
A Fast Minimal Infrequent
Itemset Mining Algorithm

Kostiantyn Demchuk
MSc

National University of Ireland, Maynooth

Hamilton Institute

Thesis submitted for the degree of
Master of Science

May 2014

Head of Department: Prof. Douglas Leith

Supervisor: Prof. Douglas Leith

Research supported by IBM PhD Fellowship and Science Foundation Ireland
under Grant No. 11/PI/1177.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MURAL - Maynooth University Research Archive Library

https://core.ac.uk/display/297019222?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

Contents
List of Figures . iii
List of Tables . v
Abstract . vii

1 Introduction 1
1.0.1 Motivating Example . 3

1.1 Literature Review . 5
1.2 Preliminaries . 9

2 Minimal Unique Itemset Mining 11
2.1 Pre-processing . 11
2.2 Pruning the Search space . 13
2.3 Potential Performance Bottlenecks 15
2.4 Kyiv Algorithm . 15

2.4.1 Highly Efficient Support Itemset Testing 17
2.4.2 Reducing Number of Row Intersections 17
2.4.3 Correctness . 25
2.4.4 Parallelisation . 25

2.5 Experimental Results . 26
2.5.1 Hardware and Software Setup 27
2.5.2 Domain-Agnostic Performance 27

2.5.2.1 Randomised Datasets 27
2.5.2.2 Execution Time 27
2.5.2.3 Prefix tree pruning 28
2.5.2.4 Impact of Ordering Used for LA 29
2.5.2.5 Impact of Dataset Parameters 30

2.5.3 Domain-Specific Performance 31
2.5.3.1 Datasets . 31
2.5.3.2 Execution Time vs kmax 32
2.5.3.3 Memory Usage 34

2.5.4 Parallel Algorithm Performance 35
2.6 Summary . 37

3 Minimal Infrequent Itemset Mining 39
3.1 Pre-processing . 39
3.2 Extended Kyiv Algorithm . 40

3.2.1 Highly Efficient Support Itemset Testing 40
3.2.2 Reducing Number of Row Intersections 42
3.2.3 Correctness and Parallelisation 43

3.3 Worst Time Complexity . 44
3.3.1 Worst Time Complexity vs kmax 45
3.3.2 Iteration Counts vs kmax 47

3.4 Experimental Results . 48
3.4.1 Hardware and Software Setup 48
3.4.2 Execution Time vs kmax 48

A Fast Minimal Infrequent Itemset
Mining Algorithm

i Kostiantyn Demchuk

Contents

3.4.3 Execution Time vs τ . 53
3.5 Summary . 54

4 Conclusions 55
4.1 Future Work . 55

A Fast Minimal Infrequent Itemset
Mining Algorithm

ii Kostiantyn Demchuk

List of Figures

List of Figures

2.1 Prefix tree for the alphabet LA = {a, b, c, d, e}. By starting at the
root and traversing the branches of the tree, every possible ordered
sequence of letters can be obtained e.g. traversing the far left-hand
branch yields the sequence abcde. 14

2.2 Distribution of execution and intersection time for randomised
datasets, kmax = 5. 28

2.3 Distribution of prefix tree vertices traversed for randomised
datasets, kmax = 5. 28

2.4 Prefix tree vertices traversed vs ordering used for LA, average over
10 randomised datasets, kmax = 5. For each ordering 6 values
are shown: in the first three Lemma 2.4.1 and Corollary 2.4.1 are
used, in the second three these are not used; in each group of three
values the first value represents the number of vertices of type A,
the second the number of vertices of type B and the third the total
number of vertices traversed (that is of type A, B and C). . . . 29

2.5 Intersection and execution time vs ordering used for LA, average
over 10 randomised datasets, kmax = 5 (in the left bar Lemma
2.4.1/Corollary 2.4.1 are used, in the right bar they are not used). 30

2.6 Execution time vs number of rows n for a randomised dataset with
m = 40 columns, kmax = 3. 31

2.7 Execution time vs number of columns m for a randomised dataset
with n = 1, 000, 000 rows, kmax = 3. 31

2.8 Execution time vs kmax for Connect dataset. 33
2.9 Execution time vs kmax for Pumsb dataset. 33
2.10 Execution time vs kmax for Poker dataset. 33
2.11 Execution time vs kmax for USCensus1990 dataset. 34
2.12 Memory consumption of Algorithm 1 vs kmax. 35
2.13 Parallel algorithm execution time vs number of threads for Con-

nect, kmax = 6. 35
2.14 Parallel algorithm execution time vs number of threads for Pumsb,

kmax = 5. 36

3.1 Number of recursive calls (MIWI) and intersections (Kyiv) vs kmax
for Connect dataset, τ = 1. 47

3.2 Number of recursive calls (MIWI) and intersections (Kyiv) vs kmax
for Pumsb dataset, τ = 1. 47

3.3 Execution time vs kmax for Connect dataset, τ = 5. 49
3.4 Execution time vs kmax for Pumsb dataset, τ = 5. 49
3.5 Execution time vs kmax for Poker dataset, τ = 5. 49
3.6 Execution time vs kmax for USCensus1990 dataset, τ = 5. 50
3.7 Execution time vs kmax for Connect dataset, τ = 10. 50
3.8 Execution time vs kmax for Pumsb dataset, τ = 10. 50
3.9 Execution time vs kmax for Poker dataset, τ = 10. 51
3.10 Execution time vs kmax for USCensus1990 dataset, τ = 10. . . . 51

A Fast Minimal Infrequent Itemset
Mining Algorithm

iii Kostiantyn Demchuk

List of Figures

3.11 Execution time vs kmax for Connect dataset, τ = 100. 51
3.12 Execution time vs kmax for Pumsb dataset, τ = 100. 52
3.13 Execution time vs kmax for Poker dataset, τ = 100. 52
3.14 Execution time vs kmax for USCensus1990 dataset, τ = 100. . . 52
3.15 Execution time vs τ for Connect dataset, kmax = 7. 53
3.16 Execution time vs τ for Pumsb dataset, kmax = 5. 53
3.17 Execution time vs τ for USCensus1990 dataset, kmax = 3, τ ∈ {1,

250, 500, 750, 1000, 2500, 5000, 10000}. 53

A Fast Minimal Infrequent Itemset
Mining Algorithm

iv Kostiantyn Demchuk

List of Tables

List of Tables

1.1 Extracts from AOL web search dataset 3

2.1 Granularity of 4 threads for Pumsb, kmax = 5. Time is given in
seconds, levelwise. T column shows the total execution time. . . 36

2.2 Granularity of 8 threads for Pumsb, kmax = 5. Time is given in
seconds, levelwise. T column shows the total execution time. . . 36

2.3 Granularity of 16 threads for Pumsb, kmax = 5. Time is given in
seconds, levelwise. T column shows the total execution time. . . 37

A Fast Minimal Infrequent Itemset
Mining Algorithm

v Kostiantyn Demchuk

Declaration

I hereby certify that this material, which I now submit for assessment on the
program of study leading to the award of Master of Science is entirely my own
work, that I have exercised reasonable care to ensure that the work does not
violate any law of copyright, and has not been taken from work of others save
and to the extent that such work has been cited and acknowledged within the
text of my work.

Kostiantyn Demchuk

A Fast Minimal Infrequent Itemset
Mining Algorithm

vi Kostiantyn Demchuk

Abstract

Abstract

A novel fast algorithm for finding quasi identifiers in large datasets is presented.
Performance measurements on a broad range of datasets demonstrate substantial
reductions in run-time relative to the state of the art and the scalability of the
algorithm to realistically-sized datasets up to several million records.

Keywords: itemset mining, breadth-first algorithm, frequency-based analysis,
k-anonymity, performance, load balancing.

A Fast Minimal Infrequent Itemset
Mining Algorithm

vii Kostiantyn Demchuk

Chapter 1

Introduction

In this thesis we introduce a new algorithm, called Kyiv [DL14], for finding all
unique and minimal attribute combinations within a data set. On realistic data
sets this algorithm is demonstrated to be considerably faster than state of the art
algorithms. We also present an extended Kyiv algorithm designed for infrequent
and minimal attribute combinations showing similar performance.

One application of this algorithm is in statistical disclosure control [MH05, HM07,
GGM04, Ell07, TMK14]. In statistical disclosure control the released data, for
example census microdata, is required to be suitably anonymised. Of particular
concern is the removal of quasi-identifiers i.e. a subset of attribute values that can
uniquely identify one or more entries in a data set. Even apparently innocuous
data can act as a quasi-identifier when multiple values are combined together. For
example, the seminal study of Sweeney [Swe02] showed that 87% of the US pop-
ulation are uniquely identified by the three attributes gender, zip code and date
of birth and demonstrated the use of this fact to de-anonymise published health
data. It is therefore of fundamental interest to enumerate those combinations of
entries within a dataset which occur either uniquely or sufficiently infrequently.

Other applications of our algorithm include rare itemset mining [KR05, TKD11,
SVN10, TKD13]. In rare itemset mining the aim is to discover unusual, but
informative, relationships between entries in a data set. This is in contrast to
frequent itemset mining where the interest is in discovering relationships which
are common within a data set. Rare but interesting items might for example
include adverse drug reactions within medical data [JYT+13] and attacker intru-
sion within network data [REA08, LRRV10, HSE12] etc. Since rare items are, by
definition, infrequent, a direct approach to discovery is to enumerate the infre-

1

1. Introduction

quent items and then search for informative relationships, e.g. those which are
of sufficiently high confidence, within this enumerated set.

The main contributions of the thesis are as follows. We introduce a new algo-
rithm for minimal unique itemset mining, in both sequential and parallel form.
The main practical contribution is the speed up of almost two orders of magnitude
offered by the proposed algorithm on datasets of realistic complexity. Since ex-
ecution time is currently the primary bottleneck in finding minimally infrequent
itemsets, this is a significant step forward. The main algorithmic novelty (from
which the speed up arises) is that by an appropriate choice of data structures and
algorithmic formulation the support item test for minimality can be performed in
a hugely more efficient manner (essentially with zero cost) than previously possi-
ble. A second algorithmic contribution lies in the parallel implementation. Unlike
some previous approaches, the proposed approach elegantly allows the work load
of parallel threads to be balanced so as to be approximately the same. This
means that no single thread becomes the performance bottleneck and therefore
ensures better scalability. We note that the speed up in execution time comes
at the cost of much higher memory usage. However, since available memory size
continues to grow year on year while processor speed has largely stagnated, in
many practical applications this trade-off of memory for speed is a favourable one.
The new algorithm design is underpinned by new analytic results, the main an-
alytic contribution lying in Lemma 2.4.1 and Corollary 2.4.1. A straightforward
generalisation of the unique case of the algorithm is given with the introduction
of a new frequency threshold parameter which handles the infrequent case of the
algorithm. We present experimental measurements evaluating the performance
of the proposed algorithm on a range of synthetic and application datasets, and
compare this against the performance of the popular algorithm MINIT [HM07]
and of the recently proposed MIWI Miner algorithm [CG13].

First we consider an example of unprotected dataset and note that it is the
need for reasonable processing times while avoiding the risk occurring after a
publication of such dataset that originally motivated the development of the
algorithm. The rest of the thesis is organised as follows. In Section 1.1 we provide
with the comprehensive overview of literature on the subject and in Section 1.2 we
introduce notation and some basic definitions. Then, in Chapter 2 we introduce
our new algorithm, explaining its rationale and performance and in Section 2.5 we
present performance measurements for realistic data sets; in Chapter 3 we extend
the problem to infrequent itemset mining and present performance measurements
for the same set of realistic data sets. Finally we summarise our conclusions and

A Fast Minimal Infrequent Itemset
Mining Algorithm

2 Kostiantyn Demchuk

1. Introduction

Table 1.1: Extracts from AOL web search dataset

ID Query Date Link Clicked
3302 uterine bleeding and coumadin 2006-03-23

11:23:35
www.nlm.nih.gov

3302 children who have died from
moms postpartum depression

2006-03-24
15:41:21

www.cbsnews.com

6993 american heart association 2006-03-23
18:29:34

www.americanheart.org

6993 high blood pressure 2006-03-23
18:37:10

7005 notice of demand to pay judg-
ment form

2006-03-21
18:49:01

www.sba.gov

7005 free personal credit report 2006-03-20
11:26:42

www.experian.com

4417749 shadow lake subdivision gwin-
nett county georgia

2006-04-24
21:48:01

4417749 jarrett t. arnold eugene oregon 2006-03-23
21:48:01

www2.eugeneweekly.com

share insights for the future work in Chapter 4.

1.0.1 Motivating Example

In 2006 AOL released web search log data in which user identities had been con-
cealed (replaced by unique identity numbers) but other data was left unchanged.
Table 1.1 presents some entries from this AOL data set. It can be seen that the
search queries and pages clicked are potentially sensitive in nature and it was
further demonstrated that de-anonymisation of users was possible e.g. that user
#4417749 was Thelma Arnold [BZ06].

We consider quasi-identifiers within the search data for the first 65,517 users in
more detail. These users carried out 3,558,412 searches using 1,216,655 distinct
queries. Of these queries, 736,967 occur only once within the data set and so are
potential quasi-identifiers. Restricting consideration to the first three words of
each query reduces the number of unique queries to 617,510, while restricting to
the first two words reduces this to 488,138 and restricting to the first word only
yields 276,074 unique queries. Hence, it can be seen that simply truncating the
search queries is not sufficient to prevent a large number of the search queries
from acting as quasi-identifiers.

One simple and direct approach to masking these unique queries is to group

A Fast Minimal Infrequent Itemset
Mining Algorithm

3 Kostiantyn Demchuk

1. Introduction

unique queries together into sets of queries where each set consists of k unique
queries, k being a design parameter. In the data set we now replace the query by
a reference to the set containing the query. In this way it is ensured that every
query value in the modified data set occurs at least k times within the data set.
We performed this data transformation on the AOL data using a value k = 5.
In addition, we performed a similar transformation to the web page clicked by a
user following a query, also with k = 5. After these changes each query value and
each web page clicked value occurs at least k = 5 times within the modified data
set. Nevertheless, when this query value is combined with the web page clicked
value 586,698 of these pairs are still unique within the modified data set. In the
unmodified data set there are 1,030,387 unique pairs, so the grouping of query
of page clicked values has also reduced the number of unique pairs. However, in
view of the large value of unique pairs it is evidently not sufficient to just consider
individual entries but rather it is also necessary to consider combinations of entries
when anonymising a data set.

The difficulty with considering combinations of entries is that the number of com-
binations to be tested grows combinatorially and so in realistically sized data sets
highly efficient algorithms are needed to test even combinations of 3 or 4 entries.
One solution to this combinatorial growth is to use sampling. For example, a
subset of entries may be drawn uniformly at random from the full dataset, the
number of attribute combinations occurring with less than a specified frequency
within this subset determined and then this information is statistically extrapo-
lated to the full dataset. Sampling reduces the computational burden but also
carries the obvious risk of missing infrequently occurring entries. More efficient
algorithms allow consideration of larger samples and so potentially significantly
reduce this risk.

Note that the set of unique or sufficiently infrequently occuring combinations of
items within a data set is useful not just for verifying that restrictions on quasi-
identifiers are respected by a data set but, when quasi-identifiers are present, this
set is also useful as input to tools such as that in [LDR05] for modifying the
data that require prior knowledge of the fields which act as quasi-identifiers. In
the above AOL example the set of unique combinations is the precisely set of
elements from which grouped values need to be constructed.

A Fast Minimal Infrequent Itemset
Mining Algorithm

4 Kostiantyn Demchuk

1. Introduction 1.1 Literature Review

1.1 Literature Review

Frequent pattern mining comprises association rule induction, frequent item set
mining and frequent graph mining. Its application areas include market basket
analysis, web link analysis, genome project and drug design. Frequent itemset
mining has been the subject of extensive study by the data-mining community
(e.g. see [AMS+96] and the many papers which cite this seminal work). In
[AMS+96], the famous Apriori algorithm was introduced. Since then a series of
frequent itemset mining algorithms have been developed with the most popular
one, described in [HPYM04], making use of a frequent-pattern tree approach. Al-
though these algorithms differ in the mechanics i.e. how they traverse the search
tree, whether they exploit candidate generation or not, they all incorporate a
monotonicity principle of pruning the search tree, the so called Apriori property
which stands for the fact that no superset of an infrequent item set can be fre-
quent. This key feature is reused in the infrequent itemset mining literature,
which has attracted significantly less attention, but is of growing interest.

