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ABSTRACT
This survey paper reviews a large sample of publications on
the teaching of discrete structures and discrete mathematics
in computer science curricula. The approach is systematic,
in that a structured search of electronic resources has been
conducted, and the results are presented and quantitatively
analysed. A number of broad themes in discrete structures
education are identified relating to course content, teach-
ing strategies and the means of evaluating the success of a
course.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and In-
formation Science Education—Computer science education,
Curriculum; G.2.0 [Mathematics of Computing]: Dis-
crete Mathematics—General

Keywords
Computing curriculum, discrete structures, discrete mathe-
matics

1. INTRODUCTION AND MOTIVATION
The 2008 ACM Computer Science curriculum defines dis-

crete structures as foundational material for computer sci-
ence, that is required by many other areas in the syllabus
[1]. This curriculum defines 43 core hours of topics, covering
sets, logic, counting, graphs and probability. As a product
of a long process of standardisation, adopted by the ACM
and the IEEE Computer Society, it constitutes the standard
definition of the topic.

However, in attempting to implement such a curriculum,
many decisions remain for the educator. For example, fre-
quently a choice must be made of which sub-topics to cover,
bearing in mind the particular needs of a given programme,
and the possibility that some topics may be covered else-
where in the curriculum. Beyond this, the correct strategies
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for teaching and assessment must also be worked out. Fi-
nally, the ACM curriculum documents, while firmly based
on years of experience, do not themselves provide a guide to
the literature available in the field.

In this paper we address the last of these points, pro-
viding a literature survey, in order to provide a basis for
addressing the others. In particular, we present the results
of a systematic literature review of the teaching of discrete
structures, based on the guidelines outlined by Kitchenham
and Charters for performing literature reviews in software
engineering [20]. Our evaluation contains cues from other
sources of analysis, in particular the meta-analysis presented
by Valentine [44].

The starting point of our review is to identify the main
research questions:
Question 1: What approaches have been taken to design-

ing the curriculum for discrete structures courses?
Question 2: What teaching methods have been employed

in these courses?
Question 3: How has the success in teaching discrete struc-

tures courses been evaluated?
Rather than presenting the entire systematic literature re-

view process, this paper provides an overview of the process
and a summary of the results; fuller details can be found in
the associated technical report [48].

We believe this review will be of interest on at least three
levels: first, as as a review of the literature spanning many
decades of teaching discrete structures, second at the meta-
level, providing a meta-analysis of publications in the area,
and third at the meta-meta level, as an example of applying
the systematic review process applied to CS education.

Phases of paper selection and analysis
The paper selection strategy proceeded in three phases:

Phase 1: Use an automated search engine to identify pa-
pers that deal with topics relevant to our research. For
simplicity we have restricted our search to electronically-
available resources, but, given the topic, we do not be-
lieve this to be a major limitation of our review. This
phase is described in Section 2.

Phase 2: Manually filter the results based on reading the
abstracts, in order to identify the subset of these pa-
pers that are relevant to our research questions. This
phase is described in Section 3.

Phase 3: Extract and synthesise the research by reading
the remaining papers. Section 4 presents the results
of this phase, discussing some common themes in the
literature concerning course structuring, delivery and
evaluation.
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2. AUTOMATED SEARCH RESULTS
The search space for sources consisted of, in order, the

ACM Digital Library (ACM DL), ACM Guide to Computing
Literature (ACM Guide) and the Google search engine. All
searches were carried out between July and September 2010.

It quickly became apparent that both “Discrete struc-
tures” and “Discrete mathematics” were good search terms
for the kind of papers we wanted. Beginning with these
search terms (referred to as “base terms” from now on) we
also tried searches including the phrases “teaching”, “edu-
cation” or “learning” to enhance the search precision.

2.1 Search Results
When displaying results in the ACM DL there are two

options. The first, “Sort by” was left at its default setting
(“relevance”), while the second, “Form” was set to “con-
densed form”, which contains 50 paper titles per page.

Since the search for each of the base terms returned about
20,000 papers, we needed to establish a cut-off point for
manual filtering. In the remainder of this paper, we use
a cut-off density of 4%: that is, we did not consider more
pages of results after two or less papers in a page of fifty
were judged relevant. In total, 65 papers were manually
identified by title alone from the ACM DL.

The ACM Guide contains over 1.2 million citations from
over 3,000 publishers, enabling a larger search space than
the ACM DL alone. However, many of the results were not
relevant to the topic or the research questions, or did not
have a readily available on-line copy. Only two new papers
were found in the ACM Guide (references [24, 50]).

The final search strategy used the search engine Google,
keeping in mind that many results returned from such a
search engine will not be relevant and/or academically pub-
lished. In order to counteract this, the base terms were
only ever queried along with either “teaching”, “education”
or “learning”. All queries were done as individual words
and also as complete phrases, and the results were exam-
ined manually up to the 5th page. Interestingly, having
removed unrefereed or non-relevant sources such as lectures
and coursework, no new papers were identified by this search.

