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Abstract—Guesswork forms the mathematical framework for
quantifying computational security subject to brute-force de-
termination by query. In this paper, we consider guesswork
subject to a per-symbol Shannon entropy budget. We introduce
inscrutability rate to quantify the asymptotic difficulty of guess-
ing U out of V secret strings drawn from the string-source and
prove that the inscrutability rate of any string-source supported
on a finite alphabet X , if it exists, lies between the per-symbol
Shannon entropy constraint and log |X |. We show that for a
stationary string-source, the inscrutability rate of guessing any
fraction (1 � ✏) of the V strings for any fixed ✏ > 0, as V
grows, approaches the per-symbol Shannon entropy constraint
(which is equal to the Shannon entropy rate for the stationary
string-source). This corresponds to the minimum inscrutability
rate among all string-sources with the same per-symbol Shannon
entropy. We further prove that the inscrutability rate of any
finite-order Markov string-source with hidden statistics remains
the same as the unhidden case, i.e., the asymptotic value of hiding
the statistics per each symbol is vanishing. On the other hand, we
show that there exists a string-source that achieves the upper limit
on the inscrutability rate, i.e., log |X |, under the same Shannon
entropy budget.

Index Terms—Brute-force attack; Guesswork; Inscrutability;
Rényi entropy; Universal methods; Large deviations.

I. INTRODUCTION

In recent years, data storage has experienced a shift toward
cloud storage where data is stored in a diversity of sites,
each hosted at multiple locations. Cloud service providers
assume responsibility for availability, accessibility, and most
important, the security, of the stored data. But how secure is
the cloud? The vulnerabilities of the cloud storage services
have been exploited in several recent incidents resulting in
the compromise of very private data stored on the cloud.
The security guarantees advertised by individual sites typically
assume an isolated attack. However the actual vulnerability is
to a coordinated attack, where an attacker with access to more
than one site combines partial information to compromise
overall security.

Guesswork, which forms the mathematical framework for
quantifying computational security subject to brute-force de-
termination by query, was first considered in a short paper
by Massey [1] who demonstrated that the number of guesses
expected of an attacker bears little relation to the Shannon
entropy. Arikan [2] then proved that this guesswork grows
exponentially with an exponent that is a specific Rényi entropy
for iid processes. His result has been generalized to ergodic
Markov chains [3] and a wide range of stationary sources [4],
[5]. Arikan and Merhav [6] have also derived fundamental
limits on guessing, subject to an allowable distortion. Sundare-

san [7] considered guessing on iid processes with unknown
statistics and showed that the growth rate of the average
guesswork is related to a specific Rényi entropy. Finally in [8],
Christiansen and Duffy showed that guesswork satisfies a
large deviations principle, completely characterizing the rate
function, and providing an approximation to the distribution
of guesswork.

Recently, in [9], the idea of guesswork was extended beyond
guessing a single secret string to a setup in which an attacker
wishes to guess U out of V secret strings drawn independently
from not necessarily identical string-sources. It was shown
in [9] that when the individual string-sources are stationary,
under some regularity conditions, guesswork satisfies a large
deviations principle whose rate function is not necessarily
convex. Further, it was shown that when all of the V strings
are drawn independently from an identical stationary string-
source, guesswork grows exponentially with an exponent that
is the Rényi entropy rate of the string-source with parameter
(V � U + 1)/(V � U + 2).

In this paper, in a setup similar to [9], we consider V secret
strings drawn independently from identical string-sources that
are constrained to satisfy a given per-symbol Shannon entropy
budget. Our contributions in this paper are summarized in the
following:

• We show that the inscrutability rate of a constrained
string-source, if it exists, lies between the per-symbol
Shannon entropy constraint and the logarithm of the size
of the support, i.e., log |X |.

• We consider guesswork on finite-memory stationary
string-sources1 with hidden statistics. We show that when
the inquisitor does not know the statistics of a finite-
memory string-source, he can devise a universal guessing
strategy that is asymptotically optimal in the sense that it
achieves the same inscrutability rate as the string-source
with unhidden statistics.

• Finally, we establish that the upper bound on the in-
scrutability rate is tight by showing that there exists a
string-source that achieves an inscrutability rate of log |X |
under the same Shannon entropy budget.

