
Prototyping of Ubiquitous Music Ecosystems

Victor Lazzarini1, Damián Keller2, Carlos Kuhn3, Marcelo Pimenta3, Joseph Timoney1

1Sound and Music Research Group
National University of Ireland, Maynooth

Co. Kildare Ireland

2Amazon Center for Music Research - NAP
Universidade Federal do Acre - Federal University of Acre

3Computer Science Department
Universidade Federal do Rio Grande do Sul

{victor.lazzarini,joseph.timoney}@nuim.ie,

dkeller@ccrma.Stanford.EDU, {mpimenta,ckuhn}@inf.ufrgs.br

Abstract. This paper focuses the prototyping stage of the design cycle of ubiq-
uitous music (ubimus) ecosystems. We present three case studies of prototype
deployments for creative musical activities. The first case exemplifies a ubimus
system for synchronous musical interaction using a hybrid Java-JavaScript de-
velopment platform, mow3s-ecolab. The second case study makes use of the
HTML5 Web Audio library to implement a loop-based sequencer. The third pro-
totype - an HTML-controlled sine-wave oscillator - provides an example of us-
ing the Chromium open-source sand-boxing technology Portable Native Client
(PNaCl) platform for audio programming on the web. This new approach in-
volved porting the Csound language and audio engine to the PNaCl web tech-
nology. The Csound PNaCl environment provides programming tools for ubiqui-
tous audio applications that go beyond the HTML5 Web Audio framework. The
limitations and advantages of the three approaches proposed - the hybrid Java/-
JavaScript environment, the HTML5 audio library and the Csound PNaCl in-
frastructure - are discussed in the context of rapid prototyping of ubimus ecosys-
tems.

1. Introduction
Creativity-centered design of ubiquitous musical systems involves at least four devel-
opmental stages: defining strategies, planning, prototyping and assessment. This paper
focuses on the third stage of the design cycle, prototyping. The first section shows related
works in the field and the second places the activity of prototyping within the context of
ubimus design. Then we present a case study focusing on the deployment of a ubimus
system for synchronous musical interaction using a hybrid Java-JavaScript development
platform based on browser technology. The second case involves the use of Web Audio
in HTML5 to implement a loop-based sequencer. And the third case features a simple
example of an HTML-controlled sine-wave oscillator using the Csound PNaCl program-
ming environment. The final section provides a summary of the observations gathered

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MURAL - Maynooth University Research Archive Library

https://core.ac.uk/display/297018941?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


during the design of these three prototypes and discusses the limitations and advantages
of each approach.

2. Related work
In recent years, there has been some research (and commercial) work aiming to pro-
vide support for development of audio applications for mobile platforms like MobileSTK
[Essl and Rohs 2006], based on STK and released in 2006, with support for Symbiam and
Windows CE devices. This platform was also ported do iOS in 2010 [Bryan et al. 2010]
and incorporated in a toolkit called MOMU. Also from Essl [Essl 2010], we have Urmus,
a LUA framework that is a multi-layered environment intended to support interface de-
sign, interaction design, interactive music performance and live patching on multi-touch
mobile devices. Control [Roberts 2011] is an application that allows users to define cus-
tom graphic interfaces for MIDI and OSC. The interfaces are defined using web stan-
dards like HTML,CSS and Javascript. Roberts also is one of the creators of Gibber
[Roberts et al. 2013], a language for live-coding in the browser. Gibber also has a 2D
drawing API and event handlers for touch, mouse, and keyboard events, enabling fast
prototyping. Since Gibber is centralized on a server, users can create collaborative pro-
gramming sessions and publish compositions and instruments.

