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Abstract—The Semantic Web comprises enormous volumes
of semi-structured data elements. For interoperability, these
elements are represented by long strings. Such representations
are not efficient for the purposes of Semantic Web applications
that perform computations over large volumes of information.
A typical method for alleviating the impact of this problem is
through the use of compression methods that produce more
compact representations of the data. The use of dictionary
encoding for this purpose is particularly prevalent in Semantic
Web database systems. However, centralized implementations
present performance bottlenecks, giving rise to the need for
scalable, efficient distributed encoding schemes. In this paper,
we describe an encoding implementation based on the asyn-
chronous partitioned global address space (APGAS) parallel
programming model. We evaluate performance on a cluster of
up to 384 cores and datasets of up to 11 billion triples (1.9
TB). Compared to the state-of-art MapReduce algorithm, we
demonstrate a speedup of 2.6− 7.4× and excellent scalability.
These results illustrate the strong potential of the APGAS
model for efficient implementation of dictionary encoding and
contributes to the engineering of larger scale Semantic Web
applications.

Keywords-RDF; Parallel compression; dictionary encoding;
X10; HPC;

I. INTRODUCTION

The Semantic Web is becoming mainstream. As Linked
Data is increasingly published from domains such as general
knowledge (DBpedia [1]), bioinformatics (Uniprot [2]), and
GIS (linkedgeodata [3]), the potential for new knowledge
synthesis and discovery increases immensely. Capitalizing
on this potential requires semantic web applications which
are capable of integrating the information available from
this rapidly expanding web. The web engineering challenges
are currently pushing computing boundaries at exascale and
beyond.

This web is build on the W3C’s Resource Description
Framework (RDF) [4] - a schema-less, graph-based data
format which describes the Linked Data model in the form
of subject-predicate-object (SPO) expressions based on the
statement of resources and their relationships. These expres-
sions are known as RDF triples. For an instance, the sim-
ple statement from DBpedia (<dbpedia:IBM>, <dbpedia-
owl:foundation-Place>, <dbpedia:New-York>) conveys the

information that the corporation IBM was founded in New
York. The Semantic Web already contains billions of such
statements and this number is growing rapidly. As the terms
in a RDF statement consist of long string characters in the
form of either URIs or literals, storing and retrieving such
information directly on an underlying database namely a
triple store will result in (1) unnecessarily high disk-space
consumption and (2) poor query performance (querying on
strings is computationally intensive).

Dictionary encoding has been shown to be an efficient
way to ameliorate these problems. Using dictionary encod-
ing all the terms are replaced by numerical ids through a
mapping dictionary, and all the original triples are finally
converted to id triples before storing. The conventional
encoding approach is that all the terms retrieve their ids
through sequential access of a single dictionary an approach
which is easy to implement but not suitable for compressing
large data sets due to time considerations and memory
requirements. Consequently, encoding triples in parallel
based on a distributed architecture with multiple dictionaries,
becomes an attractive choice for this problem.

In this paper, we propose a scalable solution for compress-
ing massive RDF data in parallel. We develop an algorithm
and implement it using the partitioned global address space
(APGAS) model programming language - X10 [6]. We
evaluate performance with up to 384 cores and with datasets
comprising of up to 11 billion triples (1.9 TB). Compared
to the state-of-the-art [7], our approach is faster (by a
factor of 2.6 to 7.4), can deal with incremental updates in
an efficient manner (outperforming the state-of-the-art by
several orders of magnitude) and supports both disk and in-
memory processing.

The rest of this paper is organized as follows: Section II
provides a review of related work. Section III presents the
challenges of distributed implementation of RDF compres-
sion. Section IV introduces the proposed RDF compression
algorithm. Section V discusses optimizations and improve-
ments for the algorithm. Section VI describes the experi-
mental framework while Section VII provides a quantitative
evaluation of the algorithm. Section VIII concludes the paper
and points to directions for future work.
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II. RELATED WORK

Compression has been extensively studied in various
database systems, and has been considered as an effective
way to reduce the data footprint and improve the overall
query processing performance [8] [9]. In terms of effi-
cient storage and retrieval of RDF data, various approaches
described in [10] are geared toward efficient storage and
transfer, as opposed to having direct access to the data for
efficient processing. RDF data compression as used with
the most popular triple stores, such as RDF-3X [11], is
performed on the basis of a single dictionary table. This
method does not avail of potential speed-up by parallel im-
plementations. Various distributed solutions used to manage
RDF data have been proposed in the literature [12] [13].
Nevertheless, their main focus is on data distribution after
all the statements have been encoded. There exists only two
efficient methods focused on parallel compression of RDF
data. One is based on parallel hashing [14] and the other
uses the MapReduce model [7].

Goodman et al. [14] adapt the linear probing method on
their Cray XMT machine, and realize the parallel encoding
on a single dictionary through parallel hashing, exploiting
specialized primitives of the Cray XMT. Their evaluation
has shown that their method is highly efficient and the run-
time is linear with the number of used cores. This method
requires that all data is kept in memory and is deeply reliant
on the shared memory architecture of the Cray XMT, making
it unsuitable for commodity distributed memory systems.
They report an improvement of 2.4 to 3.3 compared to
the MapReduce system on an in-memory configuration. By
comparison, on similar datasets, our approach outperforms
the MapReduce system a factor of 2.6 to 7.4, both on-disk
and in-memory.