II. PROBLEM SETUP AND RELATED WORK

Let X = {a
1

, . . . , a|X |} be a finite alphabet of size |X |.
Denote xn+k�1

k = xkxk+1

. . . xn+k�1

2 Xn as a n-string

1This is a viable model for the case where the secret strings are chosen as
chunks of a compressed file.
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over X . Further, let xn
= xn

1

and for i > n, xn
i = ?, where ?

denotes the null string. Let µn denote a probability measure on
Xn. We refer to {µn}1n=1

as a string-source. We use the nota-
tion {µn} to denote {µn}1n=1

as well. Note that the marginals
of {µn} might be position dependent, i.e.,

P
xn2X µn

(xn
) is

not necessarily equal to µn�1

(xn�1

). A string-source is said
to be stationary if

P
x1,...,xk

µn+k
(xn+k

) = µn
(xn

k+1

). Let
Xn 2 Xn be a random n-string drawn from µn.

Some of the results in this paper are derived for finite-
memory parametric string-sources.

Definition 1 (finite-memory parametric string-source): A
finite-memory parametric string-source is parametrized with a
d-dimensional parameter vector ✓ = (✓

1

, ..., ✓d). Let ⇤ ⇢ Rd

be a d-dimensional open set where the d parameters live. Then,
µn
✓ denotes a parametric probability measure defined by the

parameter vector ✓ on n-strings. We assume that {µn
✓ } is a

stationary string-source for all ✓ 2 ⇤. We also assume that the
source has a finite memory of at most h, i.e., the probability
of observing each symbol at any position at most depends on
the symbols in the previous h positions. We further assume
that x0

�h+1

is a run of length h of symbol a
0

. We denote P
⇤

as the family of parametric string-sources such that ✓ 2 ⇤,
i.e., P

⇤

= {{µn
✓ } : ✓ 2 ⇤}. See Appendix A for the regularity

conditions on the parametric model.
The finite-memory parametric models include all iid and

finite-memory Markov string-sources. The simplest parametric
model is a binary iid string-source with X = {0, 1} and ✓ =

P{Xi = 1} is the single source parameter, which lives in
⇤ = (0, 1). Note that we exclude the boundaries. For example,
µ✓(1, 1, 0) = ✓2(1�✓). Consider a binary (stationary) Markov
source as another parametric model on X = {0, 1} with d = 2

parameters

(✓
1

, ✓
2

) = (P{Xi = 1|Xi�1

= 0}, P{Xi = 1|Xi�1

= 1}),

that live in ⇤ = (0, 1) ⇥ (0, 1). For example, µ✓(1, 1, 0) =

✓
1

✓
2

(1 � ✓
2

) since we assume that x
0

= 0. Finally, consider
order r Markov processes over alphabet X . In this case,
the source parameters are the non-zero transition probabilities
given the previous r symbols, and hence, d = |X |r(|X |� 1).

Let Hn
(µn

) denote the Shannon entropy of a random n-
string drawn from µn, i.e.,

Hn
(µn

) = �E {logµn
(Xn

)} =

X

xn2Xn

µn
(xn

) log

✓
1

µn
(xn

)

◆
.

Further, let H({µn}) be the Shannon entropy rate of the string-
source (if it exists), i.e.,2 H({µn}) , limn!1

1

nH
n
(µn

).
Similar to [9], we consider V strings, denoted by x

n,V
=

(xn
(1), . . . , xn

(V )), that are drawn independently from an
identical string-source {µn}. This extends the guesswork
problem to a multi-string system with V strings where an
inquisitor wishes to identify the U out of V strings. The case
where V = U = 1 corresponds to a single-string guesswork
problem and has been studied extensively.

We have the following assumptions on the attacker and
chooser:

• The length n of the chosen strings is known to the
attacker.

2In this paper log(·) always denotes the logarithm in base 2.

• The chooser draws V strings independently from the
string-source {µn}.

• {µn} is known to the attacker. This assumption will be
dropped for finite-memory parametric string-sources in
Section IV.

• At each time, the attacker is allowed to pick one of the
systems, say system i, and ask “Is Xn

(i) = yn?”. He
continues this process until he correctly guesses U of the
V randomly drawn strings x

n,V .
• In Sections III and V, we assume that the chooser is con-

strained to choose a string-source {µn} 2 �HX , where
�HX is the set of all string-sources supported on the finite
alphabet X that satisfy a per-symbol entropy constraint
of HX for all n � 1. That is (1/n)Hn

(µn
) = HX . We

also assume that HX > 0.
In the single-string special case, it is straightforward to see

that when the probability distribution µn is known to the
attacker, the optimal strategy (that stochastically dominates
any other strategy) would be to order all possible n-strings
from the most likely outcome to the least likely (breaking ties
arbitrarily), and then query the strings one by one from the
top of the list until the correct password has been guessed.