3. Designing ubiquitous music systems
Defining design strategies for ubiquitous music encompasses two areas of expertise: in-
teraction and signal processing. The Ubiquitous Music Group (g-ubimus) has been inves-
tigating the musical applications of methods based on human-computer interaction and
ubiquitous computing techniques. Metaphors for interaction provide abstractions that en-
capsulate solutions applicable to a variety of activities without making unnecessary tech-
nical assumptions [Pimenta et al. 2012]. Thus, interaction metaphors materialize general
ergonomic principles to fulfil the human and the technological demands of the activity
[Keller et al. 2010] [Pimenta et al. 2012]. On a similar vein, recurring technological so-
lutions can be grouped as interactions patterns [Flores et al. 2010]. These patterns are
particularly useful when developers face the task of finding suitable strategies to deal
with specific interface implementation issues. So far, our group’s research has unveiled
four musical interaction patterns: natural interaction, event sequencing, process control
and mixing [Flores et al. 2012]. Each of these patterns tackles a specific interaction prob-
lem. Natural interaction deals with forms of musical interaction that are closely related to
handling everyday objects. Event sequencing lets the user manipulate temporal informa-
tion by freeing the musical events from their original time-line. Process control provides
high-level abstractions of multiple parametric configurations, letting the user control com-
plex processes by using simple actions. Mixing can be seen as the counterpart of event
sequencing for synchronous interaction. Musical data - including control sequences and
sound samples - is organized by user actions that occur in-time. Furthermore, techno-
logically based musical environments also demand tailoring support for sound render-
ing. Signal processing techniques for creative musical activities have to be developed
according to the characteristics of the tasks involved in the creative cycle, the computa-
tional resources provided by the support infrastructure and the profile of the target users.
Ubiquitous musical activities may involve mobility, connectivity and coordination among
heterogeneous devices with scarce computational resources. Thus, carefully chosen soft-



ware design strategies are a prerequisite to tackle signal processing support in ubiquitous
contexts [Lazzarini et al. 2012] [Lazzarini et al. 2014].

Ubiquitous-music planning studies involve early assessment of target population
expectations and identification of opportunities for creativity support. Through a ubimus
planning study, Lima and coauthors (2012)[Lima et al. 2012] found sharply differing ex-
pectations on technological usage by musicians and musically naive subjects in educa-
tional contexts. Based on these results, they proposed a simple rule of thumb: users
like what comes closer to reenacting their previous musical experiences. Non-technical
approaches, such as those proposed by traditional soundscape activities [Schafer 1977],
may not be suited for introducing non-musicians to sonic composition. Naive subjects
may respond better to technologically oriented approaches, as those found in ecologically
grounded creative practices [Keller et al. 2014]. If the rule of thumb previously stated
holds true, musically naive participants welcome easiness of use and naturality while
musicians tend to prefer interfaces that foster behaviors based on acoustic-instrumental
metaphors and common-practice music notation. Therefore, design of creatively oriented
technologies needs to fulfil different demands depending on the intended user base.

Technological support for pervasive musical activities increases the difficulty of
the design task on two fronts. Ubimus systems may enhance the users’ creative potential
by providing access to previously unavailable material and social resources. But a more
intensive usage of resources can introduce unintended complexities, narrowing the access
to a small user base. Thus, one challenge faced by ubimus designers is to provide intuitive
tools for complex creative tasks. Furthermore, custom-made, special purpose hardware
interfaces - such as those proposed by tangible user interface design approaches - may
fill the requirements of transparency and naturality reducing the cognitive load of com-
plex tasks. But they do not guarantee wide accessibility. In this case, the catch lies in
the financial toll. Special purpose systems are difficult to distribute and maintain. As a
consequence, the user base is narrowed by the increased costs of the hardware.

