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Abstract

Background: Brain-Computer Interfaces (BCI) can potentially be used to aid in the recovery of lost motor control in a
limb following stroke. BCIs are typically used by subjects with no damage to the brain therefore relatively little is
known about the technical requirements for the design of a rehabilitative BCI for stroke.

Methods: 32-channel electroencephalogram (EEG) was recorded during a finger-tapping task from 10 healthy
subjects for one session and 5 stroke patients for two sessions approximately 6 months apart. An off-line BCI design
based on Filter Bank Common Spatial Patterns (FBCSP) was implemented to test and compare the efficacy and
accuracy of training a rehabilitative BCI with both stroke-affected and healthy data.

Results: Stroke-affected EEG datasets have lower 10-fold cross validation results than healthy EEG datasets. When
training a BCI with healthy EEG, average classification accuracy of stroke-affected EEG is lower than the average for
healthy EEG. Classification accuracy of the late session stroke EEG is improved by training the BCI on the
corresponding early stroke EEG dataset.

Conclusions: This exploratory study illustrates that stroke and the accompanying neuroplastic changes associated
with the recovery process can cause significant inter-subject changes in the EEG features suitable for mapping as part
of a neurofeedback therapy, even when individuals have scored largely similar with conventional behavioural
measures. It appears such measures can mask this individual variability in cortical reorganization. Consequently we
believe motor retraining BCI should initially be tailored to individual patients.
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Background
Brain computer interfaces (BCI) have been suggested as a
means by which neuro-rehabilitation following stroke may
be enhanced [1-6]. EEG-based BCI in particular are the
focus of current endeavours. As many stroke patients suf-
fer complete paralysis of a limb, this non-invasive physio-
logical measurement modality provides a means through
which brain activity associated with motor control can be
monitored, even in the absence of the normal behavioural
information provided by the movement itself. It is con-
jectured that rehabilitation therapy may be effectively
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administered to patients incapable of movement through
the provision of feedback on their attempt to move as
determined by the BCI.

Communication and control BCIs based on motor
paradigms typically aim to decode EEG patterns to allow a
user to learn to control an external device, such as a com-
puter or motorised wheelchair, in the absence of motor
control [7-10]. In this study, however, we are interested in
overt and attempted movement of a subject, as the ulti-
mate goal of the rehabilitative BCI modality considered
here is to train a patient to regain control of the affected
appendage. A rehabilitative BCI in this context should
encourage and reward the subject for attempted move-
ment, to encourage positive neuroplastic changes in the
brain and facilitate recovery of motor control [11]. Such
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an approach is subtly different from the motor imagery
BCI paradigm also applied in stroke rehabilitation. Under
the motor imagery paradigm the BCI is used to provide
feedback to the patient on their engagement with motor
imagery tasks. Motor imagery requires that the patient
engage in a mental rehearsal of the targeted movement
without attempting to actually execute the movement. It
has been suggested that such an approach can supple-
ment conventional therapy for certain patient groups [12].
The work here is predicated on the attempted movement
paradigm, which seeks to provide positive reinforcement
feedback in response to successful engagement of the
patient’s motor networks associated with the targeted
motor task. It is speculated that such an approach can help
reduce the possibility of the learned non-use phenomenon
through the delivery of contingent rewards - a form of
neurofeedback therapy [13].

There are significant engineering obstacles to the
achievement of such a goal however. These challenges
are, in many respects, similar to those encountered by
researchers attempting to make BCI more usable for
healthy subjects for the purposes of communication and
control. Conventional BCI design requires attention to
usability issues such as reducing setup complexity by
minimising the number of electrodes required, reduc-
ing training time and lightening the cognitive workload
associated with operation. These aspects must be sat-
isfied while maintaining useful function – not an easy
task as it requires maintenance of robust performance
in the face of poor instrumentation setup, artefact-
inducing subject movement and other detrimental
factors.

These problems present an even greater barrier to adop-
tion of this technology when considered in the context of
stroke rehabilitation due to the impact of the condition
on the abilities of the user. A typical stroke sufferer for
whom this technology is potentially useful will obviously
have very limited ability to manipulate a device precisely
and accurately on to their head unaided and therefore any
solution must be tolerant to such setup errors. In addi-
tion it is well established that stroke sufferers fatigue very
easily [14-17] and therefore in order to maximize therapy
during a session minimal (and ideally zero) time should be
lost to training the classifier.

Finally, as stroke is an injury to the brain, the stereo-
typical patterns of brain activity upon which conventional
BCI paradigms rely are not guaranteed to manifest them-
selves conventionally in response to movement intentions
and therefore it is not clear how best the BCI should
use the signals presented by the user. To compound this
latter aspect further, it is not clear how the EEG of the
recovering brain will resolve over time, which has rami-
fications in terms of pattern recognition and subsequent
interpretation.

The purpose, of the study reported in this paper, is
focussed on this latter aspect. We perform a compar-
ative exploratory analysis of the reliability and stability
of motor-related EEG features in stroke subjects from a
machine learning perspective. We wish to explore if such
features are sufficiently universal that machine learning
parameters trained using healthy subjects can be used for
stroke-affected patients and further if these remain useful
and valid during the critical period of recovery bridg-
ing the sub-acute to chronic phases. If BCI trained with
healthy stereotypical data provides sufficiently good per-
formance with stroke sufferers then such a deployment
paradigm would make BCI for stroke rehabilitation far
more practical in a clinical setting. If, on the other hand,
the stroke-affected EEG presents sufficiently differently
from healthy EEG or that it changes over time, the practi-
cal application of BCI in such a context will require more
sophisticated design from a machine learning perspec-
tive. The study here attempts to shed some light on this
pragmatic issue.

