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Abstract. We had human subjects perform a one-out-of-six class action
recognition task from video stimuli while undergoing functional mag-
netic resonance imaging (fMRI). Support-vector machines (SVMs) were
trained on the recovered brain scans to classify actions observed during
imaging, yielding average classification accuracy of 69.73% when tested
on scans from the same subject and of 34.80% when tested on scans
from different subjects. An apples-to-apples comparison was performed
with all publicly available software that implements state-of-the-art ac-
tion recognition on the same video corpus with the same cross-validation
regimen and same partitioning into training and test sets, yielding clas-
sification accuracies between 31.25% and 52.34%. This indicates that
one can read people’s minds better than state-of-the-art computer-vision
methods can perform action recognition.
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1 Introduction

There has been considerable recent interest in action recognition in the com-
puter vision community. By our count, there were 236 papers related to action
recognition published in major computer-vision conferences over the past three
years.1 A recent survey paper [17] reports the performance of a variety of dif-
ferent systems on a variety of different datasets. On some datasets with small
numbers of classes (e.g. KTH [25], 6 classes; Weizmann [1], 9 classes) the best
performance is perfect or near perfect. This has prompted many to conclude
that action recognition with small numbers of classes is a solved problem, mo-
tivating many to work on datasets with larger numbers of classes (e.g. UCF50
[22], HMDB51 [14], and even UCF101 [26]).

Here we show that this conclusion might be premature. We present a new
dataset with only six classes: carry, dig, hold, pick up, put down, and walk. Our
dataset is innocuous; there is no attempt to subvert the recognition process.
The actions are, arguably, easily interpretable by humans and, similar to KTH
[25] and Weizmann [1], occur largely unoccluded in an outdoor setting with an
uncluttered background. We applied every state-of-the-art, recently published
action-recognition system for which code is publicly available (as well as several
for which code is not publicly available) to this dataset and obtained classification
accuracies between 31.25% and 52.34%. (Chance performance is 16.67%.) As a
point of comparison, we showed these same videos to human subjects undergoing
functional magnetic resonance imaging (fMRI). We trained classifiers on the
brain-scan data and obtained an average within-subject classification accuracy
of 69.73%. Note that as discussed in the next section, our dataset is difficult.
While we do not have a precise human-performance baseline against which to
compare the above classification accuracies, the next section does discuss human
annotation that we have gathered and used to measure the level of difficulty of
the corpus.

Figure 1 summarizes our experiment. We train and test state-of-the-art com-
puter vision action-recognition software (C2 [12], Action Bank [24], Stacked ISA
[16], VHTK [18], Cao’s implementation [2] of Ryoo’s method [23], Cao’s method
[2], and our own implementation of the classifier described in [28] on top of the
Dense Trajectories [27,28,29] feature extractor) to classify video clips depicting
one of six action classes and achieve accuracy of about 50%. We show the same
video clips as stimuli to human subjects undergoing fMRI and train and test
state-of-the-art brain-scan classifiers to classify the same six action classes and
achieve accuracy of about 70%. This was an apples-to-apples comparison. Both
conditions involved the same eight-fold cross-validation procedure with the same
splits of data into training and test sets.

1 49 (5 oral and 44 poster) in CVPR 2011, 24 (4 oral and 20 poster) in ICCV 2011,
20 (2 oral and 18 poster) in CVPR 2012, 7 (3 oral and 4 poster) in BMVC 2012, 51
(5 oral and 46 poster) in ECCV 2012, 23 (3 oral and 20 poster) in ACCV 2012, 20
(2 oral and 18 poster) in CVPR 2013, and 42 (all poster) in ICCV 2013.



614 A. Barbu et al.

→ → ≈50%
video computer accuracy

→ → → →≈70%
video subject fMRI computer accuracy

Fig. 1. A summary of our experiment. We train and test state-of-the-art computer-
vision action-recognition software to classify video clips depicting one of six action
classes and achieve accuracy of about 50%. We show the same video clips as stimuli to
human subjects undergoing fMRI, train and test state-of-the-art brain-scan classifiers
to classify the same six action classes, and achieve accuracy of about 70%.