In [9], it was proved that an asymptotically optimal strategy
for the multi-string guesswork would be to round-robin the
single-string optimal strategies. That is to query the most likely
string of system 1 followed by the most likely string of system
2 and so forth till system V , before moving to the second most
likely string of each system.

In the multi-string case, let Gµn
(U, V,xn,V

) denote the
number of queries required of an attacker to guess U out
of V of sequences x

n,V
= (xn

(1), . . . , xn
(V )) using the

asymptotically optimal strategy described above. In the single-
string case, we further use the short-hand Gµn

(xn
) to denote

Gµn
(1, 1,xn,1

). We use the subscript µn in Gµn
(·) to empha-

size that it is dependent on the specific string-source probabil-
ity measure µn. The average guesswork E{Gµn

(U, V,Xn,V
)}

quantifies the average number of guesses required of an
attacker to identify U out of V of the secret strings, where
the expectation is taken with respect to the iid copies of µn

on each string.
Massey [1] demonstrated that the average guesswork in the

single-string case is lower bounded by

E{Gµn
(Xn

)} � (1/4)2H
n
(µn

)

+ 1.

The bound is tight up to a factor of 4/e for a geometric
distribution (on an infinite support). Massey also proved that an
upper bound on the average guesswork in terms of the Shannon
entropy does not exist proving that average guesswork bears
little relation to the Shannon entropy of the string-source in
general.

In [2], Arikan considered an iid process and proved that the
exponent of the average growth rate of the average guesswork
is the specific Rényi entropy with parameter ↵ = (1/2). In
other words,

Hn
1/2(µ

n
)�log(1+log |X |)  logE{Gµn

(Xn
)}  Hn

1/2(µ
n
),

where Hn
↵(µ

n
) is the Rényi entropy of order ↵ (↵ > 0, ↵ 6= 1)



defined as

Hn
↵(µ

n
) =

1

1� ↵
log

 
X

xn2Xn

µn
(xn

)

↵

!
.

Further, if it exists, the Rényi entropy rate of the string-
source is defined as H↵({µn}) = limn!1

1

nH
n
↵(µ

n
). Note

that H↵({µn}) if it exists converges to H({µn}) as ↵ ! 1.

Definition 2 (inscrutability): The inscrutability of identify-
ing U out of V of the V random n-strings X

n,V , denoted by
Sn

(U, V, µn
) is defined as

Sn
(U, V, µn

) , logE{Gµn
(U, V,Xn,V

)}.

The inscrutability rate of a string-source, denoted by
S(U, V, {µn}), if it exists, is defined as

S(U, V, {µn}) , lim

n!1

1

n
Sn

(U, V, µn
).

In particular, it can be concluded from Arikan’s result that
for an iid string-source {µn} the inscrutability rate for U =

V = 1 is
S(1, 1, {µn}) = H

1/2({µn}).

Arikan’s result was later generalized to ergodic Markov
chains [3] and a wide class of stationary sources [4], [5],
for which the inscrutability rate can be related to the specific
Rényi entropy rate with parameter (1/2) under those setups
as well. Recently, the authors in [9] derived the inscrutability
rate for arbitrary U and V as the specific Rényi entropy rate
with parameter (V � U + 1)/(V � U + 2). That is

S(U, V, {µn}) = H
(V�U+1)/(V�U+2)

({µn}). (1)

In particular, it can be deduced from this result that in the
large system limit when V ! 1, if U/V stays bounded away
from 1 the inscrutability rate converges to the specific Shannon
entropy rate. This is stated in the following proposition.

Proposition 1: If U scales with V in such a way that U/V <
(1� �) for some � > 0, then

lim

V!1
S(U, V, {µn}) = H({µn}).

Proof: This is an immediate consequence of (1).
The authors in [9] further showed that the guesswork
Gµn

(U, V,Xn,V
) satisfies a large deviations principle and

identified its rate function which is stated in Lemma 4 of [9].

