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Abstract: A number of method have been recently pro-
posed in the literature for the encryption of 2-D information
using optical systems based on the fractional Fourier frans-
form, FRT. In this paper a brief review of the methods pro-
posed to date is presented. A measure of the strength/ro-
bustness of the level of encryption of the various techniques
is proposed and a comparison is carried out between the
methods. Optical implementations are discussed. Robustness
of system with respect to misalignment and blind decryption
are also discussed.
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1. Introduction

The Fractional Fourier Transform (FRT) is a general-
isation of the Fourier Transform (FT). The Fourier
Transform can be understood as a linear transforma-
tion, which allows a signal, originally captured in the
position or time domain to be rotated through p=2
radians into the orthogonal spatial frequency or fre-
quency domain. It can be shown that four successive
applications of the FT (2p radians) are equivalent to
the identity function. In an analogous way, the FRT
can be seen as a linear transformation, which rotates
the signal through any arbitrary angle into a mixed
frequency – space domain.
The rigorous mathematical formulation for the

FRT dates back, at least, to the Fractional Order
Fourier Transform introduced by Namias for use in
the field of quantum mechanics [1]. This work was
further developed in [2]. In [3] and [4] the FRT was
applied to describe wave propagation in Graded In-
dex (GRIN) media and given an optical interpreta-
tion similar to that of the FT. The GRIN media has
the property of combining propagation and continu-
ous refocusing. Over a particular distance of GRIN
the input plane repeats, equivalent to four applica-

tions of the FT. At half this distance we find the
inverse of the input plane, equivalent to two appli-
cations of the FT. At one quarter the distance we
find the Fourier plane. The FRT of any non-integer
order is defined as the field distribution at some
other distance of GRIN. In [5] the FRT was given a
novel yet equivalent interpretation in terms of
phase space. It was shown that, while a FT opera-
tion could be described as the rotation of the
Wigner Distribution Function (WDF) by an angle of
p=2, the FRT describes the rotation of the WDF by
an angle equal to ap=2 where a represents the or-
der of the FRT. Two optical implementations were
proposed, which shall be shown shortly. The imple-
mentation is no more complex than that of the FT.
Since then, the FRT has allowed for new applica-
tions in many areas where the FT has importance,
for example, phase retrieval [6, 7], beam shaping
[8], filtering [9] and many others, including optical
encryption.
Information security has been receiving increasing

attention in recent years. Because optical processes
have the distinct advantage of sending 2-D complex
data in parallel and carrying out otherwise time
costly operations at great speeds, they have found
growing importance in data encryption. In [10] an
optical encryption scheme is proposed dubbed
‘‘double random phase encoding” which involves
multiplying by two random phases in the input plane
and in the Fourier domain. It can be shown that if
these random phases are statistically independent
white noises then the encrypted image is also a sta-
tionary white noise. The random phase key located
at the Fourier plane serves as the only key in this
encryption scheme but it was not long until the extra
degree of freedom offered by the FRT was utilised
as a new key in similar encryption schemes, which
shall be discussed shortly.
The outline of this paper is as follows: In section 2

we discuss the FRT in more detail outlining a mathe-
matical definition. In section 3 we will present a review
of the recent FRT encryption algorithms, which have
emerged and we shall go on in section 4 to discuss
some other possible algorithms. All of these algorithms
are compared briefly in section 5 and this is followed
by a conclusion.
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2. The fractional Fourier transform

Conventionally, the a-th order FRT fa(xa) of a function
f(x) is defined as

faðxaÞ ¼ Faf f ðxÞg ðxaÞ ¼
Ðþ1

�1
Kaðx; xaÞ f ðxÞ dx : ð1Þ

The kernel is given by

Kaðx; xaÞ ¼ Aj exp ½ipðx2 cotj� 2xxa

þ x2a cotj� 0 < jaj < 2

¼ dðx� xaÞ a ¼ 0

¼ dðxþ xaÞ a ¼ �2 ; ð2Þ
where,

Aj ¼ exp ½�ip sgn ðsinjÞ=4þ ij=2� and j ¼ p/2

ð3Þ
and x and xa represent the coordinate systems for the
input or zeroth order domain and output a-th frac-
tional domain respectively. The FRT has the property
that it is index additive,

FafFbf f ðxÞgg ¼ Faþbf f ðxÞg : ð4Þ
It is possible to extend this definition of the FRT for
orders beyond �2 by noting that

Faf f ðxÞg ¼ Faþ4nf f ðxÞg 8 n ¼ integer : ð5Þ
The eigenfunctions of the FRT can be shown to be
Hermite-Gaussian functions, the solutions to the Her-
mite-Gaussian polonomials. However, the eigenvalues
can be chosen in different ways resulting in different
definitions of the FRT, which all obey the characteris-
tic laws of index additivity and reduce to the FT for an
order of 1. This is mentioned because two of the en-
cryption schemes discussed in the proceeding sections
are based on different definitions of the FRT. The defi-
nition above is the one that has found the most appli-
cations in general and it has a simple optical imple-
mentation. In terms of arrangement of eigenfunctions
and eigenvalues

FafjnðxÞg ¼ exp ð�ianpÞ jnðxÞ ; ð6Þ

jnðxÞ ¼
21=4ffiffiffiffiffiffiffiffiffi
2nn!

p Hn ð
ffiffiffiffiffiffi
2p

p
xÞ exp ð�px2Þ ; ð7Þ

where, Hn is the n-th Hermite-Gaussian polynomial.
The definition of the kernel given in eq. (2) can be
shown to be equivalent with the following spectral ex-
pansion of the linear transform kernel

Kaðx; xaÞ ¼
P1
n¼0

exp ð�ianp=2Þ wnðxÞ wnðxaÞ : ð8Þ

In image encryption, we will of course be dealing with
two-dimensional signals. The 2-D FRT has separable
kernels in both dimensions and so the above definition
can be extended naturally in this way. All of the math-

ematical derivations in this paper are in one dimension
for simplicity.

