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Abstract

With the growth of the Semantic Web, the availability of RDF datasets from multiple do-
mains as Linked Data has taken the corpora of this web to a terabyte-scale, and challenges
modern knowledge storage and discovery techniques. Research and engineering on RDF
data management systems is a very active area with many standalone systems being intro-
duced. However, as the size of RDF data increases, such single-machine approaches meet
performance bottlenecks, in terms of both data loading and querying, due to the limited
parallelism inherent to symmetric multi-threaded systems and the limited available system
I/O and system memory. Although several approaches for distributed RDF data process-
ing have been proposed, along with clustered versions of more traditional approaches, their
techniques are limited by the trade-off they exploit between loading complexity and query
efficiency in the presence of big RDF data. This thesis then, introduces a scalable analy-
sis framework for processing large-scale RDF data, which focuses on various techniques to
reduce inter-machine communication, computation and load-imbalancing so as to achieve
fast data loading and querying on distributed infrastructures.

The first part of this thesis focuses on the study of RDF store implementation and parallel
hashing on big data processing. (1) A system-level investigation of RDF store implemen-
tation has been conducted on the basis of a comparative analysis of runtime characteristics
of a representative set of RDF stores. The detailed time cost and system consumption is
measured for data loading and querying so as to provide insight into different triple store
implementation as well as an understanding of performance differences between different
platforms. (2) A high-level structured parallel hashing approach over distributed memory is
proposed and theoretically analyzed. The detailed performance of hashing implementations
using different lock-free strategies has been characterized through extensive experiments,
thereby allowing system developers to make a more informed choice for the implementa-
tion of their high-performance analytical data processing systems.

The second part of this thesis proposes three main techniques for fast processing of large
RDF data within the proposed framework. (1) A very efficient parallel dictionary encoding
algorithm, to avoid unnecessary disk-space consumption and reduce computational com-



xii

plexity of query execution. The presented implementation has achieved notable speedups
compared to the state-of-art method and also has achieved excellent scalability. (2) Several
novel parallel join algorithms, to efficiently handle skew over large data during query pro-
cessing. The approaches have achieved good load balancing and have been demonstrated
to be faster than the state-of-art techniques in both theoretical and experimental compar-
isons. (3) A two-tier dynamic indexing approach for processing SPARQL queries has been
devised which keeps loading times low and decreases or in some instances removes inter-
machine data movement for subsequent queries that contain the same graph patterns. The
results demonstrate that this design can load data at least an order of magnitude faster than
a clustered store operating in RAM while remaining within an interactive range for query
processing and even outperforms current systems for various queries.
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Chapter 1

Introduction

1.1 Introduction

The Semantic Web [13], which is considered an extension of the current World Wide Web, is
now becoming mainstream. As the information in this web is given a well-defined meaning
and encoded in a machine-readable format, it possess plenty of special characteristics not
available with the traditional web, such as amenability to machine processing, information
lookup and knowledge inference.

This web is founded on the concept of Linked Data [15], a term used to describe the
practices of exposing, sharing and connecting information on the web using recent W3C
specifications such as Resource Description Framework [117] (RDF, details given later).
Linked Data is fast becoming the dominant model for cross-database data integration. It can
been seen from Figure 1.1 that there has already been large amounts of data from different
domains interlinked with each other and compose a large data cloud. Up until now, this
cloud has consisted of more than 200 data sources covering many well-known areas, such
as general knowledge (DBpedia [12]), bioinformatics (Uniprot [10]), GIS (geoname [123],
linkedgeodata [104]) and web-page annotations (RDFa [5], microformats [74]), which have
contributed to more than 25 billion data items already [42]. In addition to this, it is increas-
ingly prevalent particularly among governments and enterprises that see RDF as a more
flexible way to represent their data, notably the US government (data.gov) and that of the
UK (data.gov.uk) as well as Google, Bing and Yahoo (schema.org). Moreover, in tandem
with the increasing availability of such data and corresponding technologies, an increasing
number of software platforms now use RDF as well (e.g. the BBC website [94]).

With the rapid increase of the cloud and the increase in published data from different
domains, the potential for new knowledge synthesis and discovery increases immensely.

data.gov
data.gov.uk
schema.org


2 Introduction

Capitalizing on this potential requires Semantic Web applications which are capable of in-
tegrating the information available from this rapidly expanding web. The web engineering
challenges which this presents are currently pushing computing boundaries.
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Fig. 1.1 Linking Open Data cloud diagram (taken from [37]).

1.1.1 RDF Data

The Resource Description Framework (RDF) [117], a schema-less, graph-based data for-
mat, is used to described the Linked Data model in the form of subject-predicate-object
(SPO) expressions based on the statement of resources and their relationships. These ex-
pressions are known as RDF triples consisting of three terms that appear multiple times
and in any position, in which the subject indicates a resource, the predicate represents a
property of the entity and the object is a value of the property in form of a resource or lit-
eral. This triple format is very flexible to describe entities in ways that allows it to establish
connections between different resources (or literals).

An example of eight RDF triples from DBpedia is shown as Figure 1.2. There, the first
three statements convey the information that the Google is a company founded in California
and current has 53861 employees, while the fourth one states that California is located in the
country United States. Similarly, the remaining four statements present information about
IBM and New York.

As stated, the current Semantic Web contains tens of billions of such statements and
this number is still rapidly increasing. Actually, even more new facts (statements) could
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Triples

(1) <dbpedia:Google> <rdf:type> <dbpedia-owl:Company>

(2) <dbpedia:Google> <dbpedia-owl:foundationPlace> <dbpedia:California>

(3) <dbpedia:Google> <dbpedia-owl:numberOfEmployees> <53861>

(4) <dbpedia:California> <dbpedia-owl:country> <dbpedia:United_States>

(5) <dbpedia:IBM> <rdf:type> <dbpedia-owl:Company>

(6) <dbpedia:IBM> <dbpedia-owl:foundationPlace> <dbpedia:New_York>

(7) <dbpedia:IBM> <dbpedia-owl:numberOfEmployees> <434246>

(8) <dbpedia:New_York> <dbpedia-owl:country> <dbpedia:United_States>

Fig. 1.2 An example of RDF triples.

be inferred when applying the web ontology language such as OWL [87] to existing state-
ments. For instance, from the second and the fourth statement as stated, we can easily infer
that Google is founded in the US, which can be represented as a new statement, although
this information is implicit. As such kinds of inference has been widely studied in vari-
ous domains such as knowledge reasoning and artificial intelligence, this thesis focuses on
processing the already large number of explicit statements.