Following these searches a total of 67 unique papers were
identified by title alone as meriting further analysis.

2.2 Analysis of search terms
Table 1 shows the results of searching the ACM DL using

the base terms and their extensions. As can be seen, the
vast majority of relevant papers were retrieved using the
two base terms, with the extra terms yielding just six new
papers in total, only two of which were unique.

Figure 1 contains a bar chart showing the distribution
of relevant papers retrieved, broken down by search term
over five year periods. In this bar chart, when a paper was
found using more than one search term its score was divided
between these terms. From this figure it can be seen that
whereas “discrete structures” was the dominant term until
1985, since then “discrete mathematics” has become more
common, with an increasing number of these being addition-
ally qualified by one of the secondary search terms.

3. FURTHER MANUAL FILTERING
Following their selection by title, the 67 papers were then

manually filtered by reading their abstracts and determin-
ing whether they contained information relevant to the re-

Table 1: Numbers of ACM DL papers judged rel-
evant based on examining the results using various
search terms.

Number of Papers
Search Term Inspected Accepted Added
Discrete Structures 100 18

+ Education 150 11 +1
+ Learning 50 2 +0
+ Teaching 150 14 +2

Discrete Mathematics 200 55
+ Education 250 24 +1
+ Learning 200 21 +1
+ Teaching 150 30 +1

Figure 1: Distribution of relevant papers from the
ACM DL by search term. Each bar represents the
number of relevant papers in a given five-year pe-
riod; subdivided by the search term used.

search questions. The main reason for rejection of a paper
in this phase was the nature of the paper (e.g. book review,
poster and discussion sessions, documentation) rather than
the content. This phase resulted in the exclusion of a further
20 papers, leaving 47 papers for full consideration.

Precision and Recall
In order to measure the exactness and completeness of our

search for sources we can calculate the precision and recall
associated with each search term. Precision is defined as the
number of relevant documents retrieved by a search divided
by the total number of documents retrieved by that search,
while recall is defined as the number of relevant documents
retrieved by a search divided by the total number of existing
relevant documents (which should have been retrieved).

Calculating precision requires determining the total num-
ber of documents retrieved by a search, but there are a num-
ber of possible choices here. For example, the search of the
ACM DL for the term “discrete mathematics” yielded 19,013
papers, but only 200 were actually examined by title, using
the 4% density cut-off mentioned above. Thus, dividing by



Table 2: Precision and recall values for each search
term, (total relevant = 47 abstract-filtered papers)

Search Papers Papers Percentage
Term Retrieved Relevant Precision Recall
DS 23,855 13 0.05 27.66
DS+E 2,401 10 0.42 21.28
DS+L 6,128 1 0.02 2.13
DS+T 1,407 12 0.85 25.53
DM 19,013 38 0.20 80.85
DM+E 1,695 18 1.06 38.30
DM+L 3,374 17 0.50 36.17
DM+T 1,094 25 2.29 53.19

19,013 gives a slightly lower result than is fully accurate, but
dividing by 200 inhibits comparison with other terms whose
density may have reduced at a different rate. Bearing this
caveat in mind, Table 2 uses the full total figure to facilitate
comparison between search terms.

Table 2 gives the precision and recall values as percent-
ages, assuming that the relevant papers are the 47 remain-
ing after filtering based on abstract. As can be seen from
this tables, the terms “discrete mathematics teaching” and
“discrete mathematics education” provide the most precise
search terms. Consistent with the results shown above in
Figure 1, the term “discrete mathematics” provides the great-
est recall value, yielding 81% of the final 47 relevant papers.

Source of publications
Finally, Table 3 shows a breakdown of the 67 title filtered

papers according to the search term used and the source
of the publication. Just under three-quarters of the relevant
papers came from four sources, with the top eight sources ac-
counting for nearly 90% of the papers. These results must be
qualified by noting that most came from the ACM DL, thus
causing a natural clustering, but are nonetheless broadly in
line with expectations.

4. ANALYSIS AND SYNTHESIS
Having acquired the 47 source papers, the final step is to

read, analyse and synthesise the results. While we cannot
provide universal recommendations for any syllabus in the
subject, we hope to at least provide a framework within
which they can be worked out.

In this section we discuss the research in teaching discrete
structures under five broad themes:

• Whether discrete structures should be taught as a
single course, or have its content distributed over mul-
tiple courses.

• When students should study discrete structures
• What should the material be linked with: we have

identified two main overlapping areas: with program-
ming and with data structures.

• How should the course be taught; in particular, what
teaching methods have been identified.

Table 4 presents a summary of the papers by each of these
themes, and Figure 2 shows the distribution of the themes
over time.