2.1. Optical implementation

Having shown that the FRTof order a corresponded to a
rotation of the WDF by an angle ap=2 in [5], Lohmann
went on to describe the rotation of the WDF using three
shearing operations of the WDF – one in the x direction
the next in the y direction followed by another one in
the x direction (x� y� x) (this is equivalent to y� x� y
shearing). This leads to two optical implementations,
Type I and Type II, see fig. 1, where each of the shearing
operations is performed by either free space propaga-
tion or the action of a lens. We will represent all optical
FRToperations using a single lens.
For Type I we require the following conditions to be

met,

f ¼ f1
sinj

; z ¼ f1 tanj ð9Þ

and for Type II we require,

f ¼ f1
tanj

; z ¼ f1 sinj ; ð10Þ

where, f represents the focal length of the lens and z is
shown in the diagrams and f1 is a virtual focal length.
The resulting optical transform is given by

faðxaÞ

¼
Ðþ1

�1
f ðxÞ exp ipffiffiffiffiffiffi

lf1
p fcotjðx2þ x2aÞ � 2xxa sinjg

( )
dx ;

(11)
where we have omitted a constant phase factor since it
is different for both optical implementations and also
different from the constant phase factor in the mathe-
matical definition given in eq. (3). A FRT with differ-
ent orders in both the x and y directions could be im-
plemented with two orthogonally situated cylindrical
thin lenses with different focal lengths.

2.2. Numerical implementation

The first method [11] used to digitally calculate the
FRT decomposed the signal to be transformed into a
summation of the eigenfunctions of the FRT – the Her-
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Fig. 1. Lohmann’s a) Type I and b) Type II optical imple-
mentations of the FRT.



mite-Gaussian functions and then weighted them with
the appropriate eigenvalues. This method proved to be
time consuming requiring O(N2) calculations. Various
methods utilising the fast Fourier algorithm (FFT)
emerged [12–14] enabling digital calculation of the
FRT in O(N log N).
Two algorithms were presented in [12]. The prefer-

able of these two uses the Shannon interpolation for-
mula and a series of mathematical manipulations to
arrive at a convolution summation that can be deter-
mined using the FFT algorithm. This algorithm has the
disadvantage of requiring a increase in data points by a
factor of 2, due to interpolation and decimation, to al-
low for the shearing of the WDF when the signal is
multiplied by the first chirp term (in the FRT kernel).
This algorithm is not very accurate for small orders
due to the sampling of rapid oscillations.
In [13] an algorithm is derived based on a numerical

implementation of the Type II optical set up proposed
by Lohmann. It has a simple interpretation and pro-
vides better results for low orders than [12]. Two FFTs
and multiplication by three quadratic phase factors are
needed.
In [14] an algorithm using only a single FFT opera-

tion is derived. This algorithm assumes that the highest
spatial frequency due to the quadratic phase factor is
larger than that of the signal to be transformed. This
allows the sampling period to be related to the inverse
of the maximum frequency of the quadratic phase
term. This algorithm can improve upon [13] for deter-
mination of FRTs of low orders. However, constraints
are placed on the sampling period, which can lead to
the need for zero padding. Also, if we wish to apply
the inverse of a transform of order a, we must first
apply a transform of (1 � a) and then apply an inverse
FFT. This amounts to an exact inverse transformation.
All three of these algorithms were used to simulate

the encryption/decryption schemes outlined in this pa-
per but the results presented here have been calcu-
lated using [13]. An important factor in our simula-
tions is the need for a completely reversible FRT
calculation. Without an exact inverse, we could not si-
mulate ideal decryption. In [8] a unitary condition is
derived for fractional Fourier systems. We can use this
result to vary the optical scaling factor s ¼

ffiffiffiffiffiffi
f1l

p
in

eq. (11) so that the algorithms given in [12] and [13]
are exactly unitary discrete transforms for one order
only.
An exactly unitary index additive discrete FRT has

been derived [15], based on the discrete counterparts
of the Hermite-Gaussian functions. No closed form de-
finition has been given and the transform requires N2

calculations.

3. The measurement of encryption

The input image used in the simulations below is a
256 � 256 sized grayscale (levels ranging from 0 to
255) Lena image, see fig. 2.

As a measure of the level of encryption of an image
we calculate the Mean Square Error (MSE) between
our original image and our decrypted image. Mathe-
matically,

MSE ¼ kin� outk2 ¼ 1
N2

PN
i¼1

PN
j¼1

jout ði; jÞ � in ði; jÞj2

ð12Þ
out (i, j) represents our decrypted image and in (i, j)
represent the pixel values of our decrypted and en-
crypted images respectively.

4. Encryption Algorithms

4.1. Method 1

We begin this section reviewing the first Fourier based
optical encryption scheme presented in [10]. This
makes use of the FT, which a FRT of order 1. Two
phase masks are used in the encryption scheme, which
are in the form of two statistically independent white
sequences uniformly distributed in [0, 1]. We will de-
note these random functions as n1 and n2. The scheme
is as follows; the input image to be encoded is multi-
plied by one Random Phase Mask (RPK). The result-
ing complex wave field is Fourier transformed using a
convex lens and in the Fourier domain, it is multiplied
by the second RPK. The resulting image is again Four-
ier transformed through the use of a second lens. This
is equivalent to a convolution operation, where the en-
crypted image can be represented by

gðxÞ ¼ ff ðxÞ exp ½i2pn1ðxÞ�g * hðxÞ : ð13Þ

The * denotes the convolution operation and f(x) re-
presents the signal to be encrypted.