2 Dataset

We employed a small portion of the video dataset gathered as part of the Year 2
evaluation for the DARPA Mind’s Eye program.2 (Note that we did not design
the corpus or film the video ourselves; it was designed and filmed by DARPA
and provided to all teams funded by the Mind’s Eye program.) In particu-
lar, we used data from two components of that dataset: the portion known as
C-D2b, which was intended to be used as training data, and the portion known
as y2-evaluation, what was used as test data for the actual evaluation. Of
C-D2b, we used solely the Country_Road portion (both Country_Road_1 and
Country_Road_2), videos filmed on a rural country road depicting the speci-
fied action classes. This portion contains 22 video clips ranging in length from
about 13.5 minutes to about 41 minutes totaling about 8.5 hours of video. Of
y2-evaluation, we used all of the videos employed for evaluating the ‘Recogni-
tion’ and ‘Description’ tasks that were part of the Year 2 evaluation. This portion
contains 11 video clips ranging in length from about 6 minutes to about 13 min-
utes totaling about 2 hours of video. Two of these video clips were filmed in a
country-road setting while the remainder were filmed in a ‘Safe House’ setting,
a simulated middle-eastern urban environment. Nominally, this dataset depicts
24 distinct action classes: approach, arrive, bury, carry, chase, dig, drop, enter,
exchange, exit, flee, follow, give, hold, leave, pass, pick up, put down, replace, run,
stop, take, turn, and walk. However, the video is streaming; action occurrences
start and stop at arbitrary points in the time course of the video, and often
overlap.

There is no official ground-truth action labeling associated with this dataset.
To remedy this, we had five humans annotate the entire Country_Road portion
of C-D2b (both Country_Road_1 and Country_Road_2) and had a different set
of five annotators (with one annotator in common) annotate the entire set of
videos for the Recognition and Description portions of y2-evaluation. Each

2 http://www.visint.org/datasets#Year_2_Videos
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carry

dig

hold

pick up

put down

walk

Fig. 2. Key frames from sample stimuli for each of the six action classes

annotator annotated the entire corpus portion independently, labeling each oc-
currence of the 24 specified action classes along with the start and end times for
each occurrence. Thus we have five complete redundant annotations of the entire
corpus. Having multiple annotators allows us to measure intercoder agreement,
which we did for all pairs of annotators. We considered two annotated action
occurrences to match when they were labeled with the same action class and
temporally overlapped by a minimum specified amount. The temporal overlap
was measured using a 1-dimensional variant of the 2-dimension spatial-overlap
metric used in PASCAL VOC [6], namely the ratio of the length of the intersec-
tion of the two intervals to the length of their union. We then computed the F1
score for each pair of annotators as a function of overlap. The result is shown
in Fig. 3. The F1 score naturally decreases monotonically with increasing min-
imum overlap and goes to zero when the required overlap is 100%, indicating
that human annotators never agree on the precise temporal extent of the actions
in question. But the F1 score ranged between 0.27 and 0.8 at 50% overlap and
between 0.39 and 0.81 at 0% overlap (which still requires temporal adjacency).

This surprisingly low level of human-human intercoder agreement indicates
that even in this setting where the actions are easily interpretable by humans and
occur largely unoccluded in an outdoor setting with an uncluttered background,
the task of delineating temporal extent of action occurrences is ambiguous. Thus
we selected a subset of 6 out of the 24 action classes with the highest level of
intercoder agreement: carry, dig, hold, pick up, put down, and walk. For each
of these classes, we selected intervals of at least 2.5 seconds where at least two
human annotators agreed on the label with at least 50% overlap. From these,
we attempted to select 30 random 2.5-second clips for each of the six classes.
The 2.5-second clips were chosen to maximally coincide with the intersection of
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(a) (b)

Fig. 3. Intercoder agreement for each annotator pair on (a) the C-D2b/Country_Road

dataset and (b) the Recognition and Description portions of the y2-evaluation dataset
that were part of the Year 2 evaluation of the DARPA Mind’s Eye program, as a
function of requisite temporal overlap.

the human-annotated intervals. However, two classes did not have sufficient clips
with the requisite level of intercoder agreement: dig with 23 and hold with 26.
Thus we selected a total of 169 distinct clips across all six action classes with the
highest possible level of intercoder agreement.3 Key frames from sample stimuli
are shown in Fig. 2.

