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Abst ract . This paper present s t he result s of mult ifract al t est ing of two set s of financial dat a: daily dat a
of t he Dow Jones Indust rial Average (DJ IA) index and minut ely dat a of the Euro Stoxx 50 index. Where
mult ifract al scaling is found, t he spect rum of scaling exponent s is calculat ed via Mult ifract al Det rended
F luctuat ion Analysis. In both cases, furt her invest igat ions reveal t hat t he t emporal correlat ions in the dat a
are a more significant source of the mult ifract al scaling than are the dist ribut ions of the returns. It is also
shown that t he ext reme event s which make up the heavy t ails of t he dist ribut ion of the Euro Stoxx 50
log returns dist ort t he scaling in the dat a set . The most ext reme event s are inimical t o the scaling regime.
This result is in cont rast t o previous findings that ext reme event s cont ribut e to mult ifract ality.

1 Int roduct ion

Mult ifractal analysis has proved to be a valuable method
of capturing the underlying scaling st ructure present in
many types of systems via generalised dimensions [1] and
f (α) spect ra [2]. These systems include diffusion limited
aggregat ion [3–5], fluid flow through random porous me-
dia [6], atomic spect ra of rare-earth elements [7], cluster-
cluster aggregat ion [8] and turbulent flow [9]. In phys-
iology, mult ifractal st ructures have been found in heart
rate variability [10] and brain dynamics [11], and mult i-
fractal analysis has been helpful in dist inguishing between
healthy and pathological pat ients [12]. Mult ifractal mea-
sures have also been found in man-made phenomena such
as the Internet [13], art [14] and the stock market [15–17].
The concept of mult ifractality was first int roduced

in the context of turbulence. It was soon applied to fi-
nance because of it s heavy tails and long-term depen-
dence. These two features are also argued to be present in
financial data [18,19].
Performing mult ifractal analysis helps to increase our

knowledge about the financial system and further charac-
terise it . Many studies have found mult ifractal scaling in
financial data [20–23]. An understanding of this mult ifrac-
tal st ructure can enable deeper understanding of the dy-
namics of financial markets. If it is found to be a universal
feature of financial data, it provides an addit ional bench-
mark by which to measure the fitness of financial models.
This in turn can help in the design of well performing
port folios and in risk management [17].

a e-mail: elena.s.green@nuim.ie

The Mult ifractal Model of Asset Returns (MMAR)
was int roduced by Mandelbrot et al. [24] as an expla-
nat ion of the volat ility clusters in financial data and to
include “out liers”, large deviat ions which make up the
fat tails of the return dist ribut ion. The MMAR was pre-
sented as an alternat ive to Autoregressive Condit ional
Heteroscedast icity (ARCH) models which were int roduced
by Engle [25] to account for volat ility clustering. The
MMAR incorporates fat tails, fract ional Brownian mot ion
BH

1 and the concept of “t rading t ime” being dist inct from
physical t ime [24].
The main assumpt ion of the MMAR is that the dis-

t inct t rading t ime warps the financial t ime series into a
mult ifractal st ructure. It t akes the mult ifractality of the
financial t ime series as a given. It also reject s the concept
of out liers, insist ing that even the most ext reme events
should be accounted for by a decent model. The result s
presented in this paper add credence to the assumpt ion of
mult ifractality as a stylised fact s of financial data. How-
ever they also cast doubt on the inclusion of the most
ext reme events which was advocated by Mandelbrot and
others [19].
Two dist inct empirical data set s are examined in this

paper. They are dist inct in locat ion and t ime scale. One is
an American index with prices recorded daily (Dow Jones
Indust rial Average (DJ IA)) and the other is a European
index with prices recorded each minute (Euro Stoxx 50).
The test for mult ifractality is carried out on the log returns