Compared with [14], the MapReduce method proposed
by Urbani et al. [7] is more general in that it can be run on
ordinary clusters and on-disk. There are three main elements
to their system: (1) the popular terms are cached in memory
by sampling the data set, so that these popular terms assigned
to each task could be encoded locally and consequently pre-
vent eventual load balancing problems, (2) a hash function
is used to assign grouped terms to reduce tasks, which then
assign the term identifier, keeping the consistency of the
encoding, and (3) the MapReduce framework facilitates the
parallel execution of the program. Although their evaluation
on Hadoop has shown that their system is efficient and scales
well, as we will show in Section VII, our approach is both
faster and more flexible, exploiting the finer-grain control of
the APGAS model.

III. CHALLENGES

In our distributed architecture, RDF data is partitioned and
then compressed using a dictionary on each computation
node. However, under this model there exist three main
challenges:

• Consistency - a term appearing on different compute
nodes should have the same id.

• Performance - ensuring consistency based on naive
methods can lead to serious performance degradation.

• Load balancing - the heavy skew of terms which
characterizes real world linked data [5] may lead to
hotspots for the nodes responsible for encoding these
popular terms.

Both in space and time, the mapping of a term need
always keep its uniqueness. For example, once the term
“dbpedia:IBM" is first encoded as id “101" on node A, when
encoding this string on another node B, we should also use
the same value “101". Hash functions are potentially useful,
but the length of the hash required to avoid collisions when
processing billions to terms makes the space cost prohibitive.

We can ensure the consistency of the compression in the
above example by copying the mapping [dbpedia:IBM, 101]
from node A to node B, but network communication cost and
dealing with concurrency (e.g. locking on data structures)
would lead to low performance.

Compared with the two issues above, load balancing
presents a bigger challenge as the distribution of terms
in the Semantic Web is highly skewed: there exist both
popular (like predefined RDF and RDFS vocabulary) and
unpopular terms (like identifiers for entities that only appear
for a limited number of times). For a distributed system,
like ours, any compression algorithm needs to be carefully
engineered so that good network communication and com-
putational load-balance are achieved. If terms are assigned
using a simple hash distribution algorithm, the continuous
re-distribution of all the terms would undoubtedly lead to an
overloaded network. Furthermore, popular terms would lead
to load-balancing issues.

For the sake of explanation, let us categorize terms into
three groups: high-popularity terms that appear in a signif-
icant portion of the input triples, low-popularity terms that
appear less than a handful of times and average-popularity
terms (which is also the largest portion of RDF data).
The state-of-the-art MapReduce compression algorithm [7]
efficiently processes high-popularity terms. The very first job
in the algorithm is to sample and assign identifiers to popular
terms, using an arbitrarily chosen threshold. These identifiers
as distributed to all nodes in the system, and assigned to
terms locally at each node. This dramatically improves load
balancing and speeds up computation. For the rest of the
terms, the data is repartitioned, and identifiers are assigned.
For low-popularity terms, this also works well, as there are
not many redundant data transfers. For low-popularity terms,
we can either retrieve their mappings (possibly for multiple
nodes), or we can send the data to the node where it is
going to be encoded. In either case, the number of messages
will be limited. For medium-popularity terms, the situation
is different: Assume a term that appears 10000 times, and
we have 100 compute nodes. If all nodes would need to



retrieve the mapping from a single node, we would need
200 messages. If we repartition the terms, we would need
at least 10000 messages. One can easily see the situation
reversed for a term that appears 100 times (i.e. partitioning
data might be more efficient that retrieving mappings). How
can we reconcile efficient encoding of popular and non-
popular terms?

IV. RDF COMPRESSION

In this section, we first present an overview of the X10
programming language used for our implementation. Then,
we describe the details of our RDF compression algorithm.

A. An Overview of X10

X10 [6] is a multi-paradigm programming language de-
veloped by IBM. It supports the asynchronous partitioned
global address space (APGAS) model and is specifically
designed to increase programmer productivity, while being
amenable to programming shared memory and distributed
memory supercomputers. It uses the concepts of place
and activity as the kernel notions to exploit parallelism
in the available hardware. A place is a logical abstraction
of the underlying heterogeneous processing element in the
hardware such as cores in a multi-core architecture, GPUs, or
a whole physical machine. Activities are light-weight threads
that run on places. X10 schedules activities on places to
best utilize the available parallelism. The number of places
is constant through the life-time of an X10 program and
is initialized at program startup. Activities on the other
hand can be forked at program execution time. Forking an
activity can be blocking, wherein the parent returns after
the forked activity completes execution, or non-blocking,
where in the parent returns instantaneously, after forking an
activity. Furthermore, these activities can be forked locally
or on a remote place.

X10 provides an important data structure called dis-
tributed arrays (DistArray) for programming parallel
algorithms. It is very similar as an Array, except that they
distribute information among multiple places and one or
more elements in the DistArray can be mapped to a
single place using the concept of points [6]. Additionally,
we used the following three crucial parallel programming
constructs for our compression implementation.

• at(p) S: this construct executes statement S at a
specific place p. The current activity is blocked until S
finishes executing on p.