Previous research indicated that another important difficulty faced by the design-
ers of ubiquitous music tools is the slowness of the validation cycle [Keller et al. 2011a].
Because complete integrated systems are hard to design and test, tools usually deal with
isolated aspects of musical activity. Musicians usage of the tools may not correspond to
the intended design and integration of multiple elements may give rise to unforeseen prob-
lems. As a partial solution to these hurdles, the Ubiquitous Music Group has suggested the
inclusion of music making within the development cycle. This integration of music mak-
ing and software development is based on a broad approach to usability [Hornbaek 2006].
Fine-grained technical decisions are done after the usability requirements of the system
have been well established through actual usage. So rapid deployment is prioritized over
testing on a wide user base. Given the lack of standard support for audio and musical
data formats, initial development of audio applications for mobile platforms was feasi-
ble but complex and unintuitive [Keller et al. 2010] [Radanovitsck et al. 2011]. Recent
advances have paved the way to wider distribution of tools within the computer music
community [Brinkmann 2012] [Lazzarini et al. 2012] [Lazzarini et al. 2014]. Within an
iterative approach to design - involving creative musical activities and usability assess-
ments - we have developed rapid prototyping techniques tailored for ubiquitous music
contexts. Since our research targets both interaction and signal processing, flaws that



arise from coordination among these two processes can be identified early within the de-
sign cycle. Furthermore, full-blown creative musical activities uncover opportunities for
creative exploration of the software AND of the local resources [Keller et al. 2013]. The
prototypes reported in the second part of this paper provide examples of the advantages
and limitations of an experimentally grounded approach to the development of ubiquitous
music ecosystems.

The last stage of the ubimus design cycle involves the assessment of creative pro-
cesses and products, targeting the expansion of the creative potentials and the sustainable
usage of resources. Although creativity assessment is an active area of research within
psychology. [Amabile 1996] assessment of creative outcomes is still a taboo topic among
music practitioners. From a product-centered perspective [Boulez 1986], creativity as-
sessment would be equivalent to the measurement of musical value. This approach makes
two assumptions. First, the objective of musical activity is to obtain a product that can be
labelled as an expression of eminent creativity. Second, the value of the musical product
lies in its material constituents (the sounds or their symbolic representation, i.e., scores
or recordings of performances). In this case, standards are defined by the adopted com-
positional technique. Given a technique-centered metric, deviations are seen as spurious,
less valuable manifestations. Another problem of the product-centered approach is the
overrated reliance on domain-specific expert judgement. When asked to evaluate musi-
cal products - as it is done using Amabile’s (1996) Consensual Assessment Technique -
experts apply socially accepted views on creativity. These views are the result of several
years of musical training and experience with eminent forms of creativity. Given the dif-
ferent requirements of professional and non-professional participants [Lima et al. 2012],
this bias may render their assessment less useful to everyday-creativity manifestations.
To avoid these pitfalls, ubiquitous music projects rely on a mix of assessment techniques
[Keller et al. 2011b] engaging a small numbers of expert and untrained subjects in differ-
ent musical activities in a variety of environmental conditions. This is usually described as
’triangulation’ within the behavioral research literature. This approach does not make as-
sumptions regarding the compositional techniques, giving the same weight to musicians’
and lay-people’s feedback. Data is extracted from the emerging relationships among the
user profiles, the activities, the environmental conditions and the support infrastructure.

4. Prototyping platforms for ubiquitous music
During the initial phase of ubiquitous music research (2007-2010), the need of a short
development cycle for ubimus infrastructure was faced with multiple obstacles. On one
hand, web deployment featured little or no support for audio prototyping. Java and Adobe
Flash were the two languages that provided more extensive resources for audio appli-
cations [Keller et al. 2011a] [Miletto et al. 2011]. While Java was supported on several
mobile platforms, such as JavaME and Android, Adobe Flash was not always available
on mobile devices. Hybrid approaches to ubimus system development were introduced
involving the use of Javascript and Java-based synthesis engines [Keller et al. 2011b]. An
example of this proposal is the ubimus prototyping environment mow3s-ecolab. We de-
scribe a case example of the use of mow3s-ecolab in ubiquitous musical activities: the
Harpix 1.0 study.

More recently, the development of HTML led to the introduction of audio-oriented
web tools. HTML5 features Web Audio and Web Midi JavaScript-based technologies



intended as standards for web deployment. Through the implementation of a ubiquitous
music application, we explore some of the potentials and constraints of the Web Audio
platform. We describe the development of the LCM Sequencer HTML5, a prototype
for the creation of loop-based musical patterns. The design of this ubimus prototype
illuminates aspects of the interaction demands of the sequencing activity and highlights
the need for accurate timing support for synchronous usage.

