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Abstract A data set consisting of Volunteered geographical information (VGI) and
data provided by expert researchers monitoring the first bloom dates of lilacs from
1956 to 2003 is used to investigate changes in the onset of the North American
spring. It is argued that care must be taken when analysing data of this kind, with
particular focus on the issues of lack of experimental design, and Simpson’s paradox.
Approaches used to overcome this issue make use of random coefficient modelling,
and bootstrapping approaches. Once the suggested methods have been employed,
a gradual advance in the onset of spring is suggested by the results of the analysis.
A key lesson learned is that the appropriateness of the model calibration technique
used given the process of data collection needs careful consideration.

Keywords Phenology · Random effects models · Citizen science

1 Introduction

There is a long tradition of volunteers collecting and reporting different types of
information about the environment we live in [35]. Robert Marsham started to
formally note the arrival of the first swallow in 1736. A recent description notes that

This popular science really took off when he reported his records to the Royal
Society in 1789 and many other country gentlemen took up the pastime. [34]

Considerably more recently, the term ‘volunteered geographical information’
(VGI) was coined by [15], to describe geographical information collated from a
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broad group of private citizens, typically without formal training, and on a voluntary
basis. A related idea is that of citizen science (CS)—see for example [8] or [20].
Here, information is collated from a large group of citizens—and in several cases this
information is also geographically referenced. The two concepts are not identical—
but in general, both activities are seen as activities involving the collection of data by
the public at large, rather than by officially sanctioned agencies. One characteristic
of CS is that the degree of prior understanding required of volunteers in a CS-based
project can vary greatly. In some cases virtually no skills required of the volunteers,
whereas in others some degree of volunteer instruction—and possibly selection—is
necessary, so that the input of information has some degree of formal control. One
example of the latter is given by Goodchild in the above reference who cites the US
Christmas Bird Count, and states that

Participants require a fairly high level of skill, and over the years a number
of protocols have been established to ensure that the resulting data have high
quality.

There is an increasing amount of such data that could be, and in some cases is
being, incorporated into formal scientific analyses. This includes spatially referenced
and geo-located data such as the data referred to above, as well as explicitly map-
based data (e.g. Openstreetmap). Also, much historical volunteered information is
held by public organisations and agencies who have an obligation to make their data
holdings publicly available [18].

However, in all of the above situations the data collection process differs from that
of a prescribed scientific experiment—and this has to be taken into consideration
when analysing the data, calibrating models or testing hypotheses. The ideal from
a scientific viewpoint is perhaps the ‘designed experiment’ [24] seen as a desirable
situation for reliable statistical modelling. In an ideal world, one has a great deal
of control over data collection, and indeed it is possible to deduce strategies for
data collection giving optimal calibrations of statistical models. However VGI can
sometimes provide a very different situation from this, as even when training is
provided for the volunteers to improve the reliability of the observations, one has
little control of the spatial distribution of the locations: this depends on the locations
of the individuals volunteering the information, and a higher level of spatial control
in which locations of observations are pre-specified—such as that considered in the
design aspects of Myers et al.’s [23] review of methods for response surfaces over
data collection strategies that are needed for such optimally designed experiments is
lacking.

Nevertheless, despite the above observation there are other benefits to using
the public participation approach. Arguably, an advantage is that data is collected
by a potentially very large unpaid workforce—for example, although noting the
importance of the correct training of staff, [6] observe that the use of CS has resulted
in the saving of $30,000 per year on one particular project, and at the time of writing,
a large amount of data for a diverse range of applications is collected in this way
[17]. However, the aim of this paper is not simply to report that this phenomenon is
occurring, as discussion is quite widespread, see for example [7, 16] or more generally
a special edition of Geoinformatica from March 2010. However, here we consider a
data analysis application, but highlight aspects that need to be considered since data
of the above kind is being used. In particular, we consider the analysis of CS data
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relating to phenology—see for example [29]. Phenology is the study of periodical
plant and animal life cycle events and their relation to climate. In recent years,
phenology has been used as an instrument to assess evidence of climate change.
In particular [5] and [32] use observations of the first bloom and first leaf dates of
particular plants recorded over a number of years to assess gradual advances in the
onset of spring. The data analysed in these studies contains the recorded first bloom
and first leaf dates of lilacs (Syringa) from a series of observation locations, with the
data provided by a mixture of trained scientists and others.