FfhðxÞg ¼ exp ½i2pn2ðxÞ� : ð14Þ

The resulting encrypted image, which is complex val-
ued, can be shown to be a stationary white noise. The
first RPK serves to make the input image white but
nonstationary and not encrypted. The second serves to
make the image stationary and encoded. Because the
encrypted image is complex valued, both the real and
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imaginary parts are needed to decode the image. In
order to record such a signal we must use holographic
methods. Decryption is simple. We apply the exact in-
verse of what was done to encrypt the image: first we
return to the Fourier domain through the action of a
lens. Then comes multiplication by a phase mask,
which is the conjugate of the corresponding phase
mask used in the encryption process. One last Fourier
transforming lens follows this. The resulting wave field
will have an amplitude distribution equal to the origi-
nal image so holographic techniques are not necessary
to capture it. There is only one key in this encryption
scheme – the second random phase function, without
which, blind decryption is very difficult. An optical en-
cryption/decryption implementation can be seen in
fig. 3. The Spatial Light Modulators (SLM) can display
both amplitude and phase information. For encryption,
SLM1 displays the input image multiplied by the first
random phase, while SLM2 displays the second ran-
dom phase mask. For decryption, SLM1 displays the
encrypted complex image and SLM2 displays the con-
jugate of the second random phase key. Note, that we
do not need a coherent reference beam at the CCD for
decryption since we only require the intensity of the
image.
The properties of such an encryption-decryption sys-

tem have been investigated in [16], [17] and [18]. It is
worth noting that since the FRT operation is a linear
transform, it exhibits identical behaviour to that of the
FT with regard to additive and multiplicative noise in
optical implementations. This optical encoding scheme
has also been extended to use a phase (only) modu-
lated signal as the input to the system instead of an
amplitude based image [19]. Such a system can be
shown to have an improvement in robustness to addi-
tive noise but the first phase mask must be included in
decryption and the final decrypted image must be re-
corded using interferometric methods. A numerical si-
mulation of the above system was carried out. Fig. 4a
shows the results of encryption. Fig 4b shows the re-
sults for an ideal decryption while decryption using an
incorrect phase key is illustrated in fig. 4c. Fig. 5 shows
the effect of decryption as the random phase mask is
misaligned in one direction in steps of one pixel. Ana-
logous results are found for all the encoding phase
masks used in the following sections. If the phase mask
is translationally out of place by one pixel the image

remains fully encrypted. For movement D less than
one pixel in one direction, the shift tolerance is found
to give a Signal to Noise Ratio (SNR) of the form,

SNR ¼ NðD� DÞ2

D2 : ð15Þ

Here, N denotes the pixel number of the mask and D
is the pixel size of the mask. However, aligning the
phase mask is not as serious a problem as one might
imagine due to a property outlined in [16]. We note
that all of the FRT based optical encryption methods,
which used random phase keys as keys, showed similar
behaviour to misalignment and therefore further re-
sults will not be presented here.
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Fig. 3. General optical encryption/decryption set up for meth-
od 1 and method 2.
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Fig. 4. Method 1: a) Encrypted image, MSE = 6010.50; b) de-
crypted correctly MSE = 0.00; c) decrypted with wrong phase
key, MSE = 5871.19.
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Fig. 5. The number of pixels the phase plane SLM2 has been
misaligned by in x dir during decruption versus the resultant
MSE.



4.2. Method 2

Before we begin, we note the following. In all the
following sections we refer to FRTs of order a. We are
dealing with 2-D transforms and in the most general
case, two independent orders, ax and ay, for the x and y
directions exist. This is due to the 2-D FRT having
separable kernels in both directions. In our figures we
use a symmetric lens to signify a FRT of order a.
For simplicity we do not discuss the two dimensions
referring to them only in relation to the simulated
results.
In [20], the authors propose an optical encryption

scheme very similar to the one described above, mak-
ing use of the extra degree of freedom offered by the
FRT. Fig. 3 is again used to represent the encryption
and decryption schemes. The lenses in this diagram
now representing optical FRToperations.
For the encryption process, the first lens represents a

FRT operation of order a1 and the second lens repre-
sents a FRT operation of order a2. For the decryption
process, the first lens represents a FRT operation of
order �a2 and the second lens represents a FRT opera-
tion of order �a1. Again, two phase masks are used
which are in the form of two statistically independent
white sequences uniformly distributed in [0, 1]. The en-
cryption scheme is as follows; the input image to be
encoded is multiplied by one RPK to give us

f ðxÞ exp ½i2pn1ðxÞ� : ð16Þ
A FRT operation of order a1 was applied through a
convex lens to give,

Fa1ff ðxÞ exp ½i2pn1ðxÞ�g : ð17Þ
Now, in this fractional domain, the image is multiplied
by the second RPK

Fa1ff ðxÞ exp ½i2pn1ðxÞ�g exp ½i2pn1ðxÞ� : ð18Þ

The resulting image is again transformed by a FRT op-
eration, this time of order a2, through the use of a sec-
ond lens

gðxÞ ¼ Fa2fFa1ff ðxÞ exp ½i2pn1ðxÞ�g exp ½i2pn1ðxÞ�g :
ð19Þ

The result is that we have buried our phase key in
some fractional domain. It is shown in [20] that the
result of this method of encryption is to encode our
input signal into a white stationary noise.
Once again, decryption is the exact inverse of en-

cryption. To g(x) we apply an FRT of order �a2 to ob-
tain eq. (18). We now multiply by the conjugate of the
second RPK to obtain eq. (17). A second FRT of order
�a1 is finally used to decrypt into a signal whose ampli-
tude is equal to our original image. Decryption re-
quires the knowledge of five keys in total, namely; the
encoding RPK and the four fractional orders used
�a1x, a1y, a2x and a2y.
The procedure was simulated for (a1x ¼ a1y ¼ 0:5,

and a2x ¼ a2y ¼ 0.5). The simulated results showing the

encrypted image, correct and incorrect decryption are
shown below in fig. 6. The robustness of these frac-
tional order keys to blind decryption is shown in fig. 7,
where we graph error in a1x (thick line) and a2x (thin
line) used in the decryption process, against the MSE
of the resulting decrypted image. It can be seen that a2
is the more robust of these two sets of fractional keys.
The reason for this is that an incorrect a2 will result in
multiplication by the conjugate phase mask in the
wrong fractional domain.
An optical method was proposed by the author to

implement this algorithm in [21]. However, this allows
for a scaling of the input image before applying an
FRT operation followed by a scaling of the output im-
age. This operation is referred to by the author as an
‘extended fractional Fourier transform’. Such a trans-
form can also be referred to as a Linear Canonical
Transform (LCT), which finds its optical implementa-
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a) b)

c) d)

e)