• async S: a child activity is forked by this construct.
The current activity returns immediately (non-blocking)
after forking S.

• finish S: this construct is used to block the current
activity and then waits for all activities forked by S to
terminate.

Input Statements

Remote

Dictionaries

Parsing into Terms

Filter

Grouped 

Unique

Terms

Grouped 

IDs

Local Dictionary

Local Compression

Figure 1. Data flow of the RDF Compression in our implementation.

B. Main Algorithm

We describe the implementation of an RDF compression
algorithm on a distributed memory system. We use dis-
tributed dictionaries, one per place (recall that a place is
a logical abstraction for an underlying processing element),
for encoding the input data sets. Each data set is first divided
into a number of chunks and assigned for processing on
separate places. The initial partitioning of chunks is random.
The overall implementation strategy for each place and the
corresponding data flow are shown in Figure 1.

First and foremost, every statement in the input set is
parsed and split into individual terms, essentially, the subject,
the predicate, and the object. All these parsed terms are
filtered to remove the replications, and the extracted unique
terms are then divided into individual groups according to
their hash values. The number of groups is set as the same
as the number of places, and all terms in a aforementioned
group have the same hash. In order to maintain consistency,
the term’ hash value maps it to a single dictionary in the dis-
tributed memory system where it gets encoded. The groups
of unique terms are pushed to the dictionaries responsible for
encoding these terms. Every place builds a local dictionary,
for encoding, based on the grouped unique terms and the
corresponding group of ids received from remote nodes.
Once all terms are encoded the grouped ids are retrieved
and the statements in the input data set are compressed.

Initialization: We use the DistArray objects provided
to implement our distributed data structures. The initializa-
tion for these objects, at each place, is shown in Algorithm 1.

• dict is the dictionary that maintains the term-id map-
pings during the whole compression process.

• term_c collects the terms and keeps them in sequence
for subsequent encoding.

• local_key_c is the array that collects the groups of
unique terms that need to be sent to remote places for
encoding.

• local_value_c is the array that collects all the encoded
unique ids from remote places. The sequence of ids
in local_value_c is the same as terms in local_key_c,
thereby making it easy to insert the terms and their
respective encodings into the local dictionary.



Algorithm 1 Initialization
1: the number of places: P
2: Global initialize DistArray objects: dict term_c lo-

cal_key_c local_value_c remote_key_c
3: finish async at p ∈ P {
4: // here the current place in X10
5: dict(here):hashmap[string,long]
6: term_c(here):array[string]
7: local_key_c(here):array[array[string]]
8: local_value_c(here):array[remote_array[long]]
9: remote_key_c(here):array[remote_array[char]] }

• remote_key_c is a temporary data structure used to
receive the serialized the grouped unique terms that are
sent from remote places.

Term Grouping and Pushing: We employ a hashset
structure to process the terms and to extract the unique
terms that need to be transferred to remote places. This is
done for all terms irrespective of their popularity. Using the
hashset guarantees that any given term can possibly move
to a remote place just once, per current place.

The detailed implementation is given in Algorithm 2.
A hashset is initialized at each place. Each hashset
collects terms according to their hash values. Before adding
the parsed term into the term_c queue, a term is added to the
hashset: key_f, if not already present. After processing all
the triples, the filtered terms will be copied into local_key_c,
and then serialized and pushed to the assigned place for
further processing.

The structure local_key_c is kept in memory for the
later local dictionary construction as shown in Figure 1.
The serialization/deserialization process is used only when
the push array objects are neither long, int nor char,
otherwise we directly transfer the data. Since the terms
collected by each hashset are the unique ones to be
sent to remote places, the network communication and later
computational costs are significantly reduced. We use the
finish operation in this part to guarantee the completion
of the data transfer at each place before the term encoding.

Term Encoding: Once the grouped unique terms have
been transferred to the appropriate remote places, the term
encoding can commence. The term encoding implementa-
tion at each place is similar to sequential encoding. The
received serialized char arrays, representing the grouped
unique terms, are deserialized to string arrays. Then the
terms in such arrays access the local dictionary sequentially
to get their numerical ids. In this process, if the mapping
of a term already exists, its id is retrieved, else, a new id
is created, and the new mapping is added into the local
dictionary. In both cases, the id of the encoded term is added
into a temporary array for so that it can be sent back to the
requester(s). The value of a new id is determined by the

Algorithm 2 Filter and Push Terms
1: finish async at p ∈ P {
2: Initialize key_f:array[hashset[string]](P )
3: Read in file fi
4: for triple ∈ fi do
5: terms(3)=parsing(triple)
6: for j← 0..2 do
7: des=hash(terms(j));
8: if terms(j) 6∈ key_f(des) then
9: key_f(des).add(term(j))

10: end if
11: term_c(here).add(term(j))
12: end for
13: end for
14: Copy the terms in key_c(i) to local_key_c(here)(i)
15: for n← 0..(P − 1) do
16: Serialize local_key_c(here)(n) to ser_key(n)
17: Push ser_key(n) to remote_key_c(n)(here) at the

place n
18: end for }

summation of the largest id in the dictionary and the value
P, the number of places. This guarantees there is no clash
between term ids assigned at different places. Furthermore,
each id is formatted as an unsigned 64-bit integer in order
to remove limitations regarding maximum dictionary size1.