A key aim here is to provide a demonstration of how data of this kind may be
analysed, and in addition to reporting preliminary finding, to discuss and outline
some of the issues that were encountered when carrying out the analysis. In the next
section, the data set used is described in more detail. The following section outlines
an example of the problems that may occur when an inappropriate data analysis
technique is employed. A remedy to this problem is then proposed, and from this
stand point a number of further directions for analysis are explored. The paper is
then concluded with a short summary and discussion.

2 The data

The data here was downloaded from the web site provided by [31],1 and is derived
from two main studies, one in the western states of the US, and one based mainly
in the eastern states, with a small number of locations in Canada included also. The
former is described in detail in [5], the latter in [29] and [28]. In each case, the data
records the first leaf and first bloom dates of the common lilac, expressed as a number
of days since the start of the year. The [32] paper combines data from both of these
studies to obtain a data set for the whole of the US. The locations are shown in Fig. 1
on a backdrop of national boundaries.2 Clearly, the east/west divide is not perfect,
and the density of observations also changes in the two studies (particularly in the
mid west). The change in pattern serves to illustrate the split in the data, which will
prove to be significant later on in this paper.

Both studies were implemented via networks of observers. The most detailed
description of this is in the Cayan et al. paper—who state that the western survey was
initiated by [3]—who describes how the Montana Agricultural Experimental Station
set up a network of observers, with contributors from the US Weather Bureau and
local garden clubs, to monitor various stages in the annual cycle of the lilac—a very
early example of data collected using the CS paradigm. This is quite a complex data
set in terms of its provenance—perhaps those data provided by the US Weather
Bureau would be more reliable than those of other contributors, although since
all of the data is combined it is difficult to assess this hypothesis. A history of this
and the eastern network is provided by the [37]. Over time this activity extended
geographically, and continued until 1994. There was a subsequent revival of interest
in 1999, until the last observations of the data recorded in 2003. The eastern network
was initiated later—in 1961—and was at its most active during the 1960s and 1970s.

1ftp://ftp.ncdc.noaa.gov/pub/data/paleo/phenology/north_america_lilac.txt
2http://www.naturalearthdata.com/downloads/50m-cultural-vectors/50m-admin-0-countries-2/

ftp://ftp.ncdc.noaa.gov/pub/data/paleo/phenology/north_america_lilac.txt
http://www.naturalearthdata.com/downloads/50m-cultural-vectors/50m-admin-0-countries-2/
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Eastern Study
Western Study

Locations of Observations

Fig. 1 Locations of lilac observation points

The numbers of observations from each network in five year periods are tabulated
in Table 1. Note that in total there are 15072 observations (although only 14265 have
recorded the first bloom date) from 1126 distinct locations.

From the table it can be seen that the balance between eastern and western
observations in the data set changes over time—in the period from 1995 onwards, the
data is dominated by eastern observations—while in the first five year interval, all of
the data is from the western network. A more balanced pattern in data collection
would be desirable. Going back to the notion of experimental design, the ideal
situation would be a uniform coverage of all observation points across the USA
over the entire time period. In contrast, this is an example of ‘real world’ data,
where events such as the cessation of public funding, or the loss of a key organising
individual—or the emergence of a new key player—can bring about unexpected
changes in the pattern of data collection. Whilst not achieving the ideals of the
designed experiment, the collection and distribution of this kind of data is at least
achievable in terms of resources.

