to use the AD
preprocessor, which constitutes a surprisingly seriougdsao adoption. Second,
it makes it very difficult to experiment with the use of diféert sorts of derivatives
(e.g., adding a Hessian-vector product step in an optiiizpin such called subpro-
grams, or to experiment with different AD preprocessorsrd,talthough prepro-
cessors might be able to process code which has already bssasped in order to
implement nested derivatives, the maneuvers requiredtogmritools can be some-
what arcane (Siskind and Pearlmutter, 2008a). Fourthyaoétengineering princi-
ples of locality and atomicity are being violated: knowledy what derivatives are
needed is distributed in a number of locations which mustdy konsistent; and
redundant information, which must also be kept consisisrtiging passed, often
down a long call chain. We attempt to solve these problemg&jngdhe use of AD
more concise, convenient, and intuitive to the scientifiagpammer, while keep-
ing to the spirit of ORTRAN. This is done using thEorward And Reverse Fortran
Extension Languager FARFEL, a small set of extensions t@RTRAN, in concert
with an implementation strategy which leverages existiogFRAN compilers and
AD preprocessors (Bischof et al., 1992; Hascoét and Patd@4).

The remainder of the paper is organized as follows: Sectibes2ribes KRFEL.
Section 3 describes a concrete example#EL program to both motivate and illu-
minate the proposed extensions. Section 4 situates thisiwdis broader context.
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Section 5 summarizes this work’s contributions. A compargaper (Radul et al.,
2012) describes howARFEL can be implemented by generating input to existing
AD tools.

2 Language Extensions

FARFEL consists of two principal extensions t@RTRAN: syntax for AD and for
nested subprograms. We currently support ordrFRAN77, but there is no barrier,
in principle, to adding ERFEL to more recent dialects.

Extension 1: AD Syntax
Traditional mathematical notation allows one to specify

d 1 1/x—x\2
/=535 )

By analogy, we extend ®RTRAN to encode this as
‘ ADF( TANGENT(SIGMA) = 1) ‘

PHI = 1/SQRT(2 * Pl * SIGMA= 2) * EXP(-0.5 *((X-XBAR)/SIGMA) # 2)
END ADF(PHIPRM = TANGENT(PHI))

which computes the derivativdiPRMof PHI with respect tasIGMAby forward AD.
For syntactic details see companion paper (Radul et al2)201

An analogous ERFEL construct supports computing the same derivative with
reverse AD:

‘ ADR( COTANGENT (PHI) = 1) ‘

PHI = 1/SQRT(2 * Pl * SIGMA 2) * EXP(-0.5 *((X-XBAR)/SIGMA) * 2)
END ADR(PHIPRM = COTANGENT(SIGMA))

Note that with theaDR construct, th&lependentariable appears at the beginning of
the block and thindependentariable at the end—the variables and assignments in
the opening and closing statements specify the desiredsripwand outputs from
the reverse phase, whereas the statements inside the btedkeg forward phase.
These constructs allow not just convenient expression gftAiDalso modularity

and encapsulation of code which employs AD. For instancesamewrite a general
scalar-derivative subprograbERIV1 at user level

FUNCTI ON DERIVL(F, X)

EXTERNAL F

ADF(X)

Y = F(X)

END ADF(DERIV1 = TANGENT(Y))

END

which could be used in, for example,

FUNCTI ON PHI(SIGMA)
PHI = 1/SQRT(2 * Pl * SIGMA 2) * EXP(-0.5 *((X-XBAR)/SIGMA) # 2)
END
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PHIPRM = DERIV1(PHI, SIGMA)

DERIV1 can be changed to use reverse AD without changing its API:

FUNCTI ON DERIVL(F, X)

EXTERNAL F

ADR(Y)

Y = F(X)

END ADR(DERIV1 = COTANGENT(X))
END

allowing codes written witlDERIV1 to readily switch between using forward and

reverse AD.

