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We analyze optical encryption systems using the techniques of conventional cryptography. All conventional
block encryption algorithms are vulnerable to attack, and often they employ secure modes of operation as one
way to increase security. We introduce the concept of conventional secure modes to optical encryption and ana-
lyze the results in the context of known conventional and optical attacks. We consider only the optical system
“double random phase encoding,” which forms the basis for a large number of optical encryption, watermark-
ing, and multiplexing systems. We consider all attacks proposed to date in one particular scenario. We analyze
only the mathematical algorithms themselves and do not consider the additional security that arises from em-
ploying these algorithms in physical optical systems. © 2008 Optical Society of America
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1. INTRODUCTION
Information security has been receiving increasing atten-
tion in recent years. Because optical processes have the
distinct advantage of sending 2-D complex data in paral-
lel and carrying out otherwise time costly operations at
great speeds, they have found growing importance in data
encryption. In [1] an optical encryption scheme is pro-
posed called “double random phase encoding” (DRPE),
which involves multiplying by two random phases in the
input plane and in the Fourier domain. The authors show
that if these random phases are statistically independent
white noises, then the encrypted image is also a white
noise. The random phase key located in the Fourier plane
serves as the only key in this encryption scheme.

The properties of this system and systems like it have
been investigated extensively [2–7]. Various other linear
optical systems have also been proposed in similar en-
cryption architectures [8–19]. For example, the fractional
Fourier transform has been utilized in encryption algo-
rithms in conjunction with random phase keys [8–12] and
by randomly shifting sections of the image in some frac-
tional domain [13,14]. The Fresnel transform has also
been used with random phase keys [15–18] and with ran-
dom shifting applied in some Fresnel domain [19]. The
most general form of the linear canonical transform,
implemented with any arbitrary quadratic phase system,
has also been used in an encryption system that uses ran-
dom phase as a key [19].

The DRPE method has been shown to have application
in holographic data storage [20,21]. It has been success-
fully applied with angular multiplexing [22–25], and it
has been observed that this methodology offers an im-
proved performance over traditional angular multiplexing
in terms of storage capacity [24] and angular selectivity
[25]. This improvement is attributed to cross talk between
adjacent images being reduced and has recently been

both qualified and quantified using a Wigner-based ap-
proach [26].

In recent years there have been a number of proposed
attacks on DRPE-type encryption systems [27–32]. In an
effort to gain a deeper understanding of this system, and
to overcome the vulnerability of DRPE systems to attack,
we attempt to investigate the parallels between this opti-
cal system and conventional cryptography [33–38]. All
textbook conventional computer science encryption sys-
tems are vulnerable to attack. One way to counteract this
is to use secure modes of operation. In this paper we in-
troduce the concept of modes to optical encryption and
analyze the results in the context of known attacks. We
consider only DRPE, but consider all attacks proposed to
date (as described in Section 3) in one particular scenario.
As is usual in cryptanalysis, we consider only key secu-
rity; we assume there is no security in the mechanism
and that any potential attacker will know precisely how
the key is used to effect encryption/decryption.

We introduce modes in the following scenario. Consider
a sequence of m images that is to be optically encrypted,
or equivalently, a stream of data that is very large com-
pared to the input space of the DRPE apparatus. The out-
put corresponding to such an input will be a sequence of
encrypted images. The most secure way of encrypting
these data is to use a separate encryption key for each im-
age. However, using a separate key for each image is often
impractical. In the scenario we describe here, the sender
can transmit securely at most one or two phase masks to
the receiver before sending the encrypted images over an
insecure communication channel. The sender is therefore
forced to reuse the same key for each image to be en-
crypted. What can the sender do? The most straightfor-
ward approach is to encrypt each with the same key. How-
ever, this is vulnerable to attack. In this paper, we
present several modes of operation, of increasing sophis-
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tication, that allow the sender some level of defense
against the known attacks upon DRPE.

In Section 2 we briefly review the DRPE system, and in
Section 3 we present a summary of these attacks on the
system that have been proposed in the literature. In Sec-
tion 4 we discuss the concept of secure modes in conven-
tional cryptography systems and outline a number of sug-
gestions on how the concept of modes can be incorporated
into the DRPE optical encryption system. In Section 5 we
discuss briefly implementation issues, and we conclude in
Section 6.