We also write out the new mappings in this phase, as
they build up the final dictionary. Once the encoding of the
grouped unique terms is complete, we shift the activity
to the corresponding place where the terms originated, and
retrieve the ids. We then proceed in processing the following
group. All encoding happens in parallel at each place, and
we use the finish operation synchronization. The details
of the algorithm are given in Algorithm 3.

Statement Compression: The statements at each place can
be compressed after all the ids of the pushed terms have
been pulled back. Since the terms and their respective ids
are held in order inside arrays, we can easily insert these
mappings into the local dictionary. Once inserted, we encode
the parsed triples in array term_c. Finally, we write out the
ids to disk sequentially as shown in Algorithm 4. The whole
compression process terminates when all individual activities
terminate. Note that, in the actual implementation, we build
a temporary hashmap to hold all the mappings and discard
it after the encoding to optimize memory use.

V. IMPROVEMENTS

In this section, we present a set of extensions to our
basic algorithm which improve efficiency and extend the
applicability of the approach to a larger set of problems and

1it is possible to use arbitrary- or variable-length ids in order to further
optimize space utilization, but this is beyond the scope of this paper.



Algorithm 3 Encode Terms and Pull Back IDs
1: finish async at p ∈ P {
2: Initialize key_c:array[string], value_c:array[long]
3: for i← 0..(P − 1) do
4: Deserialize remote_key_c(here)(i) to key_c
5: for key ∈ key_c(i) do
6: if key ∈ dict(here) then
7: value_c.add(id)
8: else
9: id = (dict(here).size + 1) ∗ P

10: dict(here.id).put(key,id)
11: value_c.add(id)
12: Out-writing <key,id>
13: end if
14: end for
15: at place(i)
16: Pull value_c(i) to local_value_c(here)(i)
17: end for }

Algorithm 4 Statement Compression
1: finish async at p ∈ P {
2: for i← 0..(P − 1) do
3: Add <key,id> from local_key_c(here)(i) and

local_value_c(here)(i) to dict(here)
4: end for
5: for term ∈ term_c(here) do
6: id = dict(here).get(term).hashcode()
7: Out-writing id
8: end for }

computation platforms. The section concludes with a brief
account of the theoretical complexity of our algorithm.

A. I/O and Data Transfers

X10 does not yet provide efficient I/O operation li-
braries for reading large data sets, as noted by Zhang et
al. [15]. Moreover, using the standard at{p} construct for
copying data incurs a substantial penalty for deep copy-
ing data structures. In order to alleviate these bottlenecks,
Zhang et al., recommend the use of mmap system call and
array.asycCopy method. We adopt the latter approach
and extend the first one with the zlib compression library
to provide more efficient reading of large data sets.

Our preliminary experiments suggest that using just the
mmap approach for large I/O operations scales well to
medium sized data sets with less than hundreds of giga-
bytes of data. However, for very large data sets measured
in tera-bytes, reading gzip-compressed files in memory
and decompressing them on the fly results in substantially
improved I/O performance. Moreover, compressing data in
the gzip format also reduces disk space usage.

The X10 standard library does not provide any interface

Algorithm 5 Processing Data Chunks in Loops
1: for i← 0..(loop− 1) do
2: Assign each place c data chunks
3: Parallel processing at each place
4: end for

for reading and writing compressed gzip files, so we build
a small library based on zlib and integrate it with our
X10 code via the foreign function interface. We use the
compressed datasets only while reading, since the resultant
output is comparatively small and we simply write it out
in bytes using the OutputStreamWriter class in X10
standard library.

B. Flexible Memory Footprint

In our algorithm, the DistArray objects (Figure 1)
are kept in memory throughout the compression process.
This limits the applicability of the method to clusters with
sufficient memory to hold all data structures in memory.

To alleviate this problem, we divide the input data set into
multiple chunks, usually a multiple of the number of places.
The corresponding code change is shown in Algorithm 5.
The encoding process is divided into multiple loop iterations
corresponding to each chunk. In each of these compres-
sion iterations, a place is assigned a specified number of
chunks (line 2), while the local DistArray objects are
reused. This method makes our algorithm suitable for nodes
with various memory sizes, provided the chunks are small
enough. Note that the chunks can be made smaller by simply
dividing the input data set into more chunks. It is expected
that too many such chunks would lead to a decrease in
performance, as there would be redundant filter and push
operations for the same terms at the same place in different
loops. We assess this trade-off through the evaluation in
Section VII-B.

C. Transactional Data Processing

A commonly occurring scenario is real-time processing
of RDF data sets. In such cases, data is inserted as part
of a transaction, and normally the chunks of data inserted
are very small containing only a few hundred statements.
In such a scenario, there is no need to distribute data sets.
Instead, one could just compress the data set using a single
cluster node. In our prototype, the number of cluster nodes
is controlled by the X10_NPLACES option. Furthermore,
parallel transactions with multiple data sets on multiple
nodes are also supported using the same option. Finally, an
optimized data-node assignment strategy can be integrated
with our implementation if needed, but such a strategy is out
of the scope of this paper. Similarly, in this paper, we do
not address rolling back transactions or deletes. In general,
although our system can be extended to support transactional
loads, its main utility is in encoding large datasets.