Apart from the Apriori property, few effective pruning techniques have been re-
ported in the itemset mining literature. An attempt to classify item frequency
relations was made by [CG07], where the deduction rules had been well studied.
But we believe that many more mathematical properties are yet to be discovered
such as Lemmata 2.4.1 and 3.2.1 in this thesis which reduce the cost of the mining
operation and increase the speed of algorithm execution time.

The first algorithm for unique itemset mining (the extreme case of infrequent
itemset mining) appears to be SUDA (special unique detection algorithm) pro-
posed in [EMF02]. The SUDA algorithm essentially generates all possible column
subsets in a depth-first manner and scans the input dataset for unique and min-
imal (such that no proper subset can be unique) patterns (up to a user-specified
size) in those columns. The actual search is supported by partitioning the rows
of the dataset according to the value of each of the columns in a given column
subset, then unique records are extracted and checked for minimality. This pro-
cess continues until all possible column subsets have been considered (that is the
prefix tree is traversed) with the user-specified size of subsets in mind as an up-
per bound. Although SUDA expands the risk assessment capability compared to
initial developments in the statistical disclosure control, it can only serve small
datasets due to complexity constraints. Consequently, SUDA was followed shortly
afterwards by the development of the SUDA2 algorithm [MHK08, MH05], which

A Fast Minimal Infrequent Itemset
Mining Algorithm

5 Kostiantyn Demchuk

1. Introduction 1.1 Literature Review

is available in the sdcMicro package for R [TMK13] and is essentially the state-
of-the-art algorithm in this area, being used by the UK and Australian national
statistics offices [HMM+09] and supported by IHSN (International Household
Survey Network).

SUDA2 defines a minimal unique itemset (MUI) I in a dataset as a set of items
that satisfies two properties: (i) the pattern described by I appears in exactly
one row of the dataset (uniqueness), and (ii) every proper subset of I appears
in multiple rows of the dataset (minimality). SUDA2 brought a new method for
representing the search space and new observations about the properties of MUIs
to prune and traverse this space — it is a recursive depth-first search that utilises
repetition counts of individual items and the following properties:

• Support Row Property. Given a MUI I of size k at dataset row i there must
be at least k rows other than i containing itemsets that differ from I by
exactly one item, these are called the support rows of I;

• Uniform Support Property. A unique itemset that contains the same item
in each of its support rows cannot be minimal;

• Recursive Property. Suppose a MUI I of size k appears in a row i in a
dataset D. Let S be the k− 1 items remaining after removing one item, Ij,
from I. Let DIj be the subset of D consisting of only those rows containing
Ij. Then it can be seen that S is a MUI of size k − 1 in DIj ;

• Perfect Correlation Property. Two perfectly correlated items (that is, they
appear in the same set of rows) can not coexist in a MUI.

The Kyiv algorithm, proposed in this thesis, uses three of these properties but
does not use the recursive property. SUDA2 efficiently tests itemsets for unique-
ness and minimality using the above properties. It is worth mentioning that
SUDA2 also is not a candidate generation algorithm and so is suitable for a lim-
ited memory environment. Also SUDA2 lends itself readily to parallelisation by
allocating disjoint subtrees to different threads which then carry out a depth-first
search on the subtree (using the divide-and-conquer nature of the algorithm).
However, the work allocated amongst threads may be imbalanced depending on
the size and complexity of the subtree assigned to a thread, leading to perfor-
mance being constrained by the slowest running thread. Thus an optimal schedul-
ing of the work units is required. A number of strategies for that are discussed
in [HMM+09], but the computation of a particular subtree is unpredictable and
highly dependent upon the input dataset and this makes the choice of scheduling

A Fast Minimal Infrequent Itemset
Mining Algorithm

6 Kostiantyn Demchuk

1. Introduction 1.1 Literature Review

strategy difficult.

Early work on infrequent (rather than only minimal) itemset mining initially
made use of variants of the Apriori algorithm for frequent itemset mining, see
[DZNJ07] and references therein, but quickly moved on to algorithms specifically
tailored to the infrequent mining task. Almost simultaneously three specialised
infrequent itemset algorithms were proposed by [ZY07], [SNV07] and [HM07]. In
[ZY07] two schemes (the matrix based scheme (MBS) and hash based scheme
(HBS)) are proposed to mine association rules among rare items, involving a
direct search of item sequences contained in a database using only two scans
with pruning based on frequency and interest parameters with the latter defined
as interest(I, J) = |supp(I ∪ J) − supp(I)supp(J)|, where I, J are itemsets and
supp(·) is the frequency of itemset in a dataset. HBS was found to perform
better than MBS for that specific task, though the work itself is not purely about
minimal infrequent itemset mining which is of the main interest here. In [SNV07]
an algorithm referred to as ARIMA (a rare itemset miner algorithm) is proposed,
and later refined in [SVNG12] by the addition of a depth-first search to narrow the
space of frequent itemsets to frequent generators only (an itemset is a generator if
it has no proper subset with the same support). In [HM07] the MINIT (minimal
infrequent itemsets) algorithm is proposed. MINIT uses a recursive depth-first
search with pruning, similarly to the SUDA2 algorithm developed by the same
group, and is often used as the baseline algorithm against which the performance
of other infrequent mining algorithms is compared. In fact, MINIT is the first
successful algorithm in the field of minimal infrequent itemset mining (as SUDA2
is in the field of minimal unique itemset mining). The difference between the
two lies in the way they store an input dataset: in SUDA2 the dataset matrix
contains integers (and so effectively it is a two-dimensional array), whereas MINIT
leverages a binary matrix form. The Minimum Support Property in [HM07] is
new saying that an item i must have frequency supp(i) ≥ k+ τ − 2 in order for i
to be part of a minimal τ -infrequent itemset of size k for a given fixed frequency
threshold τ (see Section 1.2 for a definition of τ -infrequent itemset). Even though
MINIT’s parallel form has not yet been presented to the best of our knowledge,
it is likely that the performance analysis and the potential bottlenecks observed
in [HMM+09] will be repeated due to its design.

In [TSB09, TS13] a breadth-first algorithm, Rarity, aiming at finding not neces-
sarily minimal infrequent itemsets, is introduced. Whereas other algorithms start
from small itemsets and increase the size as they search, Rarity takes the opposite
approach and proceeds from the largest rare itemsets to smaller ones (referred to

A Fast Minimal Infrequent Itemset
Mining Algorithm

7 Kostiantyn Demchuk

1. Introduction 1.1 Literature Review

in [TSB09, TS13] as a top-down strategy) cutting frequent itemsets. Rarity was
found to be faster than ARIMA in general requiring more memory. In [GMB11] a
pattern-growth recursive depth-first approach is proposed for minimal infrequent
itemset mining and two algorithms called IFP_min and IFP_MLMS (multiple
level minimum support) are introduced. These algorithms make use of a residual
and projected trees: a residual tree of a particular item is a tree representation
of the residual database corresponding to the item, that is the entire database
with transactions containing the item removed; on the other hand, the projected
database corresponds to the set of transactions that contain that item. Then the
inverse FP-tree, a compact representation of input dataset, is built based on the
residual and projected trees, from which the algorithm mines needed itemsets. It
is observed that there exists a frequency threshold below which MINIT generally
outperforms IFP_min and above which IFP_min outperforms MINIT. IFP_min
is also observed to outperform MINIT for large dense datasets.

Recently, [CG13] extends consideration to the more general task of discovering
infrequent weighted itemsets (IWIs) from a weighted dataset. To address this
problem, the IWI-support measure is defined as a weighted frequency of an item-
set in the dataset. Occurrence weights are derived from the weights associated
with items in each transaction by applying a given cost function, that is, two
IWI-support measures are used: the IWI-support-min (IWI-support-max) mea-
sure, which relies on a minimum (maximum) cost function – the itemset frequency
in a given transaction is weighted by the weight of its least (most) interesting item.
This way the minimal IWI mining (MIWI Miner) algorithm is introduced, which
also belongs to the family of FP-Growth algorithms with the following principles:

• early FP-tree node pruning driven by the maximum IWI-support constraint;

• cost function-independence: it works in the same way regardless of which
constraint (either IWI-support-min or IWI-support-max) is applied;

• early stopping of the recursive FP-tree search to avoid extracting non-
minimal IWIs (Apriori-like property).

When a weighting of unity is associated with every itemset then this reduces to
the infrequent itemset mining problem. For the datasets considered in [CG13],
MIWI Miner is demonstrated to significantly outperform MINIT for infrequent
itemset mining. However, it is worth noting that the performance comparison in
[CG13] is made only for a small number of datasets.

A Fast Minimal Infrequent Itemset
Mining Algorithm

8 Kostiantyn Demchuk

1. Introduction 1.2 Preliminaries

1.2 Preliminaries

A dataset A is a table with n rows and m columns. The columns in this table
contain categorical or finite range continuous data (such as age, income, zip code
etc). Formally,
Definition 1.2.1 (Item). An item a is a triple (v, ja, Ra) in A, where v ∈ N is
its value, ja ∈ {1, . . . ,m} is the column of A containing v, and Ra ⊆ {1, . . . , n}
is the set of A rows in which the item appears.

Note that the column in which it appears distinguishes an item, the same value
appearing in two different columns being treated as two different items. This is
in line with previous work on infrequent itemset mining. Also observe that we
consider items with values from the set of positive integer (natural) numbers N,
but since any countable set can be mapped on to the integers this restriction is
mild (while real values are excluded, finite-precision values are admissible).

Let IA denote the set of all items in A. We define uniqueness, rareness and
uniformity of items in the natural way, as follows:
Definition 1.2.2 (Uniqueness). An item a ∈ IA is unique if |Ra| = 1. That is, it
occurs in dataset A exactly once. We let δA ⊆ IA denote the set of unique items
in IA.
Definition 1.2.3 (τ -Infrequency). An item a ∈ IA is τ -infrequent if it has fre-
quency less than τ i.e. |Ra| ≤ τ and so the item occurs in τ or fewer rows of
the dataset. We let rA,τ ⊆ IA denote the set of τ -infrequent items in IA. Unless
otherwise stated, we confine consideration to τ values less than n, since trivially
all elements of the dataset are n-infrequent. Usually 0 < τ � n.
Definition 1.2.4 (Uniformity). Let B ⊆ {1, . . . , n} be a subset of row indices
from dataset A, and let IB = {a ∈ IA : Ra ∩ B 6= ∅}. An item a is said to be
uniform in IB if |Ra ∩ B| = |B|. That is, item a occurs in every row of subtable
B. We let UA = {a ∈ IA : |Ra| = n} denote the set of uniform items in IA.
Example 1.2.1. For dataset

A =

1 2 3 4
1 2 7 4
1 6 3 4
5 2 3 4

A Fast Minimal Infrequent Itemset
Mining Algorithm

9 Kostiantyn Demchuk

1. Introduction 1.2 Preliminaries

we have

IA = {(1, 1, {1, 2, 3}), (2, 2, {1, 2, 4}), (3, 3, {1, 3, 4}), (4, 4, {1, 2, 3, 4}),
(5, 1, {4}), (6, 2, {3}), (7, 3, {2})}.

δA = {(5, 1, {4}), (6, 2, {3}), (7, 3, {2})}.
UA = {(4, 4, {1, 2, 3, 4})}.

rA,τ =

∅ if τ ≤ 0
δA if 0 < τ < 3

IA \ UA if τ = 3
IA if τ > 3

.

�

Definition 1.2.5 (Frequency). An itemset I ⊆ IA is a set of items. A k-itemset
refers to an itemset of cardinality k. We let RI = ⋂

a∈I Ra denote the set of rows
in which all items of I appear, and we refer to |RI | as the frequency of itemset I.
Definition 1.2.6 (Unique and Minimal Itemsets).
An itemset I ⊆ IA is unique and minimal if:

1. Uniqueness: |RI | = 1;

2. Minimality: |RS| > 1 ∀S ⊂ I, S 6= ∅.
Definition 1.2.7 (τ -Infrequent and Minimal Itemsets).
An itemset I ⊆ IA is τ -infrequent and minimal if:

1. τ -Infrequency: |RI | ≤ τ ;

2. Minimality: |RS| > τ ∀S ⊂ I, S 6= ∅.

We refer to the τ -infrequent and minimal itemsets as being the unique and mini-
mal itemsets and often drop any τ subscripts to streamline notation when τ = 1.

Note that to establish minimality in Definition 1.2.6 (1.2.7) it is only necessary to
test that |RS| > 1 (|RS| > τ) for sets S ⊂ I of size |I|−1 since RS′ ⊇ RS ∀S ′ ⊂ S.
These |I|−1 subsets are referred to as the support itemsets of I. Notice also that
itemsets of size 1 (items) are trivially minimal.

We denote the set of all unique and minimal itemsets by IA ⊆ 2IA and the set of
all τ -infrequent and minimal itemsets by IA,τ ⊆ 2IA , where 2IA denotes the set
of all subsets of IA. We use calligraphic script to indicate that IA is a set of sets
(similarly for IA,τ) and to distinguish it from the set of items IA. Notice that
IA,τ = IA when τ = 1.

A Fast Minimal Infrequent Itemset
Mining Algorithm

10 Kostiantyn Demchuk

Chapter 2

Minimal Unique Itemset Mining

In this chapter we introduce a new algorithm for efficiently finding all of the
unique and minimal k-itemsets up to a user specified size kmax, 1 ≤ k ≤ kmax ≤ m.

2.1 Pre-processing

We begin by observing that uniform items u ∈ UA can be deleted from IA as they
are not unique and so cannot belong to the set of unique and minimal itemsets
IA (moreover uniform items cannot form a minimal unique itemset as they break
minimality). Further, the set of unique items δA can be readily identified. The
remaining set of non-uniform and non-unique items I ′A = IA \ UA \ δA can be
partitioned into sets LA and L̄A = I ′A \ LA such that (i) Ra 6= Rb ∀a, b ∈ LA,
(ii) ∀c ∈ L̄A there exists d ∈ LA with Rc = Rd. That is, within set LA no items
share the same set of rows. This partitioning can be achieved in the obvious
way. Namely, for any set of items in I ′A which share the same set of rows, add
one of these items to LA and the rest to L̄A. Revisiting Example 1.2.1, we have
LA = {(1, 1, {1, 2, 3}), (2, 2, {1, 2, 4}), (3, 3, {1, 3, 4})}.

The partitioning into LA and I ′A \ LA possesses the following useful property:
Proposition 2.1.1. Let W ⊆ LA be a minimal unique itemset. Let w′ ∈ IA \LA
with Rw = Rw′ for some w ∈ W . Then W \ {w} ∪ {w′} is also a minimal unique
itemset.

Proof. Since W is minimal and unique, |RW | = 1 and |RS| > 1 for all subsets
S ⊂ W such that |S| = |W | − 1, S 6= ∅. Let W ′ = W \ {w} ∪ {w′}. We have
RW ′ = RW\{w} ∩ Rw′ = RW\{w} ∩ Rw = RW since Rw = Rw′ . Hence, |RW ′| =

11

2. Minimal Unique Itemset Mining 2.1 Pre-processing

|RW | = 1. Now consider any subset S ′ ⊂ W ′ such that |S ′| = |W ′| − 1. We have
|W ′| − 1 = |W | − 1 and either (i) S ′ = S when w /∈ S or (ii) S ′ = S \ {w} ∪ {w′}
when w ∈ S, where S ⊂ W , |S| = |W | − 1. Thus, either (i) RS′ = RS or (ii)
RS′ = RS\{w} ∩Rw′ = RS\{w} ∩Rw = RS, respectively. That is, |RS′| = |RS| > 1
and we are done.

It follows that the importance of the partitioning into LA and I ′A\LA is that after
finding the set of unique and minimal itemsets LA ⊂ 2LA of LA, the set of unique
and minimal itemsets IA ⊂ 2IA of IA can be obtained immediately. Namely,
Proposition 2.1.2. For any partition (LA, I ′A \ LA) the following holds: IA =
LA ∪ L̄A ∪ δA, where L̄A = {I \ {a} ∪ {b} : I ∈ LA, a ∈ I, b ∈ L̄A, Ra = Rb}.

