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Abstract

In this article we demonstrate how algorithmic probability the-
ory is applied to situations that involve uncertainty. When peo-
ple are unsure of their model of reality, then the outcome they
observe will cause them to update their beliefs. We argue that
classical probability cannot be applied in such cases, and that
subjective probability must instead be used. In Experiment 1
we show that, when judging the probability of lottery number
sequences, people apply subjective rather than classical proba-
bility. In Experiment 2 we examine the conjunction fallacy and
demonstrate that the materials used by Tverksy and Kahne-
man (1983) involve model uncertainty. We then provide a for-
mal mathematical proof that, for every uncertain model, there
exists a conjunction of outcomes which is more subjectively
probable than either of its constituents in isolation.
Keywords: Conjunction fallacy; algorithmic statistics; likeli-
hood judgments; surprise; subjective probability.

Introduction
Breaking news: Pandemonium erupted today at the National
Lottery headquarters as the numbers 1, 2, 3, 4, 5 and 6 were
drawn for the third week in a row. Lottery officials, stunned
by a sense of déjà vu, scrambled to release a statement insist-
ing that the lottery drum selection mechanism meets the high-
est standards for randomness. Meanwhile thousands are cel-
ebrating after ignoring the opinions of mathematicians who
had viewed the two previous draws as a statistical fluke. Com-
mentators in the media are demanding an immediate investi-
gation, describing the incident as a fiasco.

The mathematical concept of probability, originally formu-
lated to describe the highly constrained environment of games
of chance, has now found its way into everyday parlance, with
people using it to quantify the likelihood of everything from
the possibility of economic recession to the risk of global
warming. Such has been the unquestioned adoption of the
probability concept into mainstream culture that it has be-
come the default assumption that probability theory provides
the only logical way for people to think about likelihood.
For instance, Tverksy and Kahneman (1983) applied prob-
ability theory to real-world situations involving personality

decisions, medical judgments, criminal motives and political
forecasts. On observing consistent deviations from the math-
ematical theory, they interpreted their findings as evidence of
a serious flaw in human reasoning (see Costello, 2009, for a
review of the associated debate). In this article we adopt the
alternative stance that consistent deviations between human
reasoning and a simplified, artificial mathematical theory are
far more likely to reflect deficiencies in the theory than they
are to reflect sub-optimality in how people think about likeli-
hood.

Classical Probability
Probability theory was formalised by Kolmogorov in the
1930s through the notion of probability space, whereby a set
of possible outcomes is mapped to a number that represents
its likelihood by a probability measure function. For exam-
ple, a perfect dice outputs the numbers from 1 to 6 with equal
frequency. However, in the real world it is rarely feasible to
identify the theoretical probability measure function which
underlies the events we observe. Because we have to work
backwards, using the events to deduce the original function,
we can never be sure if the model we are using is correct.

For example, according to classical probability theory, no
conceivable sequence of numbers produced by rolling a dice
will ever lead us to revise our beliefs about the nature of the
dice. Even if we rolled 1, 1, 1, 1... the hypothesis of the
sequence being a statistical fluke would always remain in-
finitely more likely than the possibility that the dice is biased.

In reality, nobody has beliefs which are strong enough to
stand up to the requirements of classical probability theory.
We strongly believe that the numbers drawn from the lottery
are random, yet there are certain sequences which, as in the
introductory lottery example, would cause us to question our
assumptions and consider other possibilities. If the sequence
1, 2, 3, 4, 5, 6 was drawn three weeks in succession, it might
suggest that the balls were not equally weighted, the drum
mechanism was defective, or that one of the lottery officials
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was playing a practical joke. The point where we start to
ask questions reveals how strongly we hold our beliefs. But
no matter how confident we are about a particular model of
reality, there will always be some sequence of events which
will cause us to change our mind.

This poses a crucial problem for probability theory. Let’s
consider the probability of 1, 2, 3, 4, 5, 6 being drawn in
a lottery for three weeks in a row. If the draw is unbiased
then this sequence of events is just as likely as any other. In
a lottery with 45 numbers, the exact probability is C(45,6)3.
But if this sequence of events actually unfolded, it would lead
us to believe that the draw mechanism is biased. Given the
new updated belief, then the probability of getting 1, 2, 3, 4,
5, 6 is actually far higher. So what is the true probability of
this sequence of events?