Fig. 6. Method 2: a) The encrypted image (0.5, 0.5, 0.5, 0.5)
with a MSE = 5944.08; b) correctly decrypted (0.5, 0.5, 0.5, 0.5)
with MSE = 0.00; c) incorrectly decrypted (0.7, 0.5, 0.5, 0.5)
with MSE = 5013.74; d) incorrectly decrypted (0.5, 0.5, 0.7, 0.5)
with MSE = 5858.68; e) decrypted using incorrect phase with
MSE = 5921.15.



tion in the form of Quadratic Phase Systems (QPS),
which are also in the form of bulk lens systems. The
LCT is a generalisation of the FRT [22]. The scaling
factors in the input and output planes are additional
keys in the encryption system. Therefore, each QPS
has three keys in each dimension. Analysis of QPS en-
cryption systems is covered extensively in [23].

4.3. Method 3

The optical encryption scheme proposed in [24] is an
extension of that proposed in [20] above. The only dif-
ference is, an additional random phase key and an ad-
ditional FRT operation have been added in the encryp-
tion and decryption, to further encrypt the data.
Encryption consists of multiplying the input image

by RPK 1, applying a FRT of order a1, multiplying by
RPK 2, applying a FRT of order a2, multiplying by
RPK 3, and finally applying a FRTof order a3.
Decryption consists of applying a FRT of order �a3,

multiplying by the conjugate of random phase mask 3,
applying a FRT of order �a2, multiplying by the conju-
gate of random phase mask 2, and finally applying a
FRT of order �a1. The resultant has an amplitude dis-
tribution equal to our original image. An optical imple-
mentation of this encryption/decryption scheme is
shown in to fig. 8. We note that it is almost identical to
that given in fig. 3 except for the additional SLM and
lens representing the additional RPK and fractional
operation.

The procedure was simulated for (a1x ¼ a1y ¼ 0:5,
a2x ¼ a2y ¼ 0:5, and a3x ¼ a3y ¼ 0:5). The simulated re-
sults showing the encrypted image, and both a correct
and an incorrect decryption are shown in fig. 9. The
robustness of these fractional order keys to blind de-
cryption is shown in fig 10. where we graph error in a1x
(thick line), a2x (thinner line) and a3y (thinnest line)
used in the decryption process, against the MSE of the
resulting decrypted images. The result of this addi-
tional phase key and FRT operation is that our image
is further encrypted with 3 additional phase keys – the
new phase key and the additional fractional order keys
in the x and y directions. Also, it can be seen in fig. 10
that the robustness of the third order key a3 is slightly
better than that of a2 and significantly better than that
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Fig. 7. Graph of deviation in decryption order keys for meth-
od 2 in the x direction from the correct values against the re-
sultant MSE.
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Fig. 8. Optical encryption/decryption scheme for method 3.
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e) f)

Fig. 9. Method 3: a) The encrypted image (0.5, 0.5, 0.5, 0.5,
0.5, 0.5) with a MSE = 5930.87; b) correctly decrypted (0.5,
0.5, 0.5, 0.5, 0.5, 0.5) with MSE = 0.00; c) incorrectly decrypted
(0.7, 0.5, 0.5, 0.5, 0.5, 0.5) with MSE = 5063.37; d) incorrectly
decrypted (0.5, 0.5, 0.7, 0.5, 0.5, 0.5) with MSE = 5841.08; e)
incorrectly decrypted (0.5, 0.5, 0.5, 0.5, 0.7, 0.5) with MSE
= 5896.61; f) decrypted using incorrect phase (second RPK in
encryption process i.e. SLM3) with MSE = 5972.89.



of a1. This is due to the cummulative effect of the error
early in our decryption process, leading to the two
RPKs being applied in incorrect fractional domains.

4.4. Method 4

The optical encryption scheme outlined in [25] is a gen-
eralisation of the two previously described encryption
schemes. We use some arbitrary number, n, of phase
keys and n FRToperations to encrypt our data.
The number of keys needed to decrypt the data is

given by 3n� 1, which is made up of n� 1 phase keys
and 2n FRT order keys. Graphical representations of
encryption and decryption are shown in fig. 11 and
fig. 12.
The case for n ¼ 2 is described by method 2 above

and the case for n ¼ 3 is given by method 3 above.
Optical implementation of the encryption/decryption
scheme is given in fig 13. Here, multiplying by the ran-
dom phases is carried out digitally within the compu-
ter. To carry out successive FRT operations we record
the results using holographic techniques and send this

to the input of the system which is a SLM, capable of
displaying both amplitude and phase information.
It should be noted that as we further encrypt the

image with more and more FRT operations the robust-
ness of the orders as decryption keys increases. How-
ever, the increase in robustness is only significant for
the first two FRT operations. Simulations of this meth-
od have already been presented for n ¼ 2 and n ¼ 3
above.