Proof. The proposition states that itemset I ∈ IA ⇐⇒ I ∈ LA ∪ L̄A ∪ δA.
“⇐” If itemset I ∈ LA or I ∈ δA then I is minimal and unique and so I ∈ IA;
if I ∈ L̄A then, by Proposition 2.1.1, I is minimal and unique and so I ∈ IA.
“⇒” Suppose I ∈ IA. First of all observe that ĨA = IA, where ĨA = IA \ UA
and ĨA is the set of minimal and unique itemsets in 2ĨA . This holds because
I ∩ UA = ∅ for any I ∈ IA (suppose u ∈ I, u ∈ UA and I is minimal and
unique, then RI = RI\{u} ∩ Ru = RI\{u} since Ru contains all rows of A; thus
|RI\{u}| = |RI | = 1 what contradicts the minimality of I). Further, we have
ĨA = ÎA ∪ δA where ÎA = IA \ UA \ δA and ÎA is the set of minimal and unique
itemsets in 2ÎA . This is because the elements of δA are minimal and unique
individual items and so if I ∈ ĨA then either (i) I ∩ δA = ∅ or (ii) |I| = 1, I ∈ δA
(if |I ∩ δA| > 1 then |I| > 1 and ∀a ∈ I ∩ δA : a ∈ I, a 6= ∅, |Ra| = 1 as a ∈ δA and
so I is not minimal; if |I ∩ δA| = 1 and |I| > 1 then I is not minimal). Hence, we
have that IA = ÎA ∪ δA. Now ÎA = LA ∪ L̄A with LA ∩ L̄A = ∅. Hence, if I ∈ ÎA
and I ∩ L̄A = ∅ (so I ⊆ LA) then I ∈ LA. If I ∈ ÎA and I ∩ L̄A 6= ∅ then I ∈ L̄A
and we are done. Notice that proof works for any partition (LA, I ′A \ LA).

In light of Proposition 2.1.2, our goal can therefore be simplified to finding all
unique and minimal k-itemsets of LA, 1 ≤ k ≤ kmax.
Example 2.1.1. For dataset

A =

1 2 3 4 8
1 2 7 4 8
1 6 3 4 8
5 2 3 4 9

A Fast Minimal Infrequent Itemset
Mining Algorithm

12 Kostiantyn Demchuk

2. Minimal Unique Itemset Mining 2.2 Pruning the Search space

we have

IA = {(1, 1, {1, 2, 3}), (2, 2, {1, 2, 4}), (3, 3, {1, 3, 4}), (4, 4, {1, 2, 3, 4}),
(5, 1, {4}), (6, 2, {3}), (7, 3, {2}), (8, 5, {1, 2, 3}), (9, 5, {4})}.

δA = {(5, 1, {4}), (6, 2, {3}), (7, 3, {2}), (9, 5, {4})}.
UA = {(4, 4, {1, 2, 3, 4})}.

The remaining set of non-uniform and non-unique items is

I ′A = IA\UA\δA = {(1, 1, {1, 2, 3}), (2, 2, {1, 2, 4}), (3, 3, {1, 3, 4}), (8, 5, {1, 2, 3})}.

The set I ′A can be partitioned into sets LA = {(1, 1, {1, 2, 3}), (2, 2, {1, 2, 4}), (3, 3,
{1, 3, 4})} and L̄A = I ′A \LA = {(8, 5, {1, 2, 3})} such that (i) Ra 6= Rb ∀a, b ∈ LA
({1, 2, 3} 6= {1, 2, 4} 6= {1, 3, 4} and {1, 2, 3} 6= {1, 3, 4}), (ii) ∀c ∈ L̄A there exists
d ∈ LA with Rc = Rd (for (8, 5, {1, 2, 3}) there is (1, 1, {1, 2, 3}) in LA).

Denote a = (1, 1, {1, 2, 3}), b = (2, 2, {1, 2, 4}), c = (3, 3, {1, 3, 4}) and d = (8, 5,
{1, 2, 3}). Proposition 2.1.1 says that if {a, b, c} ⊆ LA is a minimal unique itemset
and d ∈ IA \ LA with Rd = Ra then {d, b, c} is also a minimal unique itemset.
Proposition 2.1.2 says that for our chosen partition (LA, I ′A \ LA) the set of all
minimal unique itemsets IA can be obtained from the set LA ⊂ 2LA, L̄A and δA,
in our case: {a, b, c} ∈ LA, {d, b, c} ∈ L̄A and unique items from δA. �

2.2 Pruning the Search space

Considering the items in LA to be an alphabet, all of the possible words in the
form of ordered sequences that can be built from LA can be represented by a
prefix tree. For example, when LA = {a, b, c, d, e}, the associated prefix tree is
shown in the Figure 2.1. By starting at the root and traversing the branches of
the tree, every possible ordered sequence of letters can be obtained.

In principle, the unique and minimal k-itemsets of LA can be found by travers-
ing every branch of the tree to depth kmax and testing each sequence of items
obtained for uniqueness and minimality. However, efficiency can be increased if
it is possible to avoid fully traversing every branch i.e. the tree can be pruned.

Basic pruning can be achieved using following fundamental property of itemsets:
Proposition 2.2.1 (Monotonicity). Let I be an itemset. If I is not minimal

A Fast Minimal Infrequent Itemset
Mining Algorithm

13 Kostiantyn Demchuk

2. Minimal Unique Itemset Mining 2.2 Pruning the Search space

e

d e

e

c

d

e

b

edc

a

e

d

ed

b

edc

e

e

e

c

ed

eeed

e

Figure 2.1: Prefix tree for the alphabet LA = {a, b, c, d, e}. By starting at the
root and traversing the branches of the tree, every possible ordered sequence of
letters can be obtained e.g. traversing the far left-hand branch yields the sequence
abcde.

then no superset of I can be minimal.

Proof. Since I is non-minimal there exists S ⊂ I, S 6= ∅ such that |RS| ≤ 1. It
follows that ∀J ⊃ I there exists S ⊂ J , S 6= ∅ such that |RS| ≤ 1 and so J is
also non-minimal.

Hence, as soon as we determine that the sequence of items in an itemset is non-
minimal, we can terminate traversal of that branch of the tree. Note that similar
pruning is not possible based on uniqueness since a superset of an itemset I can
be unique even if I is not unique due to the decrease in frequency as more and
more items are added to an itemset.

Importantly, the prefix tree associated with itemset LA is not unique since the tree
depends on how we choose to order the items in LA. In general, it is challenging
to determine an ordering of items in LA which minimises the number of vertices
which need to be traversed in the prefix tree in order to find the set LA of unique
and minimal itemsets of LA. We revisit this question later, in Section 2.5.2.4, but
note here that sorting the items of LA into ascending order using the following
item ordering is efficient for a wide range of datasets.
Definition 2.2.1 (Ascending Order). We order items a < b if (i) |Ra| < |Rb| or
(ii) |Ra| = |Rb| and ja < jb or (iii) |Ra| = |Rb|, ja = jb and minRa < minRb.

A Fast Minimal Infrequent Itemset
Mining Algorithm

14 Kostiantyn Demchuk

2. Minimal Unique Itemset Mining 2.3 Potential Performance Bottlenecks

Note that due to the pre-processing and partitioning used to obtain LA, for any
items a ∈ LA, b ∈ LA \ {a} we must have either a < b or b < a i.e. strict
total order (if ja = jb, minRa = minRb then items a and b are both in the same
column ja and row minRa of the dataset and so we must have a = b, but this
contradicts the fact that b ∈ LA \ {a}). We let L<A denote a list of the items in
LA sorted in ascending order.

2.3 Potential Performance Bottlenecks

To evaluate whether an itemset I is minimal or not, we use the support itemset
test to verify Definition 1.2.6(2). To evaluate whether an itemset I is unique,
we intersect the rows of the elements in I to obtain RI = ∩a∈IRa and test
whether |RI | = 1 to verify Definition 1.2.6(1). Both of these tests are potentially
expensive.

The support itemset test requires enumerating the subsets S ⊂ I, |S| = |I| − 1,
and calculating RS = ∩a∈SRa for each subset. As already noted, testing for
uniqueness requires calculating RI = ∩a∈IRa. For large tables, the row sets Ra

may be large and so time consuming to obtain, e.g. if the approach taken is
to scan the dataset for item a and record the rows in which a appears, plus
additionally the complexity of calculating RI in the obvious manner scales as
O(|I|mina∈I |Ra|).

2.4 Kyiv Algorithm

The Kyiv algorithm performs a breadth first search of the prefix tree defined by
ordered list L<A. Branches are pruned using Proposition 2.2.1 – if an itemset I fails
the support itemset test in Definition 1.2.6(2) then it must be non-minimal and
so the subtree with itemset I at the root can be pruned. The key advantage of the
breadth-first approach is that the support row test can be performed extremely
efficiently, as discussed in more detail in Section 2.4.1. Pseudo-code for the Kyiv
algorithm is given in Algorithm 1.

In Algorithm 1 the collection of sets {Pi}ti=1 holds the vertices of level k−1 of the
pruned prefix graph, and the vertices of level k are stored in {P ′i}t

′
i=1. Note that

there is never any need to store more than two levels of the pruned prefix tree —
we discuss these memory requirements in more detail below. The algorithm visits

A Fast Minimal Infrequent Itemset
Mining Algorithm

15 Kostiantyn Demchuk

2. Minimal Unique Itemset Mining 2.4 Kyiv Algorithm

Algorithm 1 Kyiv
1: Input: dataset A, threshold kmax
2: Output: all minimal unique k-itemsets, k ≤ kmax
3: compute IA = I ′A ∪ UA ∪ δA
4: compute LA for chosen partition (LA, I ′A \ LA)
5: print unique items in δA . k = 1 case
6: sort LA to obtain L<A
7: t← 0, k ← 2
8: foreach a ∈ L<A do t← t+ 1, Pt ← {a}
9: while k ≤ kmax do

10: t′ ← 0
11: foreach i ∈ {1, . . . , t− 1} do
12: I ← Pi
13: foreach j ∈ {i+ 1, . . . , t} do
14: J ← Pj
15: . get the highest order items in I and J
16: a← max(I), b← max(J)
17: if I \ {a} 6= J \ {b} then
18: break . itemsets do not share a common prefix
19: . itemsets I and J differ exactly by one item now
20: W ← I ∪ J
21: if k > 2 then
22: . support itemset test, Definition 1.2.6(2)
23: if ∃S ⊂ W, |S| = |W | − 1 : |RS| ≤ 1 then
24: continue . non-minimal, prune this branch
25: if k = kmax then
26: . Lemma 2.4.1 and Corollary 2.4.1 (Section 2.4.2)
27: if |RI |+ |RJ | > |RI\{a}|+ 1 then continue
28: c← max(J \ {b})
29: if min(|RI\{c}| − |RI |, |RJ\{c}| − |RJ |) + 1 < |RI\{c} ∩Rb| then
30: continue
31: RW ← RI ∩RJ . intersect rows
32: if |RW | = 0 or |RW | = min(|RI |, |RJ |) then
33: continue . skip absent and uniform itemsets
34: if |RW | = 1 then
35: print W . minimal unique itemset found
36: foreach w ∈ W do . apply Proposition 2.1.1
37: if ∃w′ ∈ I ′A \ LA : Rw = Rw′ then
38: print W \ {w} ∪ {w′}
39: else . need to store non-unique minimal itemset
40: if k < kmax then
41: t′ ← t′ + 1, P ′t′ ← W

42: foreach t ∈ {1, . . . , t′} do Pt ← P ′t
43: k ← k + 1, t← t′

A Fast Minimal Infrequent Itemset
Mining Algorithm

16 Kostiantyn Demchuk

2. Minimal Unique Itemset Mining 2.4 Kyiv Algorithm

each vertex in level k and takes one of three actions: (i) finds that the vertex is
a non-minimal itemset and so prunes it (it is not added to P ′ and its children
are not traversed), (ii) finds that the vertex is a minimal unique itemset and so
prints it (it is not added to P ′ and its children are not traversed), (iii) finds the
vertex is non-unique and its children must be traversed.

In our implementation of Algorithm 1, we use a recursive data structure called
Graph to hold the prefix tree levels. Graph stores an array of references to its
children of type Graph and other useful data such as the rows associated with
the current node. Each child is an item (v, ja, Ra) and is identified by index value
mv + ja. Fast access to the children is achieved by use of a hash table, which is
also stored among the properties of the Graph class.

2.4.1 Highly Efficient Support Itemset Testing

One of the key benefits of adopting a breadth-first approach in Algorithm 1 is
that the computational cost of the support itemset test at line 23 can be reduced
to essentially zero. This is because the itemsets S ⊂ W of size |S| = |W | − 1,
together with the associated row sets RS, have already been pre-calculated and
stored in data structure P := {Pi}ti=1. Hence, evaluating whether there exists an
S such that |RS| ≤ 1 simply involves lookups from P , which can be carried out
efficiently using an appropriate data structure for P such as a hash table.

Observe that acceleration of the support itemset test at line 23 is achieved in
Algorithm 1 at the cost of increased RAM memory to store data structure P .
This cost is potentially significant, particularly in the middle of the prefix tree
where the number of vertices in a level of the tree is largest. However, in view of
the fact that the amount of RAM available is growing at a much faster rate than
CPU clock speed, this trade-off between of increased memory consumption for a
much reduced computational burden may be a favourable one.

2.4.2 Reducing Number of Row Intersections

The remaining computational bottleneck of Algorithm 1 is at line 31. We present
performance measurements in Chapter 2.5 that confirm line 31 accounts for the
vast majority of the execution time of Algorithm 1. However, we leave as future
work the development of more efficient techniques for computing the intersection
operation at line 31.

A Fast Minimal Infrequent Itemset
Mining Algorithm

17 Kostiantyn Demchuk

2. Minimal Unique Itemset Mining 2.4 Kyiv Algorithm

The potential exists to reduce the number of row intersections at the kmax level
of the prefix tree using the following properties:
Lemma 2.4.1. Let I ⊆ IA be an itemset and a, b ∈ IA any items in IA. If

|RI ∩Ra|+ |RI ∩Rb| > |RI |+ 1 (2.1)

then I ∪ {a, b} is not a unique itemset.

Proof. We proceed by contradiction. Suppose |RI ∩ Ra| + |RI ∩ Rb| > |RI | + 1
and itemset I ∪ {a, b} is unique (so |RI ∩Ra ∩Rb| = 1). By the distributivity of
set intersection, RI ∩ (Ra ∪Rb) = (RI ∩Ra) ∪ (RI ∩Rb). Hence,

|RI ∩ (Ra ∪Rb)|
= |(RI ∩Ra) ∪ (RI ∩Rb)|
= |RI ∩Ra|+ |RI ∩Rb| − |(RI ∩Ra) ∩ (RI ∩Rb)|
= |RI ∩Ra|+ |RI ∩Rb| − |RI ∩Ra ∩Rb|.

Now |RI | ≥ |RI ∩ (Ra ∪ Rb)| and by assumption |RI ∩ Ra ∩ Rb| = 1. Hence,
|RI | ≥ |RI ∩Ra|+ |RI ∩Rb| − 1, yielding the desired contradiction.

Corollary 2.4.1. Let a1, . . . , ak ∈ IA be any items from IA, with k > 2. If

Γ0 > min{Γ1,Γ2}+ 1 (2.2)

then {a1, . . . , ak} is not a unique itemset, where

Γ0 := | ∩k−3
i=1 Rai ∩Rak−1 ∩Rak |,

Γ1 := | ∩k−3
i=1 Rai ∩Rak−1| − | ∩k−3

i=1 Rai ∩Rak−2 ∩Rak−1 |,

Γ2 := | ∩k−3
i=1 Rai ∩Rak | − | ∩k−3

i=1 Rai ∩Rak−2 ∩Rak |.

Proof. There are two cases to consider.
Case (i): Γ0 > min{Γ1,Γ2}+ 1 = Γ1 + 1. Then,

| ∩k−3
i=1 Rai ∩Rak−1 ∩Rak−2|+ | ∩k−3

i=1 Rai ∩Rak−1 ∩Rak |

> | ∩k−3
i=1 Rai ∩Rak−1|+ 1.

Let I = ∪k−3
i=1 ai ∪ {ak−1}, a = ak−2, b = ak. By Lemma 2.4.1 {a1, . . . , ak} is not

unique.

A Fast Minimal Infrequent Itemset
Mining Algorithm

18 Kostiantyn Demchuk

2. Minimal Unique Itemset Mining 2.4 Kyiv Algorithm

Case (ii): Γ0 > min{Γ1,Γ2}+ 1 = Γ2 + 1. Then,

| ∩k−3
i=1 Rai ∩Rak ∩Rak−2 |+ | ∩k−3

i=1 Rai ∩Rak ∩Rak−1|

> | ∩k−3
i=1 Rai ∩Rak |+ 1.

Let I = ∪k−3
i=1 ai ∪ {ak}, a = ak−2, b = ak−1. By Lemma 2.4.1 {a1, . . . , ak} is not

unique.