Methods
Subjects
Fifteen subjects in total participated in the study. Ten sub-
jects were healthy while five were stroke patients. The
healthy subjects (8 men and 2 women, mean age 57.2 ±
17.6 years) each participated in one recording session. The
stroke subjects (3 men and 2 women, mean age 59.0 ± 9.4
years) participated in two recording sessions. The aver-
age time from stroke to the first recording session was
22.2 ± 12.9 days. The average time between first and
second session was 190.6 ± 26.1 days.

Stroke patients were recruited from the Adelaide &
Meath Hospital, Dublin while control subjects were
recruited from the National University of Ireland
Maynooth. Inclusion criteria for the stroke patients is
detailed elsewhere [18] and summarised here as: Patients
must (1) be cognitively high functioning, (2) be able to
give informed consent and follow experimental instruc-
tions, (3) not suffer from a visual field defect or visual
neglect, and (4) have upper limb motor paresis in either
their dominant or non-dominant hand.

When possible, the Mini Mental State Exam (MMSE)
was used to ensure absence of serious cognitive impair-
ment in the stroke patients. One subject was unable to
conduct this test at the time of the first trial due to stroke-
induced expressive dysphasia, severely affecting their abil-
ity to produce speech. This subject was included in the
study following demonstration of cognitive requirements
and consultation with the patient’s stroke physician.

The Kapandji finger opposition test [19] was used to
determine motor ability in the stroke-affected hand. This
test involves the subject attempting to touch the thumb on
their stroke-affected hand to 10 points on the same hand
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in order from points 0 to 10, as shown in Figure 1. Four of
the stroke subjects scored at least 6/10, meaning they were
able to perform finger tapping with all of their digits. One
subject had minimal motor ability in their stroke-affected
hand and scored 0/10. Demographic information of the
stroke patients, including the MMSE and Kapandji scores
at the times of both trials is shown in Table 1. Demo-
graphic information of the control subjects is shown in
Table 2.

The locations of brain tissue damage due to stroke
were varied, including both cortical and subcortical bilat-
eral tissues: the left and right posterior parietal cortex,
left frontoparietal cortex, right temproparietal areas, right
medial temporal lobe, left thalami and internal capsules,
periventricular white matter lesions and centrum semio-
vale lesions. In all cases, the stroke was ischemic in
nature. Subject-specific lesion information can be found
in Table 3.

In accordance with ethical requirements, participants
were provided with a verbal as well as a written descrip-
tion of this research. Subjects provided written consent to
the conduction of the experiment and the publication of
their details. In the cases of two stroke patients who were
unable to give written consent due to their stroke, verbal
consent was accepted. Ethical approval for the experi-
ments was granted by the SJH/AMNCH Research Ethics
Committee of the Adelaide & Meath Hospital, Dublin and
by the Ethics Committee of the National University of Ire-
land Maynooth. The experiments were conducted at the
Adelaide & Meath Hospital, Dublin.

Experimental setup and motor paradigm
During a recording session, the subject was seated in
a comfortable chair in front of a laptop computer for
instruction presentation. The subject was asked to follow
on-screen instructions to perform finger-tapping while
the words “Move your fingers” were displayed and to rest
their hand while the word “Relax” was displayed. Before
the first instruction, the screen read “The experiment will
begin shortly” while after the final instruction, the screen
read “Experiment now over. Please stay still”. The healthy
subjects were instructed to perform the task with their
dominant hand, while the stroke subjects were instructed
to use their stroke-affected hand.

Stroke subjects took part in two recording sessions -
an “early” session which took place up to 6 weeks fol-
lowing stroke onset and a “late” session which took place
roughly 6 months after the early session. This period of
time between early and late sessions was chosen such that
spontaneous recovery processes would have had time to
run their course. Healthy subjects only participated in one
recording session.

The finger-tapping task involved repeatedly touching
the thumb to the tips of their 2nd to 5th digits on the
same hand at a self-paced speed. During his early record-
ing session, subject S3 was unable to touch his thumb to
any other digit yet still had some movement. In this case,
the subject still attempted to overtly perform the task.

A session consisted of 20 activation trials and 20 rest
trials, beginning with activation and alternating until all
40 trials had been completed. Each trial lasted 10 seconds

Figure 1 Kapandji thumb opposition scores. A score of 0 indicates no opposition, a score of 10 indicates maximal opposition.
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Table 1 Stroke subject demographics

Early session Late session

ID Sex Dominant Tested Age Time from Kapandji MMSE Time from Kapandji MMSE
hand hand stroke score score early score score

S1 M Right Right 58.8 6w 0d 6/10 28/30 25w 6d 6/10 28/30

S2 M Right Right 56.3 3w 2d 6/10 28/30 25w 2d 10/10 28/30

S3 M Right Left 75.0 2w 5d 0/10 29/30 25w 1d 3/10 30/30

S4 F Right Right 51.9 0w 6d 6/10 27/30 26w 0d 8/10 27/30

S5 F Right Right 53.0 3w 0d 9/10 N/A 33w 6d 9/10 28/30

with no rest time between trials (see Figure 2). Subject S3
reported being fatigued during his first recording session
and completed only 32 trials.

EEG data acquisition
EEG data was acquired using a BioSemi ActiveTwo sys-
tem (BioSemi B.V., Amsterdam, Netherlands) providing
32 Ag/AgCl electrodes positioned according to the 10/20
system. The system also recorded analogue event sig-
nals received from the presentation laptop. All data was
acquired at a sample rate of 1024 samples per second.