IBM

Company

 type 

434246

 numberOfEmployees 

New York

 foundationPlace 

United States

 country 

Google

 type 

53861

 numberOfEmployees 

California

 foundationPlace 

 country 

Fig. 1.3 An example of RDF graph.

RDF uses a graph-based data model, a directed graph named as the RDF graph [102]
can be formulated based on a set of triples. For example, Figure 1.3 demonstrates the graph
with the eight triples described in Figure 1.21. In such an RDF graph, all the subjects and
objects of each triple is represented as vertices, and the predicate is described as a labeled
directed edge from the responsible subject to the object. Note that, all the vertexes in a
graph should be kept unique regardless of the number of appearances for a subject or object
in the underlying triples. Namely, the same subject or object from different RDF triples is
represented by the same vertex.

1For simplification, terms of a statement are expressed in an abbreviation form in figures or tables through
this thesis.
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1.1.2 SPARQL

SPARQL (Simple Protocol and RDF Query Language) is the standard RDF query language
that facilitates the extraction of information from stored RDF data. The detailed syntax and
semantics of this query language for RDF has been defined by the W3C [118], and the core
component of SPARQL queries is a conjunctive set of triple patterns. Similar to an RDF
triple, a triple pattern is also in the form of subject-predicate-object, the difference is that
any component of the pattern could be a variable. A triple pattern could match a subset
of the underlying RDF data, where the terms in the triple pattern respond to the ones in
the RDF data [52]. Consequently, a solution mapping is defined as the mapping from the
variables to the responsible RDF terms.

select ?x ?z

where { ?x <rdf:type> <dbpedia-owl:Company> .

?x <dbpedia-owl:foundationPlace> ?y . Query 1

?y <dbpedia-owl:country> <dbpedia:United_States> .

?x <dbpedia-owl:numberOfEmployees> ?z }

A simple SPARQL query is shown above as the Query 1. This query contains four
triple patterns and is used to find out the companies as well as their responsible number of
employees, with the conditions that each of the companies should be founded in a place
located in the US. If the solution mapping of a triple pattern is defined as µ , on the basis
of the eight triples described in Figure 1.2, the corresponding solution µi for the i-th triple
pattern of the query would be

µ1 := { ?x="<dbpedia:Google>", ?x="<dbpedia:IBM>" }

µ2 := { (?x="<dbpedia:Google>", ?y="<dbpedia:California>"),

(?x="<dbpedia:IBM>", ?y="<dbpedia:New_York>") }

µ3 := { ?y="<dbpedia:California>", ?y="<dbpedia:New_York>" }

µ4 := { (?x="<dbpedia:Google>", ?z="<53861>"),

(?x="<dbpedia:IBM>", ?z="<434246>") }

The solution of a SPARQL query can be formulated based on a series of relational al-
gebraic operators over the solution mappings of each triple pattern according to the syntax
of the query [93]. For instance, the variables ?x and ?y in Query 1 appear in different
triple patterns imply that there exists joins in the process of formulating the final results.
On the basis of this, the final result for Query 1 would be {?x="<dbpedia:Google>",
?z="<53861>"} and {?x="<dbpedia:IBM>", ?z="<434246>"}. Though query opera-
tions such as join, sort and aggregate etc. are fully supported by SPARQL, as the join is
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the most commonly used and also critical for the query performance, we will study this
operation and propose novel parallel join algorithms in this thesis.

In addition, similar to RDF graphs, a SPARQL query can also be thought of as a graph
called a query graph pattern. For example, Query 1 can be expressed as the graph shown
in Figure 1.4. Consequently, a triple pattern is named as a basic graph pattern, which
describes a subgraph to match against the RDF data. Therefore, the implementation of a
SPARQL query is essentially a subgraph matching process. Part of this characterization
will be used for data indexing design in this thesis.

Company

?x

 type 

?z

 numberOfEmployees 

?y

 foundationPlace 

United States
 country 

Fig. 1.4 An example of query graph pattern.

1.1.3 RDF Stores

RDF stores are the backbone of the Semantic Web, allowing storage and retrieval of semi-
structured information. The engineering of RDF stores is an active area, and various sys-
tems and solutions with targets for efficiently processing RDF data have been proposed.
As a SPARQL query can be modeled as both rational operations and a query graph pat-
tern, current RDF stores can be consequently represented by two types described as below,
depending on their querying processing methods [76].

• Relation-based RDF stores, using the logical relational model to store RDF data and
translate SPARQL queries into equivalent relational algebraic expressions to exe-
cute [23]. In this scenario, the RDF data is normally stored in a set of tables.

• Graph-based RDF stores, processing SPARQL queries using subgraph matching al-
gorithms. In this case, the underlying RDF data would be stored as an RDF graph as
expressed.

In this thesis, we focus on the relation-based approach and our proposed framework will
be based on that as well. The main reasons are: (1) The majority of RDF data manage-
ment systems is based on the relational method, since it comes with all the benefits of the
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mature relational database management systems. In comparison, the graph-based approach
is seldom adopted, except for some work on its variants [18, 38, 113], which heavily rely
on techniques using graph indexes to reduce the search space of subgraph matching. This
indicates that new proposed techniques over the relation-based schema will bring more con-
tributions to the research community. (2) The implementation of relation-based RDF stores
mainly uses join operations, whereas graph-based RDF stores use graph exploration for the
graph pattern matching. Using join operations, substructures can be joined in batch, which
leads relation-based RDF stores to be more suitable for handling large-scale RDF data [110].
This is consistent with our targets to process the big RDF data.