In the final iteration (when k = kmax) we can use Lemma 2.4.1 and Corollary
2.4.1 to test for uniqueness before carrying out the intersection at line 31. If either
test concludes that the itemset is non-unique, then there is no need to perform
the row intersection.
Example 2.4.1. To illustrate the operation of Algorithm 1, suppose kmax = 3
and consider the dataset:

A =

∗ ∗ ∗ 4 ∗
1 2 ∗ 4 ∗
1 2 3 4 ∗
1 2 3 4 5
1 ∗ 3 ∗ 5
∗ 2 3 ∗ 5
∗ ∗ ∗ ∗ 5

, where ∗ denotes a unique item.

The set δA contains the unique items marked by ∗. There are no uniform items,
so UA = ∅. There exists single partition of I ′A — (LA, ∅), where it can be verified
that

L<A = {(1, 1, {2, 3, 4, 5}), (2, 2, {2, 3, 4, 6}), (3, 3, {3, 4, 5, 6}),
(4, 4, {1, 2, 3, 4}), (5, 5, {4, 5, 6, 7})} := {a, b, c, d, e}.

The prefix tree of L<A is shown schematically in Figure 2.1. After line 8 is executed
(P1 = {a}, P2 = {b}, P3 = {c}, P4 = {d}, P5 = {e}) and the first level of the prefix
tree is built. The first iteration of the main loop at line 9 (when k = 2 < 3 = kmax

and t = 5) is reproduced step-by-step below. Here, 1 ≤ i ≤ 4 = t − 1, i < j ≤ t

and for each (I, J) the highest order items are the items contained in I and J
(which never share a common prefix). The condition at line 21 is false and there
are no absent or uniform itemsets (0 < |RW | < min(|RI |, |RJ |) for each (I, J))

A Fast Minimal Infrequent Itemset
Mining Algorithm

19 Kostiantyn Demchuk

2. Minimal Unique Itemset Mining 2.4 Kyiv Algorithm

after intersection at line 31:

i = 1 : I = P1 = {a}
j = 2 ≤ 5 = t : J = P2 = {b}, a = max(I), b = max(J), W = {a, b}

RW = {2, 3, 4}
4 > |RW | > 1 and k = 2 < 3 = kmax ⇒ t′ = 1, P ′1 = {a, b}

j = 3 ≤ 5 = t : J = P3 = {c}, a = max(I), c = max(J), W = {a, c}
RW = {3, 4, 5}
4 > |RW | > 1 and k = 2 < 3 = kmax ⇒ t′ = 2, P ′2 = {a, c}

j = 4 ≤ 5 = t : J = P4 = {d}, a = max(I), d = max(J), W = {a, d}
RW = {2, 3, 4}
4 > |RW | > 1 and k = 2 < 3 = kmax ⇒ t′ = 3, P ′3 = {a, d}

j = 5 ≤ 5 = t : J = P5 = {e}, a = max(I), e = max(J), W = {a, e}
RW = {4, 5}
4 > |RW | > 1 and k = 2 < 3 = kmax ⇒ t′ = 4, P ′4 = {a, e}

i = 2 : I = P2 = {b}
j = 3 ≤ 5 = t : J = P3 = {c}, b = max(I), c = max(J), W = {b, c}

RW = {3, 4, 6}
4 > |RW | > 1 and k = 2 < 3 = kmax ⇒ t′ = 5, P ′5 = {b, c}

j = 4 ≤ 5 = t : J = P4 = {d}, b = max(I), d = max(J), W = {b, d}
RW = {2, 3, 4}
4 > |RW | > 1 and k = 2 < 3 = kmax ⇒ t′ = 6, P ′6 = {b, d}

j = 5 ≤ 5 = t : J = P5 = {e}, b = max(I), e = max(J), W = {b, e}
RW = {4, 6}
4 > |RW | > 1 and k = 2 < 3 = kmax ⇒ t′ = 7, P ′7 = {b, e}

i = 3 : I = P3 = {c}
j = 4 ≤ 5 = t : J = P4 = {d}, c = max(I), d = max(J), W = {c, d}

RW = {3, 4}
4 > |RW | > 1 and k = 2 < 3 = kmax ⇒ t′ = 8, P ′8 = {c, d}

j = 5 ≤ 5 = t : J = P5 = {e}, c = max(I), e = max(J), W = {c, e}
RW = {4, 5, 6}
4 > |RW | > 1 and k = 2 < 3 = kmax ⇒ t′ = 9, P ′9 = {c, e}

i = 4 : I = P4 = {d}

A Fast Minimal Infrequent Itemset
Mining Algorithm

20 Kostiantyn Demchuk

2. Minimal Unique Itemset Mining 2.4 Kyiv Algorithm

j = 5 ≤ 5 = t : J = P5 = {e}, d = max(I), e = max(J), W = {d, e}
RW = {4} ⇒ print {d, e} as minimal unique 2-itemset

Proposition 2.1.1 is not applied because I ′A \ LA = ∅.

The second level of the prefix tree is now built: P1 = {a, b}, P2 = {a, c}, P3 =
{a, d}, P4 = {a, e}, P5 = {b, c}, P6 = {b, d}, P7 = {b, e}, P8 = {c, d}, P9 = {c, e}.

The second iteration of the main loop (when k = 3 = kmax and t = 9) is reproduced
step-by-step below. Here, 1 ≤ i ≤ 8 = t − 1, i < j ≤ t and for each (I, J) there
are no absent or uniform itemsets after intersection at line 31:

i = 1 : I = P1 = {a, b}
j = 2 ≤ 9 = t : J = P2 = {a, c}, b = max(I), c = max(J)

I \max(I) = {a} = J \max(J) : W = {a, b, c}
k = 3 > 2 :

support itemset test, Definition 1.2.6(2) at line 23 fails:

there is no S ⊂ W, |S| = |W | − 1 : |RS| ≤ 1
Lemma 2.4.1 (Section 2.4.2) succeeds:

|{2, 3, 4}|+ |{3, 4, 5}| = 6 > 5 = |{2, 3, 4, 5}|+ 1
Algorithm continues to the next J

j = 3 ≤ 9 = t : J = P3 = {a, d}, b = max(I), d = max(J)
I \max(I) = {a} = J \max(J) : W = {a, b, d}
k = 3 > 2 :

support itemset test, Definition 1.2.6(2) at line 23 fails:

there is no S ⊂ W, |S| = |W | − 1 : |RS| ≤ 1
Lemma 2.4.1 (Section 2.4.2) succeeds:

|{2, 3, 4}|+ |{2, 3, 4}| = 6 > 5 = |{2, 3, 4, 5}|+ 1
Algorithm continues to the next J

j = 4 ≤ 9 = t : J = P4 = {a, e}, b = max(I), e = max(J)
I \max(I) = {a} = J \max(J) : W = {a, b, e}
k = 3 > 2 :

support itemset test, Definition 1.2.6(2) at line 23 fails:

there is no S ⊂ W, |S| = |W | − 1 : |RS| ≤ 1
Lemma 2.4.1 (Section 2.4.2) fails:

A Fast Minimal Infrequent Itemset
Mining Algorithm

21 Kostiantyn Demchuk

2. Minimal Unique Itemset Mining 2.4 Kyiv Algorithm

|{2, 3, 4}|+ |{4, 5}| = 5 ≯ 5 = |{2, 3, 4, 5}|+ 1
Corollary 2.4.1 (Section 2.4.2) fails:

min(|{2, 3, 4, 6}| − |{2, 3, 4}|, |{4, 5, 6, 7}| − |{4, 5}|)+
1 = 2 6< 2 = |{4, 6}|

RW = {4} ⇒ print {a, b, e} as minimal unique 3-itemset

Proposition 2.1.1 is not applied because I ′A \ LA = ∅
j = 5 ≤ 9 = t : J = P5 = {b, c}, b = max(I), c = max(J)

I \max(I) = {a} 6= {b} = J \max(J)
Algorithm continues to the next I

i = 2 : I = P2 = {a, c}
j = 3 ≤ 9 = t : J = P3 = {a, d}, c = max(I), d = max(J)

I \max(I) = {a} = J \max(J) : W = {a, c, d}
k = 3 > 2 :

support itemset test, Definition 1.2.6(2) at line 23 fails:

there is no S ⊂ W, |S| = |W | − 1 : |RS| ≤ 1
Lemma 2.4.1 (Section 2.4.2) succeeds:

|{3, 4, 5}|+ |{2, 3, 4}| = 6 > 5 = |{2, 3, 4, 5}|+ 1
Algorithm continues to the next J

j = 4 ≤ 9 = t : J = P4 = {a, e}, c = max(I), e = max(J)
I \max(I) = {a} = J \max(J) : W = {a, c, e}
k = 3 > 2 :

support itemset test, Definition 1.2.6(2) at line 23 fails:

there is no S ⊂ W, |S| = |W | − 1 : |RS| ≤ 1
Lemma 2.4.1 (Section 2.4.2) fails:

|{3, 4, 5}|+ |{4, 5}| = 5 ≯ 5 = |{2, 3, 4, 5}|+ 1
Corollary 2.4.1 (Section 2.4.2) succeeds:

min(|{3, 4, 5, 6}| − |{3, 4, 5}|, |{4, 5, 6, 7}| − |{4, 5}|)+
1 = 2 < 3 = |{4, 5, 6}|

Algorithm continues to the next J

j = 5 ≤ 9 = t : J = P5 = {b, c}, c = max(I), c = max(J)
I \max(I) = {a} 6= {b} = J \max(J)
Algorithm continues to the next I

A Fast Minimal Infrequent Itemset
Mining Algorithm

22 Kostiantyn Demchuk

2. Minimal Unique Itemset Mining 2.4 Kyiv Algorithm

i = 3 : I = P3 = {a, d}
j = 4 ≤ 9 = t : J = P4 = {a, e}, d = max(I), e = max(J)

I \max(I) = {a} = J \max(J) : W = {a, d, e}
k = 3 > 2 :

support itemset test, Definition 1.2.6(2) at line 23 succeeds:

∃S = {d, e} ⊂ W, |S| = |W | − 1 : |RS| = |{4}| = 1 ≤ 1
Algorithm continues to the next J

j = 5 ≤ 9 = t : J = P5 = {b, c}, d = max(I), c = max(J)
I \max(I) = {a} 6= {b} = J \max(J)
Algorithm continues to the next I

i = 4 : I = P4 = {a, e}
j = 5 ≤ 9 = t : J = P5 = {b, c}, e = max(I), c = max(J)

I \max(I) = {a} 6= {b} = J \max(J)
Algorithm continues to the next I

i = 5 : I = P5 = {b, c}
j = 6 ≤ 9 = t : J = P6 = {b, d}, c = max(I), d = max(J)

I \max(I) = {b} = J \max(J) : W = {b, c, d}
k = 3 > 2 :

support itemset test, Definition 1.2.6(2) at line 23 fails:

there is no S ⊂ W, |S| = |W | − 1 : |RS| ≤ 1
Lemma 2.4.1 (Section 2.4.2) succeeds:

|{3, 4, 6}|+ |{2, 3, 4}| = 6 > 3 = |{3, 4}|+ 1
Algorithm continues to the next J

j = 7 ≤ 9 = t : J = P7 = {b, e}, c = max(I), e = max(J)
I \max(I) = {b} = J \max(J) : W = {b, c, e}
k = 3 > 2 :

support itemset test, Definition 1.2.6(2) at line 23 fails:

there is no S ⊂ W, |S| = |W | − 1 : |RS| ≤ 1
Lemma 2.4.1 (Section 2.4.2) fails:

|{3, 4, 6}|+ |{4, 6}| = 5 ≯ 5 = |{2, 3, 4, 6}|+ 1
Corollary 2.4.1 (Section 2.4.2) succeeds:

min(|{3, 4, 5, 6}| − |{3, 4, 6}|, |{4, 5, 6, 7}| − |{4, 6}|)+

A Fast Minimal Infrequent Itemset
Mining Algorithm

23 Kostiantyn Demchuk

2. Minimal Unique Itemset Mining 2.4 Kyiv Algorithm

1 = 2 < 3 = |{4, 5, 6}|
Algorithm continues to the next J

j = 8 ≤ 9 = t : J = P8 = {c, d}, c = max(I), d = max(J)
I \max(I) = {b} 6= {c} = J \max(J)
Algorithm continues to the next I

i = 6 : I = P6 = {b, d}
j = 7 ≤ 9 = t : J = P7 = {b, e}, d = max(I), e = max(J)

I \max(I) = {b} = J \max(J) : W = {b, d, e}
k = 3 > 2 :

support itemset test, Definition 1.2.6(2) at line 23 succeeds:

∃S = {d, e} ⊂ W, |S| = |W | − 1 : |RS| = |{4}| = 1 ≤ 1
Algorithm continues to the next J

j = 8 ≤ 9 = t : J = P8 = {c, d}, d = max(I), d = max(J)
I \max(I) = {b} 6= {c} = J \max(J)
Algorithm continues to the next I

i = 7 : I = P7 = {b, e}
j = 8 ≤ 9 = t : J = P8 = {c, d}, d = max(I), d = max(J)

I \max(I) = {b} 6= {c} = J \max(J)
Algorithm continues to the next I

i = 8 : I = P8 = {c, d}
j = 9 ≤ 9 = t : J = P9 = {c, e}, d = max(I), e = max(J)

I \max(I) = {c} = J \max(J) : W = {c, d, e}
k = 3 > 2 :

support itemset test, Definition 1.2.6(2) at line 23 succeeds:

∃S = {d, e} ⊂ W, |S| = |W | − 1 : |RS| = |{4}| = 1 ≤ 1
Algorithm ends.

At the ultimate level kmax, the support itemset test for minimality (line 23),
Lemma 2.4.1 (line 27) and Corollary 2.4.1 (line 29) are applied in that order to
pairs of 2-itemsets from P which share a common prefix. Pairs ({a, d}, {a, e}),
({b, d}, {b, e}), ({c, d}, {c, e}) are pruned by the support itemset test. Pairs
({a, b}, {a, c}), ({a, b}, {a, d}), ({a, c}, {a, d}), ({b, c}, {b, d}) are pruned by the
lemma. Pairs ({a, c}, {a, e}), ({b, c}, {b, e}) are pruned by the corollary. Leaving

A Fast Minimal Infrequent Itemset
Mining Algorithm

24 Kostiantyn Demchuk

2. Minimal Unique Itemset Mining 2.4 Kyiv Algorithm

only ({a, b}, {a, e}) as minimal unique itemset. �

2.4.3 Correctness

Theorem 2.4.1. Algorithm 1 terminates in finite time and finds all minimal
unique itemsets of IA up to size kmax.

Proof. Pre-processing from the beginning to the main loop (line 9) is done in
finite time: to compute IA and LA algorithm goes through the A elements and
counts their frequencies while the size of A is finite (n,m < +∞); printing δA,
sorting LA and iterating |L<A| times the loop at line 8 all take finite time as
|δA|, |LA| = |L<A| < +∞. The search space of the algorithm is the prefix tree
which is finite as IA is finite. If there is no pruning then Algorithm 1 goes
through every branch of maximum length kmax of the tree, otherwise it processes
even fewer branches. It takes finite time to process a single branch (that is:
navigate it, intersect itemset rows of finite size and either print (Proposition
2.1.1 takes finite time because |W |, |I ′A \ LA| < +∞) or store the appropriate
itemset). Consequently the algorithm terminates in finite time processing all the
itemsets of maximum size kmax that have not been thrown out by the support
itemset test (line 23), Lemma 2.4.1 (line 27) and Corollary 2.4.1 (line 29).

Suppose there is a minimal unique itemset I ∈ 2IA that is not found by the algo-
rithm. Proposition 2.1.2 means that the set of all unique and minimal itemsets
IA ⊂ 2IA can be described by any chosen partition (LA, L̄A). Thus, either I con-
tains item which does not belong to LA or |I| > kmax. The former is impossible
while the latter does not contradict the theorem.

2.4.4 Parallelisation

Algorithm 1 can be readily parallelised using shared-memory threads. Namely,
at level k within the prefix tree assign all vertices sharing the same parent at
level k − 1 within the prefix tree to the same thread and then in each thread
execute the loop starting at line 13 in Algorithm 1. The shared memory allows
each thread access to the prefix tree information stored in Pj, j ∈ {i+ 1, · · · , t},
but there is otherwise no need for inter-thread communication.