Table 1 Numbers of
observations by five year
periods for eastern and
western lilac phenology
networks

Eastern Western

1955–1959 0 1997
1960–1964 97 2548
1965–1969 449 2420
1970–1974 640 1965
1975–1979 643 1049
1980–1984 578 778
1985–1989 248 664
1990–1994 231 411
1995–1999 183 8
2000–2004 120 43
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Table 2 Regression analysis for the model Bi = a + bYi + εi

Estimate Std. error t value Pr (> |t|)
a 126.393 0.246 514.392 0.000
b 0.215 0.018 12.108 0.000

3 An initial analysis and a cautionary tale

Reading the early [3] article suggests that the original interest was in mapping the
date of onset of spring itself, rather than in changes in this date over time. This is
perhaps not surprising, since when this network began climate change was not an
issue. However, it will be argued that this data can be used to investigate climate
change, if analysed appropriately.

In Schwartz and Reiter’s [32] paper, this data was analysed on a site-by-site basis,
with a regression model applied at each location. However, since no site can have
more than 46 observations (on for each year between 1957 and 2003)—and many
have fewer—the aim here is to attempt an analysis of the data pooled for all of the
sites. This then allows a pooled estimate based on over 14,000 observations. An initial
approach to analysis is to fit a simple linear model of the form

Bi = a + bYi + εi (1)

where Bi is the day of first bloom for observation i, Yi is the year in which the ith
observation was made3 and εi is a normally distributed random error term for each
observation i, with variance σ 2. a is the intercept term of the model, and b is the
slope, which may be interpreted as the rate of advance (−ve b) or retreat (+ve b) of
the date of first bloom, in days per year. Given that a relatively slow rate of change
is likely, one would expect b to be a fairly small quantity, with an absolute value less
than 1. The results of the analysis are given in Table 2.

This result suggests that b differs significantly from zero—suggesting that there
is evidence that the day of first bloom varies over the study period. However, and
rather surprisingly, the estimate for b is positive indicating that the first bloom date
is retreating. That is, it is getting later in the year. A plot of Yi and Bi is given in
Fig. 2. The plot format is a binned hexagon plot, in which scatterplot points are
allocated to small hexagonal regions, and the size of hexagon drawn in each region is
proportional to the count of points contained there—this method is preferable to a
standard scatterplot when there are a large number of points (in this case more than
10000)—see for example [4]. The regression line is superimposed on the plot.

Both the plot and the regression analysis show the first bloom day to be getting
later—suggesting that the accumulation of thermal time, as the driver of plant
development, is getting slower over time. This runs counter to expectation, but more
importantly from the viewpoint of data analysis, it also contradicts the findings of
the Schwartz and Reiter analysis of the same data mentioned earlier. Their multiple
analyses of each of the individual observation locations suggest a general trend in
which the first bloom day gets earlier.

3Centred on 1980—the midpoint of the time interval, as this reduces rounding error when calibrating
the model.
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Fig. 2 Plot of first bloom day (Bi) vs. year (Yi)

The reason for this discrepancy may be understood by further consideration of the
data collection process, and in particular the change in geographical emphasis seen
over the data collection period. In Fig. 3 box plots are given for the first bloom dates
of both the eastern and western data. One notable pattern is that the western data has
earlier first, second and third quartiles for the first bloom date than the eastern data.
Note that this phenomena is not unique to VGI or CS data—similar situations have
been noted with authoritative data; for example [10] explore measurements of sea
surface temperature (SST) monitored by sensors on buoys and note that computed
annual mean SSTs for 1990 and 1996 were based on quite distinct distributions of
measurement locations. Those in 1990 were ‘almost exclusively restricted to the
tropical Pacific and the northern North Atlantic’ whilst those in 1996, while not
uniform certainly covered a greater area. Similarly [26] combine several data sets in
order to examine patterns in SST, sea ice and night marine air temperature since the
late nineteenth century, and in an appendix note variation in geographical coverage
over time when comparing these sources of information.

Returning to the phenology data, recall from Section 2, that the eastern data
is more prominent towards the end of the study. The extreme values are more
expanded for the western data, but this could be attributable to the fact that in
general, there were more samples provided by this network. This suggests that
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Fig. 3 Box plots comparing first bloom dates for eastern and western data

one possible explanation for the surprising estimate for b is the fact that the later
blooming eastern data dominates the pooled set towards the end of the study period,
so that, if location is ignored the average first bloom date may indeed increase with
year of observation.