III. MINIMUM INSCRUTABILITY STRING-SOURCE WITH
CONSTRAINED SHANNON ENTROPY

In this section, we consider a multi-string system with secret
strings drawn independently from the string-source {µn}. We
assume that {µn} 2 �HX . First, we identify the string-
source in �HX , denoted by {µn}, that achieves the smallest
inscrutability for all n � 1.

Theorem 2: For any 1  U  V , the inscrutability of
identifying U out of V secret strings chosen from any string-
source {µn} 2 �HX is bounded from below by

Sn
(U, V, µn

) � Sn
(U, V, µn

), (2)

where µn is a truncated geometric distribution on the support
Xn that satisfies the per-symbol entropy constraint. Further,

the inscrutability rate exists for the string-source {µn} and is
equal to the per-symbol Shannon entropy constraint. That is

S(U, V, {µn}) = lim

n!1

1

n
Sn

(U, V, µn
) = HX . (3)

See Appendix B for the proof.
By considering Proposition 1 and Theorem 2, when {µn}

is a finite-memory parametric string-source, if U scales with
V such that U/V < (1� �), then

lim

V!1
S(U, V, {µn}) = S(U, V, {µn}) = H({µn}).

This shows, as V grows large, the inscrutability rate of any
finite-memory parametric string-source with a given Shannon
entropy rate approaches the lowest limit of the inscrutability
rate. Observe that inscrutability rate is defined as the asymp-
totic limit as n ! 1 of the per-symbol inscrutability and in
the above statement the limits as n ! 1 and V ! 1 are not
interchangeable.

IV. INSCRUTABILITY OF FINITE-MEMORY PARAMETRIC
STRING-SOURCES WITH HIDDEN STATISTICS

In this section, we investigate the impact of hiding the
string-source statistics on the inscrutability of identifying U
out of V secret strings drawn independently from a parametric
string-source {µn

✓ }. To do so, we need a universal guessing
strategy that does not use the string-source statistics.

Note that the round-robin of single-string optimal strategies
is an asymptotically optimal strategy for the multi-string
system [9], and hence, we only need to find an asymptotically
optimal single-string guessing strategy. The guessing strategy
does not require the knowledge of the string-source {µn

✓ }. For
now, we assume that the inquisitor only knows the space in
which the parametric source lives, i.e., he knows ⇤.

A. Universal Type-Size Guessing Strategy

We shall provide a guessing strategy for parametric string-
sources using the method of types (see [10]). The universal
guessing strategy that will be described here coincides with
Arikan and Merhav’s universal guessing strategy on iid pro-
cesses in [6] and also bears great similarity with Kosut and
Sankar’s universal type-size coding (universal compression
without prefix constraint) on iid processes in [11]. The type
class of sequence xn is defined as

T
⇤

(xn
) = {yn 2 Xn

: µn
✓ (y

n
) = µn

✓ (x
n
) 8✓ 2 ⇤}. (4)

Further, |T
⇤

(xn
)| denotes the size of the type class of xn, i.e.,

the total number of sequences with the same type as xn.
Single-string universal guessing strategy:

• We order all sequences based on the size of their corre-
sponding type classes in an ascending fashion and break
ties arbitrarily.

• We let G?(xn
) be the order in which the sequence xn

appears in the above list. Clearly, the sequence xn may
appear before yn only if |T

⇤

(xn
)|  |T

⇤

(yn)|.
Our main result on the universal type-size guessing strategy
described above is the following.

Theorem 3: Let ⇤ denote the simplex of iid probability
vectors over finite alphabet X . Let Gµn

✓
be an optimal non-

universal guessing strategy for parametric source with param-
eter vector ✓, such that in Gµn

✓
ties are broken in favor of



guessing sequences with smaller type-sizes first and if there
is a tie in the size of the type the tie is broken arbitrarily.
Then for any individual sequence xn, the universal guessing
function G?(xn

) obeys:

G?(xn
)

Gµn
✓
(xn

)

= O(n|X |
). (5)

See Appendix C for the proof.
Theorem 3 has two main implications. The first is on the

large deviations principle for the multi-string system with
unknown statistics. This result was expected in light of the
analysis of the single-string universal strategies in [7], and
the recent results on the large deviations for multi-string
guesswork [9].

Corollary 4: The sequence {1/n logG?(U, V,xn,V
)} satis-

fies a large deviations principle with the same rate function
Iopt(U, V, t) of any optimal non-universal guessing strategy
Gµn

(U, V,xn,V
), where Iopt is defined in Lemma 4 of [9].