1 Where Brownian mot ion has Hurst exponent H = 1/ 2, BH

has Hurst exponent H , 0 < H < 1. H < 1/ 2 for an ant ipersis-
t ent process, H > 1/ 2 for a persist ent process. Brownian mot ion
with H = 1/ 2 has no memory.
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which were const ructed from the price t ime series by:

Z (t) = log(S(t + ∆ t)) − log(S(t))

where S(t) is the price at t ime t . ∆ t is one day for DJ IA
and one minute for Euro Stoxx 50.
The method used to find the scaling in the data is Mul-

t ifractal Det rended Fluctuat ion Analysis (MF-DFA) [26].
The data and method are further described below.
The rest of this paper is laid out in the following way:

Sect ion 2 out lines the method used to uncover the mult i-
fractal st ructure of the data. Sect ion 3 describes the em-
pirical data and how the parameters of MF-DFA were set .
Sect ion 4 presents the result s of the analysis. In Sect ion 5
some further analysis is conducted to find the source of the
mult ifractal st ructures found in the data. Finally Sect ion 6
contains a summary and conclusions.

2 M ult ifractal det rended fluctuat ion analysis

There are a number of numerical methods by which to
find the mult ifractal spect rum of t ime series. Two of
the most well-known are the Wavelet Transform Modulus
Maxima (WTMM) method [27,28] and Mult ifractal De-
t rended Fluctuat ion Analysis (MF-DFA) [26]. It has been
shown that for data where the t rue fractal st ructure is
unknown, MF-DFA is the recommended method of these
two, showing less bias and being less likely to give a false
posit ive result [29–31]. This is the method used in this
paper.
MF-DFA is well suited to t ime series analysis because

it is designed for data of a finite length N , without re-
quiring an N → ∞ approximat ion for validity [26]. Also
this method t reats the data simply as a one-dimensional
line and assigns new values to each port ion of the t ime se-
ries. This deals with the data having direct ion-dependent
scaling propert ies and the nonequivalence of the t ime and
value axes [26]. The assigned values are then assessed for
mult ifractality.
The method involves the following steps, beginning

with a disaggregated t ime series X such as a set of
financial log returns.

1. Transform X into it s mean-reduced cumulat ive sums
Y , Yj =

� j
i = 1

�
X i − X̄

�
. This new data set is aggre-

gated, resembling a random walk rather than a noise
series, and has mean 0.

2. Start ing from the beginning, divide Y into non-
overlapping segments of length s. Since s may not
divide evenly into N , make another set of segments
start ing at the end of the data and coming back so
that no piece of the data is left out . This result s in
2 [N/ s] = 2Ns boxes covering the ent ire data set . Find
the least -squares polynomial fit yv of order m to the
data in each segment v = 1, . . . , 2Ns.

3. Find the root -mean-square error or fluctuat ion be-
tween the fit and the data in each segment . This is

the value F 2(v, s) of segment v of size s;

F 2(v, s) =
1
s

s�

i = 1

(Y [(v − 1) s + i ]− yv [i ])
2

for v = 1, . . . , Ns and

F 2(v, s) =
1
s

s�

i = 1

(Y [N − (v − Ns)s + i ] . . .

. . . − yv [i ])
2

for v = Ns + 1, . . . , 2Ns.
4. Int roduce a parameter q. Find the qth order variance

Fq for a range of both posit ive and negat ive q for each
segment size s.

Fq(s) =

�
1
2Ns

2N s�

v= 1

�
F 2(v, s)

�q/ 2

�1/ q

.

For q = 0, use the quenched average F0(s) =
exp[ 1

4N s

� 2N s

v= 1 ln(F
2(v, s))].

5. Repeat steps 2, 3 and 4 for diff erent segment lengths s,
finding a new set of values Fq(s) in each case.

6. For each value of q, plot Fq(s) versus s on a doubly
logarithmic scaled graph and find the least -squares lin-
ear fit to each curve. If an appropriate linear region
(more than one order of magnitude of s) is found for
all values of q, it can be concluded that there is scaling
in the data and the slopes h(q) can be calculated. If
h(q) varies with q, one can conclude that the scaling
is mult ifractal.