2. DRPE
The method of DRPE [1] makes use of the optical Fourier
transform (OFT). Two phase masks are used in the en-
cryption scheme, which are in the form of two statistically
independent white sequences uniformly distributed in
[0,1]. We will denote these random functions as k1 and k2,
which are often displayed on spatial light modulators
(SLMs) that can display amplitude and phase informa-
tion. An optical encryption implementation can be seen in
Fig. 1. The scheme works as follows: The input image to
be encoded is multiplied by one random phase mask. The
resulting complex wave field is optically Fourier trans-
formed using a convex lens, and in the Fourier domain it
is multiplied by the second phase mask displayed on a
second SLM. The resulting image is again Fourier trans-
formed through the use of a second lens. This is equiva-
lent to a convolution operation, where the encrypted im-
age can be represented by

C�x� = E�P�x��, �1a�

E�P�x�� = �P�x�exp�j2�k1�x��� � h�x�, �1b�

F�h�x�� = exp�j2�k2�x��. �1c�

The * denotes the convolution operation, P�x� represents
the signal to be encrypted (plaintext), C�x� denotes the en-
crypted image (ciphertext), E� � denotes the encryption
process that is DRPE, and F denotes the Fourier trans-
form operator. One-dimensional functions are used for
simplicity.

The resulting encrypted image, which is complex val-
ued, can be shown to be a stationary white noise [1]. The
first random phase mask serves to make the input image
white but nonstationary and not encrypted. The second
serves to make the image stationary and encoded. Be-
cause the encrypted image is complex valued, both the
real and imaginary parts are needed to decode the image.
In order to record such a wave field (magnitude and
phase), we must use holographic interferometric methods
[39–43].

Decryption is defined as

P�x� = D�C�x��, �2a�

D�C�x�� = �C�x� � h�− x��exp �− j2�k1�x��, �2b�

where D� � denotes decryption. To decrypt we apply the
exact inverse of what was done to encrypt the image:
First, return to the Fourier domain through the action of
a lens. Next, multiply by a phase mask, which is the con-
jugate of the corresponding phase mask used in the en-
cryption process. A last Fourier transforming lens follows
this. In most cases the input image is a real amplitude
image. After this last OFT, the resulting wave field will
have an amplitude distribution equal to the original im-
age, so holographic techniques are not necessary to cap-
ture it. Furthermore, since we are interested only in the
amplitude of the image in the output plane, we need not
multiply by the conjugate of the first phase mask, since
this will have no effect on the amplitude. Thus, we can
drop the exponential term in Eq. (2b), and there is only
one key in this decryption scheme, the second random
phase function, without which, blind decryption is very
difficult [6].

The properties of such an encryption–decryption sys-
tem have been investigated [2–7]. It is worth noting that
since the system is linear, it exhibits behavior identical to
that of the Fourier transform with regard to additive and
multiplicative noise in optical implementations. DRPE
has also been extended to use a complex signal as the in-
put to the system instead of an amplitude-based image
[4]. Such a system can be shown to have an improvement
in robustness to additive noise. However, unlike the case
of the input real only image, the first phase mask must be
included during decryption and Eq. (2b) must include the
exponential term and the final decrypted image must be
recorded using interferometric methods.

We note that in DRPE, the first random phase plane
serves to make the input image white but nonstationary
and not encrypted [1]. The second serves to make the im-
age stationary and encoded. Thus, the random phase key
located at the Fourier plane of this system, k2, serves as
the only key in this encryption scheme. In the following
sections we attempt to apply the concept of modes of en-
cryption to DRPE. In the next section we discuss a num-
ber of attacks that have been proposed in the literature to
hack into the DRPE system.

3. EXISTING ATTACKS ON DRPE SYSTEMS
Two classes of attack have been proposed to date on
DRPE: one class seeking an exact solution to the phase

Fig. 1. (Color online) General optical encryption/decryption
setup for DRPE. OFT, optical Fourier transform; k, random
phase mask represented on a SLM.
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masks and the other seeking an approximate solution.
The most relevant of the attacks summarized below are
listed in Table 1.

A. Exact Solutions
Exact attacks are analytic in nature.

1. Chosen Plaintext Attack
The simplest type of cryptographic attack is the chosen
plaintext attack. In this attack the attacker obtains the
encrypted version of a plaintext of their choosing and uses
the plaintext–ciphertext pair to deduce the encryption
key. It has been demonstrated [27,28] that if the attacker
can induce a centered [27] or noncentered [28] delta func-
tion to be encrypted, then the second phase mask can be
found. This is sufficient to decrypt a real-valued plaintext.
For convenience, we call this the delta attack. Only a
single chosen plaintext–ciphertext pair is required, a real-
valued plaintext is assumed, and holographic recording of
the output is assumed. The delta attack has a simple de-
fense due to Carnicer et al.: simply do not allow delta
functions to be encrypted [27]. However, a refinement of
this attack, which we call the delta-H attack, allows the
delta function to be hidden within any set of innocuous
images whose linear combination is a shifted delta func-
tion [28]. For the delta-H attack, as few as two chosen
plaintext–ciphertext pairs are required and the simple
defense to the delta attack is overcome. Simple extensions
to the defense (such as subtracting the current plaintext
from each previously encrypted plaintext to search for a
delta function) will protect against this attack when it is
known that the delta function is hidden within only two
pairs. However, if the delta function is hidden within the
linear combination of an arbitrary sequence of plaintexts,
then it will be impractical to check for all possible linear
combinations over any subset of previously encrypted
plaintexts. Therefore, we regard the delta-H attack as not
having been properly defended against by straightfor-
ward extensions to the defense of Carnicer et al.