This is an example of Simpson’s Paradox [33]. The paradox is very succinctly
stated by [1], who refer to

... the dangers of ignoring a covariate that is correlated to an outcome variable
and an explanatory one.

In this case, the covariate being ignored is the location of the observation, the
explanatory variable is Yi and the outcome is Bi. The situation here is unusual, in
that examples of the paradox more usually involve probabilities or rates estimated
using categorical data rather than regression analysis applied to continuous data (see
for example [39]), but nevertheless it clearly fits the situation described by Appleton
et al.

One step towards addressing this problem is to include an indicator variable in the
regression model, giving the updated form:

Bi = a + b YYi + b N Ni + εi (2)

where, in addition to the previously defined variables, b Y is the regression coefficient
for the year, Ni is the network indicator variable for observation i (0 for Eastern, 1 for
Western), and b N is the regression coefficient for this variable. Thus, this coefficient
is a measure of the difference in first bloom date (on aggregate) between the eastern
and western networks. Implicit in this model is a uniformity of rate of change of first
bloom date across both networks, and a uniformity of the intercept term within each

Table 3 Regression analysis
for the model
Bi = a + b Y Yi + b N Ni + εi

Estimate Std. error t value Pr (> |t|)
a 134.009 0.405 331.198 0.000
b Y 0.036 0.019 1.918 0.055
b N −11.593 0.495 −23.439 0.000
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Table 4 Regression analysis
for models fitted separately to
each network

Estimate Std. error t value Pr (> |t|)
a (Eastern) 134.017 0.406 330.473 0.000
a (Western) 122.382 0.315 388.282 0.000
b Y (Eastern) 0.048 0.041 1.164 0.244
b Y (Western) 0.033 0.021 1.555 0.120

network, if the intercept is considered to be a for the eastern network, and a + b N

for the western one.
The results of fitting this model are given in Table 3. In this case, the slope for YI

is still positive, but no longer significantly different from zero p > 0.05. This suggests
the possibility that Simpson’s paradox is occurring here—as allowing for geography
even in a fairly crude way does change the results relating to the slope term.

A further investigation is possible by splitting the analysis into two regression
models—one for each of the two data collection networks. This gives the results in
Table 4. In his case the two slopes are both positive, although differing slightly—and,
as with the above result, neither are now significantly different from zero.

However, it could be argued that some geographical effects are still ignored. In
the paper by [3] maps of the first bloom date for the western area show notable
geographical patterns exist within that area—and it is a reasonable expectation
that similar variation may also occur in the eastern area. Thus, it may be the case
that effects due to Simpson’s paradox may still be influencing the results given in
Table 3. In the next section, approaches to modelling the data allowing for more
comprehensive variational effects in the model coefficients will be considered.

4 Proposed alternative analyses

The issue relating to Simpson’s paradox in the previous section arises essentially from
the failure to incorporate sufficient information about geographical variation in the
model. As a starting point to address this, suppose initially that the slope is the same
everywhere, but that each observation station has a different intercept. That is, we
assume there is a ‘green wave’ [30] across the US so that some regions see the first
bloom of lilac before others, but the rate of change of onset of this wave is uniform
across the US. We can model this by

Bij = a j + b YYij + εij (3)

where the extra subscript j denotes a quantity relating to observation i at station j—
thus Bij is the ith first bloom date at station j, which was observed in the year Yij and
so on. Note that a j only has the j subscript, suggesting that there is a different first
bloom date associated with each station, but not a unique one for each year at each
station in the model proposed by Eq. 3.