7. Find the mult ifractal exponent τ (q),

τ (q) = qh(q) − 1 − qH �

where H � = h(1) − 1 is called the nonconservat ion
parameter2 and proceed to the f (α) spect rum via the
Legendre t ransforms:

α(q) =
dτ (q)

dq
f (α(q)) = α(q)q− τ (q).

A plot of f (α) versus α is the mult ifractal spect rum
for the t ime series data X .

Mult ifractality has been reported in cases where there
is only the spurious scaling which can arise in non- or
monofractal t ime series [31,34–36], and so caut ion is re-
quired. It is crit ically important to check the linearity
of the logarithmic plots as described in Step 6. P lot t ing
the slope of the line over a moving window should reveal
roughly constant slope over the length of the line before
linearity is accepted. Oscillat ion about a st raight line is

2 This is an adjustment to the original definit ion of τ given
by Kantelhardt et al. [26], τ (q) = qh(q) − 1. It account s for
t he fact t hat F 2(v, s) is not st rict ly speaking a measure on the
t ime series Y . For further det ails, see references [32,33].
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Tab le 1. Summary st at ist ics for t he log return dat a examined in this paper for mult ifract al propert ies. N is t he sample size of
the dat a, μ is t he sample mean and σ t he sample st andard deviat ion. H is t he est imat ed Hurst exponent of t he sample.

Dat a ∆ t N Min Max μ σ Skewness Kurtosis H

DJ IA 1 day 20922 − 0.2563 0.1427 1.89 × 10− 4 0.0117 − 0.5931 27.2784 0.5146
Euro Stoxx 50 1 min 109545 − 0.0935 0.0610 − 4.5257 × 10− 6 0.0011 − 2.1397 1.0335 × 103 0.448
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F ig. 1. Graph of the daily log return dat a of the DJ IA and of the minut ely log return dat a of Euro Stoxx 50 whose mult ifract al
propert ies are examined in this paper. The log returns are given in unit s of st andard deviat ion for ease of comparison in this
figure.

to be expected as these are stat ist ical fractals. However,
if there is no significant linear region revealed by the lo-
cal slopes, we cannot conclude that there is mult ifractal
scaling in the data.
Finite-size eff ects are also an important considera-

t ion [35]. Short monofractal t ime series can appear mult i-
fractal due to linear correlat ions. Since the log return data
considered here have negligible linear correlat ions (Hurst
exponent H ≈ 1/ 2, see Tab. 1), this is not a concern for
our analysis.
Mult iscaling Mult ifractal Analysis [37], an extension

to the MF-DFA method, has recent ly been recommended
to pick up informat ion from any cross-overs that might be
in the data. A crossover is a point where the slopes change
on the graph of log(Fq) vs. log(s). Since we see no such
crossover points in our data, there is no need for this ext ra
analysis.

3 Data and implementat ion

The first data examined is the daily log returns of the
DJ IA from 1928 to 2012 which contains 20 922 points.
This is a weighted average of the prices of 30 companies
based in the United States. It s normalised form is shown in
Figure 1. The dramat ic downturn of late 2007 and 2008 is
included in this data set and the major “Black Monday”
crash of October 19th 1987 is obvious at approximately
1.5 × 104 days.
The Dow Jones Euro Stoxx 50 was also examined

and the normalised log returns for the t ime period of
interest are also shown in Figure 1. This is an index of
50 Blue-chip sector leaders from 12 Eurozone countries
which was launched in 1998. The data is minutely and
runs for a year, from the start of May 2008 unt il the end
of April 2009. There are 109 545 points in this t ime series.
The high volat ility that can be seen in the middle of the

t ime series corresponds to the t ime around the Lehman
Brother’s collapse in September 2008.
The MF-DFA method was applied to both log return