Variants of DRPE that employ phase encoding of their
DRPE inputs [44] are also susceptible to the delta-H at-
tack [28]. As an extension, Frauel et al. [28] have shown
that if the second phase mask is known, then one further

chosen plaintext–cipertext pair (where the plaintext is an
image with constant complex amplitude) will allow the
first phase mask to be found, allowing complex-valued
plaintexts (including phase-encoded plaintexts) to be de-
crypted. We call this the delta-C attack.

If only the intensity of the ciphertext in each chosen
plaintext–cipertext pair can be measured, but if it is pos-
sible to obtain many chosen plaintext–cipertext pairs,
Carnicer et al. [27] have shown that N pairs can be used
to decrypt the N pixels of the second phase mask. In this
attack, the plaintexts are composed of delta functions,
and we call it the delta-P attack. The delta-P attack can
be combined with the delta-C attack to decrypt complex-
valued plaintexts. A delta-P-type attack has also been de-
scribed for Fresnel encryption [29].

2. Known Plaintext Attack
Known plaintext attacks are more sophisticated attacks
because it is not necessary for the attacker to choose the
particular plaintext(s) to be encrypted; they only need to
know their values. Frauel et al. [28] have shown that with
the knowledge of N linearly independent plaintext images
(that constitutes a base of the N-pixel input space) and
knowledge of their corresponding ciphertexts, an attacker
is able to directly decrypt all other images encrypted with
the same masks, where N is the number of pixels in the
plaintext. We refer to this attack as the LA1 (linear alge-
bra 1) attack, because its basic step is a matrix inversion.
Although it can cope with complex-valued and phase-
encoded plaintexts in additional to regular amplitude-
encoded plaintexts, its practicality is limited by the fact
that for DRPE systems operating over images with N pix-
els, the attacker must wait for N linearly independent in-
puts (and their corresponding outputs).

For the same computational cost, one can obtain the
same result with only two plaintext–ciphertext pairs.
Frauel et al. [28] have shown that given two pairs en-
crypted with the same phase masks, one can construct a
system of N linear equations with N unknown variables,
where N is the number of pixels in each mask. Solving
this system using classical system-solving techniques
[such as Gauss elimination or lower triangular–upper tri-
angular (LU) decomposition] gives the first phase mask.

Table 1. List of Attacks on DRPE

Attack Refs. Classa Pairs Required Timeb Phase Inputsc Moded Brief Reminder of Type of Attack

Delta [27,28] Ex-Ch 1 O(1) N ECB Centered delta, holographic recording
Delta-H [28] Ex-Ch 2 O�N� Y CFB Hidden delta function
Delta-C [28] Ex-Ch 3 O�N� Y CFB Obtain both phase keys
Delta-P [27] Ex-Ch N O�N� N CFB Requires only intensity to be probed
LA1 [28] Ex-Kn N O�N3� Y CFB Linear algebra: matrix inversion
LA2 [28] Ex-Kn 2 O�N3� Y CFB Linear algebra: solve linear system
Delta-P [27] Ap-Ch N O�N� N CFB Requires only intensity to be probed
SA [30] Ap-Kn 1 O�N� N OFB Simulated annealing
PR [31] Ap-Kn 1 O�N� N OFB Phase retrieval

aEx/Ap, Exact/Approximate decryption; Ch/Kn, Chosen/Known plaintext.
bFor the complexity analysis �where N is the number of pixels�, we assume that each optical encryption/decryption operation requires just one computation step. Heuristics SA

and PR are approximated as requiring a linear number of iterations.
cDenotes whether attack can cope with phase-encoded inputs.
dThe weakest mode that protects against this attack.
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Once the first phase mask is known, the second mask can
be calculated directly. We refer to this attack as the LA2
(linear algebra 2) attack. The complexity of this attack is
O�N2� in space and O�N3� in time. For an image with N
=104 pixels, the masks can be found in approximately 2 h
on a desktop computer using Gaussian elimination with
back substitution [28]. Again, complex-valued and phase-
encoded plaintexts are also susceptible in this attack.

Finally, we note that an attack by Lee et al. [32] on an
encryption technique for holographic memory that is sim-
pler than DRPE is not considered here.

B. Approximate Solutions
The advantage of using a heuristic to approximate phase
mask pixels rather than an analytical technique to deter-
mine exact solutions for the pixels is that a heuristic can
take considerably less time to run. Furthermore, since the
data routinely encrypted by optical encryption are image
data, slight errors in the decrypted data can often be tol-
erated, and so an exact solution is not generally required.
The simplest type of attack is a brute force attack in
which the key is approximated by trying all in a restricted
set of possibilities [28]. It has been shown that this kind of
attack is not feasible [6].