EEG data analysis
Recorded EEG data was processed off-line in Matlab 7
(Mathworks, Natick, Maine, USA) using a combination
of scripts from EEGLAB [20], Ramussen and Williams’
GPML code [21] and custom code.

We implemented an off-line BCI based on Filter Bank
Common Spatial Patterns (FBCSP) [22] as illustrated in
Figure 3. FBCSP is an adaptation of the Common Spatial
Patterns (CSP) algorithm [23]. The general steps of FBCSP
are:

1. Filter the EEG into a number of frequency ranges.
2. Apply the CSP algorithm separately to each

frequency range, decompose the EEG and perform
feature extraction.

Table 2 Healthy subject demographics

ID Sex Dominant hand Age

H1 F Right 75.8

H2 M Left 43.5

H3 M Right 61.2

H4 F Left 67.4

H5 M Right 40.7

H6 M Right 71.0

H7 M Right 50.7

H8 M Right 21.2

H9 M Right 71.9

H10 M Right 68.6

3. Rank and/or select features.
4. Train or test the classifier.

In our case we used Marginal Relevance (MRelv) to rank
our features and Gaussian Process Classification (GPC) to
classify the selected features. More detail on CSP, MRelv
and GPC is provided in following sections.

Two types of BCI training were explored in our investi-
gation: individual and grouped. For individual BCI train-
ing, only one EEG dataset was used to train the BCI
(“Train EEG”). Training the BCI in this way involved
obtaining the CSP filters, ranking and selecting the CSP
features and using them to train the classifier, all from
a single EEG dataset. Another EEG dataset was used
to test the BCI (“Test EEG”). This involved filtering the
EEG, applying the trained CSP model, selecting the same
features as before and classifying the features with the
classifier trained beforehand. For grouped BCI training,
all event data from a subset of datasets was used to obtain
a general CSP model. As before, this model is applied to all
of the training data, the resulting CSP filters are ranked,
selected and finally used to train the classifier. This general
CSP and feature selection model is then applied to other
individual EEG datasets and the resulting CSP features are
classified.

Datasets are identified primarily by Subject ID (Table 1
and 2). Stroke subjects took part in an “early” (E) and a
“late” (L) session and the datasets from these sessions are
labelled accordingly. Therefore, healthy subject datasets
are labelled H1–H10, early stroke datasets are labelled
S1E–S5E and late stroke datasets are labelled S1L–S5L.
Raw data was both visually inspected and analysed for
abnormally high signal power to check for any movement
artefact that may have affected the trial data. None was
found and so no trials were rejected.

Pre-processing
In the case of subjects who performed the finger tap-
ping task with their left hand, their EEG data was ini-
tially mirrored in the sagittal plane in order to more
accurately compare their dominant hand EEG patterns
with subjects who performed the task with their right
hand.
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Table 3 Stroke subject clinical information

Stroke subject Lesion information

S1 Left frontoparietal cortex acute ischemia (left middle carotid artery territory).

S2 Left parietal infarction, left thalami and internal capsule infarcts. Periventricular deep white matter change. Bilateral
lacunar infarcts in the centrum semiovale and basal ganglia. 1.5 cm acute infarct in left centrum semiovale.

S3 Area of acute infarction adjacent to the body of the right lateral ventricle involving the right centre of semiovale.

S4 Right posterior parietal and temproparietal regions. Background periventricular ischemic changes involving left
frontal parietal region.

S5 Medial right temporal lobe focal infarct. Periventricular deep white matter ischemic disease.

Raw EEG data was temporally filtered with a filter
bank made up of 9 frequency ranges. A zero-phase 4th-
order Butterworth filter was used to filter the EEG signals
into the frequency ranges 4-8, 8-12, 12-16, 16-20, 20-24,
24-28, 28-32, 32-36 and 36-40 Hz. This filtered EEG was
then separated into windowed time segments for each
trial of rest and activity. Segments began 2 seconds fol-
lowing the trial onset and lasted 6 seconds as shown in
Figure 2.

Common spatial patterns
The CSP algorithm [23,24] was then applied to the seg-
ments of EEG data from each frequency range. The CSP
algorithm produces a set of spatial filters which when used
to decompose the EEG signals generates signals whose
variances can be used to discriminate optimally between
two classes of activity:

Zb,i = W T
b Eb,i (1)

where Eb,i ∈ R
ct×t is the ith trial EEG measurement from

the bth frequency range, Wb ∈ R
ct×ct is the CSP projec-

tion matrix for the bth frequency range, Zb,i ∈ R
ct×t is the

ith trial spatially filtered EEG signals for the bth frequency
range, ct is the total number of channels, t is the num-
ber of time samples per trial and T denotes the transpose
operator.

The feature of an individual trial of data is the loga-
rithm of the proportional variance of one trial compared
to all other trials, within each frequency range. Feature
extraction and forming of the feature matrix proceeds as:

vb,i = log
(

var(Zb,i)∑it
i=1 var(Zb,i)

)
(2)

v̄i =
[
vT

1,i, vT
2,i, · · · , vT

bt ,i

]
(3)

V̄ =

⎡
⎢⎢⎢⎣

v̄1
v̄2
...

v̄it

⎤
⎥⎥⎥⎦ (4)

ȳ =

⎡
⎢⎢⎢⎣

ȳ1
ȳ2
...

ȳit

⎤
⎥⎥⎥⎦ (5)

where vb,i ∈ R
ct×1 is the set of features for each trial i and

frequency range b, v̄i ∈ R
1×(bt ·ct) is the features for each

frequency ranges ordered into a single feature vector for
each trial, V̄ ∈ R

it×(bt ·ct) is the full feature set for all trials,
ȳ ∈ R

it×1 is the true class label vector, it is the total num-
ber of trials, bt is the total number of frequency ranges and
ct is the total number of channels.