As extensively discussed in a recent survey by Wyse and Subramanian
(2013)[Wyse and Subramanian 2013], the web browser is now a viable platform for the
deployment of music computing applications. Three technologies are dominant in audio
development for world-wide web applications: Java, Adobe Flash, and HTML5 Web Au-
dio. Applications based on Java can be rendered either as Applets or via Java Web Start.
Adobe Flash has grown in support by multiple browser vendors across various operat-
ing systems. Flash applications can be deployed as browser plug-ins, as well as through
Adobe Air6. The HTML5 Web Audio framework for Javascript is the newest of these
three technologies. Unlike the others, it is a proposed standard that is designed to be
implemented by the browser vendors.

Web Audio is today possibly the most popular toolkit for audio development on
the web. However it has a number of limitations. Firstly, its set of audio operations is
somewhat limited. Its functionality can be extended by Javascript code, which still pays a
significant performance penalty if compared to natively-compiled C/C++ code. Although
Javascript engines are constantly improving in speed and efficiency, running audio code
entirely in Javascript is a processor intensive task on modern systems. However, the
worst limitation is that the ScriptProcessorNode which is used to extend the API runs on
the main thread. This can result in dropouts when another process on the main thread, for
instance the user interface, interrupts or blocks the audio processing. This severely limits
what is possible to do with Web Audio in practical terms to the built-in processing nodes.
Consequently, we need to look for a technology that allows native applications to do audio
processing beyond what it is possible with Javascript and Web Audio. An alternative is
provided by the Native Clients (NaCl) platform.

The next three sections present examples of the three approaches just discussed:
a prototype using a hybrid Java-JavaScript support system - mow3s-ecolab; an HTML5-
based prototype using the Web Audio library; and a sine-wave oscillator exemplifying
the usage of the Csound PNaCl programming environment. Each example highlights
key requirements of the support for creativity-centered ubiquitous music design involving
both musical interaction and audio processing capabilities.

5. Case study: Harpix 1.0
5.1. Interaction patterns and metaphors
The first prototype - Harpix 1.0 - exemplifies the use of the spatial tagging
[Keller et al. 2011b]. Spatial tagging is defined as an interaction metaphor that makes
use of virtual or material visual cues - anchors - to support creative activity (fig.
1). Anchors provide a bridge between material and cognitive resources, enhancing
the creative potential. This approach to the design of ubiquitous music systems has
found support in multiple experiments with musicians and non-musicians applying a
closely related interaction metaphor: time tagging [Keller et al. 2010] [Keller et al. 2013]



[Pinheiro da Silva et al. 2012] [Pinheiro da Silva et al. 2013] [Radanovitsck et al. 2011]
[Pimenta et al. 2012].

Alternatively, Harpix 1.0 can be described as an instantiation of the natural inter-
action pattern [Flores et al. 2012]. The visual elements of the interface - or anchors - can
be manipulated directly, establishing a straightforward relationship between user actions
and sound events. This section summarizes the results of an experimental study reported
in [Keller et al. 2011b].

5.2. Materials and procedures

MOW3S is a set of tools for multiplatform interface design specifically targeted for web
usage. Given the adoption of the standard HTML syntax, MOW3S can be combined
with any tool implemented in Javascript. User actions are tracked to generate control
data formatted as standard MIDI events which are used to drive the synthesis engine
Ecolab. Ecolab is a wavetable synthesis engine implemented in Java. It features support
for network connections through standard IP sockets. By adopting DLS and General
MIDI standards consistent sonic renditions can be achieved without the need for real-time
streaming of audio. Thus, Ecolab can be used as a multiplatform back-end for desktop
systems with low computational resources.