To take a more elaborate example, we can write a generalegactlculation

GRADusing repeated forward AD:

SUBROUTI NE GRAD(F, X, N, DX)
EXTERNAL F
DO 1492 I=1,N
ADF( TANGENT(X(J)) = 1-MINO(IABS(I-J),1), J=1,N)
Y = F(X)
1492 END ADF(DX() = TANGENT(Y))
END

(Note that thexDF andADR constructs support impliedo syntax for arrays.)
This can be modified to instead use reverse AD without charthie API:

SUBROUTI NE GRAD(F, X, N, DX)
EXTERNAL F

ADR(Y)

Y = F(X)

END ADR(DX(I) = COTANGENT(X(I)), I=1,N)
END

Although not intended to support checkpoint-reverse AN, @nstructs are suffi

ciently powerful to express a reverse checkpoint:

C CHECKPO NT REVERSE F->G. BOTH 1ST ARG IN, 2ND ARG OUT
CALL F(X, Y)
ADR( COTANGENT(Z()) = ..., I=1,N2)
CALL G(Y, 2)

END ADRDY(l) = OOTANGENT(Y(I)), 1=1,NY)
ADR( COTANGENT(Y(I)) = DY(l), I=1.NY)

CALL F(X, Y)

END ADRDX(I) = OOTANGENT(X(I)), 1=1,NX)

This sort of encapsulation empowers numeric programmegsreeniently ex-
periment with the choice of differentiation method, or witle use of various sorts
of derivatives, including higher-order derivatives, vaith tedious modification of

lengthy call chains.

Extension 2: Nested Subprograms

We borrow from A.GoL 60 (Backus et al., 1963) and generalize therRFRAN

“statement function” construct by allowing subprogrambéé¢odefined inside other

subprograms, with lexical scope.

For example, given a univariate maximizZeRGMAXwe can express the idea of

line search as follows:
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C MAXIM ZE F ALONG THE LI NE PARALLEL TO XDI R THROUGH X
SUBRQUTI NE LINMAX(F, X, XDIR, LENX, N, XOUT)
EXTERNAL F

DI MENSI ON' Y(50)
FUNCTI ON ALINE(DIST)
DO 2012 I=1,LENX
2012 Y(I) = X()+DIST  *XDIR(l)
ALINE = F(Y)
END
BESTD = ARGMAX(ALINE, 0.0, N)
DO 2013 I=1,LENX
2013 XOUT(l) = X()+BESTD *XDIR(l)
END

Here we are using a library univariate maximizer to maxintime univariate func-
tion ALINE, which maps the distance along the given direction to theevaf our
multidimensional function of interestat that point. Note thatLINE refers to vari-
ables defined in its enclosing scope, nan®gl¥, XDIR, LENX, andY. Note that if
ARGMAXises derivative information, AD will be performed autornaliy onALINE.

3 Concrete Example

We employ a concrete example to show the convenience of theealonstructs. We
will also illustrate the implementation on this example Reflul et al., 2012). Let
two companies, Apple and Banana, be engaged in competitmoommon fashion
accessories market. Each chooses a quantity of their idspgood to produce, and
sells all produced units at a price determined by consummiadd. Let us model
the goods as being distinct, but partial substitutes, soatfslability of products of
A decreases demand for products of B and vice versa (thoutilapgnot the same
amount). We model both companies as having market powehngsprice each gets
will depend on both their own output and their competitoEach company faces
(different) production costs and seeks to maximize its gredi we can model this
situation as a two player game. Let us further assume thajuhatities involved
are large enough that discretization effects can be disleda
An equilibrium(a*,b*) of a two-player game with continuous scalar strategies

andb and payoff function#\(a, b) andB(a,b) must satisfy a system of equations:

a" = argmax(a,b*) b* = argmaxB(a*,b) 1)
a b

Equilibria can be sought by finding roots of
a" = argmaXA(a, argmaxB(a*, b)) 2
a b
which is the technique we shall emplb¥ranslated into computer code in the most

natural way, solving this equation involves a call to an mjtation subprogram
within the function passed to an optimization subprograselfiwithin the function
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passed to a root-finding subprogram. If said optimizatioth rot-finding subpro-
grams need derivative information, this gives rise to dgapkted AD.

Note that in (2), the payoff functioB is bivariate but argmax takes a univariate
(in the variable of maximization) objective function. Taevariable passed tB is
freein the innermost argmax expression. Free variables ocduraily in mathe-
matical notation, and we support them by allowing nestegsagram definitions.

We can use our extensions to code finding the roots of (2) inwalastyle:

C ASTAR & BSTAR GUESSES IN, OPTIM ZED VALUES OUT
SUBROUTI NE EQLBRM(BIGA, BIGB, ASTAR, BSTAR, N)
EXTERNAL BIGA, BIGB

FUNCTI ON F(ASTAR)
FUNCTI ON' G(A)
FUNCTI ON H(B)
H = BIGB(ASTAR, B)
END
BSTAR = ARGMAX(H, BSTAR, N)
G = BIGA(A, BSTAR)
END
F = ARGMAX(G, ASTAR, N)-ASTAR
END
ASTAR = ROOT(F, ASTAR, N)
END

where we implement just the minimal cores of one-dimengioptimization and
root finding to illustrate the essential point — root findingthe Rhapson method:

FUNCTI ON ROOT(F, X0, N)

X = X0

DO 1669 I=1,N

CALL DERIV2(F, X, Y, YPRIME)
1669 X = X-Y/YPRIME

ROOT = X

END

SUBROUTI NE DERIV2(F, X, Y, YPRIME)
EXTERNAL F

ADF(X)

Y = F(X)

END ADF(YPRIME = TANGENT(Y))

END

and optimization by finding the root of the derivative:

FUNCTI ON ARGMAX(F, X0, N)
FUNCTI ON FPRIME(X)
FPRIME = DERIVL(F, X)
END
ARGMAX = ROOT(FPRIME, X0, N)
END

1 The existence or uniqueness of an equilibrium is not in gérraranteed, but our particular
andB have a unique equilibrium. Coordinate descent (altergaiptimization ofa* andb*) would
require less nesting, but has inferior convergence priggerlthough this example involves AD
through iterative processes, we do not address that isghesiwork: it is beyond the scope of this
paper, and used here only in a benign fashion, for vividness.
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On our concrete objective functions these converge rapsdlyor clarity we skip
the clutter of convergence detection.

This strategy impels us to compute derivatives nested fiep,da a more com-
plicated pattern than just a fifth-order derivative of a &nfyinction. This under-
taking is nontrivial with current AD tools (Siskind and Plantter, 2008a), but
becomes straightforward with the proposed extensions—edndd AD syntax and
nested subprograms make it straightforward to code sogdisti methods that re-
quire complex patterns of derivative information.

4 Discussion

The FARFEL AD extensions hew to the spirit of dRTRAN, which tends to prefer
blocks rather than higher-order operators for semantistcocts. (In this, these ex-
tensions are syntactically quite similar to a set of AD estens integrated with
the NAGware BRTRAN 95 compiler (Naumann and Riehme, 2005), albeit quite
different semantically. Unfortunately those NAGware @siens are no longer pub-
licly available, and the limited available documentatisninisufficient to allow a
detailed comparison.) A reasonably straightforward imaatation technology in-
volves changing transformed blocks into subprograms thatuce their lexical
variable context and closure-converting these into tepllsubprograms, render-
ing them amenable to processing with existing tools (Radwall.e 2012). Since
the machinery for nested subprograms is present, allowieg imposes little addi-
tional implementation effort. Moreover, as seen in the gxl@rabove, that extension
makes code that involves heavy use of higher-order fungtiwhich is encouraged
by the availability of the AD constructs, more straightfand. In this sense AD
blocks and nested subprograms interact synergistically.

These new constructs are quite expressive, but this vemessipeness can tax
many implementations, which might not support some contlnina or usages. For
instance, code which makes resolution of the AD at compitetimpossible (an
n-th derivative subprogram, say) would be impossible to suppithout a dynamic
run-time AD mechanism. This would typically not be avaimbAnother common
restriction would be that many tools do not support reverselerat all and even
those that do typically do not allow nesting over reverse eq@ither reverse-over-
reverse or forward-over-reverse. It is the responsibiitythe implementation to
reject such programs with a cogent error.

The FARFEL extensions are implemented by theRFALLEN preprocessor (Radul
et al., 2012), which generates input for and invokes exdséid tools. This lever-
ages existing AD systems to provide the differentiationctionality in a uniform
and integrated way, extending the reach of AD by making iesasgsier, more natu-
ral, and more widely applicable.

Such a prepreprocessor can target different AD systenes fikFoRr (Bischof
etal., 1992) and APENADE (Hascoét and Pascual, 2004)), allowing easy porting of
code from one AD system to another. It could even mix AD systeior example
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using TAPENADE to reverse-transform code generated by usinge®R in forward
mode, capturing their respective advantages for the ggjgitat hand. The effort of
implementing such retargetings and mixings could then @®fad to one developer
(of the prepreprocessor) instead of many end users of AD.

A more important benefit of extendingodRTRAN with AD syntax and nested
subprograms is that a host of notions become reusable efistis—not just first-
order derivatives, but also their variations, combinaticaand uses, e.g., Jacobians,
Hessians, Hessian-vector products, filters, edge degdtourier transforms, con-
volutions, Hamiltonians, optimizations, integrationffeliential-equation solvers.
The interfaces to different methods for these tasks can loke maich more uniform
because, as oWRGMAXIid, they can accept subprograms that just accept the vari-
ables of interest (in this case, the argument of maximinyémd take any needed
side information from their lexical scope; and subprograoch as\RGMAXan ob-
tain any derivative information they wish from AD withoutviag to demand it be
passed in as arguments. So different maximization methaadée tried out on the
same objective function with ease, regardless of how mudkatie information
they require; and at the same time, different objectivefions, that carry different
side information, can be maximized by the same maximizaidoprogram without
having to adjust it to transmit the needed side informati€ssentially, derivatives
are requested where they are needed, and the implemendatsnthe necessary
bookkeeping.