Moreover, RDF systems using the relation-based implementation have repeatedly shown
that they are very efficient and scalable in processing RDF data [99]. According to their
data structures used for storing RDF data, current solutions can be mainly divided into three
categories as follows:

1. Property table stores, where a set of property tables is created for stored RDF data.
Each table contains multiple RDF properties as attributes, which is modeled as a table
column, along with subjects as the table keys.

2. Triple stores, where each RDF triple is stored directly in a three-column table, follow-
ing the form of subject-predicate-object.

3. Other stores, where the underlying RDF data is kept in other formats, with the speci-
fied targets for efficient data storage and query execution.

Early RDF stores use the conventional relational database systems (RDBMS) as their
underlying stores so as to take advantages of the previous database research on efficient stor-
age and querying [35, 55]. Figure 1.5 shows such an example to store the triples described
previously. There, two tables are created, and each of them contains two and one attribute
respectively to describe the subjects in the first column. In this case, a SPARQL query
would be converted to SQL in the higher level RDF layers, and then sent to the RDBMS
which will optimize and execute the SQL query during the query execution [3]. Because
relational database management systems are not specifically optimized for processing the
semi-constructed RDF data, they encounter bottlenecks both on storage and query for large-
scale RDF data - the detailed issues have been presented in [3]. Regardless, several research
groups are still working on novel mechanisms to shred RDF into relational and novel query
translation techniques to maximize the advantages of this shredded representation as as to
improve the query performance [17].
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Company Place
Name FoundationPlace # Employees State Country
IBM New York 434246 California United States
Google California 53861 New York United States

Fig. 1.5 RDF data stored as property tables.

Subject Predicate Object
California country United States
Google foundationPlace California
Google numberOfEmployees 53861
Google type Company
IBM foundationPlace New York
IBM type Company
IBM numberOfEmployees 434246
New York country United States

Fig. 1.6 RDF data stored as triples in a big table.

Compared to the above, triple stores are much more popular and various mature systems
have been developed. An intuitive way to store RDF data is demonstrated in Figure 1.6,
where each RDF triple is stored directly in a three-column table according to its three terms,
and triples are normally sorted according to the value of their subjects. This storage scheme
has been widely studied for RDF processing [1, 3, 103, 108]. The reason is that this method
shows a flexible way to represent the RDF data: (1) triples can be easily inserted in the
table without changing any data structures and (2) solution mappings for each triple pattern
can be retrieved by looking up the table. However, there is a potential performance issue
for query executions for such stores. The reason is that there is only one single RDF table
and there would be many self-joins during query executions, which could be very expensive
and thus impacts the query performance. To avoid this problem, popular RDF engines
like Jena [86], Sesame [19], RDF-3X [89] and Virtuoso [44] are optimized for SPARQL
processing. They create a set of indexes (in the form of SPO, POS and OPS etc.) so as to
remove the expensive self-joins as well as to support various query patterns. Additionally,
the most popular commercial RDBMSs such as Oracle and DB2 have also supported RDF
processing using a similar way [9, 82].

Apart from the two kinds of stores described above, researchers have proposed several
novel data structures to store RDF data as well. Among the solutions, stores based on the
vertical table are shown to be an efficient way for processing RDF data and have been
widely discussed [3, 4]. In a vertical table store, the RDF triples are partitioned vertically
according to their predicate values and matching triples can be retrieved for triple patterns
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type numberOfEmployees
IBM Company IBM 434246
Google Company Google 53861

foundationPlace country
IBM New York New York United States
Google California California United States

Fig. 1.7 RDF data stored as vertically tables.

with predicate constants. In more details, the triples are decomposed and placed into n

two-column tables (n is the number of unique properties). In each of these tables, the first
column contains the subjects that define that property and the second column contains the
object values for those subjects data. In the meantime, each table is sorted by subject,
so that particular subjects can be located quickly, and that fast merge joins can be used
to reconstruct information about multiple properties for subsets of subjects. For instance,
Figure 1.7 demonstrates the vertical tables used for storing the eight triples described in
Figure 1.2. Data storage used in our framework will be based on such a scheme, and the
details will be given in Chapter 8.

In fact, terms of a triple are always long strings (rather than those shown as simplified
examples in Figure 1.2) and many RDF stores normally do not store entire strings in their
data tables because of the space consumption and computation overhead. Instead, they store
the RDF data on the file system directly in their own binary representation. For instance,
Jena [86] and Sesame [19] map strings to integers (ids) so the data is normalized into two
tables, one triple table keep the content of triples in the form of ids for high-level opera-
tions such as querying or reasoning, and one mapping table store the maps of ids and their
corresponding strings for string-id and id-string conversion. We will apply this conversion
process in our system. More precisely we use the method of parallel dictionary encoding,
which will be presented in Chapter 5.

1.2 Objectives of this Thesis

As the quantity of available data in the Semantic Web is huge and still increasing at a rapid
pace, the corpora of this web has been taken from a lab setting to a terabyte-scale, leading to
RDF data becoming deep (complex processing) and reactive (rapidly changing information).
Therefore, similarly to other Big Data problems, analytics over such big RDF data brings us
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to a new level of computational complexity and consequently becomes difficult to process
using traditional approaches.

Many standalone RDF data management systems have been introduced, however, as the
size of RDF data increases, such single-machine approaches meet performance bottlenecks,
in terms of both data loading and querying. Such bottlenecks are mainly due to (1) lim-
ited parallelism on symmetric multi-threaded systems, (2) limited system I/O, and (3) large
volumes of intermediate query results producing memory pressure. Therefore, a massively
parallel framework over tens, hundreds or even thousands servers becomes desirable. Al-
though several approaches for distributed RDF data processing have been proposed, along
with clustered versions of more traditional approaches, as described in our related work in
Chapter 2, their techniques operate on a trade-off between loading complexity and query
efficiency in the presence of big RDF data.