We employed a technique to further reduce the potential ambiguity in de-
termining the intended action-class label for each stimulus. This technique was
borrowed and adapted from the Natural Language Processing community. Nat-
ural language exhibits lexical polysemy: words can have multiple senses, which
leads to ambiguity in contexts. WordNet [7,19] represents word meanings with
synsets, unordered sets of words that share a same meaning. A polysemous
word with n different meanings occurs in n different synsets, along with its syn-
onyms. For example, the verb break is found in the synsets {break , interrupt}
and {break , bust}. To further reduce the potential ambiguity in the intended
class label depicted by each video, we constructed pairs of video clips with the
same label, in the spirit of WordNet’s synsets. In other words, we constructed
longer stimuli as pairs of different video clips with the same intended action-class
label, where each might otherwise be mildly ambiguous as to which action class
was intended, but where together, the ambiguity is resolved. Sequences of such
video-clip pairs constituted both the stimuli presented to human subjects during
fMRI as well as training and test sets for computer-vision action recognition.

3 Action Recognition Software

We sought to try our corpus with as many published action-recognition methods
as possible. We searched all papers on action recognition published in all confer-
ences listed under Computer Vision Paper Indexes4 since 2011, namely ICCV

3 Code and data at http://upplysingaoflun.ecn.purdue.edu/~qobi/eccv2014/.
4 http://www.cvpapers.com/index.html
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2011 and 2013, CVPR 2011, 2012, and 2013, ECCV 2012, ACCV 2012, BMVC
2012, SIGGRAPH 2011, EUROGRAPHICS 2011, and IJCAI 2011, for indication
that their code was publicly available. We sought end-to-end implementations
that included both feature extraction and classification. (Some authors release
only the code for feature extraction, for example binaries for STIP [15]5 and
source for Dense Trajectories [27,28,29]6. The lack of a compatible released clas-
sifier makes it difficult to run and further difficult to compare with the precise
published method.) The only papers that we found that indicated such were for
C2 [12,14]7 and Action Bank [24].8 C2 is particularly relevant to our comparison
with fMRI as [14] claims that it

uses a hierarchical architecture modeled after the ventral and dorsal
streams of the primate visual cortex for the task of object and action
recognition, respectively.

Additionally, we posted a query for available action-recognition software to
CVNet which yielded a single response pointing us to the code for Stacked ISA
[16].9 Furthermore, we contacted Rogerio Feris to see if any code was collected
for the study in [17]. He pointed us to a website10 that yielded only one avail-
able system that we hadn’t already been aware of, namely Velocity Histories
of Tracked Keypoints (VHTK) [18].11 As far as we can tell, these are the only
published action-recognition methods for which there are corresponding publicly
available end-to-end implementations.

Note that the released code for Stacked ISA is only able to perform binary
classification and so must differ from that used to generate the published results
which include evaluation of KTH that requires multi-label classification. Also
note that for VHTK, the documentation for the released code states that the
released code differs from that used to produce the results in the corresponding
publication; the actual code used to produce the results in the corresponding
publication has not been publicly released. Thus the only publicly available
systems that we are aware of that can replicate the associated published results
are C2 and Action Bank.

We also have access to two action-recognition software packages that are not
publicly available. Cao [2] reports that they reimplemented Ryoo’s method [23]
as it is not publicly available. We tested against both Cao’s implementation [2]
of Ryoo’s method [23] as well as Cao’s method [2]. Further, we implemented our
own classifier using the methods described in [28] on top of the publicly available
source code for the Dense Trajectories [27,28,29] feature extraction and tested
against this as well (with 4000 GMM components).

5 http://www.di.ens.fr/~laptev/download.html
6 https://lear.inrialpes.fr/people/wang/download/

dense trajectory release v1.2.tar.gz
7 https://github.com/hueihan/Action_Recognition
8 http://www.cse.buffalo.edu/~jcorso/r/actionbank/
9 http://ai.stanford.edu/~quocle/video_release.tar.gz

10 http://rogerioferis.com/VisualRecognitionAndSearch2014/Resources.html
11 http://www.cs.rochester.edu/~rmessing/uradl/
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4 Overview of FMRI

For a general overview of fMRI see [11]. Modern 3T clinical MRI scanners can
perform a high-resolution anatomical scan in about 8 minutes. This yields a spa-
tial resolution of approximately 1mm and produces a 3D image of the brain with
about 11 million voxels, with about 13 bits of information per voxel. Functional
MRI trades off spatial resolution for scan time, yielding a 3D image containing
about 150,000 voxels with a spatial resolution of about 3mm every two seconds.
While some state-of-the-art scanners support higher-frequency functional scans
about every 250ms, we do not have access to such. Thus, in our experiments,
the scan time approximately coincides with the length of the video stimulus.