Using the mow3s-ecolab environment, Keller and coauthors [Keller et al. 2011b]
implemented a prototype based on the spatial tagging metaphor: Harpix 1.0. The Harpix
architecture comprises three layers. On the first layer, user interaction is done through text
input, mouse position tracking and mouse-wheel movement tracking. The second layer
features spatial anchors represented by multiple draggable rectangles distributed on the
browser pane. This layer provides synthesis parameter mappings linked to the positions
of the anchors on the horizontal and vertical axes. The third layer deals with data routing
and sound synthesis.

Figure 1. The spatial tagging metaphor in Harpix 1.0.

Three subjects realized 37 interaction essays, comprising multiple conditions (see
table 1). The experimenters applied the CSI-NAP v.01 protocol to assess the level of
support of the Harpix system for creative musical activities (in a range of 0-10), focusing
on six creativity support factors: productivity, expressiveness, explorability, concentra-
tion, enjoyment and collaboration. Enjoyment was high during creative (9.5± 1.08) and



exploratory activities (8.42 ± 1.78). Expressiveness was also highly rated in creative ac-
tivities (9.10±0.99). On the other hand, collaboration was poorly judged in all conditions
(5.95± 2.84).

Activity/Participants solo duo trio i
creative sessions 4 5 3 12

exploratory sessions 4 5 3 12
imitative sessions 2 10 3 15

i 10 21 6 37

Table 1. Matrix of experimental conditions.

N=3,i=37 productivity expressiveness explorability concentration enjoyment collaboration
mean 7.3 7.51 6.08 7.24 7.89 5.95

std. dev. 1.68 2.51 2.54 2.36 2.5 2.84

Table 2. Matrix of experimental conditions.

6. Case study 2: LCM Sequencer HTML5
6.1. Interaction patterns and metaphors
The second prototype provides an example of the application of the event sequencing
interaction pattern (figure 2). Multiple loop-based sequences are controlled through a
two-tier grid interaction metaphor. On the first tier - selected by clicking the pattern
option - each line is assigned a timbre. Columns provide a visual representation of the
temporal distribution of the sound events. Color cells indicate events and black cells stand
for pauses. Sequence playback is controlled through three GUI elements: the start button,
the stop button and the tempo, set as beats-per-minute units. Sound events are rendered
through callbacks to the Web Audio synthesis engine. The second tier - available by
choosing the song option - provides a preset mechanism. A drag-and-drop mechanism
supports direct manipulation of the presets orderings. Up to five presets can be sequenced
using the two preset-cell rows.

6.2. Discussion of results
One of the caveats encountered during the preliminary design cycle was the imprecision of
the Javascript timer. To circumvent this limitation we resorted to the use of the setTimeOut
method, implementing a pooling system with higher resolution for event scheduling. This
worked well for stationary platforms but presents occasional problems when running on
the Android operating system. The Web Audio timer was accurate at speeds close to 500
BPM. Audio clicks were observed at higher speeds.

Through informal usage testing, we observed that the drag-and-drop preset feature
provides an effective shortcut for quick comparisons among multiple complex sequences.
This is particularly advantageous when compared to sequencers that are operated through
buttons. Rather than manipulating numeric values, the user has direct access to the re-
ordering operations. Given that the temporal order of the sequences is correlated to the
spatial order of the GUI elements, the anchoring cognitive mechanism furnishes ground-
ing for this interaction metaphor [Keller et al. 2010].



Figure 2. Two-tier grid interaction metaphor for event sequencing: LCM Se-
quencer HML5.

7. Case study 3: sine-wave oscillator in Csound PNaCl

7.1. Interaction patterns and metaphors

The sine-wave oscillator demonstrates a minimal application of the functionality provided
by the Csound PNaCl module. Given the didactic objective of the code, we focused on
the use of one controller - represented by an HTML element - and one synthesis param-
eter - the oscillator’s frequency. This is one of the simplest uses of the process control
interaction pattern.