Algorithm 6 Processing Update
1: finish async at p ∈ P {
2: for <key,id> ∈ local_dict do
3: table(here.id).add(key,id)
4: end for
5: Processing new data }

D. Incremental Update

Another typical application is the incremental update of
RDF data sets. It is often required that such systems must
encode a new dataset as an increment to already encoded
datasets. Typically, the new input data set is large. In this
scenario, local dictionaries could be read in memory before
the encoding process. The extension of our algorithms for
incremental update is shown in Algorithm 6.

E. Algorithmic Complexity

Our compression algorithm with the aforementioned im-
provements has a worst case computational complexity lin-
ear in the number of statements of the input datasets O(|N |)
and the number of places O(|P |). Herein, we describe the
formulation of our worst case complexity.

For a given place, the worst case complexity of the
algorithm is |P |, where |P | is the number of places. This
complexity is determined by the largest loop at line 13
in Algorithm 2. The total complexity of the algorithm is
O(|P | × |P | × |loop|/|P |), because there are a total of
|P | places and all their implementations are nested inside
the loop variable in Figure 5. The divisor (|P |) arises
because each of these loops run in parallel. Therefore, the
overall worst case complexity is (O(|loop| × |P |)). Based
on this, (a) for a constant number of places, the complexity
of the algorithm is: O(|loop|), hence, the complexity of the
algorithm is linear in the value of loop. Next, if the size
of each chunk is fixed, assuming k triples per chunk and
the total number of triples are N, then the loop would be
(|N|/|k|/|P|). Thus, the complexity of the algorithm will be
O(N), namely linear with the number of input triples N, and
(b) similarly, for a constant input size, the complexity of the
algorithm will be O(P ) linear in the number of places or
cores in the underlying execution architecture, provided each
logical place is mapped to a single core (as in our case).

VI. EXPERIMENTAL SETUP

We have conducted a rigorous quantitative evaluation of
the proposed encoding based on the setup as follows.

A. Platform

Our evaluation platform was the Exascale Systems Re-
search Cluster in IBM Research Ireland. Each computation
unit of this cluster is an iDataPlex node with 2 Intel Xeon
X5679 processors each with 6 hardware cores running at
2.93 GHz, resulting in a total of 12 cores per physical node.

Each node has 128GB of RAM and a single 1TB SATA
hard-drive. Nodes are connected by Gigabit Ethernet switch.
The operating system is Linux kernel version 2.6.32-220 and
the software stack consists of Java version 1.6.0_25 and gcc
version 4.4.6.

B. Setup

We have used X10 version 2.3 compiled to C++ code.
We set the X10_NPLACES to the number of cores and the
X10_NTHREADS to 1, namely, one activity per place, which
avoids the overhead of context switching at runtime.

We compare our results with the MapReduce compression
programme first described in [7]. We use the latest version
and run it on Hadoop v0.20.2. We set the following system
parameters: map.tasks.maximum and reduce.tasks.maximum
to 12, the mapred.child.java.opts to 2 GB and the rest of
the parameters are left to the default values. The imple-
mentation parameters are configured with the recommended
values: samplingPercentage is set to 10, samplingThreshold
to 50000 and reducetasks to the number of cores. We have
verified the suitability of these settings with the authors.

We empty the file system cache between tests to minimize
the effects of caching by the operating system are run the
test three times, recording average values.

C. Datasets

For our evaluation, we have used a set of real-world and
benchmark datasets (as Table I): DBpedia [1] is an extract of
the structured information from Wikipedia pages represented
in RDF triples. LUBM [16] is a widely used benchmark
that can generate RDF data sets of arbitrary size. BTC [17]
is a Web crawl encoding statements as N-Quads, while
Uniprot [2] is a large collection of biological function of
proteins derived from the research literature. We chose these
data sets because they vary widely in terms of size and kind
of data they represent. The popularity and diversity of these
datasets contributes to an unbiased evaluation.

VII. EVALUATION

We divide the presentation of our evaluation into different
sections. Section VII-A, compares the runtime and compres-
sion performance of our algorithm against the MapReduce
implementation [7]. We also evaluate the runtime perfor-
mance of our algorithm for the transactional and incremental
update scenarios as described previously. Section VII-B
examines the scalability of our algorithm and compares it
against the scalability achieved by the MapReduce approach
for increasing both numbers of processing units and input
data set size. Finally, we present the load-balancing charac-
teristics of our system in Section VII-C.

A. Runtime

Compression: We perform the encoding using 16 nodes
(192 cores) and report the compression results achieved by



Table I
DATASET INFORMATION AND COMPRESSION ACHIEVED

Dataset # Stats.
Input (GB) Output (GB) Compr.