t ime series. Summary stat ist ics for the log return data of
DJ IA and Euro Stoxx 50 are presented in Table 1. The
exclusion of overnight returns in the minutely t ime series
made no diff erence to the result s of the analysis and so
they have been retained. All t ime outside of t rading hours
has been omit ted.
For the implementat ion of MF-DFA, certain parame-

ters have to be chosen. Both data set s were det rended by
order m = 1 polynomials as this led to the best scaling
result s. The length scale s takes small steps from a min-
imum of 10 to a maximum of N/ 4 = N4, where N is the
length of the t ime series. This means that at the largest
scale there are 8 boxes since there are 2Ns boxes for each s.
This range of scales is proposed by Kantelhardt et al. [26].
A wide range of 1001 equally spaced values of the pa-

rameter q was chosen, with q ∈ [− 50, 50]. This is a very
wide range in comparison with other studies [12,20,26,38]
where it is standard to use q ∈ [− 5, 5]. However, for
smaller ranges of q, less of the mult ifractal spect rum is
revealed. It is found that f (α) ≈ 0 for the examined data
as q→ ± 50, and this captures the full spect rum.

4 Results

The plots of Fq(s) versus s on a doubly logarithmic scale
for the DJ IA data for selected values of q are shown in Fig-
ure 2a. Although 1001 values of qwere used in the analysis,
it is not pract ical to show all of them on the graph. The
segment size s takes 59 values from 10 to 5230. By check-
ing the local slopes of these lines (Fig. 2b) it is possible to
ident ify a scaling region over more than two orders of mag-
nitude from s = 10 to s = 2000. This region of scaling was
then used to const ruct the mult ifractal spect rum which is
displayed in Figure 3.
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F ig. 2. DJ IA: (a) Graph of log(Fq) versus log(s) for select ed
values of q as shown on the graph. (b) Graph of the local slopes
of the lines in (a) calculat ed over 15 point s for t he same values
of q. The slopes remain reasonably const ant for s ∈ [10, 2000].
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F ig. 3. Graph of the mult ifract al spect rum, f (α) versus α , for
DJ IA calculat ed for the length scales s ∈ [10, 2000] and with
q ∈ [− 50, 50].

The result s of the init ial check for scaling for the Euro
Stoxx 50 data are shown in Figure 4. It is not obvious
whether or not there is scaling in this data. The slopes are
not of the quality of those for DJ IA observed in Figure 2b.
The mult ifractality is less certain in this case. It could be
argued that the local slopes in Figure 4a are not constant
over a suffi cient range of s and so indicate a lack of scaling
in the Euro Stoxx 50 data. In this case, this data could be
presented as a counterexample to the stylised fact of the
presence of mult ifractality in financial return data [39].
It could also be argued that scaling is present over

more than two orders of magnitude; for 65 � s ≤ 10 000.
It breaks down for small segment sizes (s � 65) when q is
negat ive. The abrupt change in Fq(s) can be explained by
the presence of a sect ion of consecut ive zeroes in the log
returns. Since F is a measure of the distance of the data
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F ig. 4. Euro Stoxx 50: (a) Graph of log(Fq) versus log(s) for
select ed values of q as shown on the graph. (b) Graph of the
local slopes of the lines in (a) calculat ed over 15 point s for t he
same values of q.
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F ig. 5. Graph of the mult ifract al spect rum, f (α) versus α , for
Euro Stoxx 50 calculat ed for the length scales s ∈ [65, 10 000]
and with q ∈ [− 50, 50].

in any segment from a linear fit , when a segment ν lies
within this interval of zeroes, F (ν) is close to zero. The
smallest F dominates in Fq when q < 0 which explains
the drop in log(Fq) as s decreases for q < 0.
The mult ifractal spect rum for the range 65 � s ≤