The objectives (or tasks) of this thesis can be divided into two main parts: (1) Study
detailed implementations of current triple stores through system-level characterizations and
consequently propose our parallel analytical framework2 for RDF data processing. Mean-
while, hash tables are the most commonly used structure in data processing, and we inves-
tigate efficient parallel hash algorithms in the presence of large-scale data so as to support
high-performance implementations of our system. (2) From the basis of (1), we propose
new parallel approaches/techniques for detailed implementations of each phase of the pro-
posed framework, improve their performance and consequently achieve fast loading and
querying of large-scale RDF data on distributed infrastructures.

For the core part of this thesis, namely the second objective, we will focus on proposing
approaches with full parallelism and distributing everything rather than high-level opera-
tions such as task scheduling or thread coordination etc. on a distributed system. The reason
is that we are more interested in exploring and applying new efficient parallel techniques
for managing huge RDF data. In such scenarios, to achieve a high performance RDF data
analytical system, we have to address the following three core challenges:

• Computation: a very large number of data intensive operations such as lookup and
joins could potentially be generated, efficient strategies are required to simplify or
reduce such operations so as to reduce core utilization and minimize energy con-
sumption during system implementations.

• Communication: a very large number of points of the distributed dataset would be po-
tentially accessed, efficient algorithms which exploit locality of access are required in

2We also refer to it as a system as we have conducted a general implementation in Chapter 8.
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order to minimize data movement and message traffic during system implementations.

• Load Balancing: real-world Linked Data is highly skewed [78] while operations over
such data would lead to load imbalancing, efficient approaches are required to remove
computation hotspots so as to improve the horizontal scalability of the system.

1.3 Contributions of this Thesis

This thesis aims to develop a distributed analytic framework for fast processing large RDF
data, in terms of data loading and querying. During this process, a number of original
contributions were produced as following.

Pre-studies and Analysis

Before the design of our framework, we first studied the detailed implementations of current
triple stores through systematical-level experimental evaluations. Then, we also designed
and evaluated parallel hash algorithms for large-scale data over a distributed system. For
this part, the main contributions are:

1. To allow the dynamics and behaviors of query execution for RDF stores to be better
understood and so help in the design of efficient distributed systems, optimized for
parallel RDF processing, a detailed experimental analysis of four of the most popu-
lar and mature triple stores has been conducted. We construct suitable system-level
metrics and implement our experiments on different platforms. To the best of our
knowledge, this is the first time in the literature that anyone has reported on the per-
formance and characteristics of triple stores on an enterprise platform. This work was
published in [25, 26].

2. Since high-performance analytical data processing systems often run on servers with
large amounts of memory and hash tables are the most common used data structure
in such environments, a high-level structured framework of parallel hashing designed
for processing massive data is proposed. Different to conventional approaches, this
framework supports both distributed memory while avoiding frequent remote mem-
ory access, and thread coordination on a per-partition basis. From there, an efficient
parallel hashing algorithm which employs the popular compare-and-swap (CAS) and
the proposed range-based lock-free hashing strategies is presented. The experimental
evaluation results show that our implementation is highly efficient and scalable for
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processing large datasets. Also, the proposed range strategy for our hashing imple-
mentation is faster than the popular used CAS operations within the proposed frame-
work. This work was published in [28].

Design and Evaluations

Based on the studies in triple store and parallel hashing, a parallel framework for analyzing
large RDF data is proposed as in Figure 1.8. The whole data process is divided into two
parts - data loading and data querying. (1) The raw RDF data at each computation node
(core) is encoded in parallel in the form of integers and then loaded in memory in local
indexes (without redistributing data). (2) Based on the query execution plan, the candidate
results are retrieved from the built indexes, and parallel joins are applied to formulate the
final outputs. In the latter process, local filters at each node can be used to reduce/remove
the retrieved results that have no contribution for the final outputs, and the redistributed data
during parallel joins can be used to create additional sharded indexes.

Different from a centralized or a sequential distributed structure, here we highlight that
the data processing in each step in our framework is fully parallel. To catch the core perfor-
mance issues of an RDF system, this thesis concentrates on the parallel techniques used for
data encoding, parallel joins and data indexing. The detailed contributions here are:

3. To avoid unnecessarily high disk-space consumption and reduce complex computa-
tion during query executions, a scalable solution for dictionary encoding massive RDF
data in parallel is proposed. A detailed implementation with several optimizations us-
ing the asynchronous partitioned global address space model programming language
- X10 [22] is presented. Moreover, a performance evaluation with up to 384 cores and
with datasets comprising of up to 11 billion triples (1.9 TB) is conducted. Compared
to the state-of-the-art approach [116], the proposed approach is faster (by a factor of
2.6 to 7.4), can deal with incremental updates in an efficient manner (outperforming
the state-of-the-art by several orders of magnitude) and also supports both disk and
in-memory processing. This work was published in [34].

4. To efficiently handle data skew and thus reduce the load-imbalancing during paral-
lel join operations, a novel approach, query-based distributed join, is proposed for
processing large-large table skew joins on distributed architectures. We present the
detailed implementation of our method and conduct an experimental evaluation over
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Fig. 1.8 General design of our parallel framework, which includes two main parts, the data
loading and data querying. This thesis focuses on the techniques used in three core parts for
a system: encoding, joins and indexing.
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a commodity cluster of 192 cores (16 nodes) and datasets of 1 billion tuples with dif-
ferent skews. The results show that the proposed method is scalable, and also runs
faster with less network communication compared to the state-of-art approach [127]
under high data skews. An extended outer join algorithm on that basis is also intro-
duced and is also shown to be able to outperform the state-of-art techniques [126, 127]
under high skews, which includes special optimization for outer joins. This work was
published in [27, 29].