Plain Gzip Data Dict. Ratio

DBpedia 153M 25.1 3.5 3.5 2.7 4.1
LUBM 1.1B 190 5.5 24.8 17.7 4.5

BTC2011 2.2B 450 20.9 65.6 40 4.3
Uniprot 6.1B 797 58.7 136 46.4 4.4

our algorithm in Table I: Column # Stats gives the number of
statements (triples) in each benchmark. The size of the input
data sets is given both in the terms of plain and gzip format
in columns 3 and 4. The output column is composed of
the compressed statements and the corresponding dictionary
tables at all places. Finally, the resulting compression ratio
is calculated by dividing the size of the input files (in plain
format) by the size of the total output. The compression
ratios for the four data sets are similar: in the range of
4.1 − 4.5. Note that although these ratios are smaller than
the compression ratio achieved by gzip, our output data
can be processed directly and we can also compress these
outputs further using gzip, if need be. We achieve smaller
compression ratios compared to MapReduce [7], because we
use 64-bit integers to encode all terms, while their approach
uses smaller integers for encoding parts of terms as well as
further gzip compression on their output data.

Runtime and Throughput: We compare the runtime and
throughput between our approach and that of the MapRe-
duce framework in two cases: disk-based and in-memory
compression. In the first case, the reading and writing data
is on disk (or HDFS based on disk). For the latter, we
process all data in memory. For memory based I/O, we
pre-read the statements in an ArrayList at each place
and also assign the output to ArrayList. As MapReduce
does not provide such mechanisms, we instead set the path
of the Hadoop parameter hadoop.tmp.dir to a tmpfs file
system resident in memory. The results of these two cases
are shown in Table II and Table III. We define runtime as
the time taken for the whole encoding process: reading files,
performing encoding and writing out the compressed triples
and dictionaries. The throughput is described in terms of
two aspects: (a) rate, which is calculated by dividing the
input size (in plain format) by the algorithm runtime, and
(b) statements processed per second that is calculated by
dividing the number of processed statements by the runtime.

From Table II, our approach is 2.9 − 7.3× faster than
the MapReduce-based approach for disk-based computation,
and 2.6 − 7.4× for in-memory as illustrated in Table III.
The smallest speedup occurs for the BTC2011 benchmark,
however it should be noted that in this instance, whereas
we compress N-Quads, MapReduce discards the fourth
term in the input data and just compresses the first three
terms. Moreover, the compression throughput of Uniprot in

Table II
DISK-BASED RUNTIME AND RATES OF COMPRESSION (192 CORES)

Dataset
Runtime (sec.) Rates (MB/s)

Imprv.MapR. X10 MapR. X10

DBpedia 430 59 59.7 435 7.3
LUBM 1739 453 111.9 429.5 3.8

BTC2011 2817 956 163.6 482 2.9
Uniprot 6160 1515 132.5 538.7 4.0

Table III
IN-MEMORY RUNTIME AND RATES OF COMPRESSION (192 CORES)

Dataset
Runtime (sec.) Rates (MB/s)

Imprv.MapR. X10 MapR. X10

DBpedia 368 50 69.8 514 7.4
LUBM 1382 254 140.8 766 5.4

BTC2011 1809 708 254.7 650.8 2.6
Uniprot 5076 937 160.8 871 5.4
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Figure 2. Throughput of the two implementations using 192 cores, based
on disk-based and memory-based cases with the four datasets.

both cases is much higher than the other three datasets.
We attribute this to the large number of recurring popular
terms. Comparing the two cases, the in-memory compres-
sion is faster than the disk-based one for both algorithms,
although not dramatically so. Moreover, the improvements
we achieved in Table III are greater than those in Table II
for the LUBM and Uniprot data sets, marginally greater
for DBpedia and slightly smaller for the BTC2011 data set.
This illustrates that the two algorithms gain disproportionally
from the faster I/O over different data sets (with our system
showing better gains overall). Figure 2 shows that the
maximum number of statements processed per second is
about 6.51M, higher than any method in the literature.

Transactional: We simulated two transactional process-
ing scenarios with in-memory compression: (1) sequential
transactions on a single node and (2) multiple parallel
transactions on multiple nodes using the LUBM data set.
To simulate transactions, we first encode the 1.1 billion
triples in the LUBM8000 benchmark. Next, we prepare
a RDF data set that contains 1M triples, split into 10K,
1K, 100, and 10 chunks, respectively. After encoding is
complete, we encode these new input chunks (every 10



Table IV
PROCESSING 1M STATEMENTS IN THE TRANSACTIONAL SCENARIO

# Stats Avg. runtime per 10 chunks (sec.)
per chunk MapR. X10 X10_Para.

100 439 0.211 0.164
1K 441 0.359 0.391

10K 454 1.761 0.648
100K 454 17.177 2.192

chunks) sequentially and record the corresponding encoding
time. For the multiple parallel transaction scenario, we could
only record the encoding time for our implementation since
Hadoop uses a centralized model for data storage.

Results are presented in Table IV. One can clearly observe
that our approach is orders of magnitude faster than the
MapReduce approach for the sequential case. The latter is
neither optimized nor suitable for this use-case, since the
startup overhead dominates the runtime, as evident from the
observation that the average time to process chunks with
different sizes is approximately the same. For our system, we
observe that the average runtime of our approach increases
with increasing chunk sizes, and the trend moves toward
linear for the sequential case. This means that, for a single
place, overhead takes a larger proportion of the runtime.

