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Abstract Software quality is an important external software attribute that is difficult to measure objectively.
Several studies have identified a clear empirical relationship between static coupling metrics and software quality.
However due to the nature of object-oriented programs, static metrics fail to quantify all the underlying dimensions
of coupling, as program behaviour is a function of its operational environment as well as the complexity of the source
code. In this paper a set of run-time object-oriented coupling metrics are described. A method of collecting such
metrics which utilises the Java Platform Debug Architecture is described and a collection of Java programs from
the SPECjvm98 benchmark suite are evaluated. A number of statistical techniques including descriptive statistics,
a correlation study and principal component analysis are used to assess the fundamental properties of the measures
and investigate whether they are redundant with respect to the Chidamber and Kemerer static CBO metric. Results
to date indicate that run-time coupling metrics can provide an interesting and informative qualitative analysis of a
program and complement existing static coupling metrics.

1 Introduction

Coupling is well recognised as one of the fundamental qualitative measures of the external complex-
ity of a software design. A large body of research has gone into investigating how this complexity
measure in turn characterises such external quality attributes of a design as its maintainability,
reusability, reliability, and provides a means of estimating the effort needed for testing. Coupling
metrics have been designed for use at various stages of the software life cycle, the majority of which
are evaluated through static code analysis [4]. However, these static measures only capture cer-
tain underlying dimensions of coupling. Other dependencies regarding the dynamic behaviour of
a program can only be inferred from run-time information. Features of object-oriented program-
ming such as polymorphism, dynamic binding and inheritance render the static coupling metrics
imprecise as they do not reflect perfectly the run-time situation. The quality of a software product
will therefore be influenced by its operational environment as well as the source code complexity.
Consequently measures that access the runtime quality may aid in the analysis of software quality.

In this analysis the Coupling Between Objects (CBO) metric, defined by Chidamber and Ke-
merer [6], was used. The reason being the findings from a large number of previously conducted
empirical studies have shown this metric to be a good predictor of a number of external quality
attributes. Studies have shown the ability of this metric to evaluate the fault proneness, main-
tainability, testability, change proneness and reusability of software [2, 5, 7, 12]. CBO for a class is
defined as, “a count of the number of other classes to which it is coupled”. Two classes are said
to be coupled when “methods declared in one class use methods or instances variables of the other
class”.

The first set of run-time metrics we define extends the previous work by taking into account
the direction of coupling. In the coupling relationship a class may act as a client or a server, that
is it may access methods or instance variables from another class or it may have its own methods
or instance variable used. To account for this, two run-time metrics were defined: run-time import
coupling between objects (RI) and run-time export coupling between objects (RE).

The second set of run-time measures we define are designed to quantify the strength of the
coupling relationship, that is the amount of association between the classes. A count is taken of the
amount of times a class accesses methods or instances variables from other classes as a proportion
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Name Description

RDI A count of number of accesses a class makes as a proportion of total number of access.
RDE A count of number of accesses made to a class as a proportion of total number of access.
RI Number of classes from which a class accesses methods or instance variables at run-time
RE Number of classes who access methods or instance variables from a given class
CBO Number of classes a class accesses methods or instance variables from statically

Table 1: Definition of Metrics Used in this Analysis

of total number of methods or instance variables accessed. This will give the degree to which
the class is accessing data from outside its own class and is defined as run-time import degree of
coupling (RDI). The metric is also computed from the perspective of the class as a server, that is
the amount of times classes are accessing data from this class as a function of the total number of
accesses (RDE). These metrics represent an improvement over Rx as they are normalised coupling
measurements, that is they are measures that have a notion of maximum coupling. This may be
more useful in comparing classes. Table 1 presents a summary of all metrics used in this study,
further details can be found in [10,11].

2 Experimental Platform

The dynamic analysis of any program involves a huge amount of data processing. However, the
level of performance of the collection mechanism was not considered to be a critical issue at this
time. It was only desirable that the analysis could be carried out in reasonable and practical time.
It was however necessary to be able to collect a wide variety of dynamic information, therefore the
collection mechanism had to be designed with a high degree of flexibility in mind.

We are currently concentrating on programs written in Java, as all Java programs are executed
on a Virtual Machine this provides a ideal platform for profiling and analysis.