Most verbs describe state changes that happen over time. For example, pick
up involves a state change of an object being at rest somewhere to being held
by someone. Computer-vision methods can process frame sequences that reflect
such changes. Presumably, there are also changes in brain activity to reflect such
state changes in the perceived world. But they happen at a time scale that is
too short to measure given the temporal resolution of fMRI. A single TR is
2s. The whole video stimulus takes 2.5s. So we get a single brain volume (after
the HRF delay) that presumably reflects some smearing of the brain activity
during the entire video clip but does not contain explicit information of the time
course of processing. This means that while computer-vision action recognition
can potentially avail itself of the temporally variant pixel values over the course
of a video clip, the fMRI analysis methods we employ cannot, and process a
single static brain volume for each video clip.

FMRI does not directly measure neural activity. It measures the blood oxy-
genation level dependent (BOLD) signal. Greater neural activity requires greater
energy which in turn requires greater blood flow. Blood flow is shunted to differ-
ent brain regions according to temporally variant neural activity. However, such
shunting is delayed. It takes roughly 8–10 seconds for the BOLD response to
peak after a stimulus onset that induces brain activity. Moreover, the deviation
in BOLD response can persist for roughly 30 seconds after such. This is called
the hemodynamic response function (HRF). It induces a smearing in the tem-
poral signature of the brain activity indicated by the BOLD response; adjacent
stimuli can induce overlapping BOLD response. To compensate for the HRF, we
separate presentation of stimuli to the subject with blanking periods where there
is no stimulus except for a fixation crosshair. Moreover, we analyze the brain-
scan sample from the third TR after each stimulus, which roughly corresponds
to the HRF delay.

Since the spatial resolution of a functional scan is only about 3mm, the scan-
ning process can tolerate a small amount of subject head movement. Subject’s
heads are confined to a headrest in the head coil and subjects are instructed to
attempt to minimize head movement. Preprocessing of BOLD involved correct-
ing for drift, standard motion correction, and between session normalization.

State-of-the-art brain-activity classification involves a small number of con-
cept classes, where the stimuli are still images of objects or orthographic presen-
tation of nouns. Just et al. [13] perform classification on orthographic nouns, 5
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exemplars from each of 12 classes, achieving a mean rank accuracy of 72.4% on
a one-out-of-60 classification task, both within and across subjects. (Note that
rank accuracy differs from classification accuracy and denotes “the normalized
rank of the correct label in the classifier’s posterior-probability-ordered list of
classes” [13, p. 5].) Pereira et al. [20] reanalyze the preceding data in the context
of a prior from Wikipedia and achieve a mean accuracy of 13.2% on a one-out-
of-12 classification task and 1.94% on a one-out-of-60 classification task. Hanson
& Halchenko [9] perform classification on still images of two object classes: faces
and houses, and achieve an accuracy above 93% on a one-out-of-two classifica-
tion task. Connolly et al. [3] perform classification on still images of objects,
two instances of each of three classes: bugs, birds, and primates, and achieve an
accuracy between 60% and 98% on a one-out-of-two within-class classification
task and an accuracy between 90% and 98% on a one-out-of-three between-class
classification task. Haxby et al. [10] perform cross-subject classification of image
and video stimuli achieving between 60% and 70% between-subject accuracy
on image data with 6 to 7 classes and video data with all 18-second clips from
Raiders of the Lost Ark. To our knowledge, this is the first study that classifies
brain scans of subjects observing actions in video, and moreover compares the
performance of such to computer-vision action-recognition methods.

5 FMRI Experiment

Video clips were shown to subjects who were asked to think about the action
class depicted in the video during imaging. No behavioral or motor response
of any kind was elicited. Specifically, subjects were not asked to push buttons
or produce words, either oral or visual (written, signed). Subjects were shown
sample video prior to imaging and informed of the intended set of action classes.