Since we are using 192 cores and the number of chunks
used in this scenario is 10, for each transaction with the
parallel processing by our prototype, the chunks can be
compressed at once by 10 places in parallel. The results in
Table IV show that the runtime is around 0.2 seconds when
the number of statements is less than 100 in each chunk,
which is slightly worse than our expectations for real-time
applications, although still well within an acceptable range.
Upon further analysis, we have found that this increase in
program runtime is due to underlying bottlenecks in the X10
runtime implementation, which we have not addressed in this
paper: (a) Every async call forks an underlying pthread
(Posix thread) atomically, which leads to execution time
overhead. (b) Type initializations in X10 are expensive,
because all type initializations are internally guarded by
locks. Our implementation still performs reasonably well
even with these implementation overheads.

Updates: We evaluate the incremental updates scenario
for RDF compression again using the LUBM8000 dataset
and by splitting it into 2, 4, and 8 chunks, respectively. The
resulting datasets are compressed in 2, 4 and 8 different
executions respectively. Before each compression cycle, we
empty the cache as to simulate real world conditions. The
results comparing our approach and MapReduce are shown
in Table V. As expected, the performance for both algo-
rithms decreases with increasing number of chunks, because
of the additional process required during the encoding (e.g.
reading the dictionary into memory). However, the increase
in program runtime for our approach is much smaller than

Table V
INCREMENTAL UPDATE SCENARIO WITH DIFFERENT CHUNK SIZE

# Chunks Chunk Size
Runtime (sec.)

Imprv.MapR. X10

1 190 GB 1739 453 3.8
2 95 GB 2468 551 4.5
4 47 GB 3900 755 5.2
8 23 GB 6704 1164 5.8

MapReduce. A possible explanation is that because our
dictionary reading operation is faster, the startup overhead of
our system is lower. It is also possible that the efficacy of the
popularity caching technique used by MapReduce decreases
disproportionately as the number of chunks increases.

B. Scalability

We test the scalability of our algorithm by varying the
number of processing cores and the size of the input data
set. We use the LUBM benchmark in our tests as it facilitates
the generation of datasets of arbitrary size.

Number of Cores: We fix the input data set to 1.1 billion
triples and double the number of cores from 12 (single
node) till 384. The test results for our algorithm and the
MapReduce-based approach are shown in Figure 3(a). These
results demonstrate that the run time for both algorithms de-
creases with an increase in the number of cores. The speedup
obtained with an increasing number of cores compared to
a baseline of 12-cores for both algorithms is presented in
Figure 3(b). In our system, with a small number of cores,
the runtime is not linear, since for a single node there is
no network communication. Nevertheless, starting from 24
cores, the speedup becomes almost linear (scaled speedup,
not shown in the figure, is approximately 1.95). This result
supports our theoretical analysis in Section V-E, and we
attribute the small amount of loss to network traffic. In
contrast, the speedup of the MapReduce-based approach is
almost linear (even super-linear) initially before plateauing
for values of 92 cores and greater. This result mirrors the
results obtained in [7]. There can be several reasons for the
latter slowdown: we hypothesize that may be due to load
imbalance, increased I/O traffic and platform overhead.

Size of Datasets: To study the scalability of our algorithm
with increasing input data size, we create a large LUBM
data set with 11 billion triples, which is roughly equivalent
to the LUBM80000 benchmark. We split this data set into
a number of chunks, each of which contains 140K triples,
allowing us to study the effect of loop from Figure 5.

We start our tests with 690 million triples and repeatedly
double the size of the input until we reach a dataset
comprising 11 billion triples. Additionally, for each dataset,
we also vary the number of chunks read per loop for our
implementation. The results are presented in Figure 3(c).
We see that the runtime for both algorithms is nearly linear
with the size of the input data sets. We also notice that
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Figure 3. Scalability of two algorithms: (a) encoding 1.1 billion triples with varying the number of computation cores from 12 to 384, (b) the corresponding
speedups achieved by varying the cores, and (c) the number of triples starts with 690 million and repeatedly double to 11 billion (192 cores, on disk)

MapReduce achieves a slightly super-linear speedup until
5.5 billion triples. After that, MapReduce speedup becomes
linear with the input size. For our algorithm, we have
experimented with 1, 5, and 10 chunks in each loop. One
can see that the scalability of our algorithm is not linear
with input data when reading 1 chunk per loop. But, speedup
becomes better as we increase the number of chunks read per
loop, and it matches the ideal linear speedup scenario when
reading 10 chunks per loop. The reason may be the same as
for the transactional case mentioned above, i.e. that a large
number for loop results in additional runtime overheads as a
result of forking threads and object type initializations. Small
chunks also results in redundant filter and push operations
for the same terms at the same place in different loops.
Such an interpretation is in sympathy with our expectations
described in Section V-B.

Furthermore, Figure 3(c) investigates the trade-off be-
tween reduced memory consumption and performance as
well. For the optimal scalability case with reading 10 chunks
at a time, we need to process 10 × 140K = 1.4M triples
in each loop. Since, in Table I, we show that 1.1 billion
triples is about 190 GB, the size of 1.4 million triples
would be about 250 MB, which is well within the RAM
availability of most machines. Not withstanding this optimal
case implementations using 5 chunks at a time (125 MB) and
1 chunk at a time (25 MB) is only accompanied with little
and moderate scalability loss respectively.

C. Load Balancing

We measure the load-balance characteristics of our algo-
rithm in terms of five metrics defined later in this section. We
instrument our code with counters to gather data for the first
four metrics. The data for the final metric is obtained using
the tracing option provided by the X10 implementation.

