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Abstract—For forensic purposes, short tandem repeat allele
signals are used as DNA fingerprints. The interpretation of
signals measured from samples has traditionally been conducted
by applying thresholding. More quantitative approaches have
recently been developed, but not for the purposes of identifying
an appropriate signal model. By analyzing data from 643 single
person samples, we develop such a signal model. Three standard
classes of two-parameter distributions, one symmetric (normal)
and two right-skewed (gamma and log-normal), were investigated
for their ability to adequately describe the data. Our analysis
suggests that additive noise is well modeled via the log-normal
distribution class and that variability in peak heights is well
described by the gamma distribution class. This is a crucial
step towards the development of principled techniques for mixed
sample signal deconvolution.

I. INTRODUCTION

Short tandem repeat (STR) allele signal interpretation is a

central tool in forensic analysis, as the number of repeats, i.e.

the number of repeated copies of a basic motif, at given loci

serve as an individual’s DNA fingerprint. The main artifacts

that affect the interpretation are stutter, which is an echo at a

fixed known distance from the allelic peak, variabilities in the

allelic peak heights, and baseline noise [1].

These artifacts are conventionally treated by applying differ-

ent thresholds to the data. For example, the effects of baseline

noise in STR profiles are suppressed by applying a threshold

which is called analytical threshold, detection threshold, or

minimum distinguishable signal threshold [2]–[6]. Further, a

second threshold, the stochastic threshold, may be used as a

tool to detect the presence of allelic peaks [7]. The traditional

way to counter the effect of stutter is to apply a stutter

ratio threshold, where the ratio is calculated by dividing the

height of the peak in stutter position by the height of the

allelic peak [8]–[11]. Other effects are generally not treated

specifically [12].
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Fig. 1. Segment of an electropherogram signal. True peaks are marked with
T and stutter peaks with S.

Applying thresholds during analysis has the drawback that

information is lost. For that reason, continuous methods, where

fewer or no thresholds are used, have been developed [11],

[13], [14]. In these methods the full variability in the peak

heights is taken into consideration, which leads to a soft

decision instead of a hard limiting.

Noise in STR profiles has been modeled as a normally dis-

tributed random variable [15], though a log-normal distribution

has also been suggested [6].

Recently, a Gaussian model for noise and allelic peak

heights has been proposed for the purpose of determining the

likelihood that a given number of individuals contributed to

a mixed sample [14]. Although the Gaussian model provided

improved identification over previous techniques, [14] did not

provide an analysis, independent of determining the most

likely number of contributors, to confirm its appropriateness.

Here we revisit this premise.

In this work, we derive a signal model for forensic DNA

mixtures from empirical data, using the Kolmogorov–Smirnov

(KS) and the chi-squared tests to assess the suitability of dif-

ferent distribution classes. We believe that such a signal model

is beneficial, as it will enable well-established techniques and

methods from signal processing to be used in the analysis and

interpretation of DNA profiles.

II. BIOLOGICAL BACKGROUND INFORMATION

The most widely used method for forensic DNA analysis

is based on short tandem repeats (STRs). In this method,
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the DNA sample is first amplified by polymerase chain re-

action (PCR), and then processed by capillary electrophoresis,

the output of which is an electropherogram, as shown in

Fig. 1. Since there is little information in the peak shape,

the electropherogram is further processed by a peak detection

algorithm, which outputs a list of peak locations together

with the corresponding heights of the peaks, measured in

relative fluorescence units (RFUs). The peak location contains

information about the fragment length, i.e. the number of

repeats, and the peak height information about the amount

of DNA in the sample.

The data that was used for the analyses in this paper

was generated with the AmpFlSTR Identifiler Plus kit, the

GeneAmp PCR System 9700, the 3130 Genetic Analyzer, and

the GeneMapper IDX v1.1.1 software from 643 single person

measurements. The kit has 15 tetranucleotide STR loci. An

injection time of 10 s was used, and the amount of DNA in

the samples was varied between 0.008 ng and 0.25 ng.

Artifacts in the generation of the electropherogram include

stutter, dye blobs, bleed through, -A, and spikes. For a defini-

tion of these terms and further explanations, see for example

[1]. We do not model dye blobs, bleed through, -A, and spikes

because they can be reliably removed in advance, as it has been

done manually for our data.

Stutter is a common artifact that is created during the

amplification of the DNA. Due to errors in the PCR process,

spurious stutter peaks, close to the allelic peaks, are inserted.

For tetranucleotide STR loci, the strongest stutter occurs at

a location which corresponds to a fragment length that is

4 base pairs shorter than the fragment length of the allelic

peak. Stutter at this location is referred to as N − 4 stutter.