Such a model could be calibrated using ordinary regression, treating the a j’s as
series coefficients for dummy variables indicating which station each observation
occurred at. However, recalling that there are 1126 distinct locations in the data,
this would require a large number of coefficients to be calibrated, with a resulting
increase of degrees of freedom in the model, and a resultant increase in the standard
error of the estimate for b Y . An alternative approach is to use a random coef f icient
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model [19] where the a j’s are themselves assumed to be random variables: for
example

a j ∼ N(a, σ 2
a ) (4)

where a is the distribution mean of the ai’s and σ 2
a is the variance. Thus the likelihood

of the observed data can be written in terms of just four parameters: a, σ 2
a , b Y , and

σ 2, rather than over 1100 parameters as in the model considered at the beginning of
this section. Another justification of this approach is that since focus is based on the
estimation of b Y , rather than attempting to calibrate every a j exactly, the aim here
is more simply to take into account the fact that a j varies, and to characterise this
variability using a small number of parameters, namely a and σ 2

a .
Note that, by writing a j as the sum of a and a zero-centred random variable υ j

(with variance σ 2
a ) Eq. 3 can be re-written as

Bij = a + b YYij + υ j + εij (5)

—this is very similar to model 1, except that now the random part of the model
consists of two terms, representing variation at the observation level and at the
location level. For this reason, the model can also be described as a multi-level
model [12–14]. In this paper the convention is adopted that random coefficints in
models predicting the first bloom date will be denoted with Greek letters, and fixed
coefficients will be denoted with Roman letters.

In model 1 the random part of the model is independent for each observation,
but for model 5 it may be checked that for two obversations ij and kl (i.e. the first
observation is the ith at station j, and the second is the kth observation at station l),
the correlation between the random terms, ρij:kl , is given by:

ρij:kl =

⎧
⎪⎪⎨

⎪⎪⎩

σ 2
a

σ 2
a + σ 2 if j = l

0 otherwise

(6)

Arguably, this is a crude representation of Tobler’s first law [36]:

Everything is related to everything else, but near things are more related than
distant things.

—here, ‘near things’ are considered to be observations taken from the same location,
regardless of time. Observations at the same location are correlated, whereas those
from different locations are not.

The results of fitting this model are shown in Table 5.
From this it may be seen that the estimate for b Y is now negative, and is

significantly different from zero. With an estimated value of around −0.177 this
suggests that the onset of spring advances by around one day every six years. This

Table 5 Regression analysis for the model Bij = a + b Y Yij + υ j + εij

Estimate Std. error t-value Pr (> |t|)
a 121.892 0.646 188.555 0.000
b Y −0.177 0.010 −17.184 0.000
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may be compared with some other results, such as [21] who find the same rate of
advancement based on a data set covering a range of phenological indicators from
data from the International Phenological Gardens (IPG), a Europe-wide network.

Although the focus of this study has been the estimation of b Y it is still possible
to estimate the individual a j’s via the multi-level model. Effectively, the estimate for
each a j is achieved by computing an estimate of E(a j|B, Y, a, b Y , σ 2, σ 2

a ), where B
and Y are the respective vectors of all Bij and Yij observations, and estimates of a,
b Y , σ 2 and σ 2

a are obtained when calibrating model 5 above. These are shown in map
form in Fig. 4. From this, it can be seen that earlier first bloom dates tend to occur
along the west coast of the US, and also that elsewhere there is a north-south trend,
with spring arriving later in the north.

As well as obtaining a map of the ‘green wave’ as experienced through the first
bloom dates of lilacs, this demonstrates that even the approach of the model of Eq. 2
failed to reflect the full geographical variability in first bloom dates—Fig. 4 suggests
that geographical variation also occurs within both networks. This is manifested in
the change in the estimate of b Y as each of the models from Eqs. 1, 2 and 5 are
calibrated in sequence.

Thus, in this study an estimate of b Y (with standard error) taking into account the
variability of an intercept term. However, this assumes that the relationship between
the first bloom date and the year of observation is linear, so that the change in B per
year is fixed over the entire study period. A more flexible approach is to estimate a
general time effect, so that rather then modelling the temporal change in first bloom
date with the regression term b YYij, an alternative model replaces this by an effect
for each year, say ci for each year indexed by i. As with locations, these year-wise
effects can be modelled as random effects, so that

ci = c + τi where τi ∼ N(0, σ 2
c ) (7)

and therefore

Bij = A + τi + υ j + εij (8)

aj

  53.8
  69.0
  84.2
  99.4
 114.6
 129.8
 144.9
 160.1

Fig. 4 Map showing estimated a j
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where the single term A replaces a + c to avoid redundancy in the model (any pair
of a and c adding up to A would give the same model likelihood for a given data set).
This model is still a random coefficient model, but it can no longer be described as a
multi-level model—as the effects are no longer nested—effects for time do not nest
within locations. Models of this kind are referred to as crossed-ef fects models [2]. The
result of fitting a model of this kind is shown in Fig. 5. This plot shows the variation
in τ j over the time period 1956–2003, also giving bands showing standard errors for
the estimates, based on bootstrapping techniques [9]—see “Appendix” for detail.