To apply classical probability theory a single model of re-
ality must be selected. We must assume either that the lottery
draw is biased or that it isn’t. But doing so would be a mis-
take because we don’t actually know which world is the case.
The situation involves model-outcome dependence, insofar as
the outcome affects our beliefs about the system that gener-
ated it. Stating that the probability of drawing 1, 2, 3, 4, 5, 6
is C(45,6)3 is misleading because, if this sequence of events
actually occurred, we would no longer trust the assumptions
involved in computing that probability.

Uncertainty in the Real World
The issue here is that classical probability theory only applies
to cases involving a definitive probability measure function,
while models of reality always involve uncertainty. Though
useful for reasoning about games deliberately engineered to
generate pseudo-randomness, classical probability has less
applicability to everyday life, where reducing uncertainty and
optimising models of reality are the principal goals. In our
previous work examining the difference between surprise and
probability judgments (Maguire, Maguire, & Keane, 2011)
we presented a cognitive theory of uncertainty modeling
which views the maintenance of an up-to-date representa-
tion of reality as the principal motivation guiding informa-
tion seeking behaviour. People rely on observational data to
continually refine their model of the environment, thus main-
taining the optimality of their decision making. In particular,
the signal that they rely on to diagnose discrepancies between
their model and the real world is randomness deficiency.

The best model of a set of observational data is the one
which describes it most concisely, so that the description of
the data relative to the model is ‘incompressible’ or random
(see Rissanen, 1978; Gács, Tromp, & Vityányi, 2001). In the
case that one’s model of reality is optimal, then new sensory
data should still be random with respect to it. The experi-
ence of randomness deficiency (i.e. a pattern which could be
described more concisely using an alternative model) causes
alarm bells to go off, because it indicates that one’s model is
likely to be suboptimal. This is known as surprise.

When surprise occurs there are two potential resolutions.

First, more observation data can be gathered, which might
mitigate the randomness deficiency by revealing it to be a
statistical fluke. If this does not resolve the discrepancy then
the remaining alternative is to update one’s model to fit the
data. Either way, the resolution process necessitates urgent
sampling of information from the environment. During the
surprise response, eye widening, opening of the mouth and
enlargement of the nasal cavity serve to facilitate the intake
of sensory information (see Maguire et al., 2011).

Consider for example looking at the floor and seeing
some crumbs which spell out the words “YOU ARE BEING
WATCHED”. When crumbs fall on the floor it is just as prob-
able that they will arrange themselves into this pattern as any
other. If we were certain that the crumbs had fallen randomly
then it would not be interesting. However, where knowledge
is uncertain then people respond to randomness deficiency.
The pattern of crumbs is randomness deficient because there
is another model which can explain it more concisely: Some-
body might have deliberately arranged the crumbs in this way.
The first strategy is to look at the rest of the floor. If the rest
of the floor is covered in many crumbs which have no other
patterns then the overall randomness deficiency is mitigated.
If these are the only crumbs on the floor then finding a satis-
factory explanation becomes critical.

People are motivated to seek out randomness deficiency
in the world (Dessalles, 2006). The experience of random-
ness deficiency with subsequent resolution through represen-
tational updating is what makes subjects interesting, films en-
tertaining and jokes funny (Schmidhuber, 2009). Accord-
ingly, when people speak intuitively about likelihood and
probability, it is the concept of representational updating
which is relevant to them.

Subjective Probability
Because it assumes a definitive probability measure function,
classical probability theory cannot be applied to the concept
of representational updating. This limitation means that the
theory is, for the large part, irrelevant to everyday life and thus
inappropriate for evaluating the nature of human reasoning.

Developments in algorithmic statistics have allowed prob-
ability theory to be extended to situations involving an uncer-
tain probability measure function (see, e.g., Vityányi & Li,
2000; Gács et al., 2001). The optimal model which can be
derived from a set of observations is the one which maxi-
mizes the compression of that dataset, yielding the Minimum
Description Length (MDL), a concept which formalizes Oc-
cam’s razor.