7.2. Materials and procedures

The Native Clients (NaCl) platform1 allows the use of C and C++ code to create com-
ponents that are accessible to client-side Javascript, and run natively inside the browser.
NaCl is described as a sandboxing technology, as it provides a safe environment for code
to be executed, in an OS-independent manner [Yee et al. 2009] [Sehr et al. 2010].

The Portable NaCl [Donovan et al. 2010] toolchain, used to implement Csound
in this case study, is completely independent of any existing architecture, and thus it is
available for a variety of systems. However, PNaCl is currently only currently supported
by the Chrome and Chromium browsers (under most operating systems, the iOS and
Android versions do not yet support it). Since version 31, Chrome enables PNaCl by
default, allowing applications created with that technology to work completely out-of-
the-box. PNaCl modules can be served from anywhere in the open web.

1https://developers.google.com/native-client



The port of the Csound language to the PNaCl platform is complete, apart from its
plugin opcodes, which are not available due to non-existence of dynamic loading here. It
allows for realtime audio input and output, and it contains a complete Javascript interface
that is used to control it. MIDI can be used in the form of MIDI files or through the
Javascript implementation (WebMIDI).

7.2.1. Prototype Example

The following script demonstrates a minimal application using the function-
ality provided by the Csound PNaCl module2. It consists of the imple-
mentation of the moduleDidLoad() callback, where the Csound engine is
started (with csound.Play() and a simple Csound code is compiled with
csound.CompileOrc(). This will produce a sine wave whose frequency can be con-
trolled by changing the value of the HTML element with id freq:

function moduleDidLoad() {
csound.Play();
csound.CompileOrc(
"schedule 1,0,-1 \n" +
"instr 1 \n" +
"kfr chnget \"freq\" \n" +
"a1 oscili 0.5,kfr \n" +
"outs a1,a1 \n" +
"endin");
SetFreq();
}
function attachListeners() {

document.getElementById("freq").
addEventListener("change",SetFreq);

}
function SetFreq(){
var val = document.getElementById("freq").value;
csound.SetChannel("freq", val);
}

8. Discussion of results

To test the application of the spatial tagging metaphor, our team implemented a prototype
based on Java and Javascript browser technology to support creative musical activities:
Harpix 1.0. Harpix was used in an experiment encompassing three types of musical activ-
ities by three subjects. The assessment of creativity support indicated a high performance
in the creative and exploratory activities, with particular emphasis on two factors: enjoy-
ment and expressiveness. However, the collaboration and explorability factors were not
evaluated positively. Imitative activities also yielded low scores.

2http://vlazzarini.github.io/docs/pnacl_csound.html



A second prototype used the HTML5 Web Audio library to support the appli-
cation of the event sequencing interaction pattern. A two-tier interaction metaphor was
developed for synchronous manipulation of complex-sequence orderings. The preset-
cells drag-and-drop mechanism showed good potential during preliminary testing, hint-
ing at a common ground for this interaction metaphor, time tagging and spatial tagging
[Keller et al. 2010] [Keller et al. 2011b]. The Javascript timer did not perform well. The
Web Audio timer performed better, but usage at high metronome speeds produced clicks.

The third prototype explored the facilities provided by the Csound PNaCl environ-
ment. We introduced the use of PNaCl for audio programming through a port the Csound
language and audio engine. As one of the simplest uses of the process control interaction
pattern, the prototype sine-wave HTML-controlled oscillator provided an opportunity to
demonstrate the advantages and limitations of this new open-source sand-boxing technol-
ogy developed as part of the Chromium project. The fully functional implementation of
the Csound PNaCl environment features a mid-latency callback mechanism (ca. 10-11
ms, 512 frames at 44.1 or 48 KHz sampling rate) with uniform performance across vari-
ous platforms. The Audio API design is very straightforward, but it only supports stereo
output at one of the two sampling rates just mentioned.