5. To further improve the robustness and efficiency of the query-based distributed joins,
a new parallel join algorithm referred to as PRPQ (partial redistribution & partial

query) is introduced. We conduct a detailed theoretical performance comparison be-
tween this method and the state-of-art method [127]. We also present the detailed
implementation and evaluation of the proposed method. The experimental results
demonstrate that the proposed PRPQ algorithm is indeed robust and scalable under a
wide range of skew conditions. Specifically, compared to [127], our algorithm is al-
ways faster, and a notable performance improvement with less network communica-
tion has been achieved under different workloads, figures that confirm the theoretical
analysis. This work was published in [31, 32].

6. To achieve fast loading and querying over large-scale RDF data, a distributed RDF
data indexing method is proposed. Based on a simple similar-size data partitioning
infrastructure, a dynamic two-tier index approach is presented and the design of a pair
of performance-enhancing distributed filters is also introduced. Experimental results
on a commodity cluster of 16 nodes show that our multi-level indexing approach
can indeed highly improve loading speeds while remaining competitive in terms of
performance. Our system can load a dataset of 1.1 billion triples at a rate of 2.48
million triples per second and provides competitive query performance to current RDF
systems RDF-3X [89] and 4store [54]. This work was published in [30, 33].

Additional Contributions

In fact, the proposed techniques for RDF data encoding, joins and indexing in our framework
can be also independently applied to other data problems. For example, the proposed join
algorithms can be used for computing the well-founded semantics over big data. In this
case, we have conducted an experimental evaluation for various rule sets and data sizes
using a basic parallel join method, and the results have shown that the implementation is
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highly efficient and can compute billions of facts in minutes using 192 cores. This work was
carried out in collaboration with Ilias Tachmazidis, Spyros Kotoulas, Grigoris Antoniou and
Tomas Ward. It was published in [111].

1.4 Outline of this Thesis

There are eight subsequent chapters in this thesis, which are organized as follows:

• Chapter 2 presents a comprehensive review of current RDF data systems (both stan-
dalone and parallel solutions) and the related parallel techniques, in terms of dic-
tionary encoding, parallel joins and data indexing. Discussions of such systems (or
techniques) are presented as well.

• Chapter 3 proposes several systematical metrics to characterize the runtime of current
triple store implementations. The four most popular systems are evaluated over two
different platforms with large numbers of triples. Through detailed time cost and
system consumption measures of queries derived from a benchmark, the dynamics
and behaviors of query execution of the systems are described.

• Chapter 4 focuses on investigating efficient parallel hash algorithms for processing
large-scale data. A high-level parallel hashing framework, Structured Parallel Hash-
ing, targeting efficiently processing massive data on distributed memory, is proposed
and theoretically analyzed. Moreover, two kinds of lock-free strategies within the
framework are presented and experimentally evaluated.

• Chapter 5 describes a very efficient parallel dictionary encoding algorithm for RDF
data. The detailed implementation as well as a very extensive quantitative evaluation
of the proposed algorithm is presented. At the same time, performance comparison
with the state-of-art MapReduce-based method [116] is also provided.

• Chapter 6 introduces the query-based joins, a novel parallel join approach for han-
dling data skew in distributed architectures. From this basis, another new algorithm
specified for outer joins referred to as QC (query with counters) is proposed as well.
The detailed design of both approaches and their performance evaluations are also
presented respectively.

• Chapter 7 proposes a new efficient and robust join algorithm named PRPQ (partial

redistribution & partial query) based on the idea of Chapter 6. A detailed theoretical
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performance analysis with comparison with the state-of-art PRPD algorithm [127]
is given. In the meantime, detailed implementation and quantitative evaluation with
various join workloads of the proposed approach are also presented.

• Chapter 8 introduces a two-tier index approach for RDF data on distributed sys-
tems, which includes a lightweight primary index and a series of dynamic, multi-level
secondary indexes. Further, two kinds of distributed filters to replace the secondary
indexes are also proposed so as to reduce memory consumption. On that basis, exper-
imental evaluation of the proposed method as well as performance comparison (both
data loading and querying) with current systems on a commodity shared-nothing clus-
ter are presented.

• Chapter 9 concludes this thesis and highlights future research arising from this work.





Chapter 2

Related Work

2.1 Introduction

We are aiming to apply parallel techniques to RDF data management systems so as to build
a scalable RDF analytic framework. With the objectives and also the challenges in terms of
system implementation as described in Chapter 1, this chapter reports on related work in the
field which can be organized as two main parts as follows.

The first part presents current high performance RDF data management systems and the
benchmarks for such RDF stores. As some existing RDF systems will be used as references
for the design and evaluation of our framework, we first introduce and discuss current stan-
dalone and parallel solutions in Section 2.2. Initally we focus on the novel data structures for
indexing and optimized techniques of the former before we examine the distributed indexing
approaches for the latter (because index is the pivot for data loading and querying). Then,
in Section 2.3, various RDF datasets, popular benchmarks and related evaluation works of
RDF stores are presented, because part of them will be used to evaluate the performance of
our own implementations.

The second part focuses on the detailed approaches used for RDF data compression and
parallel joins. The methods of RDF compression are presented at first in Section 2.4 with
an emphasis on parallel dictionary encoding algorithms. Following that, in Section 2.5,
detailed parallel inner- and outer join approaches are introduced. More specially, for both
the compression and joins, we describe the detailed implementation of the state-of-art tech-
niques and analyze their possible performance issues. We also conduct a general compari-
son between these approaches and our proposed methods to be presented in later chapters.
Because we use the X10 parallel programming language [22] throughout this work, a de-
tailed introduction to this language as well as its advantages derived from our experiences
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are given in Section 2.6.

2.2 High Performance RDF Data Management Systems

2.2.1 Sequential Solutions

Significant efforts have been dedicated to the development of solutions for RDF data man-
agement. Along this line of research, some methods have achieved high performance on
processing RDF data over a single computational node, either by designing novel structures
for the underlying data or applying database optimization techniques to data storage and
querying. Here, we introduce some typical approaches.