Analogously, N +4 stutter denotes stutter that is 4 base pairs

longer than the fragment length of the allelic peak.

III. THE SIGNAL MODEL

There are different ways to represent the location of a peak.

In an idealized DNA signal, i.e., in a signal with no artifacts

or noise, each peak corresponds to an allele that is present in

the DNA sample. Hence, we can specify each peak location

by a pair (locus, allele name). This representation, which is

common in biology, is however not optimal for our purpose

of building a signal model.

We choose a vector representation of the measured data,

similar to [16], in which we list the signal values at all the

possible allele positions in a vector y = (y1, y2, . . . , yI)
T of

length I . In our case, since the peak heights are given as non-

negative integers, and we have 287 possible allele positions,

y is a vector in N
287
0 , where N0 denotes the set of natural

number including zero.

The proposed signal model is given by

y =
N∑

n=1

(tnγ ◦ Sxn) + η, (1)

where a ◦ b denotes the component-wise (Hadamard) product

of the vectors a and b.

The parameters of the model are: The number of con-

tributors in the mixture N , the genotypes of the contribu-

tors x1, . . . , xN , and the DNA amounts of the contributions

t1, . . . , tN . The genotype vector xn ∈ {0, 1, 2}I has a 2 at

index i if person n has a homozygote allele at this index, a

1 if person n has a heterozygote allele at this index, and a 0
if person n has no allele at this index. The matrix S ∈ R

I×I

models stutter. γ is a random vector that describes the variation

in the allelic peak heights and η a random vector that describes

the effect of additive noise. We use the standard assumption

that both random vectors have independent components. The

distributions of γ and η are analyzed in the next section.

We model mixtures with more than one person as a linear

superposition of the individual contributions, which is justified

by considerations about the involved physical and chemical

processes.

IV. DATA ANALYSIS

In order to determine the signal model (1), we analyzed

the data from 643 single person measurements with a DNA

amount ranging from 0.008 ng to 0.25 ng. Knowing the geno-

type of these samples, we can group the components of the

signal vector y into three categories:

1) true peak component,

2) stutter component, and

3) noise component.

We call a component yi of the signal vector y a true peak

component if the person has either a homozygote allele

(double true peak) or a heterozygote allele (single true peak) at

index i. We call a component, a stutter component if it is either

in N − 4 or in N + 4 stutter location of a true peak. Further,

all remaining components are called noise components.

The presence of small random errors in the processing of

the DNA sample and the measurement can be interpreted as

noise. Thus, even if we would not expect a peak at a certain

location according to the genotype, it nevertheless can happen

that we measure a non-zero value, due to noise.

We start with the analysis of noise in Section IV-A. The true

peaks are treated in Section IV-B and stutter in Section IV-C.

Since it is well-known that the statistics of the peaks depends

on the locus, we do a per locus analysis.

A. Noise

Roughly 80% of the noise components have zero height.

The rest of the analysis in this section deals only with the

non-zero noise measurement values.

The actual peak heights are given as integers by the soft-

ware. Hence, we can either model the peak heights as a

discrete random variable, or as a continuous random variable

that is quantized to integer values. We choose the second

approach, because, as we will see, such a model explains the

data very well. In the statistical literature quantized data is

also known as grouped data.

In order to apply the KS test, the parameters of the refer-

ence distributions are obtained from the data by maximum-

likelihood (ML) estimators.
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Fig. 2. Empirical CDF of the non-zero noise measurement values (blue)
and CDF of a quantized log-normal random variable (dashed red) for locus
D3S1358 and a DNA mass of 0.25 ng.

min p-val. max p-val. < 0.05 rej.

non-zero noise log-normal 59.7% 100% 0 0
gamma 2.6% 100% 1 0
normal 0.0% 69.7% 9 5

single true peak log-normal 14.3% 99.9% 0 0
gamma 20.5% 99.8% 0 0
normal 10.8% 94.2% 0 0

TABLE I
KS TEST: MINIMUM AND MAXIMUM p-VALUES OVER THE 15 LOCI, THE

NUMBER OF LOCI WITH A p-VALUE SMALLER THAN 5%, AND THE

NUMBER OF LOCI FOR WHICH THE HYPOTHESIS IS REJECTED AFTER

HOLM-BONFERRONI CORRECTION.