Whenever an observation is no longer typical with respect
to an MDL model it should be adjusted to lower the ran-
domness deficiency of the data (see Li & Vityányi, 2008,
for details on how the updating process is carried out). We
can quantify the extent of this representational adjustment in
terms of the amount of information that, given the original
model, would be required to obtain the updated model. The
more the information required, the more significant (and less



likely) the update.
The model that people hold of reality represents the very

best that they can do in representing their environment and
provides the very best that they can achieve in terms of pre-
dictions. If we assume that our representation is a reliable
predictor of events then the larger a potential update to that
representation, the rarer it should be. Accordingly, we can
apply probability theory to speak about the likelihood of an
outcome requiring an update of a particular size. The uncer-
tainty which precludes probability theory from being applied
to real-world scenarios is circumvented by shifting the focus
from an underdetermined probability measure function to the
immutable mechanism of representational updating.

Preliminaries
A computable probability density function p can be inter-
preted as a model for a string generating device. Given such
a device, described by p, there are some “type of strings”
we expect to be output, whereas some others are surprising.
String x is said p-typical if it is a random string relative to the
model described by p, i.e. the model already describes all the
regularities in x.

Formally, let α> 0 be a constant, called the surprise thresh-
old, which represents the level of randomness deficiency that
necessitates representational updating. String x is p-typical
with surprise threshold α (or (p,α)-typical) if the length of
its shortest description given p is at least the number of bits
a Shannon-Fano code based on p would require (an encoding
where the more p-likely a string is, the shorter its encoding
will be) after subtracting the surprise level α, i.e.,

K(x|p∗)≥− log p(x)−α.

The idea behind the minimal description length (MDL) of
a string x (Gács et al., 2001) is to take the shortest (in descrip-
tion length) among all models for which x is typical. To avoid
overfitting (i.e. the model is specifically built for x instead
of for all “strings of type x”) the description length of both
the model and the string given the model, should be equal to
the description of the string on its own. Formally, probabil-
ity density function p is optimal for string x if the shortest
description of x has the same length (up to an additive con-
stant) as the shortest description of p plus the number of bits
required for a Shannon-Fano encoding of x based on p, i.e.,

K(x) = K(p)− log p(x)±O(1)

where O(1) means the equality holds up to an additive con-
stant. The MDL of string x is the shortest (description length)
among all optimal probability density functions for x for
which x is typical.

Subjective information and probability
Suppose an observer experiences observations d1,d2, . . . gen-
erated by some source with computable probability density
psource. The observer tries to learn the probability density
psource by finding the shortest optimal model based on the

observations made so far. Formally, after having observed
strings d1,d2, . . . ,dn, the observer seeks to construct a hypo-
thetical model pn where

pn = argmin{|p∗| : p is optimal for d1,d2, . . . ,dn and
d1,d2, . . . ,dn are (p,α)-typical}.

If the next observation dn+1 is surprising, action may be
required. Formally, observation dn+1 is α-surprising if the
length of its shortest description given p is less than the num-
ber of bits a Shannon-Fano code based on p would require
after subtracting the surprise level α, i.e.,

K(dn+1|p∗n)<− log pn(dn+1)−α.

If an update is performed, then the subjective information
of dn+1 (the “cost” of the update) is the amount of information
needed to update the model to the latest, that is the length
of the shortest description of the new model, given the old
model, i.e.,

subjective information(dn+1) = K(p∗n+1|p∗n).

Subjective probability (the probability of the update) can
then be quantified based on the amount of information it con-
tains, i.e.,

subjective probability(dn+1) = 2−K(p∗n+1|p
∗
n).

Experiment 1
In the following experiment we investigated the hypothesis
that people use subjective probability rather than classical
probability to judge the likelihood for real-world events. We
used an example for which the use of classical probability the-
ory seems particularly compelling, namely lottery sequences
(see Dessalles, 2006). A naive application of classical proba-
bility suggests that all lottery sequences are just as likely.

Method
In a lottery system where 6 numbers are drawn from 45, each
ordered sequence has a classical probability of C(45,6). Ac-
cording to the theory outlined in the previous section, the
subjective probability of an outcome is related to its ran-
domness deficiency. People expect the lottery numbers to
be Kolmogorov-random. The more they deviate from a typ-
ical random string, the lower the subjective probability that
they reflect the output of a random source. The random-
ness deficiency of a string is quantified precisely by its MDL.
However, since this theoretical construct is not computable
in practice, we are obliged to create a heuristic compressor
which approximates it.