1. Chosen Plaintext Attack
The delta-P attack of Carnicer et al. [27] can be utilized so
that with M plaintext–ciphertext pairs, a subset M of the
pixels of the second phase mask can be retrieved. It has
been widely shown that DRPE is tolerant to a large num-
ber of missing pixels in the phase masks [27,28]. A delta-
P-type attack has also been described for Fresnel encryp-
tion [29].

2. Known Plaintext Attack
Gopinathan et al. [30] describe a known plaintext attack
that uses a heuristic to estimate the second phase mask
in a DRPE scenario. Their algorithm is given a single
plaintext–ciphertext pair. It is assumed that the plaintext
is real valued, and so only the second phase mask is
sought. They use a simulated annealing algorithm to find
a phase mask that decrypts the output with arbitrarily
low error. They show that the technique is not guaranteed
to return an acceptable solution but can detect when the
technique is failing to converge and demonstrate that at
most three parallel runs of the technique are required to
acceptably decrypt with a probability of 0.9995. Three
parallel runs would require approximately 1 h for a 32
�32 pixel input, rising to 17 h for a 64�64 pixel input
[30].

Peng et al. [31] also assume they are in possession of a
single plaintext–ciphertext pair (a real-valued plaintext a
and a complex-valued encrypted image b). Peng et al. [31]
observe that the amplitude of the signal immediately be-
fore the second phase mask is identical to the amplitude
of the Fourier transform B of the encrypted image b. To-
gether, �B�2 and �a�2 constitute a pair of intensity measure-
ments related by a Fourier transform, which can be used
to derive the first phase mask using standard phase-
retrieval techniques. Once the first phase mask is known,
the second mask can be calculated directly. The accuracy
with which the first phase mask is found is dependent on

both the sophistication of the phase-retrieval algorithm
employed and the length of time it is run.

4. CONVENTIONAL MODES OF OPERATION
FOR BLOCK ENCRYPTION SYSTEMS
In this section we review the concept of secure modes in
modern conventional cryptography for block encryption
systems and apply these concepts to DRPE. This will pro-
vide a means to overcome the attacks reviewed in the pre-
vious section.

A. Modes
Cryptographic block ciphers partition messages into data
blocks before transmission. These blocks are then pro-
cessed, one at a time. Questions arise as to what is the
best way to do this and can extra desirable properties be
integrated into this procedure. These questions are usu-
ally addressed by using standard modes of operation
along with the basic cryptographic algorithm. These
modes of operation can be used to incorporate nondeter-
minism into a block cipher algorithm. Nondeterminism is
necessary but not always sufficient to protect against
modern adaptive cryptographic attacks. Modes of opera-
tion can also be used to pad in a more secure way, control
error propagation, and transform a block cipher into an
arbitrary length stream cipher. Four main modes of op-
eration are described below. A comprehensive account of
modes of operation appears in [34]. In this section we at-
tempt to adapt the secure coding schemes developed for
conventional cryptography for the DRPE system. There
are obvious differences between the mathematical defini-
tions and the physically realizable optical operations. We
substitute straightforward compromises in these in-
stances.

B. Notation
We introduce the following notation:

Let Ek�·� denote some encoding scheme in the case of
conventional cryptography and a DRPE encryption with
some key k in the case of optical encryption.

Let Dk�·� denote the corresponding decoding scheme in
the case of conventional cryptography and a DRPE de-
cryption with the key k in the case of optical encryption.

Let Pi denote the ith plaintext image, where 1� i�m
and where m is the total number of images being en-
crypted.

Let Ii denote an intermediate image or intermediate
text.

Let Ci denote the corresponding ciphertext image.
Let IV denote an initial image value required by some

modes of operation.

C. Electronic Codebook Mode
The electronic codebook (ECB) mode is the simplest mode,
where blocks are encrypted sequentially,

Ci = Ek�Pi�, 1 � i � m. �3�

Decryption is given by

Naughton et al. Vol. 25, No. 10 /October 2008 /J. Opt. Soc. Am. A 2611



Pi = Dk�Ci�, 1 � i � m. �4�

This is the simplest mode and equates directly to the
standard DRPE system. Equations (3) and (4) above can
be used to directly represent DRPE encryption and de-
cryption, respectively. A flow chart for encryption and de-
cryption is shown in Fig. 2, and an illustration of encryp-
tion is given in Fig. 3(a). We note that the inverse Fourier
transform has an almost identical optical implementation
to the Fourier transform. Using the defense of Carnicer et
al. [27], this mode is secure against the delta attack. How-
ever, this mode is vulnerable to other attacks because it is
deterministic: Multiple images are encrypted sequentially
with the same key (k2 in Fig. 1) so that, for example, if
identical plaintexts are encrypted, this results in identical
ciphertexts. If the required number of plaintext–
ciphertext pairs is obtained, the key can be discovered by
exploiting either exact attack or approximate attack sen-
sitivity, as described previously in Section 3. The key can
then decrypt the entire sequence as illustrated in Fig.
3(b). [To remove this determinism one would need to in-
troduce some limited form of randomization (usually
called pseudo-randomization), as will be explained in the
next section, so that the key used for each plaintext is not
identical to that used for the subsequent plaintext.] Fig-
ure 1 illustrates a physically realizable setup for imple-
menting the DRPE in this and all other modes described
in this paper. In this implementation both phase keys are
displayed on SLMs.