The technologies employed in the development the three prototypes reported in
this paper showed different types of limitations for audio programming and interaction
support. On one hand, browser-based prototyping, as introduced by the mow3s-ecolab
environment, provides a flexible way to deploy and test interaction metaphors. Stan-
dard libraries, such as the HTML5 Web Audio and Web Midi, have good potential for
wide adoption but currently present design problems that limit their usage in synchronous
activities and audio programming tasks. At this point, they are better suited for asyn-
chronous support. We implemented a new set of technologies for audio programming
for web applications. The Csound PNaCl environment features a relatively low-latency
performance and incorporates the know-how developed over 30 years of Csound usage,
providing a path for the development of ubiquitous music ecosystems that goes beyond
the HTML5 Web Audio framework.

References

Amabile, T. (1996). Creativity in Context. Boulder, CO: Westview Press.

Boulez, P. (1986). Orientations: Collected Writings. London, UK: Faber and Faber.

Brinkmann, P. (2012). Making Musical Apps: Using the Libpd Sound Engine. O’Reilly
& Associates Incorporated.

Bryan, N. J., Herrera, J., Oh, J., and Wang, G. (2010). Momu: A mobile music toolkit. In
Proceedings of NIME 2010.

Donovan, A., Muth, R., Chen, B., and Sehr, D. (2010). PNaCl: Portable Native Client
Executables. Google White Paper.

Essl, G. (2010). Urmus: an environment for mobile instrument design and performance.
In Proceedings of ICMC 2010.

Essl, G. and Rohs, M. (2006). Mobile stk for symbian os. In Proceedings of ICMC 2006.



Flores, L., Miletto, E., Pimenta, M., Miranda, E., and Keller, D. (2010). Musical in-
teraction patterns: Communicating computer music knowledge in a multidisciplinary
project. In Proceedings of the 28th ACM International Conference on Design of Com-
munication, SIGDOC ’10, pages 199–206, New York, NY, USA. ACM.

Flores, L. V., Pimenta, M. S., and Keller, D. (2012). Patterns of musical interaction
with computing devices. In Proceedings of the III Ubiquitous Music Workshop (III
UbiMus), São Paulo, SP, Brazil. Ubiquitous Music Group (g-ubimus), São Paulo, SP,
Brazil: Ubiquitous Music Group.

Hornbaek, K. (2006). Current practice in measuring usability: Challenges to usability
studies and research. Internation Journal of Human-Computer Studies, 64(2):79–102.

Keller, D., Barreiro, D. L., Queiroz, M., and Pimenta, M. S. (2010). Anchoring in ubiq-
uitous musical activities. In Proceedings of the International Computer Music Confer-
ence, pages 319–326, Ann Arbor, MI: MPublishing, University of Michigan Library.
Ann Arbor, MI: MPublishing, University of Michigan Library.

Keller, D., Ferreira da Silva, E., Pinheiro da Silva, F., Lima, M. H., Pimenta, M. S., and
Lazzarini, V. (2013). Everyday musical creativity: An exploratory study with vocal
percussion (criatividade musicalccotidiana: Um estudo exploratório com sons vocais
percussivos). In Proceedings of the National Association of Music Research and Post-
Graduation Congress - ANPPOM (Anais do Congresso da Associação Nacional de
Pesquisa e Pós-Graduação em Música - ANPPOM). Natal, RN: ANPPOM.

Keller, D., Flores, L. V., Pimenta, M. S., Capasso, A., and Tinajero, P. (2011a). Conver-
gent trends toward ubiquitous music. Journal of New Music Research, 40(3):265–276.

Keller, D., Lima, M. H., Pimenta, M. S., and Queiroz, M. (2011b). Assessing musical cre-
ativity: material, procedural and contextual dimensions. In Proceedings of the National
Association of Music Research and Post-Graduation Congress - ANPPOM (Anais
do Congresso da Associação Nacional de Pesquisa e Pós-Graduação em Música -
ANPPOM), pages 708–714, Uberlândia, MG: ANPPOM. National Association of Mu-
sic Research and Post-Graduation (ANPPOM), Uberlândia, MG: ANPPOM.