In Fig. 2 we see the empirical cumulative distribution

function (CDF) of the noise measurement values for the

D3S1358 locus and a DNA mass of 0.25 ng in blue and the

CDF of a quantized log-normally distributed random variable

with parameters m = 1.76 and s = 0.60 in dashed red. The

quantized log-normal cumulative distribution function is given

by

F q
m,s(x) =

1

2

[
1 + erf

(
ln(�x�+ 1/2)−m

s
√
2

)]
,

where erf is the error function. The KS statistic is 0.056, which

leads to a p-value of 77%. The p-values for all loci range from

59.7% to 100%.

We also perform the test for the gamma distribution class,

which gives p-values in the range from 2.6% to 100%, and

the normal distribution class, where 9 of the 15 loci have a

p-value smaller then 5%.

The p-value is a measure for the quality of a fit. If the

p-value is smaller than 5%, the hypothesis that the samples

are taken from the reference distribution would be rejected.

However, if multiple hypotheses are tested, as in our case

for the different loci, the likelihood to witness a rare event

increases. The Holm-Bonferroni correction [17] is a method

to counteract the problem of multiple testing.

The minimum and maximum p-values over all loci for the

log-normal, the gamma, and the normal distribution are shown
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Fig. 3. Maximum likelihood estimates m̂ and ŝ of the parameters m and s
for the non-zero noise measurement values, together with confidence intervals,
as a function of the DNA mass for locus D3S1358.
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Fig. 4. Empirical CDF of the single true peak heights (blue), CDF of a
normal random variable (dotted green), CDF of a log-normal random variable
(dashed red), and CDF of a gamma random variable (dash-dotted black) for
locus D3S1358 and a DNA mass of 0.25 ng.

in Table I for a DNA mass of 0.25 ng. Further, the table shows

the number of loci for which the hypothesis is rejected before

and after Holm-Bonferroni correction.

Although we estimate the parameters of the reference dis-

tribution from the same data that is used for the KS test, and

the KS test is known to be conservative for quantized data in

the sense that the obtained p-values are too large, we still can

exclude the normal distribution, and have an indication that

the log-normal distribution might explain the data better than

the gamma distribution. Application of Pearson’s chi-squared

test, the results of which are summarized in Table II, supports

this.

The results that have been presented so far, are from data

with a DNA mass of 0.25 ng. Since the results for the other

DNA masses are similar, and the dependence of the estimated

parameters m̂ and ŝ on the DNA mass is minimal for the DNA

mass range from 0.008 ng to 0.25 ng, as shown in Figure 3,

we choose to model the additive noise η as target independent.



B. True Peaks

In the case of the true peaks, we can ignore the effects

of quantization, because the peak heights are in the order of

hundreds of RFUs.

In Fig. 4 we see the empirical CDF of the single true peak

heights in blue, the CDF of a normally distributed random

variable with mean μ and variance σ2

1

2

[
1 + erf

(
x− μ

σ
√
2

)]

in dotted green, the CDF of a log-normally distributed random

variable with parameters m and s

1

2

[
1 + erf

(
lnx−m

s
√
2

)]

in dashed red, and the CDF of a gamma distributed random

variable with parameters k and θ

γ
(
k, x

θ

)
Γ(k)

,

where γ is the lower incomplete gamma function and Γ the

gamma function, in dash-dotted black for the D3S1358 locus

and a DNA mass of 0.25 ng. The parameters of all distributions

were determined by the corresponding maximum likelihood

estimator. The p-value of the KS test for the normal distri-

bution is 20.6%, the p-value for the log-normal distribution

95.4%, and the p-value for the gamma distribution 67.7%.

The p-values for all loci range from 10.8% to 94.2% for

the normal distribution class, from 14.3% to 99.9% for the

log-normal distribution class, and from 20.5% to 99.8% for

the gamma distribution class. There is no clear preference for

one of the three distribution classes, since none of them is

rejected by the KS test, as shown in Table I.

Therefore, we also perform the chi-squared test for the true

peaks and the different distribution classes. For each DNA

mass, distribution class, and locus the procedure is as follows:

1) Choose the initial number of bins according to �1.88 ·
M2/5 + 1/2�, where M denotes the number of samples

[18].

2) Get the ML estimate of the parameters from the binned

data.

3) Pool the bins to ensure that the theoretical frequency in

each bin is larger than or equal to 5.

4) Get an update of the ML estimate of the parameters from

the newly binned data.

5) Calculate the p-value based on the chi-squared test.

After having computed the p-values for all loci, we also do

a Holm-Bonferroni correction to correct for the multiple loci

testing.

In Table II we see the results for a DNA mass of 0.25 ng.