Novel Data Structures

SW-Store. SW-Store [4] stores the RDF data in two-column tables, using the vertical parti-
tioning method as described in Chapter 1, so that the candidate results of a triple pattern can
be fast located by looking up the properties. In the meantime, as the first column (subject)
of each table is sorted, high performance table-merge operations can be facilitated dur-
ing query execution. The experimental evaluations show that SW-Store performs very fast
on RDF querying over a column-oriented DBMS such as the C-store [108], implementing
queries in seconds over 50 million triples. In comparison, a common property table store or
a triple store takes hundreds of seconds [4].
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Fig. 2.1 An example of SPO indexing in a Hexastore [121].

Hexastore. As the vertical partitioning method can suffer from scalability drawbacks for
queries that are not bounded by RDF properties, Hexastore [121] provides another structure
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to enhances the vertical partitioning idea and takes it to its logical conclusion. In this store,
RDF data is indexed in six possible ways, to account for all possible orders of precedence
of the three RDF terms. In addition, the data is kept in a set of vectors based on the nature
of triples and each term of a triple is associated with two vectors, one for each of the other
two terms. Moreover, lists of the third RDF element are appended to the elements in these
vectors. An example for the SPO index1 is shown as Figure 2.1, where the first list stores the
triples <S1 P11 O11> and <S1 P11 O12> etc. Similar to the vertical partitioning method, this
data format allows us to quickly locate the solution mappings for each triple pattern. More-
over, the multiple indexing structure has also significant advantages compared to previous
approaches on processing different subgraph patterns. The experiments show that Hexstore
is scalable for processing general-purpose queries, and it achieves orders of magnitude bet-
ter performance than the column-oriented vertical-partitioning methods, although it comes
with the price of a worst-case five-fold increase in index space.
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Fig. 2.2 An example of bit-matrix structure for storing RDF data in BitMat [11].

BitMat. A bitmap index is an efficient way to store the bulk of its data in the form of bit
arrays and answer queries by performing bitwise logical operations over these bitmaps [21].
Applying this idea to RDF data management, the BitMat method [11] represents RDF state-
ments by a 3D bit-cube, where each dimension indicates the subjects (S), predicates (P) and
objects (O). An example is shown in Figure 2.2, according to the dimension of predicates,
the triples in the upfront layer are <S1 P1 O1> and <S2 P1 O1> while the triples in the latter
lay are <S1 P2 O2> and <S2 P2 O3>. As the data can be efficiently compacted based on this
method, this approach can be used to store large RDF data sets. In the meantime, the basic

1Throughout this work, when we refer to index, the S, P and O is responsible for the subject, predicate and
object of RDF data.
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join can be simply implemented by logical bitwise and/or operations on parts of a BitMat.
Furthermore, compared to a general query execution, the memory consumption of this so-
lution can be highly reduced because of the intermediate and final results in a multi-join do
not need to be completely materialized. The experiment results demonstrate that the BitMat
store can process up to 1.33 billion triples – the best result published for a single-node so-
lution. It has also achieved completed query performance with RDF-3X [89] with highly
selective queries and can deliver 2-3 orders of magnitude better performance on complex,
low-selectivity queries over massive data.

Database Optimization

RDF-3X. RDF-3X [89] is an open source RDF engine. The same as other triple stores,
it converts the terms of each triple from Uniform Resource Identifiers (URIs) or literals to
integer IDs using a mapping dictionary. Namely, the RDF statements are stored as ID triples.
To achieve fast processing ability on RDF data, RDF-3X provides three main optimization
as follows, on data storage and query execution:

1. Indexes over all 6 permutations (SPO, POS and OPS etc.) as well as 9 aggregated
indices (SP, PO and P etc.) are built so that the results for all the triple patterns in any
ordering can be quickly looked up using range scans. Additionally, all the indexes are
efficiently compressed by a delta-based byte-level compression scheme. This scheme
exploits the fact that it usually takes fewer bytes to encode the delta between triples
than to store the triples directly, which makes that total storage space consumed by all
the indexes less than the size of the original data.

2. Two types of join operators, hash join and merge join, are employed by the engine, and
the query processor leverages fast merge joins to the largest possible extent. Namely,
if both inputs of a join operator are ordered by columns corresponding to the join
variable, then merge join will be used; otherwise, the hash join is used [76]. This
highly improves the performance of joins appearing frequently in queries and makes
the query execution of RDF-3X much faster than other triple stores, such as Jena,
which uses the nested-loop joins.

3. A query optimizer is used to formulate the optimal join orders for the query execu-
tion plans so as to reduce the intermediate results and consequently reduce the join
costs. It employs dynamic programming for plan enumeration, with a cost model
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based on RDF-specific statistical synopses. These statistics include counters of fre-
quent predicate-sequences in paths of the data graph; such paths are potential join
patterns. Compared to the query optimizer in a universal database system, the pro-
posed optimizer is simpler but much more accurate in its selectivity estimations and
decisions about execution plans [89].

Additionally, in extended work [91], the authors of RDF-3X integrate another tech-
nique, sideways information passing (SIP) [68, 105], into their system. This approach can
efficiently reduce the inputs of a join operator outside the normal execution flow. Namely,
following a query plan, the redundant intermediate results, which have no contribution for
the final outputs, will be removed during query execution, and thus the query performance
is further improved. All these designs make RDF-3X known as the fastest RDF engine, and
we will conduct a performance comparison with this system in Chapter 8.
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Fig. 2.3 An example of the tree of predicate path that is used for filtering non-useful results
during query executions.

R3F. Most recently, the work [76] discusses the statistical and the SIP techniques used in
RDF-3X and argues that the two approaches used for handling the intermediate results have
a limitation that they do not consider any graph structures in RDF data. Then, it introduces a
new method, RDF triple filtering (R3F), to exploit the graph-structural information of RDF
data so as to be more efficient in reducing the vast number of redundant intermediate results
during query processing.