Our metric data collection system consists of a number of parts. Runtime trace information
was obtained by utilising the Java Platform Debug Architecture (JPDA) [9]. This is a multi-
tiered debugging architecture contained within Sun Microsystem’s Java 2 SDK version 1.4.0 01. It
consists of two interfaces, the Java Virtual Machine Debug Interface (JVMDI), and the Java Debug
Interface (JDI), and a protocol, the Java Debug Wire Protocol (JDWP). The first layer of the
JPDA, the JVMDI, is a programming interface implemented by the virtual machine. The second
layer, the JDWP, defines the format of information and requests transferred between the process
being debugged and the debugger front-end which implements the JDI. The JDI, which comprises
the third layer, defines information and requests at the user code level. It provides introspective
access to a running virtual machine’s state, the class, array, interface, and primitive types, and
instances of those types. This was selected because of the ease with which it is possible to obtain
specific information about the run-time behaviour of a program. It also has the advantage of
being compatible with a number of commercial virtual machine implementations. However, it is
currently not possible to directly obtain information about the state of the execution stack using
this approach.

To overcome this problem an EventTrace analyser class, which we have implemented in Java,
carries out a stack based simulation of the entire execution in order to obtain information about
the state of the execution stack. This class also implements a filter which allows the user to specify
which events and which of their corresponding fields are to be captured for processing. This allows
a high degree of flexibility in the collection of the dynamic trace data.

The final component of our collection system is a Metrics class, which is responsible for cal-
culating the desired metrics on the fly. It is also responsible for outputting the results in text
format. The metrics to be calculated can be specified from the command line. The addition of the
metrics class allows new metrics to be easily defined as the user need only interface with this class.
See [10,11] for additional information.
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3 Data Analysis Methodology

In this section the data is analysed to determine if the run-time coupling metrics are redundant
with respect to the static CBO measure. The procedure is derived from the method outlined in [5].
This consists of descriptive statistics, a correlation study and principal component analysis.

For each case study the distribution (mean) and variance (standard deviation) of each measure
is calculated. These statistics are used to select metrics that exhibit enough variance to merit further
analysis, as a low variance metric would not differentiate classes very well and therefore would not
be a useful predictor of external quality. Descriptive statistics will also aid in explaining the results
of the subsequent analysis.

The subsequent statistical techniques all require a normal (bivariate) data distribution.
The Shapiro-Wilk test was used to test whether the data was normally distributed. Any data that
did not exhibit a normal distribution was transformed by calculating the logarithm of each data
point.

A correlation study was undertaken to investigate how strongly the metrics are related. The
Pearson or ’product moment’ correlation test was used. The correlation coefficient (r) is a number
that summarizes the direction and degree (closeness) of linear relations between two variables and
is also known as the Pearson Product-Moment Correlation Coefficient. r can take values between
-1 through 0 to +1. The sign (+ or -) of the correlation affects its interpretation. When the
correlation is positive (r > 0), as the value of one variable increases, so does the other. The closer
r is to zero the weaker the relationship. If a correlation is negative, when one variable increases,
the other variable decreases. The following general categories indicate a quick way of interpreting
a calculated r value [3]:

• 0.0 to 0.2 Very weak to negligible correlation
• 0.2 to 0.4 Weak, low correlation (not very significant)
• 0.4 to 0.6 Moderate correlation
• 0.7 to 0.9 Strong, high correlation
• 0.9 to 1.0 Very strong correlation

The value of r is calculated for each metric, the results of which are displayed in a correlation
matrix table. In summary, the Pearson correlation is a measure of the STRENGTH of a relationship
between two variables

Any relationship between two variables should be assessed for its SIGNIFICANCE as well as
its strength. A standard two tailed t-test was used to determine whether the correlation coefficient
was statistically significant. Coefficients were considered significant if the t-test p-value was below
0.05. This tells how unlikely a given correlation coefficient, r, will occur given no relationship in
the population. Therefore the smaller the p-level, the more significant the relationship.

Principal Component Analysis (PCA) is used to analyse the covariate structure of the
metrics and to determine the underlying structural dimensions they capture. In other words PCA
can tell if all the metrics are likely to be measuring the same class property. PCA usually generates a
large number of principal components. The number will be decided based on the amount of variance
explained by each component. A typical threshold would be retaining principal components with
eigenvalues (variances) larger than 1.0. This is the Kaiser criterion. See [8] for further details on
PCA.