A further theme, the evaluation of course success, is dis-
cussed at the end of this section.

Whether to teach DS
This somewhat existential question is not so much re-

lated to whether the topics in discrete structures should
be taught, as to whether they should be taught in a single

Table 3: Place of publication for the 67 title-filtered
papers, broken down by search term used.

Place DS DM Other Total Cum
SIGCSE 7.5 14.5 2 24 36%
JCSC 1 11 0 12 54%
SIGCSE Bulletin 3 5 0 8 66%
ITiCSE 0 4 0 4 72%
JERIC 0 4 0 4 78%
SIGACT News 0 3 0 3 82%
CCSC 0 2 0 2 85%
CSC 0.5 1.5 0 2 88%
Others 1 5 2 8 100%

Total 13 50 4 67

Table 4: Themes covered in the 47 abstract-filtered
papers (some papers cover multiple themes).
Category Sources Total
Whether to teach DS [3, 4, 6, 8, 12, 32, 43] 7
When students should
learn

[2, 3, 4, 6, 8, 13, 18, 22, 25,
26, 27, 29, 35, 36, 37, 46,
47]

17

With programming? [5, 7, 10, 14, 15, 16, 23, 28,
30, 31, 33, 39, 41, 45, 49,
50]

16

With data structures? [4, 5, 6, 11, 22, 28, 31, 34,
39, 40, 45, 49]

12

How to teach DS [2, 5, 7, 9, 10, 14, 16, 21,
24, 32, 33, 37, 41, 42, 45,
49, 50, 51]

18

course, or moved into the courses where they are applied.
Examples include moving logic into software verification or
formal methods or moving all study of trees and graphs into
data structures. Similar questions arise when considering
the mathematical techniques relevant to computer science,
such as calculus or statistics, and appear across a large time
span, from Berztiss, Tremblay and Manohar in the 1970’s
to Fleury and Neff in the 1990’s and 2000’s [6, 43, 12, 32].

It is highlighted quite frequently that one of the main ideas
of teaching students discrete structures is to prepare them
for more theoretical content they meet in courses later on
[25, 27], which brings up the question that if computer sci-
ence majors are finding the content too difficult or aimless so
early in their studies, why not push it back to “where it be-
longs”? With Tremblay and Manohar for example, counting
techniques, permutations and probability are omitted from
their discrete structures course (although part of the cur-
riculum) as they are covered in other courses [43].

A more novel approach is taken specifically by Neff [32],
where parts of the discrete structures course are outsourced
and the subject is then taught with an approach of rather
than “Here’s the tools, you’ll need them sometime”, it says
“Here’s a computer science problem we need to solve, what
tools do we need to solve it?”.

When students should learn DS
It is acknowledged that discrete structures is just a basis

for the more specialised computer science topics which stu-
dents may not encounter for quite some time [6]. Thus a
conflict arises between teaching discrete structures early in
the syllabus or late, potentially allowing for greater depth,
but causing difficulties for subjects that depend on it [25].

Marion draws us back to our previous point about disman-
tling the subject, but instead segments the course rather



than completely dissolving it [27]. This can allow an eas-
ier introductory course for discrete structures and a sub-
sequently more in-depth course later on when students are
more experienced. But the appreciation of the subject is al-
ways a problem early on, with a difficulty noted in teaching
students material that they believe they may never use [13].
If discrete structures is to serve as a basis for a wide variety
of more in-depth modules later on, it needs to justify its
existence by demonstrating its necessity and application.

DS with Programming
A number of papers describe curricula that involve coding

up a discrete structures related problem. One approach uses
real world examples in order to aid students in the applica-
bility of what they are being taught and motivate them to
excel at the course work [39]. Martin proposes allowing stu-
dents to implement an algorithm of their choice which they
learnt in their discrete structures course, enforcing their un-
derstanding of the material [28]. Cigas and Hsin, introduce
the use of specification for problems; one of the primary
applications of the logic learnt in discrete structures [10].

There is also the opportunity to exploit the link between
discrete structures and declarative programming languages.
For example, Berry describes a more advanced application
of coding involving the use of Scheme [5]. As a language
which contains elements of functional programming there is
already a clear link between this approach and the functions
aspect of discrete structures. Similarly, Hein outlines the use
of FP, ML and Prolog to teach students discrete structures
concepts [15]. Clearly, an issue here is how this interacts
with the teaching of programming and language paradigms
in the syllabus as a whole.

McMaster et al. draw the conclusion that teaching dis-
crete structures with programming makes the subject easier
for students - or at least for those students who already
know how to program [31]. Implementing a theory learnt
in discrete structures as a program requires a full under-
standing of it, rather than the regurgitation of a rote learnt
mathematical proof. However, it is important not to turn
discrete structures into another programming course, since
omitting the theoretical material could lose much of the in-
tended flavour of the subject.