These modularity benefits are illustrated by our examplgnanm: the RRFEL
input is only 64 lines of code, whereas the amount of codepaass into, which
is comparable to what would need to be written by hand withioese extensions,
weighs in at a much more substantial 160 fetPENADE and 315 for ADIFOR,
including the configuration data needed to run the AD preggsars to produce
the needed derivatives. Manually performing the 5 nestgdiggtions of AD this
example calls for is a tedious, error prone, multi-hour ffachich must be un-
dertaken separately for each preprocessor one wishesad&igting AD tools do
already save the major labor of manually implementing @¢ine and gradient sub-
programs, and keeping them in sync with the subprogramgligfiierentiated. The
further preprocessing step outlined above leverages thekeinto being even more
useful. For larger programs, the savings of implementatiwch maintenance effort
would be considerable.

The present suggestion is not, of course, limited tRFRAN. Nested subpro-
grams have gained wide adoption in programming-languag@uie from A -
GoL 60 and beyond, and have yielded proven gains in programnogiuptivity.
Their advantages for code expressiveness have led to dasotiith lexical scope
being used as a mathematical formalism for reasoning alwupuating (Church,
1941), to programming languages organized around the itmets the primary
program construct (Jones, 2003), and to compilers thatiafecin the efficient
representation and use of functions (Jones et al., 19985tE978).

2 A detailed step-by-step discussion of the transformaticthie example along with all interme-
diate code is available &ttp://www.bcl.hamilton.ie/ ~ qobi/fortran/



AD in Fortran: Design 9

Fig. 1 Performance com-
parison. Smaller is faster.
Numeric solution of (2)

with above RRFEL code, CPU Time (seconds)
N = 1000 iterations at each 10
level, FARFALLEN targeting 8.92

two FORTRAN-based AD
tools; for comparison, the

o 6.97
same computation is coded
in VLAD (Pearlmutter and 5.83
Siskind, 2008) and compiled
with STALINGRAD (Siskind St 1
and Pearlmutter, 2008b).
Computer: Intel i7 870 @
2.93GHz, GORTRAN4.6.2-
9, 64-bit Debian sid;Ofast
-fwhole-program | single
precision. See (Radul et al., 0

2012) for details. TAPENADE ADIFOR  STALINGRAD

One can also addbr- andADR-like constructs to other languages that have pre-
processor implementations of AD, for exampteandADIC (Bischof et al., 1997).
One would not even need to add nested subprograms in theopesgior, because
Gccalready implements them faNu ¢. Doing so would expand the convenience
(and therefore reach) of existing AD technology even furthe

Retrofitting AD onto existing languages by preprocessingiswithout its limi-
tations, however. Efficient AD preprocessors must consawall graph in order to
determine which subprograms to transform, along with aetyief other tasks al-
ready performed by the compiler. Moreover, optimizing cderp cannot be relied
upon to aggressively optimize intricate machine-gendretele, as such code often
exceeds heuristic cutoffs in various optimization transfations. This imposes a
surprisingly serious limitation on AD preprocessors. (@igr, these also imply
a significant duplication of effort, while providing roomrfeemantic disagree-
ments between AD preprocessors and compilers which cantéeadbtle bugs.)
This leads us to anticipate considerable performance g@nsdesigning an opti-
mizing compiler with integrated AD. Indeed, translating eancrete example into
VLAD (Pearlmutter and Siskind, 2008) and compiling wit,ABINGRAD (Siskind
and Pearlmutter, 2008b), our prototype AD-enabled compilstifies that suspi-
cion (see Fig. 1). We therefore plan to makelab back-end available in version
2 of FARFALLEN.

5 Conclusion

We have defined and motivated extensions GrRFRAN for convenient, modular
programming using automatic differentiation. The extensican be implemented
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as a prepreprocessor (Radul et al., 2012). This strategylenenodular, flexible
use of AD in the context of an existing legacy language andl ¢bain, without
sacrificing the desirable performance characteristiclsesfe tools: only about 20%—
50% slower than a dedicated AD-enabled compiler, deperatinghich FORTRAN
AD system is used.
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