Because fMRI acquisition times are slow, roughly coinciding with the stimulus
length, a single brain volume that corresponds to the brain activation induced by
each stimulus was classified to recover the actions that the subjects were asked
to think about. Multiple runs were performed for each subject, separated by
several minutes, during which no stimuli were presented, no data was gathered,
and subjects engaged in unrelated conversation with the experimenters. This
separation between runs allowed runs to constitute folds for cross validation
without introducing spurious correlation in brain activity between runs.

Imaging used a 3T GE Signa HDx scanner (Waukesha, Wisconsin) with
a Nova Medical (Wilmington, Massachusetts) 16 channel brain array to col-
lect whole-brain volumes via a gradient-echo EPI sequence with 2000ms TR,
22ms TE, 200mm×200mm FOV, and 77◦ flip angle. We acquired 35 axial slices
with a 3.000mm slice thickness using a 64×64 acquisition matrix resulting in
3.125mm×3.125mm×3.000mm voxels.

Eight runs were acquired per subject, using a rapid event-related design [13],
with stimuli counterbalanced across all six action classes within each run. We
presented pairs of 2.5s video clips at 10fps, depicting the same action class. Each
such presentation consisted of a 2.5s video clip, 0.5s blanking without a fixation
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crosshair, a 2.5s video clip, and 0.5s of fixation, totaling 6s that was aligned
to three consecutive TR boundaries. Each such was followed by a minimum of
one fixation TR. Each run started with a minimum of four fixation TRs and
ended with a minimum of 10 fixation TRs. An additional 48 fixation TRs were
randomly placed before, between, and after video-clip-pair presentations. All
such fixation TRs were aligned to TR boundaries. Each run comprised 48 pre-
sentations spanning 254 captured brain volumes. The 48 stimulus presentations
constituted eight instances of each of the six action classes. The eight instances
for each action class were selected randomly from a uniform distribution over
the set of 23 to 30 video clips for each class. A given clip could appear more than
once both within and across runs, but never within a pair. The same stimulus
order, both within and across runs, was used for all subjects (and also for the
computer-vision action-recognition experiments).

Scan data was gathered for eight subjects and was processed using AFNI [5]
to skull-strip each volume, motion correct and detrend each run, and align each
subject’s runs to each other. Voxels within a run were z-scored, subtracting the
mean value of that voxel for the run and dividing by its variance. Since each
brain volume has very high dimension, 143,360 voxels, voxels were eliminated
by computing a per-voxel Fisher score on the training set and keeping the 4,000
highest-scoring voxels (12,000 for the cross-subject analyses). The Fisher score
of a voxel v for a classification task with C classes where each class c has nc

examples was computed as
∑C

c=1 nc(μc,v−μ)2
∑C

c=1 ncσ2
c,v

where μc,v and σc,v are the per-class

per-voxel means and variances and μ was the mean for the entire brain volume.
The resulting voxels were then analyzed with Linear Discriminant Dimension-
ality Reduction [8] to select a smaller number of potentially-relevant voxels, se-
lecting on average 1,084 voxels per-subject per-fold (12,000 for the cross-subject
analyses). Both stages of voxel selection were performed independently for the
training set for each fold of the analysis. The set of voxels to consider was deter-
mined solely from the training set. That same subset of voxels was used in the
test set for classification.

A linear support vector machine (SVM) [4] was employed to classify the se-
lected voxels. One run was taken as the test set and the remaining runs were
taken as the training set. To account for the HRF, the third brain volume after
the onset of each stimulus was used for training and classification.

Two kinds of analyses were performed: within subject and cross subject. The
within-subject analyses trained and tested each classifier on the same subject. In
other words, classifiers were trained on the data for subject s and also tested on
the data for subject s. This was repeated for all eight subjects. While we trained
and tested on data from the same subject, this does not constitute training on
the test data since different brain scans for different video clips were used for
training and test. For these, leave-one-out cross validation was performed by run:
when testing on run r, the classifiers were trained on all runs except run r. Such
cross validation precludes training on the test data. Partitioning by run ensures
that information could not flow from the training set to the test set through the
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Fig. 4. Box plot corresponding to the results in Table 1, aggregated across subject and
run for fMRI and aggregated across run for the computer-vision methods. Red lines
indicate medians, box extents indicate upper and lower quartiles, error bars indicate
maximal extents, and crosses indicate outliers. The dashed green lines indicates chance
performance.

hemodynamic response function (HRF). This was repeated for all eight runs,
thus performing eight-fold cross validation.