D. Cipher Block Chaining
This ciphertext from this mode is dependent not only on
the plaintext block but also on all previous data blocks as

C0 = IV, �5a�

Ci = Ek�Pi � Ci−1�, 1 � i � m, �5b�

where � denotes a bitwise exclusive or (XOR) operation.
Decryption is achieved with Eq. (5a) and

Pi = Dk�Ci� � Ci−1, 1 � i � m. �6�

Note that since IV is treated as a ciphertext block, it need
not be secret but should change on each encryption ses-
sion. The receiver should be sent the IV along with the ci-
pertexts in order to decrypt. The result of this chaining is

that the ciphertext messages are randomized and not de-
terministic as in the case of ECB. It is also worth noting
that although it initially seems so, the cipher block chain-
ing (CBC) mode cannot provide data integrity protection.
An attack illustrating this appears in [37].

Since in general we will not be dealing with binary im-
ages, we will generalize the �Pi � Ci−1� operation with any
reversible operation, f�Pi ,Ci−1�, where its inverse is de-
fined from Pi= f−1�f�Pi ,Ci−1� ,Ci−1�. In this case Eqs. (5b)
and (6) describing encryption and decryption above are
reformulated for DRPE as

Ci = Ek�f�Pi,Ci−1��, 1 � i � m, �7�

Pi = f−1�Dk�Ci�,Ci−1�, 1 � i � m. �8�

It is clear that the ciphertext depends on the plaintext
and all other previous encrypted data blocks. The initial
image C0=IV is not secret but should change on each ses-
sion. The ciphertexts are pseudo-randomized. Each en-
crypted image is used with the next plaintext image to de-
rive the input image on the first SLM. To derive this input
we use the reversible function f, which could possibly be
implemented electronically or optically. This mode is de-
signed to confuse an attacker. A flow chart for this mode is
given in Fig. 4. The setup illustrated in Fig. 1 can be used
to implement this mode.

One possible implementation of f�A ,B� might be addi-
tion of the complex functions, A+B. In this case, f−1�A ,B�
would be given by A−B. This could be performed numeri-
cally or optically by complex (spatial) superposition of two
images. Another possible f could be multiplication. In this

Fig. 2. Flow chart for (a) DRPE encryption Ek and (b) DRPE de-
cryption Dk. FT, Fourier transform; IFT, inverse Fourier trans-
form. The conjugate of the phase key k2 is used in the decryption
process. The symbol * denotes complex conjugation.

Fig. 3. (Color online) Illustrations of DRPE operation: (a) Se-
quence of plaintext inputs (in white) is encrypted to ciphertext
outputs (shaded). (b) In ECB and CBC modes, if attackers obtain
the key they can immediately decrypt the entire sequence. (c) In
CFB mode, if attackers approximate the key with a single
plaintext–ciphertext pair, only subsequent images can be de-
crypted because function f1 is not reversible. (d) In both CFB and
OFB modes, careful choice of f1 can mean that the propagation of
errors from an attack that only approximates the key will mean
that only a very small number of subsequent images will be
decrypted.
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case, f−1 would be given by division. Multiplication could
be implemented numerically or optically using an opti-
cally addressed SLM. A third possible implementation
could be convolution, f�A ,B�=A*B, where the asterisk de-
notes the process of convolution. In this case the inverse
would be a deconvolution. This could be implemented ef-
ficiently in a computer using a fast Fourier algorithm or
optically using an OFT and a pair of SLMs. Interestingly,
another possible implementation could be a DRPE sys-
tem, f�A ,B�=EB�A�. In this case the inverse function
would be A=DB�f�A ,B��.

Although initially it might seem that attacks that rely
on multiple plaintext–ciphertext pairs are foiled by this
optical CBC mode, the reversibility of f means that each
of these attacks could be successfully modified. This is be-
cause the conventional CBC algorithm is designed to be
used with a nonlinear encryption technique. Modified at-
tacks could be mounted as follows. Note that in conven-
tional cryptanalysis we cannot assume that the
encryption/decryption methods used are secret; only the
key can be considered secret. With one or more plaintext–
ciphertext pairs �Pi ,Ci� and knowledge of the previous ci-
phertext in the sequence, an attacker would compute each
Ii= f�Pi ,Ci−1� and, using �Ii ,Ci� in the role of each
plaintext–ciphertext pair, deduce the key k using pub-
lished techniques [27–31]. With k, the attacker would
compute Ii=Dk�Ci� from any unbroken ciphertext en-
crypted with k and apply f−1 to the result to obtain the
plaintext.