10 000 is shown in Figure 5. The left side of the spec-
t rum is st retched out and f (α) < 0 for α � 0.63. The
left side represents the areas of high Fq and so this is ev-
idence of poor scaling, and possibly even a breakdown in
scaling, of the most volat ile segments. As we shall show
in Sect ion 5.2, it is the ext reme return events which are
responsible for these phenomena.
The fact that Figure 4 seems to indicate a lack of scal-

ing and yet the spect rum in Figure 5 can st ill be produced
shows that real caut ion is required when conduct ing mul-
t ifractal analysis. A wide smooth spect rum does not imply
that the data actually has mult ifractal scaling.
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Tab le 2. Summary of the main result s of MF-DFA on the daily DJ IA and minut ely Euro Stoxx 50 dat a for a range of
values of q ∈ [− 50, 50]. The t runcat ed dat a has ext reme event s replaced with smaller ones. It is discussed in Sect ion 5.2. Here
∆ α = αm ax − αm in .

Dat a f (− 50) α(− 50) f (0) α(0) f (50) α(50) ∆ α
DJ IA 0.049882 1.2124 1 1.0126 0.058373 0.78155 0.43087

Euro Stoxx 50 − 0.023382 1.2437 1 1.0184 − 0.0981 0.6226 0.62162
Truncat ed Euro Stoxx 50, c = 15 − 0.021838 1.265 1 1.0169 0.017184 0.78068 0.48431

The spect ra in this paper seem shifted to the right
in comparison to those in the literature [20,23,38]. This
can be accounted for by the updated definit ion of τ (q) in
Step 7 in Sect ion 2. A summary of the result s of MF-DFA
for both data sets is contained in Table 2.

5 The origins of mult ifractality

It is generally accepted that there are two possible sources
of mult ifractal scaling in t ime series data [26]. It could be
predominant ly due to (1) the long-term correlat ions of
small and large fluctuat ions or (2) the data being drawn
from a heavy-tailed probability dist ribut ion. Both of these
influences can individually be removed from the data to
reveal what impact they have on the mult ifractality of the
t ime series.
Other recent work has shown that mult ifractality can

be viewed as the result of the Tweedie Convergence Theo-
rem, similarly to how Gaussian noise can be seen as the re-
sult of the Central Limit Theorem [40,41]. However, since
financial t ime series are not sequences of independent iden-
t ically dist ributed random variables, the convergence the-
orem does not apply. Here we will examine the t radit ional
sources: correlat ions and the shape of the dist ribut ion.

5.1 Source of scaling – correlat ions

A simple way to check if correlat ions in the data pro-
duce any scaling is to shuffl e the data as suggested by
Kantelhardt et al. [26]. Shuffl ing removes t ime correlat ions
and any scaling that remains must be due to the proba-
bility dist ribut ion from which the data is drawn. The dis-
t ribut ion of the values is not aff ected by reordering the
series.
Any individual shuffl e may st ill contain some corre-

lat ions, so to be sure to completely rid the data of all
correlat ions, both the DJ IA and the Euro Stoxx 50 data
were shuffl ed 100 t imes, each random permutat ion be-
ginning with a new random number generator seed in
MatLab. The funct ion Fq was found for each of the shuf-
fled data set s. These were then averaged to find Fq(s) =

1
100

� 100
i = 1 Fq,i (s), where the index i ident ifies the shuffl ed

data sequence. The doubly logarithmic plots of Fq(s) ver-
sus s for diff erent q were then checked for linearity. The
result s are shown in Figures 6 and 7. The same analy-
sis was conducted with the quenched average, log(Fq(s)),
with very similar result s.
For both t ime series, there is no significant linear re-

gion in the plots of log(Fq(s)) versus log(s). Thus we do

(a)

(b)

F ig. 6. Shuffl ed DJ IA dat a: (a) Graph of the log of the av-
eraged scaling funct ion, log(Fq), versus the log of t he scale,
log(s), for select ed values of q as shown on the graph. (b) Graph
of the local slopes of the lines in (a) calculat ed over 15 point s
for t he same values of q.