The core component of R3F is a path-based index called RDF path index, for efficiently
filtering triples, which have no contribution for the final outputs, before join operations. An
example of such an index represented in the form of a tree is shown as Figure 2.3. Each
node of the tree contains the associated vertexes following the specified predicate path of
the RDF graph. In fact, the building process of such an index tree is very similar to a kind
of pre-computing of solution mappings for a set of SPARQL queries. For instance, the
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leftmost node in the given tree only contains the unique terms which match the path <P1

→ P2>, and these terms are actually the unique results of the Query 2 shown as below.
From this basis, when implementing a query containing the subgraph of Query 2, then the
number of solution mappings {?y ?z} of the second triple pattern can be efficiently reduced
by checking the existing unique values of ?z before they take part in a join. This means that
the node in the index tree can be consider as a filter for queries following the specified
predicate path. Moreover, when the stored triples are sorted, this filter can also remove the
unnecessary range scans during result lookup.

select ?z

where { ?x P1 ?y . ?y P2 ?z . } Query 2

Since the size of the path-based index could be huge (because it is based on all possible
graph paths), R3F has employed various techniques on reducing the space consumption.
Additionally, a relational operator that can conduct the triple filtering with little overhead
compared to the original query processing is proposed as well. The authors of R3F have
integrated the proposed new techniques into the RDF-3X engine, and their experiments on
large-scale RDF datasets demonstrate that the presented methods can efficiently reduce the
number of redundant intermediate results and obviously outperform the original RDF-3X
implementations during query processing. We will also employ some of these ideas in our
framework in Chapter 8 and build efficient distributed RDF filters so as to improve the query
performance.

2.2.2 Parallel Solutions

The sequential implementation presented above are shown to be efficient on processing RDF
data, regardless, they have not adopted any parallel techniques so as to use the advantages
of modern multi-core architectures. Further, with continuous increasing of the amount of
published RDF data, as stated previously, the performance of data loading and querying will
be limited by the underlying platforms. Therefore, a parallel RDF system, which aims to
improve performance through parallelization of various operations such as building indexes
and evaluating queries, becomes much more attractive.

Several distributed RDF data processing systems have been proposed. Like the single-
node solutions, the index itself in most of these systems also contains all the data. Depending
on their data partitioning and placement patterns, we divided current distributed solutions
into four main categories as following. We will present them with details in turn and also
discuss their advantages and disadvantages in the presence of large-scale RDF data.
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To better understand the basic idea of each approach in the following descriptions, we
take an simple example, including four triples and two queries, which is shown in Figure 2.4
and Figure 2.5 respectively. We present the detailed implementation of each method over
a two-node system and assume that terms with an odd number hash to the first node and
constants with an even number hash to the second node (e.g. B1 hashes to node 1, B2 hashes
to node 2) through out such examples in this thesis.

A1 B2 C1
p1 p2

A2

p3

C1

p2
A1 p2 A2

A1 p1 B2

B2 p2 C1

A1 p3 C1

Fig. 2.4 An RDF graph and the responsible triples.

?a ?b ?c
p1 p2 ?a ?b

p1

A2
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?c

p2

Query (a) Query (b)

Fig. 2.5 Two queries in the form of graph patterns.

Similar-size Partitioning

Systems based on similar-size partitioning place similar volumes of raw triples on each
computation node without a global index. During query processing, nodes provide bindings
for each triple pattern can be implemented in parallel, and the intermediate (or final) results
can be then formulated by parallel joins. Figure 2.6 shows the details of the partitioning
that each node will hold two triples. Then during query execution, the solution mapping of
each triple pattern will be located to a same node to implement local joins and consequently
formulate the intermediate or final results. For example, for the Query(a) in Figure 2.5, the
result of the first triple pattern <?a p1 ?b> at the first node <A1 B2> will be transferred to
the second node, based on the hash value of the join key B2, to join with the <B2 C1> at the
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second node, and then output of the query <A1 B2 C1>. In current literature, the work [120]
is fully based on this approache and [79] employs some additional skew-handling techniques
for join operations during query execution.

A1 p2 A2

A1 p1 B2

B2 p2 C1

A1 p3 C1

Node 1 Node 2

Fig. 2.6 The similar-size partitioning method over a two-node system.

It can be seen that this schema has obvious performance advantages on data loading, as
similar-size is very easy to achieve and each computing node can simply load its local data
in parallel without inter-node communications. Regardless, for any query including join
operations, there will always be data movements in the specific implementations, which can
consequently decrease the query performance.

Hash-based Partitioning

Exploiting the fact that SPARQL queries often contain star graph patterns, triples under this
scheme are commonly hash partitioned (by subject) across multiple machines and accessed
in parallel at query time. As shown in Figure 2.7, the three triples with subject A1 are as-
signed to the first node while the other is assigned to the second node. Clearly, this kind
of assignment will be more time cost than the above similar-size method, and there also
exist same data movements when implementing the Query(a). However, when a query
containing star pattern, the Query(b) in the figure for instance, then the included join op-
erations will be totally computed locally, which can efficiently reduce the costly network
communications and consequently improve the query performance.

Node 1 Node 2

A1 p2 A2

A1 p1 B2

A1 p3 C1

B2 p2 C1

Fig. 2.7 The hash-based partitioning method over a two-node system.

SHARD [97] and the solution [63] are on the basis of such a schema, both are imple-
mented using the MapReduce model so as to process large RDF graph. In SHARD, the
RDF data is persisted in the flat files in the HDFS that each line of the triple-store text file
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represents all triples associated with a different subject. During the query processing, an it-
eration of map-reduce-join continues until all clauses in a query are processed and variable
are assigned. Compared to this, to achieve higher query performance, [63] employs a more
refined partition method. The N-triple data is firstly divided according to their predicates.
Then, the rdfs_type file is divided into as many files as the number of distinct objects the
predicate rdf:type has, and other predicate files are divided according to the type of the
responsible objects. In addition to this, an algorithm about how to schedule the jobs of a
query is also provided.