Keller, D., Otero, N., Pimenta, M. S., Lima, M. H., Johann, M., Costalonga, L., and
Lazzarini, V. (2014). Relational properties in interaction aesthetics: The ubiquitous
music turn. In Proceedings of the Electronic Visualisation and the Arts Conference
(EVA-London 2014). London: Computer Arts Society Specialist Group.

Lazzarini, V., Costello, E., Yi, S., and Fitch, J. (2014). Csound on the web. In Proceedings
of the Linux Audio Conference (LAC2014).

Lazzarini, V., Yi, S., Timoney, J., Keller, D., and Pimenta, M. S. (2012). The mobile
csound platform. In Proceedings of the International Computer Music Conference,
pages 163–167, Ljubljana. ICMA, Ann Arbor, MI: MPublishing, University of Michi-
gan Library.

Lima, M. H., Keller, D., Pimenta, M. S., Lazzarini, V., and Miletto, E. M. (2012).
Creativity-centred design for ubiquitous musical activities: Two case studies. Jour-
nal of Music, Technology and Education, 5(2):195–222.



Miletto, E. M., Pimenta, M. S., Bouchet, F., Sansonnet, J.-P., and Keller, D. (2011). Prin-
ciples for music creation by novices in networked music environments. Journal of New
Music Research, 40(3):205–216.

Pimenta, M. S., Miletto, E. M., Keller, D., and Flores, L. V. (2012). Technological support
for online communities focusing on music creation: Adopting collaboration, flexibil-
ity and multiculturality from Brazilian creativity styles, volume Cases on Web 2.0 in
Developing Countries: Studies on Implementation, Application and Use, chapter 11.
Vancouver, BC: IGI Global Press.

Pinheiro da Silva, F., Keller, D., Ferreira da Silva, E., Pimenta, M. S., and Lazzarini, V.
(2013). Everyday musical creativity: exploratory study of ubiquitous musical activities
(criatividade musical cotidiana: estudo exploratório de atividades musicais ubı́quas).
Música Hodie, 13:64–79.

Pinheiro da Silva, F., Pimenta, M. S., Lazzarini, V., and Keller, D. (2012). Time tagging
in its niche: Engagement, explorability and creative attention (a marcação temporal no
seu nicho: Engajamento, explorabilidade e atenção criativa). In Proceedings of the III
Ubiquitous Music Workshop (III UbiMus), São Paulo, SP, Brazil. Ubiquitous Music
Group (g-ubimus), São Paulo, SP: Ubiquitous Music Group.

Radanovitsck, E. A. A., Keller, D., Flores, L. V., Pimenta, M. S., and Queiroz, M. (2011).
mixdroid: Time tagging for creative activities (mixdroid: Marcação temporal para
atividades criativas). In Proceedings of the XIII Brazilian Symposium on Computer
Music (SBCM), Vitória, ES: SBC. Vitória, ES: SBC.

Roberts, C. (2011). Control: Software for End-User Interface Programming and Interac-
tive Performance. In Proceedings of the ICMC 2011, Huddersfield, UK.

Roberts, C., Wakefield, G., and Wright, M. (2013). The Web Browser As Synthesizer
And Interface. In Proceedings of the International Conference on New Interfaces for
Musical Expression.

Schafer, R. M. (1977). The Tuning of the World. New York, NY: Knopf.

Sehr, D., Muth, R., Biffe, C., Khimenko, V., Pasko, E., Schimpf, K., Yee, B., and Chen,
B. (2010). Adapting Software Fault Isolation to Contemporary CPU Architectures. In
19th USENIX Security Symposium.

Wyse, L. and Subramanian, S. (2013). The Viability of the Web Browser as a Computer
Music Platform. Computer Music Journal, 37(4):10–23.

Yee, B., Sehr, D., Dardyk, G., Chen, J. B., Muth, R., Ormandy, T., Okasaka, S., Narula,
N., and Fullagar, N. (2009). Native Client: A Sandbox for Portable, Untrusted x86
Native Code. In 2009 IEEE Symposium on Security and Privacy.