The pattern seen in Fig. 5 shows a general advance in the first bloom date over
the study period, although it does suggest that the trend is more complex than the
linear model used until now. In particular, in the second half of the study period, it
appears that there is some degree of oscillation around a general downward trend,
with the oscillation period being just over a decade or so. Also of note is the fact
that the standard error bands are notably larger from around 1986—this was the
time that funding of these networks begin to reduce, and in turn, the numbers of
observations were also reduced. In terms of the model calibration, this is reflected in
greater uncertainty of parameter estimation.

One final parameter of interest may be of use here—this is used to measure the
trend of τi of time. Clear, in strict terms, it cannot be said that τi is decreasing every
year—the oscilatory effect suggests that there will be some pairs of consecutive years
when τi increases. However, it is helpful to consider whether there is an overall trend
towards lower τi values. A straightforward way to measure this is to compute the
difference in mean values of τi for the first and second halves of the study period.
That is, the respective periods 1956–1979 and 1980–2003. If this statistic is called �

then

� = 1
24

⎡

⎣
∑

i=1,24

τi −
∑

i=25,48

τi

⎤

⎦ . (9)

1960 1970 1980 1990 2000

0
5

10
15

Year (j)

c j

Fig. 5 Graph showing estimated τ j against time, with upper and lower pointwise confidence intervals
for the individual τ j values
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Table 6 Estimate and bootstrap confidence intervals for �

Estimate Lower 95% CI Upper 95% CI

� 4.65 3.71 4.76

Thus, positive values of � suggest a trend of spring getting earlier, and negative
values suggest it is getting later. The estimate of �, together with its 95% bootstrap
confidence intervals are given in Table 6. From this there is fairly strong evidence of
a trend of spring getting earlier. That is, despite some fluctuation around the trend,
the average first bloom date in the second half the the study period is earler than that
of the first half.

5 Concluding discussion

In this paper, a number of models have been made to estimate the change in the onset
of spring over a time period from 1956 to 2003, making use of data collated from a
number of networks, making use of voluntary data. The data consisted of observed
first bloom dates of lilacs. These dates are strongly linked to the accumulated thermal
time of the plants, and hence act as a proxy for patterns in seasonal temperature.
From an initial analysis that was distorted due to Simpson’s paradox, the final
analysis takes into account the changes in geographical distribution of the networks
of people collecting data, and identifies both general trends and fluctuations in the
onset of spring.

The uncertainties and biases associated with analysing such data due to the
voluntary nature of its collection have long been recognised. For example, hoopoe
are birds that are occasionally seen in the UK with a preference for long grass
habitats with tree cover. Much historical data in the UK relating to the sighting of
these birds records them in the gardens of vicars—a combination of habitat and
a 19th century predilection among the clergy for recording nature. Moreover, the
situation is not unique to VGI or CS data—for example, in more ‘official’ projects,
such as those set out in the examples discussed in Section 3 where geographical
distribution of sea surface temperature sensors changes varies over time, over- or
under-representing certain regions or varying in resolution.