When the number of available threads is less than the number of parent vertices
at level k− 1 in the prefix tree, work must be allocated amongst the threads. As

A Fast Minimal Infrequent Itemset
Mining Algorithm

25 Kostiantyn Demchuk

2. Minimal Unique Itemset Mining 2.5 Experimental Results

already discussed, the work associated with each parent vertex is dominated by
the number of row intersections to be carried out. This number can be accurately
estimated based on the number of children of the parent vertex, and so the
work associated with each parent vertex estimated in advance. Using these work
estimates, load-balanced scheduling of work amongst the threads can then be
efficiently realised. As discussed in more detail in Section 2.5, in this way we
can ensure that the running time of all threads is similar thereby enhancing the
performance gain from parallelisation — we note that imbalanced thread run
times is known to be a key bottleneck in the parallelisation of state-of-the-art
depth-first approaches such as SUDA2 and MINIT [HMM+09].
Example 2.4.2. Recall Example 2.4.1. Let t = 3 be the number of threads. When
k = 2, Algorithm 1 allocates jobs between the 3 threads: first an empty array T
of size t is created; then for each item in L<A the number of higher order items is
stored in T at the cell which has the minimum value (if there are several such cells,
the left-most is chosen). As soon as T is filled in, all threads start computation.
In our example T = {4, 3, 3} and the first thread is assigned itemsets, {a, b},
{a, c}, {a, d}, {a, e}, the second {b, c}, {b, d}, {b, e} and the third {c, d}, {c, e},
{d, e}. Row intersection of each ordered pair reveals the unique 2-itemsets and
these itemsets are stored in P ′: {a, b}, {a, c}, {a, d}, {a, e}, {b, c}, {b, d}, {b, e},
{c, d} and {c, e}; at the next iteration they will be copied into P for the k = 3
analysis. Only {d, e} will be printed out as unique and minimal.

When k = 3 (the ultimate level kmax), T = {6, 3, 1} and the first thread is assigned
itemsets ({a, b}, {a, c}), ({a, b}, {a, d}), ({a, b}, {a, e}), ({a, c}, {a, d}), ({a, c},
{a, e}), ({a, d}, {a, e}), the second ({b, c}, {b, d}), ({b, c}, {b, e}), ({b, d}, {b, e})
and the third ({c, d}, {c, e}). As in Example 2.4.1, the support itemset test,
Lemma 2.4.1 and Corollary 2.4.1 eliminates all pairs inside the threads except
for ({a, b}, {a, e}). �

2.5 Experimental Results

If not otherwise stated, all experiments in this section were carried out using
ascending itemlist order, Lemma 2.4.1 and Corollary 2.4.1.

A Fast Minimal Infrequent Itemset
Mining Algorithm

26 Kostiantyn Demchuk

2. Minimal Unique Itemset Mining 2.5 Experimental Results

2.5.1 Hardware and Software Setup

We implemented Algorithm 1 in Java (version 1.7.0_25) using the hppc (version
0.5.2) library, which can be found at http://labs.carrotsearch.com/hppc.
html. For comparison with the serial version of Algorithm 1, we also imple-
mented a state-of-the-art algorithm MINIT [HM07] in Java (using the C++ im-
plementation kindly provided by the developers of MINIT) and used the C++
implementation of the MIWI algorithm [CG13], kindly provided by its developers.

For testing we used an Amazon cr1.8xlarge instance with an Intel Xeon CPU
E5-2670 0 @ 2.60GHz 32 processor (up to 32 hyperthreads), 244Gb of memory,
64-bit Linux operating system (kernel version 3.4.62-53.42. amzn1.x86_64 of Red
Hat 4.6.3-2 Linux distribution (Amazon Linux AMI release 2013.09)).

2.5.2 Domain-Agnostic Performance

2.5.2.1 Randomised Datasets

We begin by investigating performance in a domain-agnostic manner using ran-
domised datasets. Each randomised dataset consists of 50, 000 rows with each
row having 25 columns. For each column, the size D of the domain of element
values is selected i.i.d. uniformly at random from the set {10, · · · , 100}. The
elements within each column are then selected i.i.d. uniformly at random from
domain {1, · · · , D}. On average, for these datasets LA contained 1352 items.

2.5.2.2 Execution Time

Figure 2.2 shows the measured distribution of execution times for Algorithm 1
over 50 randomised datasets when kmax = 5. It can be seen that the execution
times are relatively tightly bunched around the mean value of 280 seconds. Also
shown in Figure 2.2 is the corresponding time expended on calculating row in-
tersections at line 31 of Algorithm 1. The mean intersection time is 190 seconds,
so 68% of the execution time is expended on row intersections, confirming that
these are indeed the primary bottleneck in Algorithm 1. Note that the fraction
of execution time expended on row intersections depends on kmax and tends to
increase as kmax decreases e.g. when kmax = 3 row intersections absorb 80% of
the execution time.

A Fast Minimal Infrequent Itemset
Mining Algorithm

27 Kostiantyn Demchuk

http://labs.carrotsearch.com/hppc.html
http://labs.carrotsearch.com/hppc.html

2. Minimal Unique Itemset Mining 2.5 Experimental Results

138-152
153-167

168-182
183-197

198-212
213-227

228-242
243-257

258-272
273-287

288-302
303-317

318-332

0

2

4

6

8

10

12

14
 execution time

 intersection time

time intervals in seconds

fr
e

q
u

e
n

c y

Figure 2.2: Distribution of execution and intersection time for randomised
datasets, kmax = 5.

8-10
11-12

13-14
15-16

17-18
19-20

21-22
23-24

25-26
27-28

29-30
31-32

33-34
35-36

37-38
39-40

41-42
43-44

45-46

0
2
4
6
8

10
12
14
16
18

ratio of type A vertices to
all vertices visited
ratio of type B vertices to
all vertices visited

ratio intervals in percentages

fr
e

q
u

e
n

c y

Figure 2.3: Distribution of prefix tree vertices traversed for randomised datasets,
kmax = 5.

2.5.2.3 Prefix tree pruning

Algorithm 1 carries out online pruning of the prefix tree so as to avoid walking the
full prefix tree. Importantly, it also tries to avoid carrying out unnecessary row
intersections. We can evaluate the efficiency of the latter by distinguishing be-
tween three types of vertices visited: vertices that correspond to minimal unique
itemsets (A), vertices which are visited but for which a row intersection is not
performed (B) and the rest of the vertices visited (C). Figure 2.3 shows the dis-
tribution of ratios of the number of vertices of types A and B to the total number
of prefix tree vertices visited by the algorithm over 50 randomised datasets when
kmax = 5. On average 17.5% of vertices visited are type A vertices and 23% type

A Fast Minimal Infrequent Itemset
Mining Algorithm

28 Kostiantyn Demchuk

2. Minimal Unique Itemset Mining 2.5 Experimental Results

ascending randomized descending
0

500

1000

1500

2000

2500

3000

3500

124 119 114175

970

2445

700

1484

2961

119 117 113162

950

2353

684

1429

2890
number of traversed vertices

order

ve
rt

i c
e

s
in

 m
ill

io
n

s

Figure 2.4: Prefix tree vertices traversed vs ordering used for LA, average over
10 randomised datasets, kmax = 5. For each ordering 6 values are shown: in the
first three Lemma 2.4.1 and Corollary 2.4.1 are used, in the second three these
are not used; in each group of three values the first value represents the number
of vertices of type A, the second the number of vertices of type B and the third
the total number of vertices traversed (that is of type A, B and C).

B vertices, although sometimes up to 45% of vertices visited are of type B.

2.5.2.4 Impact of Ordering Used for LA

As already noted in Section 2.2, the ordering used to sort set LA to obtain L<A

can be expected to have an impact on the amount of pruning of the prefix tree
achieved, and so on the execution time of Algorithm 1. To investigate this further,
we collected performance measurements for three different choices of ordering:
(i) ascending order, (ii) descending order (iii) random order (i.e. we draw a
permutation uniformly at random from the set of permutations mapping from
{1, · · · , |LA|} to itself and apply this permutation to obtain L<A).

Figure 2.4 plots the numbers of prefix tree vertices of types A, B and C visited
by Algorithm 1 vs the ordering of LA used. In this figure data is presented for
each of the three orderings (ascending, randomised, descending) and for when
Lemma 2.4.1/Corollary 2.4.1 are used or not. That is, 6 experiment variants are
compared.

It can be seen that use of ascending order significantly reduces the total number
of vertices visited, yielding a reduction of roughly a factor of 2 compared to use
of a randomised ordering and a factor of 4 compared to descending order. The
number of type A vertices visited is, as expected, essentially constant across the

A Fast Minimal Infrequent Itemset
Mining Algorithm

29 Kostiantyn Demchuk

2. Minimal Unique Itemset Mining 2.5 Experimental Results

ascending randomized descending
0

50
100
150
200
250
300
350
400
450
500

277

344

458

269

355

451

183
219 220

190
215 224

order

tim
e

,
se

c

 execution time

 intersection time

Figure 2.5: Intersection and execution time vs ordering used for LA, average over
10 randomised datasets, kmax = 5 (in the left bar Lemma 2.4.1/Corollary 2.4.1
are used, in the right bar they are not used).

tests. However, the number of type B vertices changes significantly and varies
such that the number of vertices of type C remains roughly constant. Observe that
while use of Lemma 2.4.1 and Corollary 2.4.1 has little impact on performance
in these tests. We will revisit this in Section 2.5.3.2 where we find that they can
speed the runtime up by more than 50%.

Figure 2.5 plots the corresponding intersection and execution time vs the ordering
of LA used. It can be seen that the execution time is more sensitive to the
ordering than the intersection time. When combined with Figure 2.4 this allows
us to conclude that it is the number of type B vertices that varies strongly with
ordering (the number of type A and type C vertices stays nearly constant) and
that ascending order reduces execution time primarily by reducing the number
of type B vertices i.e. by more effective pruning of the search tree which reduces
the overall number of vertices visited.

2.5.2.5 Impact of Dataset Parameters

To investigate the scaling behaviour of Algorithm 1 to larger datasets we gen-
erated a randomised dataset with 1, 000, 000 rows and 40 columns yielding an
itemlist of size 2, 179.

Taking the first n rows, Figure 2.6 plots the execution time of Algorithm 1 versus
n for kmax = 3. It can be seen that the execution time is approximately linear
in n, and so scales well to larger datasets. Although not plotted, memory usage

A Fast Minimal Infrequent Itemset
Mining Algorithm

30 Kostiantyn Demchuk

2. Minimal Unique Itemset Mining 2.5 Experimental Results

0 2 4 6 8 10 12
0

2000

4000

6000

8000

1696
2433

3486

5358

6957

n (× 10)⁵

tim
e

,
se

c

Figure 2.6: Execution time vs number of rows n for a randomised dataset with
m = 40 columns, kmax = 3.

0 10 20 30 40 50
0

2000

4000

6000

8000

105
824 2242

6957

m

tim
e

,
se

c

Figure 2.7: Execution time vs number of columns m for a randomised dataset
with n = 1, 000, 000 rows, kmax = 3.

also increased only gradually from 5.6Gb when n = 200, 000 to 6Gb when n =
1, 000, 000.

Taking the first m columns of the dataset, Figure 2.7 plots the execution time
versus m for kmax = 3. It can be seen that the execution time is approximately
exponential in m, and so the algorithm scales less well to datasets with a large
number of columns (the size of corresponding itemlist increased from 520 to
2, 179). Note that the memory usage also increases quite rapidly with m, from
0.9Gb when m = 10 to 6Gb when m = 40.

2.5.3 Domain-Specific Performance

2.5.3.1 Datasets

In this section we present performance measurements for four domain-specific
datasets:

A Fast Minimal Infrequent Itemset
Mining Algorithm

31 Kostiantyn Demchuk

2. Minimal Unique Itemset Mining 2.5 Experimental Results

1. The Connect dataset is available from http://fimi.ua.ac.be/data and
contains all legal 8-ply positions in the game of connect-4 in which neither
player has won yet, and in which the next move is not forced. There are
67, 557 rows, 43 columns (one for each of the 42 connect-4 squares together
with an outcome column - win, draw or lose) and 129 items. It was one
of the most computationally challenging datasets for which MINIT was
evaluated in [HM07].

2. The Pumsb dataset is census data for population and housing from the
PUMS (Public Use Microdata Sample). This dataset is available from
http://fimi.ua.ac.be/data. There are 49, 046 rows, 74 columns and
1, 958 items.

3. The Poker dataset is available from http://archive.ics.uci.edu/ml/
datasets.html. Each record is an example of a hand consisting of five
playing cards drawn from a standard deck of 52 cards. Each card is de-
scribed using two attributes (suit and rank), for a total of 10 predictive
attributes. There is one Class attribute that describes the "Poker Hand".
We removed the last attribute to form a new dataset with 1, 000, 000 rows,
10 columns and 117 items.

4. The USCensus1990 dataset, available from http://archive.ics.uci.
edu/ml/datasets.html, was collected as part of the 1990 census. We con-
sidered a subset of this dataset consisting of the first 200, 000 rows and 68
columns, which contained 8, 009 items.

2.5.3.2 Execution Time vs kmax

All measurements in the current section are averaged over three consecutive runs
of each algorithm.

Figures 2.8, 2.9, 2.10 and 2.11 show the measured execution times of Algorithm
1, MINIT and MIWI Miner measured for the Connect, Pumsb, Poker and US-
Census1990 datasets vs kmax.

It can be seen that Algorithm 1 consistently outperforms MINIT for all values
of kmax and for all datasets. For the Connect dataset it can be seen that Al-
gorithm 1 achieves runtimes between 3 and 9 times faster than MINIT. For the
Pumsb dataset Algorithm 1 is between 2 and 11 times faster. For the Poker
dataset Algorithm 1 is between 2 and 33 times faster (for kmax = 7 MINIT was

A Fast Minimal Infrequent Itemset
Mining Algorithm

32 Kostiantyn Demchuk

http://fimi.ua.ac.be/data
http://fimi.ua.ac.be/data
http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets.html

2. Minimal Unique Itemset Mining 2.5 Experimental Results

0 1 2 3 4 5 6 7 8
0.1

1

10

100

1000

10000

1.1 1.5
4.5

34

222

1097
2853

1

2.2
4.9 11 23

46 83

0.3 0.5
1.4

5

23

130 548

kyiv

miwi

minit

kₘₐₓ

tim
e

,
se

c

Figure 2.8: Execution time vs kmax for Connect dataset.

0 1 2 3 4 5 6
0.1

1

10

100

1000

10000

100000

7.8 12

54
600

6061

5.8

40

361

3033

19762

0.7
3

30

273

2709

kyiv

miwi

minit

kₘₐₓ

tim
e

,
se

c

Figure 2.9: Execution time vs kmax for Pumsb dataset.

0 1 2 3 4 5 6 7 8 9
1

10

100

1000

10000

12.8

20 27.9
51

131

3492 7800

13
18.5

24 32.4 51 69 70 70

1
2 12.2

28.5

60

111
231 305

kyiv

miwi

minit

kₘₐₓ

tim
e

,
se

c

>

Figure 2.10: Execution time vs kmax for Poker dataset.

A Fast Minimal Infrequent Itemset
Mining Algorithm

33 Kostiantyn Demchuk

2. Minimal Unique Itemset Mining 2.5 Experimental Results

0 1 2 3 4 5
1

10

100

1000

10000

100000

636 936

13220
36000

182 195 223
487

kyiv

miwi

kₘₐₓ

tim
e

,
se

c

>

Figure 2.11: Execution time vs kmax for USCensus1990 dataset.

terminated after 7, 800 seconds without completing). Data is not shown for the
USCensus1990 dataset since both the C++ and Java implementations of MINIT
ran out of memory on this demanding dataset (which has 8, 009 items).

For the Connect and Poker datasets MIWI is 2−7 times faster than Algorithm 1
when kmax > 4, but MIWI is 2−9 times slower than Algorithm 1 when kmax ≤ 4.
MIWI is also 5− 13 times slower than Algorithm 1 for the Pumsb dataset for all
values of kmax (and also slower than MINIT for this dataset). For the demanding
USCensus1990 dataset MIWI’s execution time is 220 minutes when kmax = 3,
and it did not complete within a reasonable time for kmax = 4. In comparison,
Algorithm 1 finds minimal sample uniques for kmax = 4 in 8 minutes while for
kmax = 3 the execution time reduces to 3 minutes.

Revisiting the order analysis in Section 2.5.2.4, we point out that when Algorithm
1 is run without using Lemma 2.4.1 and Corollary 2.4.1 then the execution time
rises to 269 seconds (from 130 seconds) for the Connect dataset, kmax = 6 and to
410 (from 273 seconds) seconds for the Pumsb dataset, kmax = 4 for example.