The cross-subject analyses trained and tested each classifier on different sub-
jects. In particular, a classifier was trained on the data for all subjects except
subject s and then tested on the data for subject s. This was repeated for all
eight subjects. For these, leave-one-out cross validation was performed by both
subject and run: when testing on run r for subject s, the classifiers were trained
on all runs except run r for all subjects except subject s. While there is no
potential for training on the test data, even without cross validation by run,
there is potential for a different HRF-based confound. Due to the HRF, each
scan potentially contains information from prior stimuli in the same run. Since
the presentation order did not vary by subject, it is conceivable that classifier
performance is due, in part, to the current stimulus in the context of previous
stimuli in the same run, not just the current stimulus. One could control for this
confound by randomizing presentation order across subject, but this was not
part of the experiment design. Cross validation by run is an alternative control
for this confound.

The results are presented in Table 1 and Figs. 4 and 5. All results are statis-
tically significant with p ≤ .005, when aggregated across subject, across run, or
both, taking a binomial distribution (repeated independent Bernoulli trials with
a uniform distribution over possible outcomes) as the null hypothesis. Assuming
independence between trials, with each trial uniformly distributed, is warranted
because all runs were counterbalanced. This demonstrates the ability to recover
the action class that the subjects were thinking about when watching the video.
Note that the confusion matrices are mostly diagonal, with the highest numbers
of errors being made distinguishing carry and hold, carry and walk (which are
both pairs of mutually ambiguous stimuli), and pick up and put down.12

12 The instructions given to subjects delineated carry, which required horizontal agent
motion, from hold, which required the agent to be stationary.
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Table 1. Accuracy of within-subject and cross-subject classification of fMRI brain
scans of subjects watching video clips on a 1-out-of-6 action-recognition task (chance
performance is 0.1666), by subject and run, aggregated across subject, aggregated
across run, and aggregated across subject and run. Comparison with seven computer-
vision action-recognition methods, by run and aggregated across run.

run

analysis subject mean stddev 1 2 3 4 5 6 7 8

fMRI within subject 1 0.7943 0.0783 0.8333 0.8125 0.8958 0.8542 0.7292 0.8125 0.7708 0.6458
2 0.8880 0.0589 0.8750 0.9375 0.9792 0.9167 0.8958 0.7917 0.8333 0.8750
3 0.7500 0.0568 0.7917 0.7083 0.7292 0.7500 0.7500 0.6458 0.8125 0.8125
4 0.3828 0.0945 0.4583 0.5417 0.3750 0.3542 0.3750 0.2083 0.3750 0.3750
5 0.9063 0.0686 0.8750 0.8542 0.9583 0.9583 0.9583 0.9583 0.9167 0.7708
6 0.8385 0.0348 0.8750 0.8750 0.8542 0.8333 0.8125 0.8542 0.7708 0.8333
7 0.5104 0.2260 0.1667 0.1458 0.6875 0.5417 0.6875 0.6875 0.6042 0.5625
8 0.5078 0.1531 0.2083 0.6458 0.5208 0.6458 0.3958 0.4375 0.6042 0.6042
mean 0.6973 0.6354 0.6901 0.7500 0.7318 0.7005 0.6745 0.7109 0.6849
stddev 0.2171 0.3092 0.2557 0.2156 0.2061 0.2136 0.2450 0.1734 0.1694

fMRI across subject 1 0.2917 0.1045 0.2708 0.1458 0.2917 0.3750 0.3542 0.2708 0.1667 0.4583
2 0.4141 0.0901 0.5417 0.5208 0.3750 0.3958 0.2500 0.3958 0.4167 0.4167
3 0.3698 0.0761 0.4167 0.4375 0.2917 0.3750 0.3333 0.3125 0.2917 0.5000
4 0.2917 0.1210 0.4167 0.2292 0.4792 0.2500 0.3958 0.1667 0.2292 0.1667
5 0.3568 0.0550 0.3958 0.4167 0.3125 0.3333 0.3958 0.3750 0.3750 0.2500
6 0.4036 0.0695 0.4375 0.3750 0.3333 0.3542 0.3333 0.5208 0.4792 0.3958
7 0.3698 0.1677 0.1042 0.1042 0.4375 0.4792 0.3958 0.4375 0.5000 0.5000
8 0.2865 0.0770 0.1458 0.2917 0.2917 0.3958 0.2708 0.2500 0.3750 0.2708
mean 0.3480 0.3411 0.3151 0.3516 0.3698 0.3411 0.3411 0.3542 0.3698
stddev 0.1068 0.1527 0.1475 0.0725 0.0647 0.0567 0.1135 0.1173 0.1254