Marginal relevance
Only a selection of CSP features are used for classifica-
tion training and testing. During our BCI training, CSP
features to be used as features for classifier training are
ranked and a number of the highest ranked CSP features
are selected.

For this study, we chose to use Marginal Relevance
(MRelv) as our feature ranking method. The MRelv score
for each feature in a feature set (vT

1 , vT
2 , · · · vT

bt
) is the ratio

of their between-group to within-group sum of squares.
This idea underpins statistical methodologies such as
ANOVA and is explained in more detail elsewhere [25]

0 10 20 30

t (s)

2 8 12 18 22 28

CSP window

"Move" "Move""Rest"

Figure 2 Experimental protocol. Experimental protocol diagram showing timings of each trial along with the timing of the window of data used
in CSP analysis.
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Figure 3 FBCSP BCI system diagram. Simplified diagram of the off-line Brain-Computer Interface implementation used.

where it was used to screen out features when a large
number of spurious features are present.

The spatial filters for each CSP channel (rows of W )
have a corresponding spatial filter within the same filter
set at a mirrored location within the filter set W. Using
both filters together offers the best classification results -
for example, the 1st and last rows of W should be used
together or the 3rd and 3rd-from-last rows. Accordingly,
we selected the four highest ranked features [22] and their
corresponding features for classifier training. This feature
selection was then used during the subsequent BCI testing
stage.

Gaussian process classification
The Gaussian process (GP) model is an example of the
use of a flexible, probabilistic, non-parametric model with
uncertainty predictions. It fits naturally in the Bayesian
modelling framework in which, instead of parameteris-
ing a mapping function f (x), a prior is placed directly on
the space of possible functions f (x) which could repre-
sent the nonlinear mapping from input vector x to output
y. Its use and properties for modelling are reviewed in
[26,27]. Various applications (e.g. [28,29] in medicine and
bioengineering fields) have exploited different properties
of GP models for regression problems. In the field of geo-
statistics GP regression models are used for probabilistic
analysis of data and are more commonly known under the
term “Kriging”. A GP is a generalization of the Gaussian
probability distribution.

Beside regression, GP models can also be used for prob-
abilistic classification [27,30,31]. In the case of classifica-
tion the output data, y, are no longer connected simply
to the underlying function, f, as in the case of regression,
but are discrete. Since the classification is binary, vari-
able y can have one value for one class and another for
the other class, e.g. y ∈ {1, −1}. The classification of a

new data point x∗ involves two steps instead of one. In
the first step, a latent function f, which models qualita-
tively with a GP model how the likelihood of one class
versus the other changes over the x axis, is evaluated. In
the second step, the output of the latent function f is
squashed onto the range [0, 1] using any sigmoidal func-
tion, π(f ) = prob(y = 1|f ). This means that the squashed
output of GP model represents the probability of a data
point belonging to one of two types.

The result then, after classification, is that each event
is assigned a probability value in the range [0, 1] where
a score of 0 indicates complete confidence that the event
belongs to one class and a score of 1 indicates complete
confidence that an event is of the other class. In prac-
tice, the majority of events take intermediate values. We
applied a decision threshold of 0.5 to the probability scores
to determine which class an event had been classified as
belonging to by GPC.

Analyses
The first analysis carried out was 10-fold cross-validation
on each dataset. Trials were split into 10 subgroups, sep-
arated in temporal order. Nine of the subgroups were
used for: (1) training the FBCSP model, (2) selection of
the top ranking features using MRelv and (3) training
the GPC model. For the remaining subgroup, the previ-
ously created FBCSP model was applied with the same
features selected as determined by MRelv and those fea-
tures were then classified by the GPC model. This was
the repeated for each of the 10 subgroups in a dataset.
The purpose of this analysis is to establish the consis-
tency of the EEG responses and the classification features
derived during processing. A poor average classification
result would indicate that the responses recorded in a
dataset were inconsistent and thus possibly unsuitable for
deriving a general response.
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Individual BCI training was carried out using individ-
ual healthy datasets. Each dataset, including the healthy
ones, were then tested using each of the trained BCIs.
This resulted in a set of one-on-one BCIs, where one
subject’s EEG patterns were classified against each of the
healthy subject’s EEG patterns. Although this is an atyp-
ical BCI modality approach, it allows us to see how the
classification rates vary between subjects.

Grouped BCI training was also carried out using all of
the healthy datasets. A general BCI was trained from the
10 healthy subjects. Each stroke subject dataset was indi-
vidually tested against this general BCI. This is a common
implementation for communications BCI and so is use-
ful for our investigation. Furthermore, these classification
results are useful for comparison to the individual BCI
results obtained earlier. Similarly, we carried out Leave-
One-Out Cross-Validation on the healthy datasets. All
but one healthy dataset were grouped to train a BCI and
the excluded healthy datset was tested against this model.
This was then repeated for each healthy dataset. These
classification results are useful for comparison with the
stroke-affected results.

Individual BCI training was performed for each subject
where the early dataset was used to train the BCI and then
the same subject’s late dataset was then tested on that BCI.
The comparison of the results from this analysis with the
results from training the BCI on healthy EEG patterns are
important to our investigation.

Another result of interest is the frequency ranges of
selected CSP features for each dataset. To investigate this,
the frequency ranges of the selected CSP features was
recorded. For each group of Healthy, Early Stroke and
Late Stroke, we obtained a histogram of selected fre-
quency ranges to see which were favoured and highlight
any differences between groups.