We considered the patterns to which people are sensitive
in discriminating predictable sequences from random ones.
Overtly non-typical random patterns include ones in which
the numbers are consecutive (e.g. 3, 4, 5, 6, 7, 8) or where



they increase in a constant step size. To compress these pat-
terns we created a simple compressor which takes in an or-
dered sequence of six numbers, and computes the six step
sizes between them (with the first number counting as the first
step). A Huffman encoding scheme is then applied, which re-
lates bit size to step size. A breakdown of the structure of the
associated Huffman tree is provided in Table 1.

Using this system the sequence 10, 32, 33, 35, 39, 45 is
transformed to step sizes of +10, +22, +1, +2, +4, +6 which is
then encoded using 8 + 8 + 2 + 3 + 4 + 6 = 31 bits. Analysing
six years of bi-weekly Irish National Lottery draws revealed a
mean compressed length of 30.9 bits, with a mode of 31 bits.
The most randomness deficient of the 624 sequences was 2,
4, 32, 34, 36, 37 (description length of 20 bits), while the
most random was 9, 20, 26, 27, 34, 45 (description length of
39 bits). The theoretical minimum description length of our
system was 12 (e.g. 1, 2, 3, 4, 5, 6), while the theoretical
maximum was 43 (e.g. 7, 13, 20, 29, 36, 45). The number of
bits needed to perfectly encode an ordered random sequence
of six numbers between 1 and 45 is 23.0 bits. Although our
compressor cannot compute MDL, it delivers compression
for randomness deficient outputs (i.e. it compresses below
23.0 bits for certain non-typical random sequences) and can
therefore be used to evaluate the hypothesis that people use
subjective rather than classical probability.

Table 1: Structure of Huffman encoding scheme.

Level Depth Leaves #Branches
1 - 2
2 +1, repeat 2
3 +2, +3 2
4 +4 3
5 +5 5
6 +6 9
7 +7, +8 16
8 +9 up to +40 -

Participants 130 undergraduate students from NUI
Maynooth participated voluntarily in this study.

Procedure As an initial step we purchased two quickpick
(i.e. randomly selected) lottery tickets for the next week’s
Irish National Lottery, with six ordered numbers ranging
from 1 to 45. Participants were informed that we had pur-
chased these tickets and that, for each of the two quickpick
sequences, their goal was to identify it from among a group
of five candidate sequences. No mention was made of how
the other four sequences had been generated.

Each quickpick sequence was presented on a screen along
with four other sequences randomly generated using our com-
pressor algorithm. The four distractor sequences met the con-
straints of having compressed bit-sizes of between 15 and 18
bits, 19 and 22 bits, 23 and 26 bits, and 27 and 29 bits respec-
tively. As it happened, the first lottery ticket sequence had a

compressed description length of 31 bits, and the second had
a length of 30 bits. The ordering of the five sequences on the
screen was randomized.

Participants ranked each set of five sequences in order of
likelihood of being the quickpick sequence, from highest
probability to lowest probability. After the process was com-
plete participants were shown the actual lottery tickets so that,
as promised, they could see if they had made the correct judg-
ment or not.

Unfortunately for the experimenters, the lottery tickets did
not turn out to be winning ones.

Results and Discussion

An individual applying classical probability would view all
sequences as equally likely and would thus only have a
20% chance of correctly identifying one quickpick sequence
mixed with four others. However, 64% of participants cor-
rectly identified the numbers on the first ticket, and 66% on
the second ticket (i.e. ranked these sequences in first place).
When participants were shown the lottery tickets at the end
of the experiment they were surprised that their intuition had,
in the majority of cases, led them to make the correct choice.

Figure 1 shows the mean compressed bit size for sequences
ranked from first to fifth place across the two presentations.
The overall correlation between ranking and compressed de-
scription length was 0.965, p < .001.
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Figure 1: Mean compressed bit size according to rankings of
likelihood.