4.5. Method 5

In [26], the authors propose a new type of fractional
convolution integral. We wish to fractionally convolve
two functions f(x) and h(x) and the fractional convolu-
tion operation has three parameters a1, a2 and a3. The
fractional convolution operation is defined as follows

gðxÞ ¼ f ðxÞ *
a1; a2; a3

hðxÞ ; ð20Þ

gðxÞ ¼ exp �i cot a3
p

2

� �
x2

n o
� f ðxÞ exp i cot a1

p

2

� �n o
* hðxÞ

h
� exp i cot a2

p

2

� �n oi
; ð21Þ

where the * in the above expression denotes the con-
volution operation in the traditional sense.
It is possible to deduce another interpretation of this

operation in terms of FRT operations. First, we calcu-
late the FRT of order a1 of f(x) and also the FRT of
order a2 of the function h(x)

fa1ðxa1Þ ¼ Fa1ff ðxÞg ; ha2ðxa2Þ ¼ Fa2fhðxÞg :
ð22Þ

We multiply these functions together and multiply the
result by X, a phase term, dependent on a1, a2 and a3,
which we do not define here. Finally we apply a FRT
of order �a3 to the result to give us,

gðxÞ ¼ F�a3fXfa1ðxa1Þ ha2ðxa2Þg : ð23Þ
The encryption scheme is based on the convolution op-
eration outlined above, where f(x) represents our im-
age to be encrypted and h(x) is a random phase or
intensity function. In the following simulations we
have set h(x) equal to a random phase function. In the
previous sections outlined above, we have noted the
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Fig. 10. Graph of deviation in decryption order keys for
method 3 in the x direction from the correct values against the
resultant MSE.
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and method 9.



importance of a phase mask, which is multiplied by our
original image at the input to the encryption process.
This random phase, which is not required during de-
cryption, serves to further encrypt the image and also
to strengthen the robustness of the fractional order
keys. Since there is no extra cost in terms of hardware,
we add this feature to this encryption process, improv-
ing upon the results presented in [26]. The optical im-
plementation for encryption is shown in fig. 14. SLM1
displays h(x). SLM2 displays f(x) exp (in(x)). We use a
CCD and a computer to display Xha2(xa2). We can use
the same set-up for decryption. SLM1 will again dis-
play h(x), SLM2 will display our encrypted complex
image and SLM3 will display 1/Xha2(xa2). The lens that
carried out FRT a1, now applies an FRT of order a3
while the lens that carried out FRT �a3 will now ap-
plies an FRTof order �a1.
The procedure was simulated for (a1x ¼ a1y ¼ 0:5,

a2x ¼ a2y ¼ 0:5, and a3x ¼ a3y ¼ 0:5). The simulated re-
sults showing the encrypted image, correct and incor-
rect decryption are shown below in fig. 15. The robust-
ness of these fractional order keys to blind decryption
is shown in fig. 16. where we graph error in a1x (thick
line), a2x (thinner line) and a3x (thinnest line) used in
the decryption process, against the resulting MSE.

4.6. Method 6

In [27], the authors outline a new and very different
method of encryption using the FRT. First, we will pre-
sent a diagram displaying the encryption scheme to aid
in our explanation, see fig. 17 below.
Each Hn represents a randomly coded pure intensity

filter and H�n represents its complement. By this we
mean Hn þH�n ¼ 1. We have n channels with n out-
puts gn(x). Each of these outputs is necessary to de-
crypt the image. To carry out decryption, we apply a
FRT of order �an�1 to all the outputs. We add
F�an�1fg1ðxÞg and F�an�1fg2ðxÞg. Hn, and its comple-
ment H�n, disappear since they add up to 1. We now
apply a FRT of order �an to the result of this addition
and to all the other channels. The procedure repeats n
times until we have eliminated all the H filters and ar-
rive back at our original image. The optical implemen-
tation of this encryption/decryption scheme is not
shown here. Each FRT operation would again be car-
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Fig. 14. Optical encryption/decryption scheme for method 5.
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Fig. 15. Method 5: a) The encrypted image (0.5, 0.5, 0.5, 0.5,
0.5, 0.5) with a MSE = 5918.06; b) correctly decrypted (0.5, 0.5,
0.5, 0.5, 0.5, 0.5) with MSE = 0.00; c) incorrectly decrypted (0.7,
0.5, 0.5, 0.5, 0.5, 0.5) with MSE = 4987.03; d) incorrectly de-
crypted (0.5, 0.5, 0.7, 0.5, 0.5, 0.5) with MSE = 5982.17; e) incor-
rectly decrypted (0.5, 0.5, 0.5, 0.5, 0.7, 0.5) with MSE = 5907.84;
f) decrypted using incorrect phase key withMSE = 5753.07.
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Fig. 16. Graph of deviation in decryption order keys for
method 5 in the x direction from the correct values against the
resultant MSE.



ried out using a lens. The filtering would be carried out
either digitally or using SLMs. Addition would have to
be carried out digitally which means we would have to
record the result of each FRT stage in each channel
during the decryption process. The main advantage of
this method is that the effect of multiplicative noise is
decreased by a factor equal to the number of channels.
There is no effect on additive noise. Disadvantages in-
clude that the resulting encrypted signal from an n
channel system is made up of n image signals and the
robustness of the fractional order keys less than that of
most of the other methods reviewed in this paper.
A three-channel system was simulated with

(a1x ¼ a1y ¼ 0:5, a2x ¼ a2y ¼ 0:5, and a3x ¼ a3y ¼ 0:5)
and the H functions were chosen to be white random
intensity functions. The encrypted image, correct and in-
correct decryptions are presented in fig. 18. The robust-
ness of these fractional order keys to blind decryption is
shown in fig 19. where we graph error in a1x (thick line),
a2x (thinner line) and a3x (thinnest line) used in the
decryption process, against the resulting MSE.