not have the rat ionale to proceed to calculate h(q) and
must instead conclude that mult ifractal scaling is absent
in these shuffl ed data set s.
Other studies [16,20,22,42,43] have found mult ifractal

scaling in shuffl ed financial data. However, as no explicit
invest igat ion of the logarithmic plot s and their local slopes
was conducted, the conclusion that mult ifractal scaling is
present is not just ified.
Diff erent degrees of shuffl ing were also employed so

that correlat ions of diff erent length scales can be re-
moved [31]. Rather than reordering every point in the
data, the data was divided into intervals of length l .
Then each set of l adjoining points were kept together
while the order of the intervals was shuffl ed. This helps to
reveal how robust the scaling is to the presence of tempo-
ral correlat ions.
The result of this analysis for the DJ IA data is

shown in Figure 8. Intervals of lengths l = 10, 50,
100, 500, 1000, and 5000 were kept intact and only the
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F ig. 8. DJ IA: Graph of the local slopes of log(F25) versus
log(s) for shuffl es with various int erval lengths l as indicat ed
on the graph. The slope for the original dat a is also shown,
corresponding to the lines in F igure 2b.

order of the intervals was rearranged randomly 100 t imes
as was done for the original shuffl ing. Then the plots of
log(Fq) versus log(s) were found. Figure 8 shows the slopes
of these plots for q = 25.
The scaling is worst for the shortest interval length,

l = 10 for which any temporal correlat ions longer than
10 days have been dest royed. The local slopes for the scal-
ing funct ion is st rongly increasing with the box size rather
than oscillat ing about a constant value. For longer inter-
vals, more memory is preserved and correspondingly the
scaling improves.
When l = 500, the scaling is preserved. At this length

and for longer intervals, the slopes are oscillat ing about a
constant and do not show sustained curvature in a single
direct ion. This value, l = 500, gives an indicat ion of the
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F ig. 9. Graph of the normalised empirically found dist ribut ion
of the DJ IA (red squares) and Euro Stoxx 50 (blue circles)
dat a along with the St andard Normal curve for comparison. It
is shown on a semi-logarit hmic scale to make the fat t ails clear.

length of temporal correlat ions that are significant to the
mult ifractal scaling in the data. It is possible to infer that
the data has memory to the order of 100’s of days. The
scaling does not survive a more substant ial change in the
ordering of the data.
Linear correlat ions in the log-returns only live for a

t ime scale of a few minutes, but the correlat ion in the ab-
solute values or the squared returns last much longer [18].
The result s presented in this sect ion provide evidence that
long-term correlat ions, which are removed by the shuffl ing
procedure, are a ma jor source of the mult ifractality in
both the DJ IA daily data and the Euro Stoxx 50 minutely
data.

5.2 Source of scaling – dist ribut ion

The empirical dist ribut ion of financial log returns is gen-
erally found to be leptokurt ic [18]. Figure 9 shows the dis-
t ribut ion for both the daily DJ IA data and the minutely
Euro Stoxx 50 data. They have been normalised and are
shown along with the Standard Normal curve for compari-
son on a semi-logarithmic scale. The Euro Stoxx 50 data is
not shown completely; a negat ive log return of − 86σ and
some posit ive returns of around 60σ are cut off to make
the graph clearer. The most ext reme event in the DJ IA
data is Black Monday, 19th October 1987. It const ituted
a drop of over 22σ for this index.
The eff ect of the dist ribut ion on the scaling in the

t ime series can be revealed in a number of ways [20]. One
method involves t runcat ing the tails of the dist ribut ion.
If large posit ive and negat ive log returns are replaced by
less ext reme ones, the data will retain it s temporal cor-
relat ions while removing the fat tails of the dist ribut ion.
This t runcated data can then be tested for mult ifractality
to see what influence the tails of the dist ribut ion have on
the f (α) spect rum.
In order to carry out this analysis, any log returns z in