E. Cipher Feedback Mode
The conventional cipher feedback (CFB) mode is designed
to provide additional functionality rather than additional
security compared to the previous mode [34]. It provides a
way to convert a block cipher into a stream cipher [35] so
that it can be more useful for wireless communications,
for example. This mode feeds successive bits of ciphertext
back as input to the encryption algorithm. However, in
this paper we look only at the block cipher variant of con-
ventional CFB, as described in [38]. Although in conven-
tional cryptography there may not be sufficient motiva-
tion for a block cipher version of CFB, we show below that

in a DRPE interpretation, CFB has a significant advan-
tage over CBC. CFB encryption is defined as

I1 = IV, �9a�

Ii = Ci−1, 2 � i � m, �9b�

Ci = Pi � Ek�Ii�, 1 � i � m, �9c�

where the encrypted version of the previous ciphertext is
combined using XOR with the next plaintext block. De-
cryption is defined as combining Eqs. (9a) and (9b) with

Pi = Ci � Ek�Ii�, 1 � i � m. �10�

In this mode the encryption function is also used for de-
cryption. This allows much greater flexibility in the choice
of Ek� � and includes the use of one-way hash functions.
For an account of hash functions, see [36].

In the process of adapting this mode, and in order to
free ourselves of the XOR notation, we rewrite the encryp-
tion in Eqs. (9b) and (9c) in terms of two functions, f1 and
f2, as

Ii = f1�Ii−1,Ci−1�, 2 � i � m, �11a�

Ci = f2�Pi,Ii�, 1 � i � m, �11b�

where f1 is irreversible and f2 is reversible. Similarly, we
express decryption by replacing Eq. (11b) with

Pi = f2
−1�Ci,Ii�, 1 � i � m. �12�

The irreversible function f1 takes the previous ciphertext
and the previous key and generates the key with which to
encrypt the next plaintext. These are the same two inputs
defined for the stream cipher variant of CFB [34]. The re-
versible function f2�Pi ,Ii� has an inverse defined using
Pi= f2

−1�f2�Pi ,Ii� ,Ii�.
For our specific DRPE adaptation, we let DRPE take

the place of the reversible f2 operation. The irreversible f1
operation can be implemented elsewhere (in optics or
electronics). It has been shown [45] that DRPE itself
should not be used for the irreversible f1. In such a sce-
nario, DRPE encryption is defined as

I1 = k2, �13a�

Ii = f1�Ii−1,Ci−1�, 2 � i � m, �13b�

Ci = EIi
�Pi�, 1 � i � m, �13c�

and DRPE decryption is defined by Eqs. (13a) and (13b)
and

Pi = DIi
�Ci�, 1 � i � m. �14�

The choice of the irreversible f1 function can be arbitrary
as long as it takes as input a phase mask and complex-
valued image and returns a pure phase mask. In an opti-
cal implementation it could utilize a thick semitranspar-
ent block with multiple amplitude scatterings placed in
front of the illuminated product of the two inputs, and the
scattered intensity recorded, where the intensities
modulo 2� are considered as phase values for the next
key. Numerically, any of the conventional keyed crypto-

Fig. 4. Flow chart for CBC mode. (a) Encryption, where the two
phase mask products and two FTs represent the Ek operation. (b)
Decryption, where the two phase mask products and two IFTs
represent the Dk operation. The flow chart does not show that at
i=1, the initial feedback image is C0=IV.
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graphic hash functions [34,36] such as MD5 or SHA-1
could be adapted for the role.

A flow chart for the CFB mode with DRPE is given in
Fig. 5. Again Fig. 1 can be employed as an illustration of a
physical implementation of the setup. We begin with the
initial Fourier plane phase mask k2 and encrypt a plain-
text image. The resulting ciphertext and k2 are used as
input to some irreversible function f1 to generate the Fou-
rier plane phase mask to encrypt the next plaintext. In
decryption, k2

* is used to decrypt the first ciphertext, and
thereafter each ciphertext is decrypted using the complex
conjugate of the output of f1. The most important aspect of
the CFB mode with DRPE is that the encryption key
changes for each plaintext. This is similar to the concept
of autokeying in conventional symmetric cryptography
systems [46].

Because no two plaintext–ciphertext pairs are en-
crypted using the same key, all exact attacks that require
multiple plaintext–ciphertext pairs encrypted with the
same key are foiled by this mode. Namely, the chosen
plaintext attacks delta-H, delta-C, and delta-P, as well as
the known-plaintext attacks LA1 and LA2, are foiled by
this mode. Also, delta-P used as an approximation attack
is also foiled, as it requires all pairs to be encrypted with
the same key. Due to the irreversibility of f1, it is unlikely
that these attacks could be modified in a straightforward
manner. However, approximate attack sensitivity re-
mains for this mode, specifically, attacks SA and PR.
These attacks require only a single pair to approximate
the key. However, since f1 is not reversible, if one
plaintext–ciphertext pair is obtained, only subsequent im-
ages can be decrypted and not the whole sequence. This
point is illustrated in Fig. 3(c).