Without Holm-Bonferroni correction, for both the gamma and

the log-normal distribution class 4 loci have a p-value smaller

than 5%, and for the normal distribution class 5 loci loci have

a p-value smaller than 5%. With Holm-Bonferroni correction,

for the log-normal and normal distribution class the hypothesis

min p-val. max p-val. < 0.05 rej.

non-zero noise log-normal 2.7% 86.8% 1 0
gamma 0.0% 93.6% 5 1
normal 0.0% 19.4% 13 11

single true peak log-normal 0.0% 85.2% 4 2
gamma 0.1% 99.0% 4 1
normal 0.0% 57.8% 5 2

TABLE II
CHI-SQUARED TEST: MINIMUM AND MAXIMUM p-VALUES OVER THE 15
LOCI, THE NUMBER OF LOCI WITH A p-VALUE SMALLER THAN 5%, AND

THE NUMBER OF LOCI FOR WHICH THE HYPOTHESIS IS REJECTED AFTER

HOLM-BONFERRONI CORRECTION.

DNA mass in ng
0.008 0.016 0.031 0.047 0.063 0.125 0.25

gamma 1 0 0 0 0 0 1
log-normal 1 0 0 0 0 1 2
normal 8 15 6 0 4 0 2

TABLE III
CHI-SQUARED TEST WITH HOLM-BONFERRONI CORRECTION FOR SINGLE

TRUE PEAKS: NUMBER OF LOCI FOR WHICH THE HYPOTHESIS IS

REJECTED.

is rejected for 2 loci and for the gamma distribution class the

hypothesis is rejected for 1 locus.

Since the results for the other DNA masses are different,

we summarize them in Table III. With Holm-Bonferroni

correction, except for the smallest and largest DNA mass,

for the gamma distribution class the hypothesis is rejected

for none of the loci. The log-normal distribution class gives

comparable results. The normal distribution class in contrast

has by far the most rejections. For example, for a DNA mass

of 0.016 ng the normal distribution class is rejected for all 15
loci.

We further study the dependence of the peak height on the

amount of DNA in the sample. The results are shown in Figs. 5

and 6. Both mean and standard deviation increase linearly with

DNA mass. Since the standard deviation increases linearly

with the DNA mass, we choose a multiplicative model for the

variation in the true peak heights, as expressed by the random

vector γ in the model (1).

C. Stutter

We use a linear non-stochastic stutter model similar to the

approach in [16].

In order to characterize the amount of stutter two quantities,

the stutter ratio and the stutter proportion have been defined

in the literature [10]. The stutter ratio is given by rs = hs/ha,

and the stutter proportion by ps = hs/(hs + ha), where hs

is the peak height of the stutter peak and ha the peak height

of the allelic peak. In this paper we work with the stutter

proportion, since it reflects more naturally the fact that the

DNA that accounts for the stutter peak is removed from the

allelic peak.
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sion line (black).
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Fig. 6. Standard deviation of the
single true peaks versus the DNA
mass (blue dots) and linear least
squares regression line (black).

If we denote by h̃a the hypothetical allelic peak height

before the stutter occurred, then hs and ha are given by

hs = psh̃a (2)

and

ha = (1− ps)h̃a, (3)

respectively. In our model (1), the linear relationship in (2) and

(3) is expressed by a multiplication with the stutter matrix S.

Although this model is simple, it is widely used to describe

the effects of stutter [10], [13], [16].

It has been observed that the stutter proportion is not

constant within a locus. In general, it increases with increasing

repeat number. In [10], [11] it was reported that the longest

uninterrupted sequence (LUS) in an allele might be more

appropriate than the repeat number of an allele to describe

the increase of the stutter proportion. Our approach to model

stutter is linear in the sense that the stutter peak height is

always a fixed proportion of the hypothetical allelic peak

height before stutter, according to (2). However, it is flexible

in terms of modeling the dependence on the LUS. In principle,

if enough data is available to determine the entries of S, the

stutter model can be allele based, that is, every allele can have

a different stutter proportion if necessary.

V. CONCLUSION

We proposed a fully quantitative signal model for forensic

DNA profiles that models the variability in the allelic peak

heights, stutter, and baseline noise. To test the suitability of

different probability distribution classes for the noise and the

true peak heights, we applied the Kolmogorov–Smirnov and

the chi-squared test. Three standard classes of two-parameter

distributions, the normal, gamma, and log-normal distribution,

were investigated. It turned out that the Gaussian model for

noise and allelic peak heights is rejected by several test, and

so appears ill suited to the forensics application. Both the

gamma and log-normal models, on the other hand, provide

good statistical consistency with the data, and so can be

employed to succinctly summarize peak-height distributions

through a small number of parameters.
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