C2 [12] 0.4740 0.0348 0.5000 0.4792 0.3958 0.4792 0.4583 0.5000 0.5000 0.4792
Action Bank [24] 0.4427 0.1112 0.5625 0.4583 0.2917 0.6250 0.3958 0.4792 0.3542 0.3750
Stacked ISA [16] 0.4688 0.0649 0.5208 0.5000 0.5417 0.4583 0.3333 0.5000 0.4375 0.4583
VHTK [18] 0.3255 0.0721 0.3750 0.2708 0.2708 0.3333 0.2292 0.3542 0.4583 0.3125
Ryoo’s method∗[23] 0.3125 0.0459 0.2500 0.2708 0.2917 0.3750 0.3333 0.2917 0.3750 0.3125
Cao’s method [2] 0.3333 0.0964 0.3958 0.2292 0.2500 0.4375 0.1875 0.4167 0.3958 0.3542
Dense Trajectories [27,28,29] 0.5234 0.0634 0.6667 0.5625 0.5000 0.5000 0.4792 0.4792 0.5000 0.5000
∗as implemented in Cao et al. [2]

As expected, the cross-subject average classification accuracy is lower than the
within-subject average classification accuracy. This is because there is significant
cross-subject anatomical variation. This is ameliorated to an extent, but not
completely by warping the scan data to align the subjects to each other. But this
process is imperfect. Few fMRI researchers perform cross-subject classification,
testing classifiers trained on different subjects [10,13,21]. None that we are aware
of do so for short video stimuli intended to be classified into object or event
classes that correspond to nouns or verbs. Nonetheless, the average cross-subject
classification accuracy is far above chance and is statistically significant.

6 Computer-Vision Action-Recognition Experiments

We applied C2 [12], Action Bank [24], Stacked ISA [16], VHTK [18], Cao’s
implementation [2] of Ryoo’s method [23], Cao’s method [2], and our own im-
plementation of the classifier described in [28] on top of the Dense Trajectories
[27,28,29] feature extractor to the same dataset.13 When running Action Bank,

13 These experiments were analogous to the within-subject fMRI experiment. It would
be meaningless to perform a computational analog of the cross-subject fMRI ex-
periments because there would be no variation between different runs of the same
program.
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fMRI within subject fMRI across subject C2 [12]

Action Bank [24] Stacked ISA [16] VHTK [18]

Cao’s implementation [2] of Cao’s method [2] Dense Trajectories [27,28,29]
Ryoo’s method [23]

Fig. 5. Confusion matrices corresponding to the results in Table 1, aggregated across
subject and run for fMRI and aggregated across run for the computer-vision methods.

we used the precomputed 205-template bank that was provided with the re-
lease. These experiments employed the same eight-fold leave-one-run-out cross
validation. One complication arises, however. Since the stimuli were selected
randomly from a uniform distribution over the set of available video clips, the
same video clip could appear both within a given run and across runs. In the
case of computer-vision systems, which directly process the stimuli, this would
constitute training on the test data. In particular, several of the computer-vision
systems that we evaluated are memory-based and would gain an unfair advan-
tage by recalling from memory the class labels of test videos that occur in the
training set. This is not a problem for the fMRI experiments because we did not
directly process the stimuli; we process the brain-scan data that was evoked by
the stimuli and there is significant natural variation in such.

To ameliorate this problem when performing the computer-vision experi-
ments, we removed from each training set any pair that contained a video clip
shared with a pair in the test set. This kept each test set unmodified but resulted
in slightly smaller training sets. After removing such pairs, the two video clips
from each pair were temporally concatenated in the same order as presented
to human subjects to yield the training and test samples for the computer-
vision action-recognition experiments. The results are presented in Table 1 and
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Figs. 4 and 5. Note that all the computer-vision action-recognition systems that
we tested on yield similar accuracy to the cross-subject fMRI experiments and
much lower accuracy than the corresponding within-subject fMRI experiments.