Results
Single dataset 10-fold cross validation
The classification results following 10-fold cross-
validation on each dataset are shown in Table 4. 8/10
healthy subject datasets scored 100% and the remaining
2/10 scored 97.5% while only 5/10 stroke datasets scored
100% and the remaining 5/10 scored between 85% and
97.5%. There is no distinction between the early/late
stroke datasets as 2/5 early stroke datasets scored 100%
while 3/5 late stroke datasets scored 100%. We tested a
range of k values for k-fold cross validation of k = 2, 4,

6... 16. We saw no significant changes in these results
compared to k = 10.

Individual healthy dataset models applied to all data
A table of individual classification accuracies when train-
ing the models and classifier on each healthy dataset and
then testing on all other datasets is presented in Table 5.

Wilcoxon Rank Sum tests were used to evaluate statisti-
cal differences between these classification results for the
Healthy, All Stroke, Early Stroke and Late Stroke groups.
There were significant differences found between Healthy
(Median = 82.5) and All Stroke (Median = 70.0) (Z =
5.55, p < 0.05, r = 0.40), between Healthy (Median =
82.5) and Early Stroke (Median = 71.25) (Z = −3.97, p <

0.05, r = 0.34) and between Healthy (Median = 82.5) and
Late Stroke (Median = 61.25) (Z = −5.18, p < 0.05, r =
0.44). There was no significant difference found between
Early Stroke (Median = 71.25) and Late Stroke (Median =
61.25) (Z = 1.75, p > 0.05, r = 0.17).

Grouped healthy dataset model applied to stroke data
Classification accuracies of each stroke dataset when the
BCI is trained on all of the healthy EEG datasets grouped
together is presented in Table 6.

Wilcoxon Signed Rank tests were used to test for statis-
tical significance in the change in classification accuracy
when using grouped healthy datasets to train the BCI
as compared to the average results when using individ-
ual healthy datasets to train BCIs. We found no signif-
icant change (p > 0.05) in classification accuracy for
datasets S1E, S1L, S2L, S3E and S4E. We found signifi-
cant increases (p < 0.05) in classification accuracy for
datasets S3L, S4L, S5E and S5L and a significant decrease
(p < 0.05) for dataset S2E.

Leave-one-out cross-validation of healthy datasets
Classification accuracies of each healthy dataset when
the BCI is trained on all other healthy datasets grouped
together is presented in Table 7.

Wilcoxon Rank Sum tests were used to evalu-
ate statistical differences between these classification
results for the Healthy, All Stroke, Early Stroke and
Late Stroke groups when grouped healthy datasets
were use to train the BCI. There was a signifi-
cant difference found between Healthy (Median = 94)
and All Stroke (Median = 70) (Z = 3.04, p < 0.05, r =
0.68), between Healthy (Median = 94) and Early Stroke

Table 4 Single dataset 10-fold cross-validation classification accuracy%

Dataset S1E S1L S2E S2L S3E S3L S4E S4L S5E S5L

Accuracy 97.50 100.00 100.00 87.50 93.75 100.00 100.00 85.00 95.00 100.00

Dataset H1 H2 H3 H4 H5 H6 H7 H8 H9 H10

Accuracy 100.00 100.00 97.50 97.50 100.00 100.00 100.00 100.00 100.00 100.00
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Table 5 Cross-dataset classification accuracy%