Furthermore, a well-chosen irreversible f1 will be
highly sensitive to the key Ii. This is certainly the case
with a cryptographic hash function [34,36]. It could be ar-
ranged too in an optical implementation by choosing an f1
that embodied the properties of a chaotic function [47]. By
their nature, the approximate attacks SA and PR will find

the key with some error. As such, when the attacker
passes only an approximated key to f1, it will either com-
pute the incorrect key for the next ciphertext immediately
or else propagate and accumulate the errors so quickly
that only a small number of subsequent ciphertexts will
be decrypted. This point is illustrated in Fig. 3(d). Unfor-
tunately, errors will propagate for the legitimate de-
crypter too. With optical systems operating on gray-scale
images and incorporating an interferometric measure-
ment technique, one has to allow for the propagation of
errors. Of course, the errors will not be as large, because
the legitimate user will start with the exact key rather
than just an approximated one, but the errors could still
be significant for highly nonlinear f1.

F. Output Feedback Mode
The output feedback (OFB) mode is similar to CFB but
differs in the way the feedback is handled. The feedback
here happens before the XOR with the plaintext. The
feedback circuit forms a finite-state machine with the
state determined only by the encryption key of the under-
lying encryption algorithm. The advantage of this is that
propagation errors will affect only one block of ciphertext
and will not be amplified as with the other modes. This
makes OFB suitable for noisy channels such as in mobile
or satellite communications. Encryption is defined as

I1 = IV, �15a�

Ii = Ek�Ii−1�, 2 � i � m, �15b�

Ci = Pi � Ii, 1 � i � m, �15c�

and decryption is defined using Eqs. (15a) and (15b) with

Pi = Ci � Ii, 1 � i � m. �16�

Once again, in order to free ourselves of the XOR nota-
tion, we can rewrite Eqs. (15) and (16) in terms of two
functions, f1 and f2, where f1 represents Ek and f2 repre-
sents XOR. For conciseness, we do not give these here.
Function f2 is reversible, and f1 can be reversible or irre-
versible because the values in Eq. (15b) are never ob-
served directly by the attacker in the attacks under con-
sideration in this paper. Although f1 can be reversible, it
should not be linear; inputs to f1 should give rise to highly
randomized outputs so that an attacker cannot predict
the behavior of f1. As such, for example, DRPE would not
be a good choice for f1 because a small change in the input
gives rise to a small change in the output. For our DRPE
formulation of the OFB mode, we choose to employ DRPE
for f2 and some arbitrary competent conventional keyed
cryptographic hash function [34,36] for f1. Encryption is
defined as

I1 = k2, �17a�

Ii = f1�Ii−1�, 2 � i � m, �17b�

Ci = EIi
�Pi�, 1 � i � m, �17c�

and decryption is defined by Eqs. (17a) and (17b) and

Fig. 5. Flow chart for CFB mode. (a) Encryption, where the two
phase mask products and two FTs represent the EI operation. (b)
Decryption, where the two phase mask products and two IFTs
represent the DI operation. Function * denotes the application of
complex conjugation. The flow chart does not show that at i=1,
Ii=k2.
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Pi = DIi
�Ci�, 1 � i � m. �18�

A flow chart for the system is given in Fig. 6. Figure 1 il-
lustrates a possible optical implementation. For the first
plaintext image we encrypt with the initial Fourier plane
phase key k2. To encrypt subsequent plaintexts i, the
most recent Fourier plane key is used as input to hash
function f1 to generate the new Fourier plane key Ii.

The OFB mode foils all exact decryption attacks (delta-
H/C/P and LA1/2) and delta-P in an approximation at-
tack, because no two plaintext–ciphertext pairs will have
used the same Fourier plane key. The SA and PR approxi-
mation attacks will reveal the key from a single
plaintext–ciphertext pair, but by their nature they will
have some errors in the key. By using a cryptographic
hash function for f1 in the OFB mode, only exact knowl-
edge of the key to an arbitrary resolution will permit one
to calculate the next correct key in the sequence. There-
fore, successful attacking of one page of cyphertext will
not lead to instant decryption of any other pages as illus-
trated in Fig. 3(d).

From the legitimate decrypter’s perspective, the result-
ing system is more robust to the propagation of error; er-
rors will propagate only if the key is approximated, but
not if it is known exactly. The legitimate decrypter will
have the key in digital format and will be able to manipu-
late it digitally without error. Even though the legitimate
decrypter may have errors in its optical DRPE setup,
these errors will not propagate to, or be amplified in, sub-
sequent ciphertext images. As such, it could be regarded
as a form of error correcting [48].