4.7. Method 7

In [28], the author derives a different fractional Four-
ier transform than the one previously presented in this
paper in eq. (1) and applied in all of the previous en-
cryption schemes. Making use of the times four peri-
odicity of the Fourier transform he derives a transform
which has the following form,

Faff ðxÞg ¼A0ðaÞ f ðxÞ þA1ðaÞFf f ðxÞg
þA2ðaÞ FfFf f ðxÞgg
þA3ðaÞ FfFfFf f ðxÞggg ; ð24Þ
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Fig. 17. Diagram representation of encryption algorithm in
method 6.

a) b)

Fig. 18. Method 6: a) Second part of encrypted image (0.5,
0.5, 0.5, 0.5, 0.5, 0.5) with a MSE = 7736.56; b) third part of
encrypted image (0.5, 0.5, 0.5, 0.5, 0.5, 0.5) with a MSE
= 7531.03; c) correctly decrypted (0.5, 0.5, 0.5, 0.5, 0.5, 0.5)
with MSE = 0.00; d) incorrectly decrypted (0.7, 0.5, 0.5, 0.5,
0.5, 0.5) with MSE = 1119.72; e) incorrectly decrypted (0.5, 0.5,
0.7, 0.5, 0.5, 0.5) with MSE = 1088.40; f) incorrectly decrypted
(0.5, 0.5, 0.5, 0.5, 0.7, 0.5) with MSE = 5390.98; f) decrypted using
incorrect phase keywithMSE=2622.07.
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Fig. 19. Graph of deviation in decryption order keys for
method 6 in the x direction from the correct values against the
resultant MSE.
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where F denotes the Fourier transform. On the basis of
a being a continuous variable, the fact that any frac-
tional Fourier transform should obey the index addi-
tive property and should reduce to the FT for a ¼ 1 he
formulates an expression for AiðaÞ, the weighting fac-
tors shown above. The resulting fractional Fourier
transform is given by,

Faf f ðxÞg ¼ exp ðipa=2Þ ½cos ðpa=2Þ f ðxÞ
� i sin ðpa=2Þ Ff f ðxÞg� : ð25Þ

It should be noted that this transform has the same
eigenfunctions as the definition presented earlier.
However the eigenvalues are different. The author
goes on to generalize the above result for any trans-
form, which has a periodicity of N (N ¼ 4 for the FT).
It is demonstrated that any transform operator K
which, has a periodicity of N can be fractionalized as
follows:

Kaf f ðxÞg ¼ 1
N

PN�1

n¼0
Knf f ðxÞg exp ½iðN � 1Þpða� nÞ=N�

� sin ½pða� nÞ�
sin ½pða� nÞ=N� : ð26Þ

In [29], the authors go on to use this result to define a
new type of generalised FRT. They let K denote the
FRT of order 4/N. This is best clarified by example:
for a periodicity N ¼ 8, we have the FRT of order 0.5.
Applying an FRT of order 0.5 eight succession times is
equivalent to application of the identity operator. Kn,
in this case, denotes n applications of the FRT 0.5 op-
erator. They go on to use this expression to develop an
encryption scheme. The keys to decrypting the data
are a and N. An optical implementation of the above is
shown in fig. 20. We begin with the image to be en-
crypted, displayed on an SLM. The FRT of order 4/N
is recorded using holographic methods, on the CCD. It
is stored in the computer and it is displayed on the
SLM. Now the FRT of order 2(4/N) is recorded and so
on until we have all the Fn terms. Then these complex
images are weighted as defined by eq. (26) above and
they are all added together to give us our encrypted
complex image. Decryption uses an identical set-up,
but we replace a with �a in our calculations. Simula-
tions of this optical encryption scheme were carried
out for N ¼ 8 in both x and y directions and with
ax ¼ ay ¼ 0:5. An encrypted image, a decrypted image
and an incorrectly decrypted image are shown in

fig. 21. Note that the correctly decrypted image has a
MSE of 60, this is due to difficulty in simulating this
algorithm and not due to any difficulties inherent to
the encryption scheme itself. We also graph the effect
of incorrect N in the x direction in fig. 22 and incorrect
order in x direction in fig. 23. We note that the robust-
ness of these keys improves the larger the value of N
used in the encryption process.

4.8. Method 8

In [30] a new technique based on a random shifting or
Jigsaw algorithm is proposed. The main advantage of
this algorithm is that we do not need to use any phase
keys in order to decrypt the image and yet we encrypt
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Fig. 20. Optical encryption/decryption scheme for method 7.
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Fig. 21. Method 8: a) The encrypted image Nx = Ny = 8, ax = ay
= 0.5, with a MSE = 6663.08; b) correctly decrypted MSE
= 60.27; c) incorrectly decrypted ax = 0.7 with MSE = 424.68.
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Fig. 22. Error in value of N used in decryption process in
method 7 against the resultant MSE.



the image in a very similar way. The encryption
scheme is as follows. First, the input image is multi-
plied by a random phase function giving us

f ðxÞ exp ½i2pnðxÞ� ; ð27Þ
where n(x) is a white sequences uniformly distributed
in [0, 1]. The authors define a Jigsaw transform, J{ },
which juxtaposes different sections of the complex im-
age. A simple two-dimensional case is shown in fig. 24.
We show the effect of this transform on our input im-
age in fig. 25a. In this case the image was broken up
into 64 subsections of 8 � 8 pixels, which were reposi-
tioned relative to each other according to some permu-
tation. The permutation used is random. The Jigsaw
transform is unitary, energy being conserved through
the transform and it also has an inverse. In the case
shown in fig. 25b, there are 64! possible Jigsaw trans-
form permutations. Each particular Jigsaw transform is
denoted by some index e.g. Jb{ } and its inverse is de-
noted by J�bf g. The Jigsaw transform is applied to
eq. (27)