Proof: By invoking Theorem 3, observe that

1

n
logG?(x

n
)  1

n
logGµn

✓
(xn

) + |X | log n
n

+O

✓
1

n

◆
. (6)

Therefore, G? satisfies LDP with the same rate function as
Gµn

✓
for any ✓, where the rate function is derived in [8]. Since

G? is optimal for individual system, then the round-robin of
G? is also asymptotically optimal for multi-system case and it
would satisfy LDP with the specific rate function Iopt(U, V, t)
in light of Lemma 4 of [9].
Let the inscrutability rate of the universal type-size guessing
strategy be defined as

S?(U, V, {µn}) = lim

n!1

1

n
logE{G?(U, V,X

n,V
)}.

Here, we also obtain the multi-string counterpart of Sundare-
san’s Theorem 16 of [7] on the growth rate of the average
universal guesswork.

Corollary 5: The inscrutability rate of the universal type-
size guessing strategy is given by

S?(U, V, {µn}) = H
(V�U+1)/(V�U+2)

({µn}). (7)

This is straightforward by putting together Corollary 4 of this
paper and Corollary 1 of [9].

This establishes that the inscrutability rates for a finite-
memory parametric sources with hidden and unhidden statis-
tics is the same.

B. Universal Bayesian Guessing Strategy

In this section, we present a Bayesian viewpoint on universal
guesswork. The Bayesian construction assumes the least-
favorable Jeffreys’ prior in the context of universal compres-
sion (see [12]). Let I(✓) be the Fisher information matrix
associated with the parameter vector ✓, i.e.,

Ii,j(✓), lim

n!1

1

n log e
E

⇢
@2

@✓i@✓j
log

✓
1

µn
✓ (X

n
)

◆�
. (8)

We assume that the source is ergodic such that the above limit
exists. Let Jeffreys’ prior, denoted by p

⇤

, be

p
⇤

(✓) , |I(✓)| 12
R
⇤

|I(�)| 12 d�
. (9)

Let µn
⇤

denote the mixture distribution with Jeffreys’ prior:

µn
⇤

(xn
) =

Z

⇤

µn
✓ (x

n
)p

⇤

(✓)d✓. (10)

Let Gµn
⇤

be the optimal procedure for the distribution µn
⇤

.
Theorem 6: Gµn

⇤
and G? are asymptotically equivalent, and

hence are both asymptotically optimal.
The proof follows the same lines of Theorem 6 of [13].

C. Extension to Finite-Memory Markov Sources

Next, we generalize universal multi-string guesswork to
finite-memory sources. The Bayesian universal guessing de-
scribed in this paper is general and readily applicable to finite-
memory sources, such as, finite-state machines [14] and con-
text trees [15]. The type-size guessing can also be generalized
by considering more general notion of types (see [16]). Let
h denote the memory of the source, i.e., height of the largest
suffix in the context tree that represents the source [15]. Note
that for an iid source, h = 0. The next theorem generalizes
Theorem 3 to this more general class of stationary sources.

Theorem 7: For a finite-memory source with d-dimensional
parameter vector and a context tree of depth h, let G? be
the guesswork function of the universal type-size guessing
strategy. Further, let Gµn

✓
be the guesswork of an optimal

non-universal guessing strategy for parametric source with
parameter vector ✓, such that in Gµn

✓
ties are broken in favor

of guessing sequences with smaller type-sizes first and if there
is a tie in the size of the type the tie is broken arbitrarily. Then,
for any individual sequence xn we have

G?(xn
)

Gµn
✓
(xn

)

= O((h+ 1)nd+1

). (11)

See Appendix D for the proof.
Thus far, we assumed that the source parameters of a finite

memory source were unknown. Next, we further extend the
universal guessing strategy to twice universal finite-memory
sources, where in addition to the source statistics being
unknown to the inquisitor, the (finite) source model is also
unknown (cf. [17] for a formal definition).