5. DISCUSSION ON IMPLEMENTATION
Optical implementation of any of the modes presented in
this paper will have a number of requisites. First, it is
necessary that a recorded encrypted image can be digi-
tally recorded and transmitted so that it can be used as a
part of a feedback system that is at the heart of many of
the modes listed in this paper. Second, it is necessary that

the phase masks used in the encryption/decryption sys-
tem can be quickly changed electronically so that new in-
formation can be fed back into these phase masks. This
requires the use of addressed SLMs.

The first requisite can be met using digital holography,
a means of recording a complex wavefront using a digital
camera and a reference beam. In recent years the practi-
cal application of digital holography for recording double
random phase encoded images has been experimentally
validated [41–43]. In [41] the authors describe the first
documented experimental digital holographic recording of
such an image for secure storage and data transmission.
In [42] further experimental results were provided for
digital recording of DRPE. This time the input was not a
planar data image, rather it was a 3-D object scene. It
was shown that different 3-D perspectives and depths
could be generated from the digitally recorded encrypted
hologram. In [41,42] it was shown that if the phase key
was also digitally recorded, decryption could be imple-
mented numerically. In [43] further experiments of digital
recording of DRPE images are presented in addition to a
correlation-based optical reconstruction process for a real-
time display of the digitally encrypted image.

We also note that the use of electrically addressed
SLMs for representing phase keys in optical encryption
schemes has also been experimentally validated [49]. On
this basis we believe that the modes listed in this paper
are experimentally possible, though some errors in de-
cryption can be expected due to quantization differences
between the recorded image and the SLMs.

As yet, we have no recommendations about how the ex-
tra computation for the various modes could be shared be-
tween electronic and optical systems and between digital
or analog implementations. Of course, all tasks could be
conveniently implemented in digital electronics. If one
uses electrically addressed SLMs, then the data will be in
electronic form at some points in the computation any-
way. However, it is worth examining if there are alterna-
tive implementation opportunities. The claimed advan-
tages for digital optical computing include reductions in
speed, interconnection complexity, and power require-
ments [50,51], and recent applications that take advan-
tage of information already in an optical representation
(such as all-optical packet switching in optical communi-
cations [52]) look promising. However, digital optical com-
puting of the form that is prevalent today [52] would be
convenient only if the operations are pointwise operations
that are to be applied to 1-D arrays of pixels at a time—if
there are dependencies between neighboring pixels in
multiple dimensions (such as in a 2-D convolution), then a
digital optical implementation would not be convenient.

The disadvantages of analog systems for computing in-
clude inherent noise and low dynamic range compared to
digital representations, which puts fundamental limits on
the accuracy achievable. However, if analog optics is al-
ready employed for the basic DRPE steps, then one can
assume that many of these concerns about analog sys-
tems will already have been alleviated or will be less rel-
evant for the application in hand. The analog computa-
tion could be performed either electronically or optically.
Analog electronics has the same limitation as digital op-
tical computing above—it is not ideally suited to 2-D im-

Fig. 6. Flow chart for OFB mode. (a) Encryption, where the two
phase mask products and two FTs represent the EI operation. (b)
Decryption, where the two phase mask products and two IFTs
represent the DI operation. Function * denotes the application of
complex conjugation. The flow chart does not show that at i=1,
Ii=k2.
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age processing. Analog optical image processing is a
strong contender, as the data are in an optical image rep-
resentation already. In particular, if optically addressed
SLMs are employed, the data might not be in electronic
form at the appropriate time. In principle, it has been
shown that all possible computations can be performed by
analog optics [53,54]. In principle, general-purpose com-
putations can be performed with resources (time and
space) equivalent to those required by digital electronics,
while many image processing operations can be per-
formed more efficiently. However, care would have to be
taken when specifying a very efficient optical implemen-
tation for the irreversible function f1 in CFB and OFB.
The most efficient nonlinear operation in analog optics
(square law detection) could be susceptible to phase-
retrieval techniques and, as has been mentioned, DRPE
itself cannot be used as a cryptographic hash function
[45]. In particular, the perfect calculation of f1 in the OFB
mode is required in order to avoid the propagation of er-
rors, and so it would be recommended that this step be
carried out with digital optics or digital electronics.

6. CONCLUSION
DRPE is vulnerable to both exact decryption and approxi-
mate decryption attacks. Secure modes of operation,
adopted from conventional cryptography, can be used to
foil each of these attacks in the scenario outlined. We
adapt these modes for optical implementation with the
DRPE system and discuss their impact in terms of added
security and propagation of error. ECB is conventional
DRPE. CBC adds little security due to its reversibility.
CFB exhibits security against all attacks. Equipping CFB
to foil approximate decryption attacks requiring only a
single plaintext–ciphertext pair results in error propaga-
tion for legitimate decrypters of optical systems. OFB is
shown to be currently secure against all attacks, in addi-
tion to admitting no error propagation for the legitimate
decrypter.
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