Jb1f f ðxÞ exp ½i2pnðxÞ�g : ð28Þ
The resulting complex information can be displayed
using SLMs, which have the capability of modulating
both the phase and intensity of a waveform. Now we
apply a FRToperation of order a1 which gives us

Fa1fJb1f f ðxÞ exp ½i2pnðxÞ�gg : ð29Þ
This complex data is collected using interofemetric
methods and a second Jigsaw transform with permuta-

tion b2 is now applied. The result of this is given by

Jb2fFa1fJb1f f ðxÞ exp ½i2pnðxÞ�ggg : ð30Þ
Again this complex data can be represented using
SLMs. A second FRT, this time of order a2 is now ap-
plied to give

Fa2fJb2fFa1fJb1f f ðxÞ exp ½i2pnðxÞ�gggg : ð31Þ
Once again, the data can be collected using holo-
graphic methods. Applying a third Jigsaw transform,
display the result on the SLM and apply a third and
final FRT, this time of order a3, to give us the en-
crypted image

gðxÞ ¼ Fa3fJb3fFa2fJb2fFa1fJb1ff ðxÞ exp ½i2pnðxÞ�gggggg :
ð32Þ

B. M. Hennelly, J. T. Sheridan, Image encryption and the fractional Fourier transform 261

0

1000

2000

3000

4000

5000

6000

-0.5 -0.3 -0.1 0.1 0.3 0.5

Deviation in fractional order key used during decryption
process - a x thick, a x and a y simultaneously thin

M
S

E

Fig. 23. Graph of deviation in decryption order keys for
method 7 from the correct values against the resultant MSE.
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Fig. 24. Simple illustration of the Jigsaw transform used in
method 8.
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Fig. 25. Method 8: a) The input image after the first 16� 16
Jigsaw transform; b) correctly decrypted (0.5, 0.5, 0.5, 0.5, 0.5,
0.5) with MSE = 0.00; c) incorrectly decrypted (0.55, 0.5, 0.5,
0.5, 0.5, 0.5) with MSE = 3943.14; d) incorrectly decrypted
(0.5, 0.5, 0.55, 0.5, 0.5, 0.5) with MSE = 5441.89; e) incorrectly
decrypted (0.5, 0.5, 0.5, 0.5, 0.55, 0.5) with MSE = 5690.98;
f) decrypted using incorrect phase key with MSE = 5937.99.



We could of course continue this procedure of FRT
and Jigsaw to further encrypt our image but practical
limitations, in terms of time taken and susceptibility to
noise and error, would increase.
The intensity of the encrypted image is shown in

fig. 25c for the case when (a1x ¼ a1y ¼ 0:5, a2x ¼ a2y
¼ 0:5, and a3x ¼ a3y ¼ 0:5).
Decryption is given by the operation

f ðxÞ ¼ J�b1fF�a1fJ�b2fF�a2fJ�b3fF�a3fgðxÞgggggg
ð33Þ

and is simply the inverse of the encryption process. At
the final stage we need only capture the intensity infor-
mation since this represents our original image.
The phase of the decrypted signal should be equal

to the random phase we added to our image originally.
It can be discarded since it no longer serves any pur-
pose. Without this initial phase, the Jigsaw scheme
would not be an advisable encryption method because
it might be possible to recognize high frequency dis-
continuities and thus break the Jigsaw encryption pro-
cess. However, the inclusion of the random phase at
the beginning serves to whiten the image. Therefore
no obvious sharp discontinuities will occur in the im-
age because of the juxtaposition of the image pieces.
In fig. 25f we show the result of encrypting the image
without the random phase at the input and with the
same orders. The encrypted image shows unwanted
patterns, which are a result of the random shifting in
the FRT domains. The patterns become more pro-
nounced as we decrypt with fractional order keys close
to the correct values.
The decryption process described requires the

knowledge of 9 keys in total. These nine keys are
made up of 6 FRT order keys (3 in x and 3 in y) and 3
Jigsaw transform permutations. We examine the sensi-
tivities of the keys a1x, a2x, and a3x in fig. 26. The thick-
est line corresponds to varying the value of a1x in the
decryption process while all other keys are correct.
The thinnest line corresponds to varying the value of
a3x and the middle line shows variation of a2x. In
fig. 25e we show the decrypted image when ax3 is in
error by 0.05. In this case, the image remains totally

encrypted. The permutation keys are also robust to
blind decryption. Even if the dimensions of the blocks
involved are known, there are a vast number of possi-
ble permutations. In the case shown here, there are
64! ¼ 1.27 � 1089 possible permutations for each Jig-
saw transform. The result of using a randomly incor-
rect permutation for b3 in the decryption process is
shown in fig. 25d. Again the image remains totally en-
crypted.
A schematic for a possible optical implementation

of this system is shown in fig. 13. As described, the
Jigsaw transforms are applied digitally. SLMs are
used to display the signal after each step in the en-
cryption/decryption process a single lens configura-
tion is used to implement the FRT. A reference
beam is employed to record the complex data after
each FRT operation. We note that in the final stage
of the decryption process we do not need the refer-
ence beam.