Test EEG dataset
Train EEG dataset

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 Avg. StDev

S1E 62.5 75.0 97.5 85.0 72.5 47.5 87.5 90.0 87.5 72.5 77.8 14.9

S1L 75.0 70.0 80.0 75.0 42.5 77.5 57.5 70.0 82.5 67.5 69.8 11.9

S2E 70.0 62.5 60.0 77.5 50.0 62.5 70.0 50.0 87.5 65.0 65.5 11.5

S2L 57.5 50.0 55.0 55.0 40.0 55.0 60.0 52.5 62.5 57.5 54.5 6.2

S3E 75.0 53.1 81.3 75.0 62.5 78.1 84.4 78.1 81.3 75.0 74.4 9.5

S3L 77.5 60.0 87.5 72.5 52.5 85.0 70.0 80.0 92.5 90.0 76.8 13.1

S4E 70.0 57.5 40.0 65.0 60.0 65.0 67.5 52.5 62.5 72.5 61.3 9.5

S4L 52.5 70.0 40.0 50.0 55.0 70.0 47.5 55.0 60.0 57.5 55.8 9.4

S5E 90.0 55.0 65.0 90.0 75.0 80.0 55.0 72.5 65.0 72.5 72.0 12.5

S5L 82.5 57.5 60.0 77.5 80.0 55.0 47.5 85.0 70.0 95.0 71.0 15.4

H1 72.5 75.0 92.5 97.5 97.5 87.5 100.0 97.5 100.0 91.1 10.6

H2 62.5 37.5 62.5 80.0 55.0 67.5 90.0 55.0 82.5 65.8 16.3

H3 95.0 65.0 85.0 80.0 65.0 87.5 95.0 80.0 90.0 82.5 11.3

H4 80.0 72.5 77.5 57.5 65.0 77.5 82.5 90.0 90.0 76.9 10.7

H5 85.0 72.5 55.0 52.5 52.5 65.0 80.0 60.0 85.0 67.5 13.5

H6 100.0 65.0 65.0 97.5 87.5 80.0 70.0 95.0 87.5 83.1 13.7

H7 92.5 65.0 92.5 82.5 87.5 72.5 92.5 92.5 65.0 82.5 11.9

H8 100.0 80.0 60.0 90.0 90.0 80.0 72.5 90.0 92.5 83.9 12.1

H9 95.0 55.0 67.5 97.5 80.0 92.5 65.0 100.0 97.5 83.3 17.0

H10 87.5 67.5 80.0 85.0 85.0 87.5 70.0 95.0 100.0 84.2 10.5

Healthy datasets 80.1 14.4

All stroke datasets 67.9 13.7

Early stroke datasets 70.2 12.8

Late stroke datasets 65.6 14.3

Table 6 Grouped healthy classification accuracy%

Test dataset Accuracy

S1E 87.5

S1L 62.5

S2E 52.5

S2L 55.0

S3E 75.0

S3L 87.5

S4E 65.0

S4L 65.0

S5E 82.5

S5L 90.0

All average 72.3 ± 14.1

Early average 72.5 ± 14.0

Late average 72.0 ± 15.8

(Median = 75) (p < 0.05) and between Healthy results
(Median = 94) and Late Stroke results (Median = 65) (p <

0.05). There was no significant difference found between
Early Stroke results (Median = 75) and Late Stroke results
(Median = 65) (p < 0.05). The Z and r statistics were not

Table 7 Leave-one-out cross-validation of healthy data
classification accuracy%

Test dataset Accuracy

H1 100.0

H2 90.0

H3 95.0

H4 80.0

H5 87.5

H6 97.5

H7 92.5

H8 95.0

H9 95.0

H10 85.0

Average 91.8 ± 6.1
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calculated when very few data points were available. These
between-group significant difference results are the same
as those obtained when using individual BCIs trained on
healthy datasets.

Early Stroke datasets used to classify corresponding Late
Stroke datasets
Classification results of Late Stroke datasets when train-
ing with the corresponding Early Stroke dataset are shown
in Table 8. Classification accuracy of the five Late Stroke
datasets ranged from 62.5% to 95% with a median of
75.0%. We can compare these classification accuracy
results to those obtained when training the BCI on indi-
vidual healthy datasets and those obtained when training
on grouped healthy datasets.

Wilcoxon Signed Rank tests were used to compare these
longitudinal classification results to those obtained when
using BCIs trained on individual Healthy datasets. A sig-
nificant (p < 0.05) increase was seen for S1L, S2L and
S3L. There was no significant change (p < 0.05) found for
S4L and S5L.

Comparing the longitudinal classification accuracies to
those obtained when training the BCI on grouped healthy
datasets, we see that S1L improved from 62.5% to 82.5%,
S2L improved from 55% to 72.5%, S3L improved from
87.5% to 95%, S4L reduced from 65% to 62.5% and S5L
reduced from 90% to 75%.

A table of collated classification results of each BCI
training method for each stroke dataset is presented in
Table 9.

Frequency ranges of selected CSP features
Presented in Table 10 are the frequency ranges of the
CSP features selected for classifier training for each full
dataset. We also present a corresponding histogram of
this data grouped for Healthy, Stroke Early and Stroke
Late datasets in Figure 4. This histogram suggests that, for
healthy EEG, the frequency ranges of the CSP features in
the 16-20 Hz and 20-24 Hz are most frequently selected.
Early stroke datasets display some of the healthy datasets’
preference for selection of features in the 16-24 Hz range
however there is also increased selection of features in
the 8-16 Hz range. Late stroke datasets appear to shift

Table 8 Longitudinal classification accuracy%

Training dataset Test dataset Accuracy

S1E S1L 82.5

S2E S2L 72.5

S3E S3L 95.0

S4E S4L 62.5

S5E S5L 75.0

Average 77.5 ± 12.1

towards further selection of CSP features in lower fre-
quency ranges, with a noticeable increase in selection in
the 4-16 Hz range and a relative decrease in selection from
16 Hz upwards.

Discussion
Our first analysis result following 10-fold cross-validation
demonstrated that stroke-affected EEG is more likely to
contain individual trials misclassified than healthy EEG.
We can speculate on possible reasons why this is so.

For example, it is possible that EEG patterns from a
stroke-affected brain are more variable and are less stable
than those from a healthy brain, even if the stroke sub-
ject is consistent in their motor task. Given that even with
healthy subjects engaging successfully in a motor task,
flawless classification is not always possible then it is not
unreasonable to expect similar or even worse consistency
in stroke-affected brains. It is also possible that these mis-
classifications are due to the subject mis-performing the
task. A lapse in concentration on the part of the subject, a
restless hand movement, an involuntary leg twitch or pos-
sibly the effects of fatigue could reasonably cause a change
in the event-related EEG confounding the efforts of the
classifiers.

We make the assumption that each subject performed
the task correctly and to the best of their ability. Visual
supervision of the subjects did not reveal any movement
incidents and neither did our artefact analysis of trial
data. One aspect of recording experimental data with
stroke subjects is that minimization of preparation time
and set up is important to reduce the likelihood of a
subject becoming fatigued and being unable to complete
the task. Therefore screening for extraneous muscular
artefact based on recording activity of other periph-
eral muscle groups with, for example, electromyography
(EMG) would add substantially to the instrumentation
set up burden as well as risk the further discomfort of
the stroke patient. Incidentally, subject S3 reported being
fatigued during their early experimental session, resulting
in only 36 out of the potential 40 trials being completed.
Dataset S3E also scored the 2nd lowest 10-fold cross-
validation classification rate of all datasets at 93.75%. This
may suggest a link between fatigue and low k-fold cross-
correlation result but that the lowest scoring dataset was
S4L, where no fatigue was reported. This illustrates the
difficulty of describing the processes which underlie the
variable EEG features identified.