2.5.3.3 Memory Usage

Algorithm 1 intentionally trades increased memory for faster execution times via
its use of a breadth-first approach. This is reasonable in view of the favourable
scaling of memory size vs CPU speed on modern hardware. Figure 2.12 shows
the memory consumption of Algorithm 1 for Connect, Pumsb, Poker and USCen-
sus1990 datasets vs kmax. These plots indicate the maximum memory needed
during algorithm execution and so this amount of memory ensures the fastest
execution time since garbage collection is not required. For smaller amounts of
memory the algorithm is observed to become somewhat slower as the Java Virtual

A Fast Minimal Infrequent Itemset
Mining Algorithm

34 Kostiantyn Demchuk

2. Minimal Unique Itemset Mining 2.5 Experimental Results

0 1 2 3 4 5 6 7 8 9
0.01

0.1

1

10

100

1000

0.1

2.2 3

22

0.5 0.7
2

4
10

38 65

0.04
0.4 0.53

11.3

150

0.020.06 0.08

0.73

8.3

42.7
190

connect
pumsb
poker
uscensus

kₘₐₓ

m
e

m
o

ry
,

G
b

Figure 2.12: Memory consumption of Algorithm 1 vs kmax.

0 4 8 12 16 20 24 28 32 36
0

20

40

60

80

100

120

140
124

52
42 40 43 43 41 42 42

threads

tim
e

,
se

c

Figure 2.13: Parallel algorithm execution time vs number of threads for Connect,
kmax = 6.

Machine need to start garbage collection.

The memory requirement is dominated by storage of itemset rows to perform
intersection. When 1 < k < kmax, two levels of the prefix tree must be stored,
but when k = kmax (last level), then only one level needs to be stored (for example,
the 190Gb in Figure 2.12 is mostly occupied by the 6-itemset rows). Note that
there is a level in the prefix tree that requires the largest amount of memory, a
sort of equator. Beyond this value Algorithm 1 can compute all minimal unique
itemsets without additional memory.

2.5.4 Parallel Algorithm Performance

Figures 2.13 and 2.14 show execution time versus the number of threads used for
the Connect, kmax = 6 and Pumsb, kmax = 5 datasets respectively. It can be seen
that at around 8 threads the performance saturates and additional threads yield
little further performance gain.

A Fast Minimal Infrequent Itemset
Mining Algorithm

35 Kostiantyn Demchuk

2. Minimal Unique Itemset Mining 2.5 Experimental Results

0 4 8 12 16 20 24 28 32 36
0

500

1000

1500

2000

2500

3000
2688

950
654 624 580 635 549 631 533

threads

tim
e

,
se

c

Figure 2.14: Parallel algorithm execution time vs number of threads for Pumsb,
kmax = 5.

Table 2.1: Granularity of 4 threads for Pumsb, kmax = 5. Time is given in
seconds, levelwise. T column shows the total execution time.

k T thread 1 thread 2 thread 3 thread 4

3 871 24 24 24 24
4 871 340 344 343 342
5 871 468 501 470 482

Table 2.2: Granularity of 8 threads for Pumsb, kmax = 5. Time is given in
seconds, levelwise. T column shows the total execution time.

k T t1 t2 t3 t4 t5 t6 t7 t8

3 674 21 17 19 21 21 21 19 21
4 674 352 284 354 352 285 291 351 352
5 674 297 281 293 293 294 282 289 282

In more detail, tables 2.1, 2.2 and 2.3 show the per thread execution times to-
gether with the overall execution time. Data is shown for 4, 8 and 16 threads
measured for the Pumsb dataset, kmax = 5. It can be seen that the thread exe-
cution times consistently have a narrow spread, indicating that the workload is
divided evenly amongst the threads. That is, there is not one slow thread which
dominates parallel execution time. Observe also that the execution times in the
last row of each table (when k = 5 = kmax) decrease as the number of threads is
increased but that the maximum thread execution times when k = 3 and k = 4
do not show a similar decrease. This may be due to the communication overhead
when transitioning between layers in the search tree, although we leave detailed

A Fast Minimal Infrequent Itemset
Mining Algorithm

36 Kostiantyn Demchuk

2. Minimal Unique Itemset Mining 2.6 Summary

Table 2.3: Granularity of 16 threads for Pumsb, kmax = 5. Time is given in
seconds, levelwise. T column shows the total execution time.

k T t1 t2 t3 t4 t5 t6 t7 t8

3 567 20 19 19 20 19 19 20 20
4 567 342 345 258 345 342 333 260 346
5 567 178 171 177 171 170 170 179 179

k T t9 t10 t11 t12 t13 t14 t15 t16

3 567 20 19 19 19 20 19 19 19
4 567 270 272 272 345 271 272 342 345
5 567 178 177 171 172 172 177 177 177

analysis of this to future work.

2.6 Summary

In this chapter we introduce a new algorithm for efficiently finding all of the
unique and minimal k-itemsets up to a user specified size kmax. To achieve this
we show how the set of non-uniform and non-unique items can be partitioned
into two disjoint subsets of items, the first of which (LA) represents a search
space for Algorithm 1. Then we consider potential performance bottlenecks: the
intersection operation at line 31 and the support row test at line 23. This is
followed by the presentation of pseudo-code for Algorithm 1 with explanations
of its mechanics (the breadth-first search, basic iterations and recursive prefix
tree structure). We discuss how the support row test bottleneck can be removed
at the cost of much higher memory usage. Then we develop analytical insight
into methods for reducing computation at the kmax level using Lemma 2.4.1 and
Corollary 2.4.1. Finally, the theoretical part concludes with a detailed example
and a discussion of parallel operation of the algorithm.

Experimental results present domain-agnostic performance, using randomly gen-
erated datasets and evaluating execution time, search space, ordering of items.
Domain-specific performance is evaluated via experiments using four well-known
datasets, Connect, Pumsb, Poker and USCensus1990, and compared to the two
state of the art algorithms in the field, MINIT and MIWI. We find that Algorithm

A Fast Minimal Infrequent Itemset
Mining Algorithm

37 Kostiantyn Demchuk

2. Minimal Unique Itemset Mining 2.6 Summary

1 consistently outperforms MINIT for all datasets and all values of kmax, while
when compared to MIWI, it performs best when the input dataset is computation-
ally expensive (see the results for the Pumsb and USCensus1990 datasets). The
scaling of the memory footprint, and the performance of a parallel implementation
of Algorithm 1 are presented, and alternate directions for future improvements
discussed.

A Fast Minimal Infrequent Itemset
Mining Algorithm

38 Kostiantyn Demchuk

Chapter 3

Minimal Infrequent Itemset
Mining

In this chapter we introduce an extended algorithm for efficiently finding all of
the τ -infrequent and minimal k-itemsets up to a user specified size kmax, and
frequency threshold τ > 0. The pre-processing, partitioning, pruning the search
space, potential bottlenecks, support itemset testing, reduction in the number
of row intersections, correctness theorem and parallelisation for this algorithm
remain similar to in the previous chapter with straightforward changes to extend
consideration from uniqueness to τ -infrequency.

3.1 Pre-processing

The set of non-uniform and non-τ -infrequent items I ′A,τ = IA \ UA \ rA,τ with
τ < |Ra| < n ∀a ∈ I ′A,τ can be partitioned into sets LA,τ and L̄A,τ = I ′A,τ\LA,τ such
that (i) Ra 6= Rb ∀a, b ∈ LA,τ , (ii) ∀c ∈ L̄A,τ there exists d ∈ LA,τ with Rc = Rd.
Revisiting Example 1.2.1, LA,τ = {(1, 1, {1, 2, 3}), (2, 2, {1, 2, 4}), (3, 3, {1, 3, 4})}
for 0 < τ < 3.
Proposition 3.1.1. Let W ⊆ LA,τ be a minimal τ -infrequent itemset. Let w′ ∈
IA\LA,τ with Rw = Rw′ for some w ∈ W . Then W \{w}∪{w′} is also a minimal
τ -infrequent itemset.
Proposition 3.1.2. For any partition (LA,τ , I ′A,τ \ LA,τ) the following holds:
IA,τ = LA,τ ∪ L̄A,τ ∪ rA,τ , where L̄A,τ = {I \ {a} ∪ {b} : I ∈ LA,τ , a ∈ I, b ∈
L̄A,τ , Ra = Rb}, LA,τ ⊂ 2LA,τ is the set of minimal τ -infrequent itemsets.

39

3. Minimal Infrequent Itemset Mining 3.2 Extended Kyiv Algorithm

The proofs are similar to those of Propositions 2.1.1 and 2.1.2 respectively.

In light of Proposition 3.1.2, our goal can therefore be simplified to finding all
τ -infrequent and minimal k-itemsets of LA,τ , τ > 0 and 1 ≤ k ≤ kmax.

3.2 Extended Kyiv Algorithm

Recall Definition 2.2.1. Let L<A,τ be a list of the items in LA,τ sorted in ascending
order. The extended Kyiv algorithm performs a breadth first search of the prefix
tree defined by L<A,τ . Branches are pruned using Proposition 2.2.1 – if an itemset
I fails the support itemset test in Definition 1.2.7(2) then it must be non-minimal
and so the subtree with itemset I at the root can be pruned. The key advantage
of the breadth-first approach is that the support row test can be performed ex-
tremely efficiently, as discussed in more detail in Section 3.2.1. Pseudo-code for
the extended Kyiv algorithm is given in Algorithm 2.

In Algorithm 2 the collection of sets {Pi}ti=1 holds the vertices of level k − 1 of
the pruned prefix graph, and the vertices of level k are stored in {P ′i}t

′
i=1. Note

that there is never any need to store more than two levels of the pruned prefix
tree. The algorithm visits each vertex in level k and takes one of three actions:
(i) finds the vertex is a non-minimal itemset and so prunes it (it is not added
to P ′ and its children are not traversed), (ii) finds that the vertex is a minimal
τ -infrequent itemset and so prints it (it is not added to P ′ and its children are
not traversed), (iii) finds that the vertex is not τ -infrequent and its children must
be traversed.

In the implementation of Algorithm 2, to hold the prefix tree levels we reuse the
recursive data structure from Algorithm 1.

3.2.1 Highly Efficient Support Itemset Testing

One of the key benefits of adopting a breadth-first approach in Algorithm 2 is
that the computational cost of the support itemset test at line 23 can be reduced
to essentially zero. This is because the itemsets S ⊂ W of size |S| = |W | − 1,
together with the associated row sets RS, have already been pre-calculated and
stored in data structure P := {Pi}ti=1. Hence, evaluating whether there exists an
S such that |RS| ≤ τ simply involves lookups from P , which can be carried out
efficiently using an appropriate data structure for P such as a hash table.

A Fast Minimal Infrequent Itemset
Mining Algorithm

40 Kostiantyn Demchuk

3. Minimal Infrequent Itemset Mining 3.2 Extended Kyiv Algorithm

Algorithm 2 Extended Kyiv
1: Input: dataset A, τ , threshold kmax
2: Output: all minimal τ -infrequent k-itemsets, k ≤ kmax
3: compute IA = I ′A,τ ∪ UA ∪ rA,τ
4: compute LA,τ for chosen partition (LA,τ , I ′A,τ \ LA,τ)
5: print τ -infrequent items in rA,τ . k = 1 case
6: sort LA,τ to obtain L<A,τ
7: t← 0, k ← 2
8: foreach a ∈ L<A,τ do t← t+ 1, Pt ← {a}
9: while k ≤ kmax do

10: t′ ← 0
11: foreach i ∈ {1, . . . , t− 1} do
12: I ← Pi
13: foreach j ∈ {i+ 1, . . . , t} do
14: J ← Pj
15: . get the highest order items in I and J
16: a← max(I), b← max(J)
17: if I \ {a} 6= J \ {b} then
18: break . itemsets do not share a common prefix
19: . itemsets I and J differ exactly by one item now
20: W ← I ∪ J
21: if k > 2 then
22: . support itemset test, Definition 1.2.7(2)
23: if ∃S ⊂ W, |S| = |W | − 1 : |RS| ≤ τ then
24: continue . non-minimal, prune this branch
25: if k = kmax then
26: . Lemma 3.2.1 and Corollary 3.2.1
27: if |RI |+ |RJ | > |RI\{a}|+ τ then continue
28: c← max(J \ {b})
29: if min(|RI\{c}| − |RI |, |RJ\{c}| − |RJ |) + τ < |RI\{c} ∩Rb| then
30: continue
31: RW ← RI ∩RJ . intersect rows
32: if |RW | = 0 or |RW | = min(|RI |, |RJ |) then
33: continue . skip absent and uniform itemsets
34: if |RW | ≤ τ then
35: print W . minimal τ -infrequent itemset found
36: foreach w ∈ W do . apply Proposition 3.1.1
37: if ∃w′ ∈ I ′A,τ \ LA,τ : Rw = Rw′ then
38: print W \ {w} ∪ {w′}
39: else . need to store non-τ -infrequent minimal itemset
40: if k < kmax then
41: t′ ← t′ + 1, P ′t′ ← W

42: foreach t ∈ {1, . . . , t′} do Pt ← P ′t
43: k ← k + 1, t← t′

A Fast Minimal Infrequent Itemset
Mining Algorithm

41 Kostiantyn Demchuk

3. Minimal Infrequent Itemset Mining 3.2 Extended Kyiv Algorithm

Observe that acceleration of the support itemset test at line 23 is achieved in
Algorithm 2 at the cost of increased memory usage to store data structure P .
As τ increases, the number of prefix tree vertices decreases and the arrays stored
at each vertex occupy less memory. Nevertheless, this memory cost remains
potentially significant, particularly when τ is small and in the middle of the prefix
tree where the number of vertices in each level of the tree is largest. However, in
view of the fact that the amount of RAM available is growing at a much faster rate
than CPU clock speed, this trade-off between of increased memory consumption
for a much reduced computational burden can be a favourable one.

3.2.2 Reducing Number of Row Intersections

The main computational bottleneck of Algorithm 2 is at line 31. Below we provide
with the lemma proof only as the corollary proof is very similar to the one in
Corollary 2.4.1.
Lemma 3.2.1. Let I ⊆ IA be an itemset and a, b ∈ IA any items in IA. If

|RI ∩Ra|+ |RI ∩Rb| > |RI |+ τ (3.1)

then I ∪ {a, b} is not a τ -infrequent itemset.

Proof. We proceed by contradiction. Suppose |RI∩Ra|+ |RI∩Rb| > |RI |+τ and
itemset I ∪ {a, b} is τ -infrequent (so |RI ∩ Ra ∩ Rb| ≤ τ). By the distributivity
of set intersection, RI ∩ (Ra ∪Rb) = (RI ∩Ra) ∪ (RI ∩Rb). Hence,

|RI ∩ (Ra ∪Rb)|
= |(RI ∩Ra) ∪ (RI ∩Rb)|
= |RI ∩Ra|+ |RI ∩Rb| − |(RI ∩Ra) ∩ (RI ∩Rb)|
= |RI ∩Ra|+ |RI ∩Rb| − |RI ∩Ra ∩Rb|.

Now |RI | ≥ |RI ∩ (Ra ∪ Rb)| and by assumption |RI ∩ Ra ∩ Rb| ≤ τ . Hence,
|RI | ≥ |RI ∩Ra|+ |RI ∩Rb| − τ , yielding the desired contradiction.

Corollary 3.2.1. Let a1, . . . , ak ∈ IA be any items from IA, with k > 2. If

Γ0 > min{Γ1,Γ2}+ τ (3.2)

A Fast Minimal Infrequent Itemset
Mining Algorithm

42 Kostiantyn Demchuk

3. Minimal Infrequent Itemset Mining 3.2 Extended Kyiv Algorithm

then {a1, . . . , ak} is not a τ -infrequent itemset, where

Γ0 := | ∩k−3
i=1 Rai ∩Rak−1 ∩Rak |,

Γ1 := | ∩k−3
i=1 Rai ∩Rak−1| − | ∩k−3

i=1 Rai ∩Rak−2 ∩Rak−1 |,

Γ2 := | ∩k−3
i=1 Rai ∩Rak | − | ∩k−3

i=1 Rai ∩Rak−2 ∩Rak |.

In the final iteration (when k = kmax) we can use Lemma 3.2.1 and Corollary
3.2.1 to test for τ -infrequency before carrying out the intersection at line 31. If
either test concludes that the itemset is not τ -infrequent, then there is no need
to perform the row intersection.