4.9. Method 9

One possible definition of the DFRT [12] has a corre-
lation property which has been used to derive a recur-
sive algorithm for the phase retrieval of a signal pro-
vided we have available the intensities of two
fractional Fourier transforms of the original signal [7].
However, this 1-D algorithm cannot be simply ex-
tended to include a second dimension, as significant
non-trivial differences occur in going from 1-D to 2-D.
In [31] a method is outlined which allows the algorithm
to be extended to more than one dimension and can
be used to encrypt images.
First our input image is multiplied by some random

phase function and then an FRT of some arbitrary
order a1 is applied. Only the intensity of the resultant
image is stored. We then take the same input image
and multiply by a second (and different) random
phase function. This time we apply another FRT op-
eration of order a2 and again we only store the inten-
sity of this. These two intensities make up our en-
crypted image.
In order to decryption the encoded image we use of

the following definition

fpx; pyðmx Dxpx ; my DypyÞ

¼ Fpx; pyff0; 0ðlx Dx0; ly Dy0Þg ðmx Dxpx ; my DypyÞ

¼ ApxApy Dx0 Dy0 �
PNy
2 � 1

ly ¼
�Ny
2

PNx
2 � 1

lx ¼�Nx
2

f0; 0ðlx Dx0; ly Dy0Þ
"

� exp ip cot
pxp

2

� �
½ðlx Dx0Þ2þ ðlx DxpxÞ

2�� i2p
lxmx

Nx

� �

� exp ip cot
pyp

2

� �
½ðly Dy0Þ2 þ ðmy DypyÞ

2� � i2p
lymy

Ny

� �35
(34)
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Fig. 26. Graph of deviation in decryption order keys for
method 8 from the correct values against the resultant MSE.



and its correlation property

PNy
2 �1

ly¼�N
2

PNy
2 �1

lx¼�N
2

�
f*0;0ðlx Dx0; ly Dy0Þ f0; 0½ðlx þ kxÞDx0; ðly þ kyÞDy0�

� exp i2p cot
pxp

2

� �
lxkxðDx0Þ2

n o

� exp i2p cot
pyp

2

� �
lykyðDy0Þ2

n o�

¼
sin

pxp

2

� ���� ���
Nx Dx20

sin
pyp

2

� ���� ���
Ny Dy20

� exp ip cot
pxp

2

� �
k2xðDx0Þ

2
n o

� exp ip cot
pyp

2

� �
k2yðDy0Þ

2
n o

�
PNy
2 �1

my¼
�Ny
2

PNx
2 �1

mx¼�Nx
2

"
jfpx; py ðmx Dxpx ;my Dypy Þj

2

� exp i2p
kxmx

Nx

� �
exp i2p

kxmx

Nx

� �#
;

(35)

where f0; 0ðlx Dx0; ly Dy0Þ is the discrete function
which we transform, and the integers lx and ly have the
following ranges

�Nx

2
� lx �

Nx

2
� 1 and �Ny

2
� ly �

Ny

2
� 1 : ð36Þ

Dx0 and Dy0 are the sampling intervals of our input
function in the x and y directions respectively, and
Dxpx and Dypyare the sampling intervals in the new
FRT domain. Both mx and my have the same range of
values as lx and ly.
In order to decrypt out data we need to know the

fractional orders (ax1, ay1, ax2, ay2,) used to encrypt the
data and the two phase keys used in the encryption
process. The authors propose implementation of the
encryption using optical FRT and SLMs. Decryption
being carried out digitally. Numerical simulations re-
vealed that the decryption scheme is extremely sensi-
tive to errors in any of the fractional keys. This makes
the algorithm difficult to implement using conventional
bulk and GRIN optical methods since on needs to
know the physical parameters of the system to an ex-
tremely high degree and even low-level noise gener-
ated within the system would be critical [32]. Neverthe-
less the algorithm is shown to be a very effective
method of digital encryption. The results of numerical
simulations on a 32 � 32 lena image are shown below.
It was not possible to run the error simulations

(MSE) for the 256 � 256 image case, because the pixel
values of incorrectly decrypted images could not be
processed by the software used. This meant that in this
case the robustness of the various fractional keys could
not be measured and graphed. However ideal encryp-
tion and decryption could still be carried out for
256 � 256 images. For these reasons a 32 � 32 pixel
image was chosen for demonstration purposes.

The input image is shown in fig. 27a. The encrypted
image is shown in fig. 27b, which displays the ampli-
tude of a signal, whose real and imaginary parts are
given by the two intensities obtained from the encryp-
tion procedure. A correctly decrypted image is shown
in fig. 27c. In fig. 27d we show the result of decrypting
with ax1 ¼ 0.50001, i.e. an error of 1 � 10�5 in the FRT
order in the x direction, and in fig. 27e we show the
result of decrypting with ax2 ¼ 0.50001. The resulting
image has a MSE of 1.37 � 10þ43. In fig. 27f we show
the result of decrypting the signal using all the correct
fractional order keys but a completely incorrect phase
key.
Fig. 28 and fig. 29 correspond to the 32 � 32 image

case. Both show how deviations from the correct val-
ues for ax1 and ax2 effect the MSE of the resulting de-
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Fig. 27. Method 9: a) input image; b) encrypted image MSE
= 17394.68; c) decrypted image with MSE = 0.40; d) decrypted
using an incorrect value of ax1, out by 1� 10�5 with MSE =
1.46 �1039; e) decrypted using an incorrect value of ax2, out
by 1� 10�5 with MSE = 1.37� 1034; f) decrypted using an in-
correct phase key with MSE = 1.51 � 1075.



crypted image. Fig. 28 shows this variation for very
small deviations in the orders, in step sizes of
1.0 � 10�6 while fig. 29 is the same case for a wider
range of deviations. It can be seen that symmetry ex-
ists in the curves for increases in ax1 and decreases in
ax2 and vice versa.
It should also be noted that as we increase the size

of the image we are dealing with, the sensitivity of the
fractional orders increases considerably and the MSE
of incorrectly decrypted images also increases consid-
erably.

5. Conclusions

In this paper we have compared and contrasted nine
recently proposed optical encryption algorithms invol-
ving the use of the fractional Fourier transform. We
have measured the robustness of the various keys in
these systems and provided simulation results for al-
most all of these methods under conditions of ideal en-
cryption and decryption and incorrect decryption
based on the use of incorrect keys.
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Fig. 28. Small error in decryption order keys used versus the
resultant MSE of the decrypted 32� 32 image in method 9.
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tant MSE of the decrypted 32� 32 image in method 9.
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