However as yet little work has explored the sensitivity and reliability of phe-
nology data. Some ecological research has explored the variation and uncertainties
associated with the use of phenological data. Robbirt et al. [27] compared plant
specimens (herbarium data) with field observations and found that the response of
flowering time to variation in mean spring temperature to be identical and much of
the variation in the results to be due to the geographic location of the collection
sites—a factor which we have also found to be important in the analysis above.
Also, there are other factors which may need to be considered: Miller-Rushing
et al. [22] compared herbarium data with phenological events as recorded in dated
photographs. They suggested that first flowering dates may not be ideal measures
of plant responses to climate change due the the extremes of flowering distributions
being more susceptible to confounding effects than central values. This is perhaps



Geoinformatica (2012) 16:675–690 687

another situation where there is a trade off between the ideal situation, and what may
be achieved in practice. Central values, such as means, would require observation of
all bloom dates at a given location, which may require more observational effort than
can be realistically provided by a volunteer network. A compromise may be to obtain
a central measure such as the mid-point between the first and last blooms (although
this may still suffer from the problem of being sensitive to extremes). Of course, any
such recommendations can only apply to future data, as recording the first bloom
date is already a well established convention—and a great deal of data using this
convention already exists.

A further issue relates to the linkage between phenological event timing and
temperature: van Oort et al. [38] explored the sensitivity of phenological events and
the possible correlation between temperature and phenology prediction error of rice
and found that phenological models were not as sensitive as thought at the higher
end of the temperature range. As this study concentrates more on the timing of
the phenological events, this finding perhaps has less direct bearing on the analysis,
however, it does perhaps have implications when interpreting the observed patterns.

In this paper, methods for addressing this issue of geographical variation were
considered—the adoption of these being largely guided by considering the process
used to collect the data. However, there is room for further work to improve on
this. For example, in situations where [22]’s concerns regarding the use of first bloom
dates are likely to affect the outcomes of analysis, robust regression techniques or
a distribution model for residuals having heavier tails than the Gaussian could be
applied.

Another modification to the model could take into account the temporal auto-
correlation of the τi coefficients. Currently these are assumed to be random, but
independent, but could be assumed to follow a multivariate normal distribution with
a variance/covariance matrix reflecting this temporal structure. Similarly the values
of υi could be assumed to exhibit a spatially autocorrelated structure. Exploiting the
latter structure would allow values of υ at points other than the observation points
to be estimated—as it provides information as to the degree to which observations
of υ values near to a point of interest influence the value at that point. Estimating
or visualising the υ values was not the key focus of this study—which placed more
emphasis on change of the first bloom date, but in a study where spatial variation
was the main subject, this spatial modelling approach could be used to create a pixel-
by-pixel surface of estimated υ values, providing a visualisation of the ‘green wave’.
This could also be extended to allow for spatial variation in the b Y coefficient.

However, addressing some of these more advanced issues may call for more
advanced computing tools. The R package lme4 used here only offers random
coefficient models where the distributions for coefficients are independent; an
alternative package lmer allows for non-independent random coefficients, but at
the time of writing does not offer calibration of crossed-effects models. One way
of overcoming this is to use Markov chain Monte Carlo (MCMC) approaches to
calibrate the model, in the manner of [11], but this would require considerably
more computing effort, the use of notably more complex software, and a change
in statistical inferential paradigm from classical to Bayesian. These changes may well
all be justified, but it is hoped that one of the main messages in this paper is that the
analytical techniques used when working with any data need to reflect issues arising
from the process of data acquisition, and that any data set is a reflection of both the
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underlying natural process and the process of data collection and organisation, and a
useful analysis of this data needs to reflect this.

Appendix: Computational considerations

In this section, some more detail is supplied about the software tools and techniques
that were used to carry out this analysis. All of the statistical modelling was carried
out using the R statistical programming language [25]. In particular, the random
coefficient models were calibrated using the lme4 package.

The functions supplied in the R base library and lme4 were sufficient for all of the
computations, except for the standard errors associated with the τi values, and �. For
these, a regression bootstrap approach as set out in [9] is used. Briefly, this estimates
the sampling variation of parameters of interest by simulating data sets drawn from
the model that is being fitted to the data (in this case the model given by Eq. 8). The
sampling variation simulated is just that due to the variability in εij—so that rather
than randomly assigning new values for the τ j’s and υi’s for each simulated sample,
it is assumed they are fixed at the estimated values. By simulating a large number of
data sets in this way (say 1000, as in this paper), and applying the random coefficient
estimation function supplied by lme4 to each simulated data set, an estimate of the
sampling variability of the τ j’s is obtained.
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