Three options for training a BCI were analysed. The first
two, training on healthy EEG and testing on stroke EEG,
represent zero-training BCI methods - an important con-
sideration for stroke rehabilitation BCI. In one case, we
trained a BCI for each healthy dataset and in the second,
we trained a single BCI on all healthy datasets grouped
together. This latter method is similar to a general BCI
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Table 9 Comparison of BCI training methods for stroke classification

Dataset
Individual healthy

Grouped healthy Early stroke
Avg StDev

S1E 77.8 14.9 87.5

S1L 69.8 11.9 62.5 82.5

S2E 65.5 11.5 52.5

S2L 54.5 6.2 55.0 72.5

S3E 74.4 9.5 75.0

S3L 76.8 13.1 87.5 95.0

S4E 61.3 9.5 65.0

S4L 55.8 9.4 65.0 62.5

S5E 72.0 12.5 82.5

S5L 71.0 15.4 90.0 75.0

All average 67.9 ± 8.3 72.3 ± 14.1

Early average 70.2 ± 6.7 72.5 ± 14.0

Late average 65.6 ± 9.9 72.0 ± 15.8 77.5 ± 12.1

used for communication and control. The former method,
however, provides more information relating to individ-
ual training and testing datasets. We can see, for example,
in Table 5 that dataset S1E was classified quite well with
the healthy dataset H3 (97.5%) yet was classified poorly

with the healthy dataset H6 (47.5%). These cross-dataset
EEG classifications are important because the reasons for
such varying classification successes may be important
for advancing rehabilitation BCI and our understanding
of stroke-affected EEG, yet these are not results that we

Table 10 Frequency ranges (Hz) of selected CSP features for each dataset

Dataset
Rank of selected features

1st 2nd 3rd 4th

S1E 16-20 12-16 8-12 16-20

S1L 8-12 4-8 8-12 4-8

S2E 8-12 8-12 12-16 20-24

S2L 36-40 32-36 32-36 12-16

S3E 12-16 8-12 16-20 20-24

S3L 12-16 12-16 16-20 12-16

S4E 24-28 8-12 16-20 20-24

S4L 24-28 12-16 20-24 16-20

S5E 16-20 12-16 24-28 16-20

S5L 4-8 4-8 8-12 4-8

H1 16-20 20-24 16-20 16-20

H2 24-28 36-40 20-24 24-28

H3 36-40 16-20 24-28 36-40

H4 16-20 16-20 20-24 16-20

H5 20-24 24-28 20-24 16-20

H6 12-16 8-12 12-16 12-16

H7 12-16 16-20 16-20 12-16

H8 20-24 16-20 20-24 24-28

H9 12-16 16-20 8-12 16-20

H10 20-24 16-20 20-24 16-20
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Figure 4 Selected CSP feature frequency ranges. Histogram of frequency ranges of selected CSP features following Marginal Relevance ranking
for each for the groups Healthy, Stroke Early and Stroke Late.

would see if we restricted ourselves to the more typi-
cal general BCI method. A full investigation into these
potential reasons is beyond the scope of this study yet may
be very interesting and useful future work.

Although training numerous BCIs on each healthy EEG
dataset is useful for exploring aspects of stroke-affect
EEG for BCI, they do not represent a real-world imple-
mentation of a zero-training BCI. This is the purpose of
the single general BCI trained on grouped healthy EEG
datasets. With this, we can see how well individual stroke
EEG patterns would be classified in a zero-training sce-
nario. We find that classification rates differ significantly
from the average classification rates of the individual BCIs
in 5/10 stroke datasets (S2E, S3L, S4L, S5E and S5L),
with 4/5 displaying an improvement. We can see how
classification rates of subject’s EEG patterns change from
the early session to the late session. Some subjects see a
marked increase (S3 and S5), some see little change (S2
and S4) and one sees a marked decrease (S1). These results
suggest that the EEG signal space related to the motor task
alters significantly over time, in at least some stroke cases.
The results of accuracy measurements reported here may
be useful in characterizing the change in EEG activity
patterns during the recovery phase following stroke and
so may potentially be used as a measurement of the
magnitude of neuroplasticity and compensatory changes
in the brain’s motor networks.

We suspect that these changes are due to numer-
ous unmeasured factors, such as lesion location, patient

physical rehabilitation or the patient’s typical use of the
stroke-affected hand. Although we have a measure of each
subject’s Kapandji score relating to their hand movement
capabilities, we have not attempted to relate this to a sub-
ject’s classification accuracies or their change in classifica-
tion accuracies over time. While Kapandji score, or other
measures of stroke-affected movement, may be related,
we do not have a large enough dataset to attempt to make
a connection.

For the late stroke datasets, we can compare classifica-
tion results for the third scenario where the BCI has been
trained on that subject’s own EEG recorded 6 months
previously. Table 9 presents the classification results of
all three methods and shows us that for 4/5 late stroke
datasets, training the BCI on the early stroke dataset
provides the best classification accuracy. There are some
interesting points of discussion here regarding whether to
train a rehabilitation BCI on healthy EEG patterns or a
subject’s own previously recorded EEG patterns. Firstly,
using the healthy EEG datasets, classification results are
lower. This may lead to frustration for the stroke patient,
resulting in non-compliance with rehabilitation BCI ther-
apy, even though the EEG patterns the patient must
generate reflect those typical of healthy cortex. Secondly,
training on the early stroke EEG patterns could potentially
result in a less frustrating experience and better engage-
ment from the patient, improving their rehabilitation out-
comes. Unfortunately, as we have seen in Figure 4, the
early stroke EEG patterns are not characteristic of EEG
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from a healthy brain reflecting, most likely, the network
pathophysiology resulting from the stroke. It seems that
the advantages and disadvantages of training a rehabilita-
tive BCI on either general healthy EEG or a subject’s own
earlier recorded EEG will have to be considered. We feel
that this will be an important question to be answered for
this field of research.