3.2.3 Correctness and Parallelisation

Theorem 3.2.1. Algorithm 2 terminates in finite time and finds all minimal
τ -infrequent itemsets of IA up to size kmax.

The proof repeats the corresponding proof of the theorem of Algorithm 1.

Algorithm 2 can be readily parallelised using shared-memory threads: at level k
within the prefix tree assign all vertices sharing the same parent at level k − 1
within the prefix tree to the same thread and then in each thread execute the
loop starting at line 13 in Algorithm 2. The shared memory allows each thread
access to the prefix tree information stored in Pj, j ∈ {i+ 1, · · · , t}.

When the number of available threads is less than the number of parent vertices
at level k − 1 in the prefix tree, work must be allocated among the threads.
The work associated with each parent vertex is dominated by the number of
row intersections to be carried out. This number can be accurately estimated
based on the number of children of the parent vertex, and so the work associated
with each parent vertex estimated in advance. Using these work estimates, load-
balanced scheduling of work among the threads can then be efficiently realised.
In principle, the parallel form of Algorithm 2 coincides with the one of Algorithm
1.

A Fast Minimal Infrequent Itemset
Mining Algorithm

43 Kostiantyn Demchuk

3. Minimal Infrequent Itemset Mining 3.3 Worst Time Complexity

3.3 Worst Time Complexity

In this section we present several observations on the worst time complexity of
Algorithm 2. Of main interest is the while loop at line 9.

Let A be a dataset with the list of items LA and kmax = |LA|, that is an entire
prefix tree is to be traversed (recall that kmax ≤ m and oftenm� |LA|). Suppose
there is no pruning possible in order to find all minimal τ -infrequent k-itemsets,
k ≤ kmax. Thus the intersection operation at line 31 will occur at each iteration
of the while loop. To further simplify the analysis and also maximise the size of
the tree, assume that l = |Ra| ∀a ∈ LA: kmax ≤ l ≤ n and |RI | = |RJ | = l−k+ 1
for each pair (I, J) at level k of the prefix tree. Hence there are no absent or
uniform itemsets to be found. Finally, letting τ < l − kmax + 1 (which is very
common) means that there are no τ -infrequent itemsets in the tree.

In the following we let the prefix tree be a graph (V,E). Denote (V,E) by (Vs, Es)
where s = |LA|.
Theorem 3.3.1. The worst time complexity of the while loop in Algorithm 2 is
O(l · 2|LA|).

Proof. We need to estimate the number of prefix tree traversals and multiply
it by the average cost of the intersection operation, which is O(l + l) = O(l).
Since we traverse the tree in a breadth-first fashion, the worst time complexity is
O(V + E).

We need to prove that Vs = 2s − 1 and Es =
s−1∑
i=1

(s − i)2i−1. When s = 1 there

is one item in LA, so V = 1, E = 0. Similarly V = 3, E = 1 when s = 2;
V = 7, E = 4 when s = 3; V = 15, E = 11 when s = 4 and so on. For example,
Figure 2.1 represents a prefix tree with V = 31 and E = 26. Notice the recurrent
relation: Vs+1 = 2Vs+1 and Es+1 = 2Es+s. This means that if we build a prefix
tree by adding one item b to the prefix tree (Vs, Es), we will have to replicate
(Vs, Es) and connect b to s items of its copy. In this way the newly created tree
doubles the number of vertices Vs and edges Es and adds 1 vertex with s edges.

Hence

Vs+1 = 2Vs + 1 = 2 · (2Vs−1 + 1) + 1
= 2 · (2 · (. . . (2 · (︸ ︷︷ ︸

s

2V0︸︷︷︸
=0

+1) + 1) . . .) + 1) + 1︸ ︷︷ ︸
s

A Fast Minimal Infrequent Itemset
Mining Algorithm

44 Kostiantyn Demchuk

3. Minimal Infrequent Itemset Mining 3.3 Worst Time Complexity

= 1 + 21 + 22 + · · ·+ 2s = 2s+1 − 1.
Es+1 = 2Es + s = 2 · (2Es−1 + s− 1) + s

= 2 · (2 · (. . . (2 · (︸ ︷︷ ︸
s−1

2E1︸︷︷︸
=0

+1) + 2) . . .) + s− 1) + s︸ ︷︷ ︸
s−1

= 1 · 2s−1 + 2 · 2s−2 + · · ·+ (s− 2) · 22 + (s− 1) · 21 + s

=
s−1∑
i=0

(s− i)2i.

The sum Vs+Es = 2s−1+
s−1∑
i=1

(s− i)2i−1 is dominated by the summand 2s. Thus

O(V + E) = O(Vs + Es) = O(2s) = O(2|LA|). Consequently the worst case time
complexity of Algorithm 2 is O(l · 2|LA|).

Note the dependency between l and |LA|: if l = n then |LA| = 1. Moreover, if
I ′A \ LA = ∅ (there is single partition) then the available space in A for items of
LA can be computed as (items a, b in different columns must be shifted to avoid
Ra = Rb because |Ra| = |Rb| = l):

n+(n−1)+(n−2)+· · ·+n−(m−1) = nm−(1+2+· · ·+m−1) = nm−(m−1)m/2.

Thus |LA| · l ≤ nm− (m− 1)m/2.

3.3.1 Worst Time Complexity vs kmax

The main computational complexity is associated with the middle of the prefix
tree (V,E). Let us relax the above conditions to kmax ≤

⌈
|LA|

2

⌉
and let (Vk, Ek)

denote a prefix tree with vertices and edges lying on the first k levels of (V,E),
1 ≤ k ≤ kmax. If kmax = 1 then V1 = |LA|, E1 = 0. Let s = |LA|. If kmax = 2
then V2 = s(s + 1)/2, E2 = s(s − 1)/2. Thus O(V2 + E2) = O(s2) = O(|LA|2)
and the worst time complexity of the while loop in Algorithm 2 is O(l · |LA|2).
Obviously Vk+1 = Vnew + Vk, Ek+1 = Vnew +Ek. That is, to compute the number
of vertices (edges) for k+ 1 it is enough to compute the number of vertices at the
very last level k + 1 (which is equal to the number of new edges) and add it to
the number of vertices Vk (edges Ek).

If kmax = 3 then

Vnew = 1 + (1 + 2) + (1 + 2 + 3) + · · ·+ (1 + 2 + 3 + · · ·+ s− 2)

A Fast Minimal Infrequent Itemset
Mining Algorithm

45 Kostiantyn Demchuk

3. Minimal Infrequent Itemset Mining 3.3 Worst Time Complexity

= 1 + 2 · 1 + 2
2 + 3 · 1 + 3

2 + · · ·+ (s− 3) · s− 2
2 + (s− 2) · s− 1

2︸ ︷︷ ︸
group every two consecutive summands from the beginning

=
 22 + 42 + · · ·+ (s− 4)2 + (s− 2)2 if s is even

22 + 42 + · · ·+ (s− 5)2 + (s− 3)2 + (s− 2)(s− 1)/2 if s is odd

= 4 ·
 12 + 22 + · · ·+ (s/2− 1)2 if s is even

12 + 22 + · · ·+ (s−3
2)2 + (s− 2)(s− 1)/8 if s is odd

= 4 ·
 (s/2− 1) · (s/2− 1 + 1) · (2(s/2− 1) + 1)/6 if s is even

(s−3
2) · (s−3

2 + 1) · (s− 3 + 1)/6 + (s− 2)(s− 1)/8 if s is odd

=
 (s− 2) · s · (s− 1)/6 if s is even

(s− 3) · (s− 1) · (s− 2)/6 + (s− 2)(s− 1)/2 if s is odd

= (s− 2)(s− 1)s/6
V3 = Vnew + V2 = (s− 2)(s− 1)s/6 + s(s+ 1)/2 = (s3 + 5s)/6
E3 = Vnew + E2 = (s− 2)(s− 1)s/6 + s(s− 1)/2 = (s3 − s)/6.

The sum V3 +E3 is dominated by s3. Thus O(V3 +E3) = O(s3) = O(|LA|3) and
the worst time complexity of the while loop in Algorithm 2 is O(l · |LA|3).

If kmax = 4 then

Vnew = 1 + (1 + 1 + 2) + (1 + 1 + 2 + 1 + 2 + 3) + · · ·+
(
1 + 1 + 2 + . . .

+ (1 + 2 + · · ·+ s− 3)
)

= (s− 3)︸ ︷︷ ︸
A

+ (s− 4) · 2 · 1 + 2
2︸ ︷︷ ︸

B

+ (s− 5) · 3 · 1 + 3
2︸ ︷︷ ︸

C

+ . . .

+ 3 · (s− 5) · 1 + s− 5
2︸ ︷︷ ︸

C

+ 2 · (s− 4) · 1 + s− 4
2︸ ︷︷ ︸

B

+ (s− 3) · 1 + s− 3
2︸ ︷︷ ︸

A

= s

2 ·
(
(s− 3) + 2(s− 4) + 3(s− 5)

)
+ . . .

+ s

2 ·

s−4
2

(
s− (s−4

2 + 2)
)

+ (s−4
2 + 1)

(
s− (s−4

2 + 2 + 1)
)

if s is even
s−3

2

(
s− (s−3

2 + 2)
)

if s is odd

<
s

2 · (s− 3)
(
1 + 2 + 3 + · · ·+

s−4

2 + s−2
2 if s is even

s−3
2 if s is odd

)

= s

2 · (s− 3) ·
 (s− 2) · s/8 if s is even

(s− 3)(s− 1)/8 if s is odd
< s4.

A Fast Minimal Infrequent Itemset
Mining Algorithm

46 Kostiantyn Demchuk

3. Minimal Infrequent Itemset Mining 3.3 Worst Time Complexity

0 1 2 3 4 5 6 7 8
1

10

100

1000

10000

100000

3

55

498

2870 11330
30894

8

72 481

2421

11989
54950kyiv

miwi

ite
ra

tio
n

 c
o

u
n

ts
(×

 1
0

³)

kₘₐₓ

Figure 3.1: Number of recursive calls (MIWI) and intersections (Kyiv) vs kmax
for Connect dataset, τ = 1.

0 1 2 3 4 5 6
1

10

100

1000

10000

100000

3.5

126

1857

15983

17.5

366

2491 11384

kyiv

miwi

kₘₐₓ

ite
ra

tio
n

 c
o

u
n

ts
(×

 1
0

)⁵

Figure 3.2: Number of recursive calls (MIWI) and intersections (Kyiv) vs kmax
for Pumsb dataset, τ = 1.

The sum V4 +E4 has an upper bound of s4. Thus O(V4 +E4) = O(s4) = O(|LA|4)
and the worst time complexity of the while loop in Algorithm 2 is O(l · |LA|4).

It would be interesting to compute the worst time complexity for 4 < kmax ≤⌈
|LA|

2

⌉
since it may be polynomial too, for instance O(l · |LA|kmax). Also it is worth

expanding our analysis to the variable size of arrays stored at each vertex.

3.3.2 Iteration Counts vs kmax

In this section we present measurements of the number of iterations of the main
loop of Algorithm 2 and compare them to the number of iterations of the main
loop in MIWI, a recursive function each call to which corresponds to a prefix
tree vertex, vs kmax. MINIT also has a recursive main function but it reports
unrealistically small counts so we do not present it here.

Figures 3.1 and 3.2 show the number of iterations vs kmax for the Connect and

A Fast Minimal Infrequent Itemset
Mining Algorithm

47 Kostiantyn Demchuk

3. Minimal Infrequent Itemset Mining 3.4 Experimental Results

Pumsb datasets when τ = 1. Although the curves fit together closely, one itera-
tion that corresponds to a given prefix tree vertex may take very different time if
computed for either of the algorithms, which is well observed for computationally
expensive datasets (the Pumsb or USCensus1990).

3.4 Experimental Results

If not otherwise stated, all experiments in this section were carried out using
ascending itemlist order, Lemma 3.2.1 and Corollary 3.2.1.

3.4.1 Hardware and Software Setup

We implemented Algorithm 2 in Java (version 1.7.0_25) using the hppc (version
0.5.2) library, which can be found at http://labs.carrotsearch.com/hppc.
html. For comparison with the serial version of Algorithm 2, we also imple-
mented a state-of-the-art algorithm MINIT [HM07] in Java (using the C++ im-
plementation kindly provided by the developers of MINIT) and used the C++
implementation of the MIWI algorithm [CG13], kindly provided by its developers.

For testing we used an Amazon cr1.8xlarge instance with an Intel Xeon CPU
E5-2670 0 @ 2.60GHz 32 processor (up to 32 hyperthreads), 244Gb of memory,
64-bit Linux operating system (kernel version 3.4.62-53.42. amzn1.x86_64 of Red
Hat 4.6.3-2 Linux distribution (Amazon Linux AMI release 2013.09)).

3.4.2 Execution Time vs kmax

In this section we reused the datasets defined in Section 2.5.3.1. All measurements
in the current section are averaged over three consecutive runs of each algorithm.

The impact of the frequency threshold τ is of greatest importance for infrequent
itemset mining. We chose two values of τ (5 and 10) close to the unique case
described in Section 2 and one farther – 100.

Figures 3.3, 3.4, 3.5 and 3.6 show similar behaviour of the algorithms to that
reported in Figures 2.8, 2.9, 2.10 and 2.11 respectively. Similarly for Figures 3.7,
3.8, 3.9, 3.10 and 3.11, 3.12, 3.13, 3.14. Consequently we may expect the relative
performance of the algorithms to be approximately τ -invariant.

A Fast Minimal Infrequent Itemset
Mining Algorithm

48 Kostiantyn Demchuk

http://labs.carrotsearch.com/hppc.html
http://labs.carrotsearch.com/hppc.html

3. Minimal Infrequent Itemset Mining 3.4 Experimental Results

0 1 2 3 4 5 6 7 8
0.1

1

10

100

1000

10000

1.3 2
3.8

27.6

181

924
3059

0.6
1.4

3.4
8.4 21

51
102

0.2 0.4
1.2

4.7

23

129 581

kyiv

miwi

minit

kₘₐₓ

tim
e

,
se

c

Figure 3.3: Execution time vs kmax for Connect dataset, τ = 5.

0 1 2 3 4 5 6
0.1

1

10

100

1000

10000

100000

9.1
27 51

460

4033

2.9
23

204

1643

11398

0.6
2.8

27

204

1958

kyiv

miwi

minit

kₘₐₓ

tim
e

,
se

c

Figure 3.4: Execution time vs kmax for Pumsb dataset, τ = 5.

0 1 2 3 4 5 6 7 8 9
0.1

1

10

100

1000

10000

100000

17.5 23 28.2 52

356

9505 12235

7.7 10.8
14 21 35 33 33 33

0.9
1.9

12.7

29
54 94 141 174

kyiv
miwi
minit

kₘₐₓ

tim
e

,
se

c

Figure 3.5: Execution time vs kmax for Poker dataset, τ = 5.

A Fast Minimal Infrequent Itemset
Mining Algorithm

49 Kostiantyn Demchuk

3. Minimal Infrequent Itemset Mining 3.4 Experimental Results

0 1 2 3 4 5
1

10

100

1000

10000

100000

313 434

5193
36000

231 210 208
477

kyiv

miwi

kₘₐₓ

tim
e

,
se

c

>

Figure 3.6: Execution time vs kmax for USCensus1990 dataset, τ = 5.

0 1 2 3 4 5 6 7 8
0.1

1

10

100

1000

10000

1.3 2
3.8

27

187

934
3092

0.6
1.4

3.5
8.6 22

54
110

0.2 0.4
1.1

4.3

23

130 582

kyiv

miwi

minit

kₘₐₓ

tim
e

,
se

c

Figure 3.7: Execution time vs kmax for Connect dataset, τ = 10.

0 1 2 3 4 5 6
0.1

1

10

100

1000

10000

100000

9.1
24 50

350

3275

3
22.7

186

1398

9791

0.6
2.7

22

169

1615

kyiv

miwi

minit

kₘₐₓ

tim
e

,
se

c

Figure 3.8: Execution time vs kmax for Pumsb dataset, τ = 10.

A Fast Minimal Infrequent Itemset
Mining Algorithm

50 Kostiantyn Demchuk

3. Minimal Infrequent Itemset Mining 3.4 Experimental Results

0 1 2 3 4 5 6 7 8 9
0.1

1

10

100

1000

10000

100000

17.8 22 27 52

861

6907 7623

7.4 10.7
13.9

19 27 27 27 27

0.9
1.9

11.8

30
53 80 100 100

kyiv
miwi
minit

kₘₐₓ

tim
e

,
se

c

Figure 3.9: Execution time vs kmax for Poker dataset, τ = 10.