Let h : N ! N be any function such that h(n) = o(log n)
and h(n) = !(1). For any n � 1, let the unknown source
model be described by a Markov source of order h(n), which
defines a parametric source with d(n) = (|X | � 1)|X |h(n)
parameters. Let ⇤d(n) denote the space of parameter vectors
for the model. Note that using this strategy we will surely
asymptotically overestimate the number of unknown source
parameters as the number of source parameters is growing
unboundedly. On the other hand, we will show that even with
this model we can achieve a guesswork exponent that is of the
right order. Let µn

⇤d(n)
be defined similar to (10). We use h

instead of h(n) when it is clear from the context. Let Gµn
⇤

h be
the order in which xn appears when the sequences are sorted
based on µn

⇤d(n)
in a decreasing fashion. Then, by invoking

Theorem 7 and considering the growth rate of h(n) we have

1

n
log

 
Gµn

⇤d(n)
(xn

)

Gµn
✓
(xn

)

!
= o(1).

Note that a universal strategy could have been achieved
by using type-size coding using the twice universal types



defined in [17], which would be asymptotically equivalent
to the aforementioned Bayesian strategy. Note that a similar
statement holds for the type-size guesswork, denoted by G??.
This will lead to the following.

Corollary 8: For any 1  U  V , the inscrutability rate
of a finite-memory Markov source with unknown order and
unknown parameters is the specific Rényi entropy rate:

S??(U, V, {µn}) = H
(V�U+1)/(V�U+2)

({µn}),

where S??(U, V, {µn}) is the inscrutability rate of guessing
U out of V secret strings chosen from an unknown Markov
string-source with unknown finite order.

Observe that when the number of unknown parameters
grows, the class of probability distributions that can be de-
scribed becomes richer. On the other hand, the cost of univer-
sality grows linearly with the number of unknown parameters.
Although our results show that the cost of universality is
asymptotically negligible, this overhead can be quite large
for moderate problem sizes when the class of distributions
is fairly complex. This is analogous to the cost of universal
compression that can be quite large for small to moderate
sequence lengths while universal compression is known to
asymptotically achieve the Shannon entropy.

V. MAXIMUM INSCRUTABILITY STRING-SOURCE WITH
CONSTRAINED SHANNON ENTROPY

Thus far, we showed that with a constrained Shannon
entropy budget, choosing strings independently from a station-
ary string-source, corresponds to the minimum inscrutability
rate against adversarial attacks. Furthermore, if the string-
source is finite-memory parametric, hiding the string-source
statistics is not asymptotically a remedy in the sense that it
does not decrease the inscrutability rate. A natural question
is whether there exists a string source in �HX that has a
larger inscrutability rate than the Shannon entropy rate. This
is answered in the following theorem.

Theorem 9: For any 1  U  V , the inscrutability of
identifying U out of V strings drawn independently from
{µn} 2 �HX is bounded from above by

Sn
(U, V, µn

)  Sn
(U, V, µn

), (12)

where µn is such that all symbols but one are uniform
and the probability measure is distributed between the most
probable symbol and the rest of the uniform symbols such
that the Shannon entropy budget HX is satisfied. Further, the
inscrutability rate exists for the string-source {µn} and is equal
to log |X |. That is

S(U, V, {µn}) = lim

n!1

1

n
Sn

(U, V, µn
) = log |X |. (13)

See Appendix E for the proof.
Theorem 9 indeed reveals that given any non-zero Shannon

entropy budget HX , the inscrutability rate of the string-source
{µn} is equal to that of a uniform distribution on the entire
support set, which needs a larger entropy budget log |X | per
symbol. In light of Theorems 2 and 9, if the inscrutability rate
exists for a string-source {µn} 2 �HX , then for all 1  U 
V it satisfies:

HX  S(U, V, {µn})  log |X |. (14)

VI. CONCLUSION

In this paper, we considered guesswork in a multi-string
setting where V secret strings are independently drawn from
a string-source with constrained Shannon entropy budget. We
showed that the asymptotic computational security of the
system against an inquisitor, who knows the (statistics of
the) string-source and wishes to correctly guess U out of V
secret strings, is related to a quantity defined as inscrutability.
We also established that with a constrained Shannon entropy
budget, the inscrutability rate of finite-memory parametric
string-sources approaches that of the source with minimum
inscrutability rate as V grows. Furthermore, we also proved
that hiding the statistics of any finite-memory string-source
does not provide larger inscrutability rate, i.e., the per-symbol
gain of hiding the statistics of a finite-memory string-source is
asymptotically vanishing. Finally, we showed that there exists
a string-source with the same entropy budget that asymptoti-
cally provides maximum inscrutability rate of log |X | achiev-
able on a support of size |X |.
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