Presented in Figure 5 and Figure 6 are CSP plots of the
highest ranked CSP features for both classes of activity for
all datasets. Unfortunately we have far too few datasets for
these plots to provide more than a qualitative analysis of
the differences between stroke-affected and healthy CSP
plots. It appears that there is more left/right asymmetry
in the common spatial patterns of healthy datasets than
stroke-affected datasets. As the differences between the
two groups is not strong enough to draw any conclusions,
we instead feel that these plots suggest that stroke-affected
CSP plots are not dissimilar to healthy CSP plots. Perhaps
with a much larger dataset a thorough analysis of the dif-
ferences between stroke-affected and healthy CSP plots
would be possible.

The decision to record a session of EEG activity to train
a BCI for each subject may also depend on a trade-off
between improved classification accuracy and any possi-
ble negative effects of subjecting a stroke patient to an
EEG recording session. Possible negative effects include
anxiety (as many stroke patients are elderly and may have
apprehension about participating in an EEG recording
session), loss of therapy time (as time spent training leads
to a reduction in time spent using the BCI in a therapeutic
mode) and fatigue (because a stroke patient may become
fatigued as a result of training, leaving little energy for the
therapeutic interaction). In these patients where the above
factors are prevalent the BCI may have to be trained using
healthy data. The disadvantage of this approach from a
therapy perspective is that the inferior performance of the
classifier may lead to frustration on the part of the patient
and a potential rejection of the therapy.

Given the changes in the EEG pattern in stroke com-
pared to the stereotypical patterns for healthy subjects and
their evolution over time it is clear that there is consid-
erable scope for improved machine learning techniques
which can work from short session data and continually
adapt to the user. There is some recent work in this area
for healthy subjects using passive movement approaches
[32] and data space adaptation techniques [33]. However,
we wish to remark here that it is incredibly important to
note the tension between using machine learning to adapt
the interface to the EEG patterns on one hand and forcing
the patient to adapt to a classifier which is targeting the
appropriate cortical networks for healthy movement on
the other. To understand this somewhat subtle point, it is
worth noting that natural recovery in stroke is often sub-
optimal (spasticity, abnormal muscle synergies, etc.) and

these neurological symptoms can be related to pathophys-
iological motor and compensatory networks that have
arisen from the reorganization process. It is these changes
which are most likely reflected in the EEG measurements
reported here. If a machine learning algorithm consis-
tently adapts to the patient to optimize communication
with the feedback interface the therapy may well lead to
reinforcement of these maladaptive changes. It may be
better that the patient adapts to a classifier which is set
up to expect EEG features which are more typically asso-
ciated with engagement of those areas of cortex more
associated with healthy movement. The catch is that such
a classifier may be far too frustrating to use and there-
fore some trade-off between encouraging engagement and
directing recovery will have to be met for an effective BCI
instrument in this use case scenario. This issue should
be contrasted with the corresponding case for commu-
nicative BCI which instead adapts to whatever aspects of
a subject’s EEG is under volitional control requiring less
adaptation on the part of the user.

In terms of the machine learning options, Gaussian Pro-
cess classification was our chosen method because, as
an alternative to the more commonly used method of
Naive Bayesian classification for BCI, GP classification
makes no assumptions about the underlying class bound-
ary between regressors, including allowing for non-linear
class boundaries. As we are working with stroke-affected
EEG, we feel that this is a more robust classification
method to use when we are uncertain of the class space.
At the other extreme, neural networks would provide
the most detailed class boundary. However, GP classifi-
cation requires optimization of relatively few parameters
compared to neural networks. We see this as an advan-
tage over both Naive Bayesian classification and neural
networks. We wish to explore this method further as
part of our ongoing investigation into its usefulness for
BCI applications. Finally, GP classification produces more
information than that reported in this study and this could
potentially be used for gaining deeper insight into the vari-
ability of the features. As stated in the description, GPC
does not simply return a binary class membership but a
probability of class membership. We applied a decision
threshold to this probability but the probabilities them-
selves are information that could potentially be explored
in depth. After initial investigations, we found that there
is a notable difference in the variance of class member-
ship probabilities for stroke patients compared to healthy
subjects. This is an investigation that we are carrying out
presently.

Conclusions
Rehabilitative BCIs must take into account the difference
in EEG patterns between healthy subjects and stroke-
affected subjects in order for the system to be effective and
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Figure 5 Stroke CSP plots. Plots of the highest-ranking common spatial patterns (columns of W−1) for each stroke dataset along with the
frequency range the CSP plot belongs to.
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Figure 6 Healthy CSP plots. Plots of the highest-ranking common spatial patterns (columns of W−1) for each healthy dataset along with the
frequency range the CSP plot belongs to.
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to aid in recovery. The ideal scenario of a zero-training
rehabilitative BCI is possible using healthy EEG but the
classification accuracy is lower than for healthy sub-
jects which could be excessively frustrating for patients.
Classification accuracy of stroke EEG is improved signifi-
cantly through subject–specific BCI training sessions even
6 months prior however this comes with a cost in terms of
loss of rehabilitation time and potentially over-adaptation
to the user, which may be detrimental in terms of opti-
mal recovery. It is clear that a rehabilitative BCI must
have different technical requirements to those for a com-
munication and control BCI and these differences must
be considered when developing the appropriate machine
learning scheme for this use case.
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