0 1 2 3 4 5
1

10

100

1000

10000

100000

315 442

4563
36000

201 179 228
465

kyiv

miwi

kₘₐₓ

tim
e

,
se

c

>

Figure 3.10: Execution time vs kmax for USCensus1990 dataset, τ = 10.

0 1 2 3 4 5 6 7 8
0.1

1

10

100

1000

10000

1.3 2
4

27.2

186

968
3234

0.6
1.4

3.2
7.6 19

42
120

0.2 0.4
1.2

4.3

22

121
542

kyiv

miwi

minit

kₘₐₓ

tim
e

,
se

c

Figure 3.11: Execution time vs kmax for Connect dataset, τ = 100.

A Fast Minimal Infrequent Itemset
Mining Algorithm

51 Kostiantyn Demchuk

3. Minimal Infrequent Itemset Mining 3.4 Experimental Results

0 1 2 3 4 5 6
0.1

1

10

100

1000

10000

100000

9.1
17

39

257

2440

2.8

17.9

115
664

3942

0.6
2.1

9

65

664

kyiv

miwi

minit

kₘₐₓ

tim
e

,
se

c

Figure 3.12: Execution time vs kmax for Pumsb dataset, τ = 100.

0 1 2 3 4 5 6 7 8
0.1

1

10

100

1000

10000

18.1 23 27.8
123

1171 1207 1227

7.5 10.9
13.9

16 16 16 16

0.9
2

12.8

29 43 47 46

kyiv
miwi
minit

kₘₐₓ

tim
e

,
se

c

Figure 3.13: Execution time vs kmax for Poker dataset, τ = 100.

0 1 2 3 4 5
1

10

100

1000

10000

100000

312 407

2870

36000

178 178 199
386

kyiv

miwi

kₘₐₓ

tim
e

,
se

c

>

Figure 3.14: Execution time vs kmax for USCensus1990 dataset, τ = 100.

A Fast Minimal Infrequent Itemset
Mining Algorithm

52 Kostiantyn Demchuk

3. Minimal Infrequent Itemset Mining 3.4 Experimental Results

0 250 500 750 1000 1250
1

10

100

1000

10000

2853
3234 3128 3065 3147 3006

83 120
57 38 28 22

548 542 511 451 354 324

kyiv

miwi

minit

�

tim
e

,
se

c

Figure 3.15: Execution time vs τ for Connect dataset, kmax = 7.

0 500 1000 1500 2000 2500
1

10

100

1000

10000

100000

6061 1701 1727 1678 1549

19762

1391 804 565 435

2709

252
137 81 50

kyiv

miwi

minit

�

tim
e

,
se

c

Figure 3.16: Execution time vs τ for Pumsb dataset, kmax = 5.

1 10 100 1000 10000 100000
1

10

100

1000

10000

100000

13220
2274
1836

1630
14471027

773 591
222 226

194

215
243

236
204

178

�

tim
e

,
se

c

kyiv

miwi

Figure 3.17: Execution time vs τ for USCensus1990 dataset, kmax = 3, τ ∈ {1,
250, 500, 750, 1000, 2500, 5000, 10000}.

3.4.3 Execution Time vs τ

From Figures 3.3 - 3.14 it can be seen that the execution time of all algorithms
tends to fall with increasing τ . That is, finding minimal unique itemsets is more
demanding than finding infrequent itemsets, as might be expected. This is studied
in more detail in Figures 3.15 - 3.17 which plots the measured execution times vs
τ .

A Fast Minimal Infrequent Itemset
Mining Algorithm

53 Kostiantyn Demchuk

3. Minimal Infrequent Itemset Mining 3.5 Summary

It can be seen from Figure 3.15 that MINIT’s execution time initially increases
with τ (see [HM07] where similar behaviour is reported), and then later falls as τ
is increased further. Similarly, the execution time of MIWI also increases initially.
We think that these initial increases are caused by the design of the algorithm
and not by the dataset complexity since it is not present for Algorithm 2.

For this relatively simple dataset MIWI offers the shortest execution time. How-
ever, for the more complex Pumsb and USCensus1990 datasets it can be seen
that Algorithm 2 offers the shortest execution time, although the performance
gap between MIWI and Algorithm 2 narrows for large τ with the USCensus1990
dataset.

3.5 Summary

In this chapter we introduce an extended algorithm for efficiently finding all of
the τ -infrequent and minimal k-itemsets up to a user specified size kmax, and
frequency threshold τ > 0. To achieve that we show how the set of non-uniform
and non-τ -infrequent items can be partitioned into two disjoint subsets of items,
the first of which (LA,τ) represents a search space for Algorithm 2. The search
space pruning, potential performance bottlenecks, Algorithm 2’s pseudo-code,
support itemset testing, reduction in the number of row intersections, correctness
theorem and parallelisation for Algorithm 2 remain similar to those in Chap-
ter 2 with straightforward changes to extend consideration from uniqueness to
τ -infrequency, so we introduce these very briefly. The theoretical discussion con-
cludes by showing that even though the problem has exponential time complexity,
it can be computed in polynomial time if kmax is set low.

We present experimental results sufficiently evaluating the execution time of the
Kyiv, MINIT and MIWI algorithms vs τ and kmax. Experiments are presented
for the four datasets used in Chapter 2. The tests reveal that Algorithm 2 con-
sistently outperforms MINIT for all datasets and all values of kmax, while when
compared to MIWI, performs best when the input dataset is computationally
expensive (see the results for the Pumsb and USCensus1990 datasets). We also
observe that Algorithm 2’s execution time tends to decrease with τ and its com-
parative performance with the MIWI and MINIT algorithms is approximately
τ -invariant.

A Fast Minimal Infrequent Itemset
Mining Algorithm

54 Kostiantyn Demchuk

Chapter 4

Conclusions

A new algorithm for finding quasi-identifiers within a data set is introduced,
where a quasi-identifier is a subset of attributes that can uniquely identify data
set records (or identify that a record lied within a small group of τ records).
This algorithm is demonstrated to be substantially faster than the state of the
art, to scale well to large data sets and to be amenable to parallelisation with
well-balanced thread execution times.

4.1 Future Work

Here we highlight some ideas for improvements and optimisation.

Regarding memory usage, suppose Kyiv that is able to compute the k∗-itemsets
by intersecting the (k∗ − 1)-itemsets but that the algorithm goes out of memory
at the k∗ + 1 level. We might keep intersecting the (k∗ − 1)-itemsets in order
to find not only the k∗-itemsets, but also the (k∗ + δ)-itemsets, where δ ∈ N
at each consecutive level of the prefix tree. This would allow us to halt growth
in memory usage as this is mainly used for itemset storage. Related technical
refinements could be to implement the corresponding itemset test using the (k∗−
1)-itemsets and to use data compression for the array storage to decrease the
memory consumption, albeit at the cost of increased execution time.

Regarding data structures, it would be useful to get a better understanding of
the most efficient structures for storing the prefix tree and handling the search
space operations. The insights gained might improve the parallel form of the
algorithm. One possible direction would be to look at an array implementation

55

4. Conclusions 4.1 Future Work

of a tree structure representation, e.g. similar to the work in [GZ05].

The main computational bottleneck, the intersection operation, could potentially
be improved by making use of the specialised SSE (Streaming SIMD Exten-
sions) instructions available on Intel processors. There exists performance analy-
sis [Kat12] indicating that use of these instructions might produce a 4× speed
up.

And of course, more mathematical principles may be obtained to express item
relations and so more efficiently prune the algorithm’s search space.

A Fast Minimal Infrequent Itemset
Mining Algorithm

56 Kostiantyn Demchuk

Bibliography

[AMS+96] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo.
Fast discovery of association rules. Advances in Knowledge Discovery
and Data Mining, 10(5):307–328, 1996.

[BZ06] M. Barbaro and T. Zeller. A face is exposed for AOL searcher No.
4417749. In New York Times, August 2006.

[CG07] T. Calders and B. Goethals. Non-derivable itemset mining. Data
Mining and Knowledge Discovery, 14(1):171–206, 2007.

[CG13] L. Cagliero and P. Garza. Infrequent weighted itemset mining using
frequent pattern growth. Trans. Knowledge and Data Engineering,
2013.

[DL14] K. Demchuk and D. J. Leith. A fast minimal infrequent itemset
mining algorithm.
http://arxiv.org/abs/1403.6985, 2014.

[DZNJ07] X. Dong, Z. Zheng, Z. Niu, and Q. Jia. Mining infrequent itemsets
based on multiple level minimum supports. Proc. ICICIC, 2007.

[Ell07] M. Elliot. Using targeted perturbation of microdata to protect
against intelligent linkage. In EUROSTAT Work Session on statisti-
cal data confidentiality, December 2007.

[EMF02] M. J. Elliot, A. M. Manning, and R. W. Ford. A computational algo-
rithm for handling the special uniques problem. International Journal
on Uncertainty, Fuzziness and Knowledge-based Systems, 10(5):493–
509, 2002.

[GGM04] W. Gross, P. Guiblin, and K. Merrett. Risk assessment of the indi-
vidual sample of anonymised records (SAR) from the 2001 census. In
UK Office of National Statistics, 2004.

57

http://arxiv.org/abs/1403.6985

BIBLIOGRAPHY

[GMB11] A. Gupta, A. Mittal, and A. Bhattachrya. Minimally infrequent item-
set mining using pattern-growth paradigm and residual trees. Proc.
COMAD, 21:1131–1158, 2011.

[GZ05] G. Grahne and J. Zhu. Fast algorithms for frequent itemset mining
using FP-trees. IEEE Transactions on Knowledge and Data Engi-
neering, 17(10):1347–1362, 2005.

[HM07] D. J. Haglin and A. M. Manning. On minimal infrequent itemset
mining. Proc. Int. Conf. on Data Mining, DMIN, pages 141–147,
2007.

[HMM+09] D. J. Haglin, K. R. Mayes, A. M. Manning, J. Feo, J. R. Gurd,
M. Elliot, and J. A. Keane. Factors affecting the performance of
parallel mining of minimal unique itemsets on diverse architectures.
Concurrency and Computation: Practice and Experience, 21(9):1131–
1158, 2009.

[HPYM04] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without
candidate generation: a frequent-pattern tree approach. Data Mining
and Knowledge Discovery, 8(1):53–87, 2004.

[HSE12] S. Hommes, R. State, and T. Engel. Detecting stealthy backdoors
with association rule mining. In Proc Networking, volume 7290, pages
161–171, 2012.

[JYT+13] Y. Ji, H. Ying, J. Tran, P. Drews, A. Mansour, and R. M. Massanari.
A method for mining infrequent causal associations and its applica-
tion in finding adverse drug reaction signal pairs. IEEE Transactions
on Knowledge and Data Engineering, 25(4):721–733, 2013.

[Kat12] I. Katsov. Fast intersection of sorted lists using SSE instructions.
http://highlyscalable.wordpress.com/2012/06/05/fast-
intersection-sorted-lists-sse, 2012.

[KR05] Y. S. Koh and N. Rountree. Finding sporadic rules using apriori-
inverse. In Proc 9th Pacific-Asia conference on Advances in Knowl-
edge Discovery and Data Mining, volume 3518, pages 97–106, 2005.

[LDR05] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognito: efficient
full-domain K-anonymity. In Proc SIGMOD, pages 49–60, 2005.

A Fast Minimal Infrequent Itemset
Mining Algorithm

58 Kostiantyn Demchuk

http://highlyscalable.wordpress.com/2012/06/05/fast-intersection-sorted-lists-sse
http://highlyscalable.wordpress.com/2012/06/05/fast-intersection-sorted-lists-sse

BIBLIOGRAPHY

[LRRV10] J. M. Luna, A. Ramirez, J. R. Romero, and S. Ventura. An intruder
detection approach based on infrequent rating pattern mining. In
Intelligent Systems Design and Applications (ISDA), pages 682–688,
2010.

[MH05] A. M. Manning and D. J. Haglin. A new algorithm for finding minimal
sample uniques for use in statistical disclosure assessment. IEEE
International Conference on Data Mining (ICDM05), pages 290–297,
2005.

[MHK08] A. M. Manning, D. J. Haglin, and J. A. Keane. A recursive search
algorithm for statistical disclosure assessment. Data Mining and
Knowledge Discovery, 16(2):165–196, 2008.

[REA08] A. Rahman, C. I. Ezeife, and A. K. Aggarwal. WiFi miner: an online
apriori-infrequent based wireless intrusion detection system. Proc.
Sensor-KDD, 2008.

[SNV07] L. Szathmary, A. Napoli, and P. Valtchev. Towards rare itemset
mining. Proc. Int. Conf. on Tools with Artificial Intelligence, pages
305–312, 2007.

[SVN10] L. Szathmary, P. Valtchev, and A. Napoli. Generating rare associ-
ation rules using the minimal rare itemsets family. Int. J. Software
Informatics, 4(3):219–238, 2010.

[SVNG12] L. Szathmary, P. Valtchev, A. Napoli, and R. Godin. Efficient vertical
mining of minimal rare itemsets. Proc. Conf. on Concept Lattices and
Their Applications, pages 269–280, 2012.

[Swe02] L. Sweeney. k-Anonymity: a model for protecting privacy. Interna-
tional Journal on Uncertainty, Fuzziness and Knowledge-based Sys-
tems, 10(5):557–570, 2002.

[TKD11] S. Tsang, Y. S. Koh, and G. Dobbie. RP-tree: rare pattern tree min-
ing. In Data Warehousing and Knowledge Discovery, volume 6862,
pages 277–288, 2011.

[TKD13] S. Tsang, Y. S. Koh, and G. Dobbie. Finding interesting rare asso-
ciation rules using rare pattern tree. In Special Issue on Advances
in Data Warehousing and Knowledge Discovery, volume 7790, pages
157–173, 2013.

A Fast Minimal Infrequent Itemset
Mining Algorithm

59 Kostiantyn Demchuk

BIBLIOGRAPHY

[TMK13] M. Templ, B. Meindl, and A. Kowarik. IHSN SDC Introduction.
http://ec.europa.eu/eurostat/ramon/statmanuals/files/
SDC_Handbook.pdf, 2013.

[TMK14] M. Templ, B. Meindl, and A. Kowarik. Introduction to Statisti-
cal Disclosure Control (SDC). In CRAN SDCMicro Documentation,
2014.

[TS13] L. Troiano and G. Scibelli. A time-efficient breadth-first level-wise
lattice-traversal algorithm to discover rare itemsets. Data Mining and
Knowlege Discovery, pages 1–35, 2013.

[TSB09] L. Troiano, G. Scibelli, and C. Birtolo. A fast algorithm for mining
rare itemsets. Proc. Int. Conf. on Intelligent Systems Design and
Applications, 2009.

[ZY07] L. Zhou and S. Yau. Efficient association rule mining among both
frequent and infrequent items. Computers and Mathematics with Ap-
plications, 54(6):737–749, 2007.

A Fast Minimal Infrequent Itemset
Mining Algorithm

60 Kostiantyn Demchuk

http://ec.europa.eu/eurostat/ramon/statmanuals/files/SDC_Handbook.pdf
http://ec.europa.eu/eurostat/ramon/statmanuals/files/SDC_Handbook.pdf

	List of Figures
	List of Tables
	Abstract
	Introduction
	Motivating Example
	Literature Review
	Preliminaries

	Minimal Unique Itemset Mining
	Pre-processing
	Pruning the Search space
	Potential Performance Bottlenecks
	Kyiv Algorithm
	Highly Efficient Support Itemset Testing
	Reducing Number of Row Intersections
	Correctness
	Parallelisation

	Experimental Results
	Hardware and Software Setup
	Domain-Agnostic Performance
	Randomised Datasets
	Execution Time
	Prefix tree pruning
	Impact of Ordering Used for Itemlist
	Impact of Dataset Parameters

	Domain-Specific Performance
	Datasets
	Execution Time vs Maximum Itemset Size
	Memory Usage

	Parallel Algorithm Performance

	Summary

	Minimal Infrequent Itemset Mining
	Pre-processing
	Extended Kyiv Algorithm
	Highly Efficient Support Itemset Testing
	Reducing Number of Row Intersections
	Correctness and Parallelisation

	Worst Time Complexity
	Worst Time Complexity vs Maximum Itemset Size
	Iteration Counts vs Maximum Itemset Size

	Experimental Results
	Hardware and Software Setup
	Execution Time vs Maximum Itemset Size
	Execution Time vs Frequency Threshold

	Summary

	Conclusions
	Future Work