These results demonstrate that, not only do people use sub-
jective probability, they also enhance the accuracy of their
judgments by using it. While the naive mathematician as-
sumes all lottery sequences are equally likely, the savvy
layperson realises there is an element of uncertainty involved
in how those sequences were generated. The greater the ran-
domness deficiency of a sequence, the greater the subjective
probability that it was generated by a non-random generative
mechanism.



Our central argument in this article is that, because models
of reality always involve uncertainty, people apply subjective
probability rather than classical probability in everyday life.
In the following experiment we investigated whether the ap-
plication of subjective probability can explain experimental
observations which have previously been interpreted as ex-
amples of fallacious reasoning.

Experiment 2
The conjunction effect is a situation in which people assert
that a conjunction of two outcomes is more probable than ei-
ther of those outcomes in isolation. According to classical
probability theory this is a fallacy because requiring two out-
comes to be validated is always a stricter criterion than re-
quiring a single one to be validated (i.e. P(x∧ y) ≤ P(y)).
The most celebrated example of the fallacy involves one of
the materials used by Tverksy and Kahneman (1983), involv-
ing an individual named Linda.

Linda is 31 years old, single, outspoken, and very bright.
She majored in philosophy. As a student, she was deeply con-
cerned with issues of discrimination and social justice, and
also participated in anti-nuclear demonstrations.

Which is more probable?
a) Linda is a bank teller
b) Linda is a bank teller and is active in the feminist move-

ment.
Tverksy and Kahneman (1983) report that, when the two

possible outcomes are listed together as above, 85% of people
violate the conjunction rule by identifying b) as more proba-
ble. Tverksy and Kahneman’s explanation is that people get
confused by what they call ‘representativeness’. They found
that participants’ responses reflect the extent to which the de-
scriptions match a stereotype, with a correlation of 0.98 be-
tween mean ranks of probability and representativeness.

It is interesting to note that this correlation closely matches
the observed correlation of 0.97 between mean ranks of prob-
ability and compressed description length in Experiment 1.
This suggests the possibility that representativeness and ran-
domness deficiency are closely related concepts.

In Experiment 1 we found that, when there is uncertainty
as to the generative mechanism which produced an outcome,
people rely on randomness deficiency to make judgments.
The uncertainty in Experiment 1 concerned the fact that par-
ticipants were given no information as to how four of the five
lottery sequences were generated. Rather than assuming that
all the sequences were generated randomly, they correctly
used randomness deficiency to make inferences that resolved
the uncertainty.

In the Linda example, some information about Linda is
provided, but there is much about her that remains unknown
(e.g. has she settled down since her student days?) In the case
of uncertainty regarding the underlying probability measure
function, then classical probability cannot be applied. For
example, if we find out that Linda is a bank teller, then we
might infer that she has settled down. In contrast, hearing that

she is still active in the feminist movement suggests that she
has not changed much since her student days. Because these
two models of Linda are quite different, there is no defini-
tive probability measure function relative to which classical
probability can be expressed.

Method
In the following experiment we investigated whether the out-
comes for the Linda scenario cause participants to adjust their
model of Linda.

Materials For this experiment we altered the Linda sce-
nario by including the outcomes as part of the description.
We removed the information that she is single, outspoken
and very bright and included at the end of the description
either that “Linda is a bank teller” (Version 1) or “Linda is
a bank teller and is active in the feminist movement” (Ver-
sion 2). Participants were then asked to rate the probability
of Linda having the attributes of being single, outspoken and
very bright (from 0 to 100%). In order for classical prob-
ability to be applicable, then the probabilities provided for
Versions 1 and 2 should not differ significantly. Linda should
be just as independent, outspoken and bright regardless of
whether she is active in the feminist movement or not.

Participants 106 undergraduate students from NUI
Maynooth participated voluntarily in this study.

Procedure Participants were randomly assigned either Ver-
sion 1 or Version 2 of Linda’s description and wrote down
their probabilities for the three characteristics, which were
randomly ordered along with three other filler characteristics
(Linda plays golf, Linda is dyslexic, Linda suffers from anx-
iety).

Results and Discussion
The mean probabilities for the three characteristics are shown
in Table 2. When Linda was described as a bank teller and ac-
tive in the feminist movement she was rated as significantly
more likely to be single, demonstrating that the outcomes
used in the Linda scenario cause participants to adjust their
model of Linda.