4 Results

The descriptive statistics results are illustrated by Table 2. The measures were shown to exhibit
large variances which makes them suitable candidates for further analysis.

The results for the Pearson correlation coefficient test for the programs under evaluation are
shown by Table 3. The values that are deemed to be significant at the level p < 0.05 are highlighted
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in bold. In all cases the static CBO metric shows some significant degree of correlation with either
RI , RDE metrics or both. As RI is essentially CBO compounded at run-time, some degree of
correlation between these two would be expected. For most cases the degree of correlation seem to
be moderate, that is r < 0.7.

It is interesting to note the negative correlation between the RDE and CBO that was observed
in a number of cases. This could indicate an interesting feature of class behaviour in object-oriented
programs. Classes may act predominately as clients or servers in any class-class relationship. If
a class has a high static CBO it has the potential to send messages to a large number of classes.
As its functioning principally as a client class it may not require many messages to be sent from
other classes, hence the decrease of RDE with increasing CBO. Future work will involve evaluating
a static export CBO and seeing if a similar relationship exists. It would also be interesting to
investigate client/server specific behaviour of classes in object-oriented programs.

Intuitively a stronger correlation would be expected between RDI and CBO as the direction of
the coupling measurement is the same. However, in all the programs studied static CBO did not
show any significant correlation with RDI or RE.

Table 4 shows the results of the principal component analysis when all of the metrics are taken
into consideration. Using the Kaiser criterion to select the number of factors to retain we find that
the metrics mostly capture three orthogonal dimensions in the sample space formed by all measures.
In other words for each of the programs analysed three principal components are retained.

A significant amount of variance is captured by the run-time metrics that is not accounted for
by the CBO metric alone. The RI metric belongs to the same principal component as the static
CBO in most cases. This is also the case for CBO and RDE for a select number of examples also.
Analyzing the definitions of the measures that exhibit high loadings in PC1, PC2 and PC3 yields
the following interpretation of the coupling dimensions:

• PC1: Measures Static CBO, RI .
• PC2: Measures RDI , RDE are all normalised coupling measures, that is they have a notion

of maximum coupling.
• PC3: Measures RE.

Overall the PCA results seem to suggest that the run-time coupling metrics are not redundant
with the static CBO metric and that they capture additional dimensions of coupling. Therefore
the values show that they are not just surrogate static CBO metrics, suggesting that additional
information over and above that which is obtainable form the static CBO metrics can be extracted
using run-time metrics.

Figure 1 illustrates the results for the RDI and RDE metrics for all programs used in this anal-
ysis. Each bar in the graph represents the number of classes that exhibit a run-time import/export
coupling that falls within the specified range. Looking at the compress results in the R I DC graph,
this program has 10 classes that exhibit 0%-25% import coupling, 3 classes in the 25%-50% range,
5 in the 50%-75% range and 5 in the 75%-100% range.

5 Conclusion and Future Work

This paper proposed number of run-time coupling metrics designed to quantify the external quality
of an object-oriented application. A method for collecting such measures was proposed which utilised
the Java Platform Debug Architecture. An empirical investigation of the metrics was conducted
using Java programs from the SPECjvm98 and Benchmark Suite.

The differences in the underlying dimensions of coupling captured by static versus run-time
coupling metrics was assessed using a correlation study and principal component analysis. The
investigation was conducted using the static CBO metrics as defined by Chidamber and Kemerer.
The results indicated that the run-time metrics did capture different properties than the static
metrics although it should be noted that some degree of correlation did exist. Results indicate that
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201 compress