DS with Data Structures
Another noticeable feature of many of the papers reviewed

is an apparent crossover between topics covered in discrete
structures and data structures (CS2). The ACM curriculum
for discrete structures contains a number of intersections
with data structures such as graphs and trees and such a
crossover (as well as some others) is further explored by
Decker and Ventura [11].

Even though the context in which these topics are to be
studied is different between the two subjects, this again
raises questions regarding the coherence of a discrete struc-
tures course in a syllabus. A number of the papers note
that the concept of coding up actual algorithms in discrete
structures is very similar to the way in which data structures
are studied [39, 28, 5, 31]. Teaching an inductive structure
such as a list or tree, and then asking students to implement
them, particularly in a functional language [34], is similar
to implementing these as data structures, albeit often with
different motivation and analysis mechanisms.

A different angle on this issue arises from studies of fac-
tors influencing student success at discrete structures. There
is significant coupling between data structures and discrete

Figure 2: Distribution of topics over time. Each
bar represents the number of relevant papers over a
five-year period, subdivided by the topic covered.

structures when evaluating student performance [6, 40, 34,
11], giving strong support to closely examining this link in
a syllabus.

How to teach DS
Finally, in response to the uncertainties of educating stu-

dents in discrete structures a number of teaching methods
are described in the literature.

There is much focus on reducing the unfamiliarity of the
subject. For example Zeng and Jiang builds on the founda-
tion of staying in a student’s comfort zone when introducing
a new idea [51]. This appears to ease students into the for-
mality of certain areas of discrete structures. Berry, Cigas
and Hsin use visual tools to try to reduce the complexity for
students [10, 5]. Exploitation of a student’s familiarity with
programming is also an interesting way to tackle teaching
problems since students may be a lot more comfortable in
a software engineering setting than in a pure mathemati-
cal one in which discrete structures is sometimes presented.
To deal with unfamiliar notation, a simple reinforcement of
exactly what a symbol means can uncloud a problem for a
student, allowing them to focus on understanding the theory
rather than the theory’s representation [21].

The collaborative approach discussed by Buchele takes a
more traditional pen and paper approach but the increased
student engagement can certainly be seen as beneficial [9].
Collaborative homework also enables mingling of those who
understand certain concepts and those who don’t, hopefully
making the educational experience “viral”. Similarly, Neff
suggests that a problem-directed approach can go some way
to tackling the appreciation and motivation problems with
discrete structures [32].

It is interesting that while the previous themes explored
the relationship of discrete structures with other subjects,
many of the papers on approaches to teaching seek to exploit
this relationship positively.



Table 5: Ways of evaluating course success.
Category Sources Total
Grade Based Statistics [11, 19, 30, 34, 35, 40, 50] 7
Survey Based Statistics [9, 26, 28, 37, 38, 42, 45] 7
Anecdotal Feedback [6, 7, 8, 14, 16, 17, 21, 24,

31, 41, 43]
11

4.1 Evaluation of Course Success
Given that a very large number of papers discuss some

kind of discrete structures course it is important to analyse
the ways in which these courses are evaluated. We found
that a total of 25 papers discussed some form of evaluation,
though this varied between papers. Overall we can identify
three broad categories of information regarding the evalua-
tion of a teaching approach: based on student grades, based
on a quantitative analysis of student feedback, and based
on anecdotal information from students. The papers falling
into each of these three categories are shown in Table 5.

Notably, it appears that statistics in some cases can be
quite sparse when it comes to discrete structures. With
Martin for example, a set of 20 students may not tell us as
much as a set of 100 students would when it comes to certain
questions [28]. Going by statistics alone, in taking radical
approaches such as scattering discrete structures course con-
tent to later on modules we effectively move into unknown
territory. For this reason, it is necessary to collect a signif-
icant amount of statistics for a wide variety of approaches
taken to teaching the subject. Having said that, there are
some more sizable data sets which analyse the final grades
for students [11, 34, 40].

As well as these grade-based statistics there are also some
survey-based course evaluations which provide more anec-
dotal type feedback on courses [28, 9]. This anecdotal type
evaluation is a lot stronger in some papers than in others,
sometimes with just a sentence or two given for student
thoughts on a course [6, 21, 31, 43]. There appears to be
quite some variety in course evaluation techniques and as a
result it can be difficult to fully evaluate, much less compare,
course outcome analyses.

5. CONCLUDING REMARKS
This paper has presented a review of research on dis-

crete structures teaching. Since the initial submission of
this paper our search parameters were extended to include
the ERIC collection, however this did not result in any sig-
nificant changes to this review; details can be found in the
associated technical report [48].

We hope this work will be of use as a reference point
for those preparing to teach discrete structures, and as an
example of a systematic literature review in CS education.
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