the data which sat isfy |z| > cσ were replaced by sgn(z)cσ
where σ is the standard deviat ion of the raw data and c
is the t runcat ion point . c varies from 1 to 10 for DJ IA
and 1 to 15 for Euro Stoxx 50. The usual analysis was
then conducted on this new data set to find the scaling
propert ies. The number of points which were t runcated
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Tab le 3. The cumulat ive frequency t able showing the number of log ret urns whose absolut e value is larger t han the given
t runcat ion point c for both the DJ IA and Euro Stoxx 50 t ime series.

c: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
DJ IA 3875 957 362 162 75 45 27 13 10 5 4 3 1 1 1

Euro Stoxx 50 14 166 2516 671 299 206 161 128 109 90 79 68 57 53 45 42

(a)

(b)

F ig. 10. (a) Graph of the local slopes calculat ed over 15 point s
of log(F25) versus log(s) for DJ IA log returns for a range
of t runcat ion point s cσ for t he values of c indicat ed on the
graph. (b) Graph of the local slopes calculat ed over 15 point s
of log(F25) versus log(s) for t he Euro Stoxx 50 log returns for
a range of t runcat ion point s cσ for t he values of c indicat ed on
the graph. The slope for the original dat a in both cases is t he
thick red line.

for each level c are shown in Table 3. The local slopes of
the plots of log(Fq) versus log(s) for q = 25 for both the
DJ IA and Euro Stoxx 50 are shown in Figure 10.
For the DJ IA data shown in Figure 10a, the oscillat ions

of the slopes become more severe for more severe t runca-
t ion. However the scaling is preserved. Extreme events are
evident ly not imperat ive to the scaling in this t ime series.
For the Euro Stoxx 50 data in Figure 10b, the scaling

is actually improved after modest t runcat ion. Apart from
the most severe cases of c = 1 and c = 2, the slopes are
reasonably constant . The severe leptokurtosis of the Euro
Stoxx 50 log returns is actually a hindrance to the scaling.
This was init ially indicated by the st retched left -hand side
of it s f (α) plot shown in Figure 5. This can be cont rasted
with the much more symmetric f (α) plot for the Euro
Stoxx 50 data t runcated at c = 15 in Figure 11.
This spect rum is narrower than that of the original

Euro Stoxx 50 data (∆α = 0.48 here compared to 0.62 for
the original, see Tab. 2). This result is in agreement with

f(
α

)

α

1

0.8

0.6

0.4

0.2

0
0.8 0.9 1 1.1 1.2 1.3

F ig. 11. Graph of the mult ifract al spect rum, f (α) versus α ,
for t he Euro Stoxx 50 dat a aft er it has been t runcat ed so t hat
any log returns |z| > 15σ have been replaced by z = sgn(z)15σ.
It has been const ruct ed for s ∈ [65, 10 000].

others which have found that the mult ifractal spect rum
narrows when ext reme events are t runcated [20,44]. This
is to be expected as the narrower range of α reflect s the
reduced heterogeneity in the data. However, where oth-
ers [20,35,43–46] have used the spect rum width ∆α as a
metric for the level of mult ifractality, we have conducted a
more detailed analysis. We inspect the plots of log(Fq) and
the produced f (α) spect rum, giving more insight into the
eff ect of the ext reme events. The ext reme events cause the
spect rum to become asymmetric and negat ive at one end.
The left side of the spect rum in Figure 5 is st retched due
to poor stat ist ics in those ext reme areas of the t ime series.
Therefore the spect rum width ∆α is unreliable in this case
to base conclusions on about the st rength of mult ifractal
scaling.
Some studies have found that ext reme events can-