Table 2: Mean probability ratings, t-test scores and signifi-
cance for the two descriptions of Linda.

Ver. 1 Ver. 2 t-test
Single 47% 64% t(104) = 4.11, p < .001
Outspoken 77% 80% p > .05
Very Bright 59% 63% p > .05

The numbers generated by a perfect dice never lead us to
update our beliefs about the nature of the dice, yet finding out
about Linda’s current activities does lead people to update
their beliefs about her. Because the model of Linda is un-
certain, subjective probability must be applied. What people



are quantifying when they identify the conjunction as more
probable is that the conjunction contains more subjective in-
formation, and that, relative to the process of representational
updating, the likelihood of an outcome diminishes with the
amount of subjective information it carries. Basing decisions
on subjective probability is mathematically the correct ap-
proach when dealing with uncertainty regarding the under-
lying probability measure function.

In the following section we build on this result by prov-
ing that for every situation involving uncertainty (i.e. all real
world scenarios) there is a conjunction of events which is
more subjectively probable than either of its constituents in
isolation.

Proof that Conjunction Effect is not a Fallacy
In this section we prove that given any hypothetical model
p, there are always two strings of events x,y such that x is
a substring of y but y has higher subjective probability. The
idea of the proof is that any long enough typical string of
events can always be decomposed into a substring of events
that carries greater subjective information.

Theorem 1. Let E1,E2, . . .Em be m independent events and
let p be the associated computable probability measure func-
tion. Let α > 0 be a surprise threshold. There exists a con-
junction of events A = A1∧A2∧ . . .∧An with a constituent B
(i.e. p(A) < p(B)) such that B is (p,α)-surprising (i.e. car-
ries subjective information) and A is (p,α)-typical (i.e. has a
subjective probability of 1).

Proof. Let E1,E2, . . .Em, p and α > 0 be as above. Without
loss of generality m= 2k and p can be seen as a probability on
strings of length k (each coding one event Ei) extended multi-
plicatively i.e., p : 2k→ [0,1] is extended multiplicatively by
p(xy) := p(x)p(y).

Let n be a large integer. Let y ∈ 2kn be a (p,α)-typical
string. y can be viewed as the concatenation of n strings of
length k (i.e. the conjunction of n events). By the pigeon
hole principle, there must be such a string that occurs at least
n/2k times. Denote this string by s, and let l be the number of
occurences of s in y, i.e. l ≥ n/2k. Because y is (p,α)-typical
we have p(s)> 0. Thus p(s) = 2−c for some c > 0. Let x be
l concatenations of s. Because p is extended multiplicatively
we have p(x)> p(y).

Let us show that x is (p,α)-surprising. To describe x it
suffices to describe l plus a few extra bits that say “print s
l times”. Since l can be described in less than 2log l bits
(by a prefix free program) we have K(x) < 3log l for n large
enough. We have

− log p(x)−α =− log p(sl)−α =− log p(s)l−α

=−l log2−c−α = cl−α > 3log l > K(x)

≥ K(x|p∗)

for n large enough. Thus x is (p,α)-surprising, but y is
not.

Conclusion
Although Tverksy and Kahneman (1983) identified an associ-
ation between representativeness and the conjunction effect,
they never provided an explanation for why such an associ-
ation might exist, instead being satisfied to pass it off as an
arbitrary reasoning fallacy. Had they questioned participants
regarding their judgments, rather than dismissing them as fal-
lacious, then the resultant findings may have facilitated the
extension of classical probability theory. In sum, perhaps
the most salient fallacy on display in Tverksy and Kahne-
man’s (1983) study is the misplaced belief that mathematical
theories which have been developed for precision models in
the exact sciences retain their validity when used to describe
complex cognition in the real world.

Tverksy and Kahneman (1983) posed the following ques-
tion: “Why do intelligent and reasonably well-educated peo-
ple fail to recognize the applicability of the conjunction rule
in transparent problems?” Here, we have presented the an-
swer: Because often it’s not applicable.
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Vityányi, P. M. B., & Li, M. (2000). Minimum description
length induction, Bayesianism, and Kolmogorov complex-
ity. IEEE Transactions on Information Theory, 46, 446–
464.