7 Discussion

Figure 4 illustrates some interesting issues. It shows that Action Bank [24] has
lower median accuracy and a higher variance profile that extends to much lower
accuracy than C2 [12] and Stacked ISA [16] which predate it. It shows that
Cao’s implementation [2] of Ryoo’s method [23] and Cao’s method [2] have lower
median accuracy and a much lower span of accuracies than C2 [12], Action Bank
[24], and Stacked ISA [16] which predate them. It shows that Cao’s method [2]
has higher variance than Cao’s implementation [2] of Ryoo’s method [23] which
predates it. Thus generally, the newer methods perform worse than the older
ones; it shows that the field is basically not progressing.

Figure 5 gives some indication as to why. It shows that all the computer-vision
methods tested confuse carry and walk much more than fMRI, which could
be explained if these methods detected these action classes solely by detecting
horizontal motion. It shows that all the computer-vision methods tested confuse
dig and hold, which could be explained if these methods detected these action
classes solely by detecting the lack of horizontal motion. It shows that all the
computer-vision methods tested confuse pick up and put down, which could
be explained if these methods detected these action classes solely by detecting
vertical motion, without detecting the object being picked up or put down and
without accounting for the temporal ordering of the motion. It also suggests
that the semantics of human perception may play a role in action recognition,
which the statistical classifiers cannot pick up. This is all to be expected when
one considers that, generally, most current computer-vision methods employ
techniques that look solely at local image features at very short spatial and/or
temporal scales. Even Action Bank ultimately relies on local image gradients to
define its templates. And none of the methods, even Dense Trajectories which can
incorporate a person detector, detect the objects being interacted with as part
of the action class. In other words, they don’t detect the object being carried,
the shovel used to dig, the hole in the ground that is dug, or the objects being
held, picked up, or put down. Moreover, they don’t model the time course of the
changing human pose and relative position and orientation of the person and the
object interacted with. These are the semantic characteristics of the action class.
Thus it shows that none of these methods are, in fact, doing action recognition.

While cross-subject fMRI yields lower accuracy than within-subject fMRI, ac-
curacy that is on par with the computer-vision methods, the confusion matrices
indicate that the source of the error in the cross-subject fMRI is different than
that in the computer-vision methods. There is less pick up:put down confusion,
far less dig:hold confusion, and somewhat more carry:walk confusion. This in-
dicates that even cross subject, the fMRI results appear to be using a degree
of semantic inference that is absent in the computer-vision methods and the
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reduced accuracy of cross-subject fMRI is due more to issues of registration
than to anything fundamental about the classification process.

8 Conclusion

Despite the explosive growth of interest in action recognition over the past
three years and the perfect or near-perfect classification accuracies reported
on datasets with small numbers of action classes, we show that the problem
remains difficult. Uniformly, the newer methods we tried performed no better
than or even worse than the older methods on this new dataset. One potential
explanation is that the field as a whole is collectively overfitting to the datasets,
i.e. having individual researchers repeatedly hone their methods to a small num-
ber of datasets and having the community collectively perform hill climbing on
these datasets is tantamount to training on the test data. We advocate amelio-
rating this problem by testing methods on read-once data, data that has never
been processed by the method. We practice what we preach by demonstrating
our methods with data gathered live on stage during our presentations. Our
ability to perform action recognition by reading minds is sufficiently robust to
allow us to do something that computer-vision researchers rarely, if ever, do and
neuroscientists never do, namely live demos as part of conference presentations.
In the past, we have filmed live video during a talk, sent it via wireless internet
to a remote imaging center, presented such video as stimuli to a subject waiting
in a scanner, scanned them while watching said video, classified the brain scans,
and sent the classification results back via wireless internet for live presentation.
Moreover, all of the computer-vision methods we tested performed far worse
than basic machine-learning methods applied to brain-scan data, which is sur-
prising. We classify brain-scan data using SVMs; most computer-vision methods
for action recognition do so as well. In essence, what we have done is replace
the feature-extraction component with a brain-fMRI combination. This suggests
that the computer-vision community may benefit by looking at neuroscience to
motivate the development of better feature extraction.
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