not simply be thought of as scaled-up versions of smaller
events [47–49]. Ext reme events appear to be drawn from
a diff erent dist ribut ion and do not scale well with more
modest returns. The result s of the analysis of Euro Stoxx
50 lend some support to this idea. While the scaling in the
complete data set is uncertain, the scaling improves when
large posit ive and negat ive returns are removed. This indi-
cates that they may belong to a separate scaling regime or
they may not scale at all. However the number of ext reme
events is too small to test them separately for scaling.
In general there is no consensus in the published lit -

erature as to whether it is the fat tails of the dist ribu-
t ion or the temporal correlat ions which cont ribute most
to the mult ifractal scaling in financial data. It has been
found that dist ribut ion cont ributes more to the mul-
t ifractal scaling than do the temporal correlat ions in
some daily data [20,22]. Others have shown evidence of
the opposite [50] or that both sources are significant ly
present [43]. Work on higher-frequency data [23,45] has
found that the correlat ions are the most likely cause of
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mult ifractality. Mixed result s have been found for foreign
exchange rates [46,51,52]. These varied result s imply that
the main source of mult ifractality is dependent on the par-
t iculars of each specific data set and that there is no uni-
versal law.
The resolut ion of the t ime series has an impact on

the result s of MF-DFA. At small resolut ions (e.g. minute)
where returns are more highly leptokurt ic, the ext reme
events can distort the scaling, while such distort ion is ab-
sent at larger resolut ions (such as days). The 42 most ex-
t reme points removed from the Euro Stoxx 50 t ime series
by the t runcat ion method have a ma jor impact on the
scaling result s. The data appears to made up of a mult i-
fractal subset and these out liers.

6 Conclusions

A systemat ic study has been carried out on the mult i-
fractal propert ies of two financial t ime series: daily DJ IA
log returns from 1928 to 2012 and minutely Euro Stoxx
50 log returns from 2008 to 2009. Mult ifractal scaling has
been found in the DJ IA data. Careful at tent ion was paid
to finding an appropriate linear region in the logarithmic
plot s of the scaling funct ion Fq versus the segment size s
before concluding that mult ifractal scaling is present and
proceeding to the plot of f (α) versus α. This examinat ion
makes this study more comprehensive than many others
which have invest igated financial data for mult ifractality.
The scaling is open to interpretat ion for the Euro

Stoxx 50 t ime series. The uncertainty illust rates the need
for caut ion and for further analysis techniques to be devel-
oped in this area. A set tolerance of linearity of the log(Fq)
versus log(s) plot s is required within which mult ifractality
can be accepted.
In the case of the DJ IA daily data, the mult ifrac-

tal spect rum is nearly exact ly symmetric. The one for
the minutely Euro Stoxx 50 data, on the other hand, is
st retched on the left and f (α) < 0 for α � 0.63. The
shape of it s asymmetric f (α) plot reveals that the ex-
t remely volat ile areas of the data scale diff erent ly from
the rest of the data or do not scale at all.
The temporal correlat ions in both data sets have been

shown to be a significant source of the mult ifractal scaling.
The scaling does not survive in either t ime series when the
data is reordered, thereby removing correlat ions.
Adjustments were also made to the dist ribut ion of the

returns to reveal it s eff ect on the scaling. The result s indi-
cate that the ext reme events do not conform to the scaling
law which is followed by the smaller returns. In the case
of Euro Stoxx 50, the scaling is improved when the most
ext reme events are removed. This is consistent with the
asymmetrical shape of it s mult ifractal spect rum.
Our result s are more comprehensive than others as

we are not content with the single met ric ∆α to measure
the level of mult ifractal scaling present in the data. We
conduct a more comprehensive examinat ion, including the
log(Fq) plot s, their local slopes, and the f (α) spect rum.
This more detailed analysis leads us to diff erent conclu-
sions than those presented in other studies. We conclude

that these ext reme events are actually inimical to the
mult ifractal scaling in the Euro Stoxx 50 log returns.
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