• number of outgoing terms: The number of terms trans-
ferred to a remote place. This metric gives insight into
the communication load balance achieved by our algo-
rithm. For example, the larger the number of outgoing
terms, the greater the associated network traffic.

• number of misses: The number of terms that are not
already encoded (missed) in the dictionary and hence

require the generation of a new id.
• miss ratio: The number of misses divided by the sum

of hit and miss for the local dictionary.
• number of processed terms: the number of terms pro-

cessed by a computing node.
• received bytes: the size of processed terms in bytes at

a computing node.

We encoded 1.1 billion LUBM triples on a varying
number of cores to gather data for the first three metrics
described above. The results are presented in Table VI. We
can see that the average values of the three metrics for all
the tests are very close to the maximum values, suggesting
excellent load balancing performance. The scalability of
our algorithm with an increasing number of processing
cores is highlighted well in these results. There is a clear
linear decrease in all three metrics with an increase in
the number of processing cores. Finally, the results also
illustrate a consistent almost uniform miss probability for
each dictionary. The average miss ratio is about 94.5%,
indicating that we have redundant computation on average
for 5 out of every 100 terms. This ratio approached the ideal
value of 100%, which is nevertheless difficult to achieve
in a distributed systems without significant coordination
overhead. Additionally, our implementation is still based on
the all-to-all communication, which could possibly effect the
performance. However, our system does not repartition all
the data, but only transfers the mappings that are necessary
for each node. In this sense, our system performs useful
computation in terms of data locality in 94.5% of the
cases, meaning that although our approach does require
communication between all nodes, only moving the data that
actually needed.

The last two metrics capture the load at each compute
node in terms of the number of terms processed and size
of data received in bytes. These metrics are important for
measuring computational load balance and are used here to
provide comparison with the performance available using the
MapReduce approach. Since MapReduce divides the whole
compression into three separate jobs and the implementation
does not provide the relative metrics, we extract the reduce



Table VI
TERM INFORMATION DURING ENCODING 1.1 BILLION TRIPLES

# Core
# Outgoing (M) # Misses (M) Miss Ratio
Max Avg. Max Avg. Max Avg.

24 11.65 11.59 10.95 10.95 95.7% 94.5%
48 5.85 5.78 5.46 5.46 96.1% 94.5%
96 2.94 2.89 2.73 2.73 96.1% 94.5%

192 1.48 1.43 1.35 1.35 96.4% 94.5%
384 0.74 0.70 0.90 0.87 96.4% 94.5%

Table VII
COMPARISON OF RECEIVED DATA FOR EACH COMPUTING NODE WHEN

PROCESSING 1.1 BILLION TRIPLES USING 192 CORES (IN MILLIONS)

Algorithm
Recv. Bytes Recv. Records

Max. Avg. Max. Avg.

MapR.
Job1 9.94 4.02 24.04 1.73
Job2 135.61 79.77 30.91 17.28
Job3 120.81 106.82 19.61 17.28

X10 194.71 187.82 1.48 1.43

input records and reduce shuffle bytes in the reduce phase
of each job from the Hadoop logs. These two items indicate
the number of records processed and the corresponding data
sizes for each of the 192 reduce tasks.

The results are summarized in Table VII and demonstrate
that the difference between the maximum and the average
value of these metrics for our implementation is much
smaller than MapReduce, indicating better load balancing
(in addition to the results, the minimum number of bytes
received is 184.70M and the minimum number of records
received is 1.37M in our approach, also showing minimal
skew). Furthermore, when comparing the sum total of bytes
received across the two implementations, it is clear that
our proposed technique results in better performance. Con-
sequently even when comparing with the reduce phase of
MapReduce, our system results in a lighter workload and
less network communication.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a dictionary encoding
algorithm for the compression of big RDF data. The algo-
rithm utilises the X10 system which is based on the APGAS
programming model. Using the X10 language, and in turn
the APGAS model, has a number of advantages: (a) flexible
and efficient scheduling. APGAS, like PGAS, separates tasks
from underlying concurrency model, thereby allowing one
to implement an efficient scheduling strategy irrespective
of the number of tasks forked using async. (b) APGAS
being derived from both MPI and OpenMP programming
models, extracts parallelism at both the distributed and single
machine hierarchies. (c) Finally, an abstract model provided
by the async, finish, places, and activities, helps one
write short code, which is easier to debug and maintain.

We have presented an extensive quantitative evaluation of
the proposed algorithm and conducted a comparison with a
state-of-art system using the MapReduce model. Our main
conclusions are that the proposed algorithm is: (a) Highly
scalable both with increments in number of cores and in
the size of the dataset, (b) Computationally fast, encoding
11 billion statements in about 1.2 hours, and achieving
a 2.6 − 7.4× improvement over the MapReduce method,
(c) Flexible for various semantic application scenarios, (d)
Robust against data skew, showing excellent load balancing,
and (e) Suitable for use and further development as part of
a high performance distributed system.

X10 can be compiled and run on GPUs [18]. Future work
will focus on the exploitation of this technology to achieve
even higher performance. Our long term goal is to develop
a highly scalable data distribution management system for
extreme scale RDF data.
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