Mean SD
RD I 33.75 36.37
RD E 52.91 33.07
R I 1.72 2.11
R E 1.80 1.16
CBO 6.24 6.2

202 jess

Mean SD
RD I 66.36 31.48
RD E 73.55 26.55
R I 2.97 7.21
R E 2.97 9.01
CBO 6.99 4.78

205 raytrace

Mean SD
RD I 52.12 34.52
RD E 66.24 30.14
R I 2.14 4.25
R E 2.06 1.89
CBO 7.25 7.51

209 db

Mean SD
RD I 41.15 37.95
RD E 51.50 31.58
R I 1.81 1.98
R E 1.88 1.54
CBO 9.12 6.6

213 javac

Mean SD
RD I 60.24 39.54
RD E 74.24 32.15
R I 3.21 3.01
R E 3.01 2.87
CBO 8.54 7.15

222 mpegaudio

Mean SD
RD I 52.86 41.52
RD E 54.77 34.99
R I 2.60 2.36
R E 2.60 2.70
CBO 5.745 4.9

227 mtrt

Mean SD
RD I 53.45 35.25
RD E 67.21 31.21
R I 2.19 4.35
R E 2.14 1.94
CBO 7.52 7.61

228 jack

Mean SD
RD I 50.21 42.07
RD E 65.99 33.70
R I 2.68 5.37
R E 2.68 2.39
CBO 6.05 7.51

Table 2: Descriptive Statistic Test Results for all Programs

201 compress

RDI RDE RI RE CBO
RDI 1 −0.34 0.78 −0.17 0.36
RDE −0.34 1 −0.58 0.05 −0.51
RI 0.78 −0.58 1 −0.25 0.57
RE −0.17 0.05 −0.25 1 0.16
CBO 0.36 0.51 0.57 0.16 1

202 jess

RDI RDE RI RE CBO
RDI 1 0.51 0.24 −0.19 0.23
RDE 0.51 1 −0.06 0.05 −0.26
RI 0.24 −0.06 1 0.12 0.64
RE −0.19 0.05 0.12 1 0.06
CBO 0.23 −0.26 0.64 0.059 1

205 raytrace

RDI RDE RI RE CBO
RDI 1 0.38 0.39 −0.28 0.16
RDE 0.38 1 0.26 0.43 0.63
RI 0.39 0.26 1 −0.11 0.65
RE −0.28 0.43 −0.11 1 0.11
CBO 0.16 0.63 0.65 0.11 1

209 db

RDI RDE RI RE CBO
RDI 1 −0.40 0.66 −0.07 0.32
RDE −0.40 1 −0.62 0.18 −0.35
RI 0.66 0.62 1 0.19 0.54
RE −0.07 0.18 −0.19 1 0.11
CBO 0.32 −0.35 0.54 0.11 1

213 javac

RDI RDE RI RE CBO
RDI 1 −0.43 0.56 −0.21 0.34
RDE −0.43 1 0.49 0.01 0.65
RI 0.56 0.49 1 −0.31 0.35
RE −0.21 0.01 −0.31 1 0.15
CBO 0.34 0.65 0.35 0.15 1

222 mpegaudio

RDI RDE RI RE CBO
RDI 1 0.52 0.64 −0.02 0.25
RDE 0.52 1 0.37 0.06 0.04
RI 0.64 0.37 1 −0.01 0.090
RE −0.02 0.06 −0.01 1 0.65
CBO 0.25 0.04 0.55 0.09 1

227 mtrt

RDI RDE RI RE CBO
RDI 1 0.33 0.126 −0.28 0.06
RDE 0.33 1 0.15 0.43 0.63
RI 0.13 0.15 1 −0.01 0.65
RE −0.28 0.43 −0.01 1 0.03
CBO 0.06 0.63 0.65 0.03 1

228 jack

RDI RDE RI RE CBO
RDI 1 0.32 0.12 −0.26 0.09
RDE 0.32 1 0.29 −0.39 −0.45
RI 0.12 −0.29 1 −0.01 0.79
RE −0.26 −0.39 −0.01 1 0.05
CBO 0.09 −0.45 0.79 0.05 1

Table 3: Pearson Correlation Coefficient Test Results for all Programs

it is worthwhile to continue the investigation into run-time coupling metrics and their relationship
with the external quality.

There are plans to extend this work in a number of ways. We hope to develop a comprehensive
set of run-time object-oriented metrics that can intuitively quantify such aspects of object-oriented
applications such as inheritance, dynamic binding, polymorphism and dynamic binding.

We also hope to investigate other applications of run-time coupling metrics such as the quantifi-
cation of software testing strategies. Clearly a static analysis is relatively independent of program
behaviour, whereas any run-time analysis will be fundamentally influenced by the testing strategy
and test input. Therefore using this type of approach of it will be possible to measure how different
test case inputs affect the internal properties of a program.

It is also a goal to improve on the additional performance overhead that results from the use of
the JPDA during the collection of the dynamic trace information.
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