Sharded/Partitioned Indexes

This approach is very closed to the centralized stores, triple indexes in the form of SPO,
OPS etc. are distributed across all the computing nodes and stored locally as a B-Tree.
Most of the existing parallel systems such as YARS2 [56], Clustered-TDB [92], Virtuoso-
cluster [44], BigData [112] and 4store [54] belong to such a schema. Their operations are
more similar to single-node RDF stores, normally offering lower loading speeds but can
achieve persistence and more space-efficient indexing over a distributed system. Mean-
while, system I/O and join throughput of queries can be improved as well on that basis.

Graph-based Partitioning

Graph partitioning algorithms are used to partition RDF data in a manner that triples close
to each other can be assigned to the same computation node. SPARQL queries generally
take the form of graph pattern matching so that sub-graphs on each computation node can
be matched independently and in parallel, as much as possible. Using such method, all
the previous four triples will be placed on the same node based on a 2-hop graph (namely
distance between two node is 2 maximum) as shown as Figure 2.8. Compared to the three
approaches above, it can be seen that there will be no network communication for such
a method during query executions, for both the queries in Figure 2.5. However, as graph
partitioning is always complex, especially for large graph, the connections between each
node will increase exponentially with increasing the graph, which could induce a very large
time cost before loading the data.

The most typical solution under such a schema is [61]. Using the graph-partitioner
METIS [73], the approach [61] partitions the RDF data based on its vertexes, such that
each machine in a cluster receives a disjoint subset of RDF vertexes that are close to each
other in the graph. During the triple placement, to minimize the network communication
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Node 1 Node 2
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A1 p1 B2
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Fig. 2.8 The graph-based partitioning method over a two-node system.

some triples on the boundary is replicated across partitions, and the n-hop guarantee method
is used to specify the amount of overlap. Moreover, based on the data partitioning, the
SPARQL queries are also decomposed into high performance fragments so as to maximize
the parallelism without communication as possible.

In general, the four different approaches outlined above operate on a trade-off between
loading complexity and query efficiency, with the earlier ones offering superior loading
performance at the cost of more complex/slower querying and the latter ones requiring sig-
nificant computational effort for loading and/or partitioning. In contrast to this, as we will
present in Chapter 8, our proposed dynamical indexing approach can both load and query
large RDF data very quickly.

2.3 RDF Store Benchmarks

2.3.1 RDF Benchmarks

As RDF data management systems are proliferating, a number of benchmarks specified
for these systems have been proposed so as to test their scalability and performance under
data and workloads with various characteristics [42]. Currently, there are four main RDF
benchmarks as follows.

The Berlin SPARQL Benchmark (BSBM) [15] features an e-commerce use case in
which a set of products is offered by different vendors and consumers have posted reviews
about products. Different from other benchmarks, BSBM can generate RDF data in three
models (RDF triple data model, named graphs data model, relational data model) with
same semantics. BSBM also provides three different query mixes for the purposes of test-
ing different common use cases. Compared with other benchmarks, the BSBM queries are
much more complex in terms of RDF workload. We will investigate the inside detailed im-
plementations of current popular triple stores in Chapter 3 from the basis of this benchmark.
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The Lehigh University Benchmark (LUBM) [53] is the most widely used benchmark. It
adopts a University domain and describes universities, departments and the activities that
occur at them. The LUBM benchmark provides 14 extensional test queries representing a
variety of properties. As the queries are relatively simple, as they do not contains any aggre-
gation syntax, which is suitable for evaluation of the core performance of query execution,
we will use it to evaluate our framework in Chapter 8.

The SP2Bench benchmark (SP2Bench) [100] uses the DBLP as a domain for the dataset.
Therefore, the types encountered include Person, Inproceedings, Article and the like. The
Person type is the most instantiated in the dataset, as is the case for the name and homepage
properties. The SP2Bench benchmark is accompanied by 12 queries.

The DBpedia SPARQL benchmark (DBPSB) [88] applies to the DBpedia knowledge
base and procedures for benchmark creation is based on query-log mining, clustering and
SPARQL feature analysis. A set of 25 SPARQL queries is derived as templates, which
cover most commonly used SPARQL features and are used to generate the actual benchmark
queries by parametrization.

2.3.2 Benchmark Datasets

Except for the datasets derived from the full RDF benchmarks as described, various inde-
pendent RDF datasets have been also used for evaluating RDF systems (mainly on RDF
compression and reasoning). The most popular data are, BTC (Billion triple challenge),
Uniprot [10], YAGO [109] and Barton Library Dataset [2].

BTC is a web crawl encoding statements in the form of N-Quads, which consists about
2.2 billion statements currently. Uniprot [10] is a large collection of biological function of
proteins derived from the research literature, containing 6.1 billion triples and still increas-
ing. In comparison to this, the YAGO dataset [109] and the Barton library dataset [2] are
much smaller. The former brings together knowledge from both Wikipedia and Wordnet,
and currently consists of about 19 million triples. The later one consists of approximately
45 million RDF triples that are generated by converting the Machine Readable Catalog data
of the MIT Libraries Barton catalog to RDF. We will use the first two big datasets in our
evaluations in Chapter 5.

2.3.3 Evaluation Work

Along with the growth in new RDF store implementations, there has been a corresponding
increase in interest for relevant performance evaluations. Liu et al. [81] evaluated 7 RDF
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stores by comparing data loading and query response time over different size datasets gener-
ated using the LUBM benchmark. Rohloff et al. [96] implemented the queries and datasets
from LUBM to compare the performance of triple stores with different storage backends
(such as MySQL etc.) by applying metrics like load time, query response time, query com-
pleteness and soundness, and disk-space requirements. Schmidt et al. [100] compared the
performance of a single triple store and the vertically partitioned scheme for storing RDF
data in DBMS using their SP2Bench benchmark. Bizer et al. [15] performed an evaluation
over different RDF systems with their BSBM benchmark, through comparing the loading
time, overall runtime and average runtime per query. Furthermore, Bröcheler et al. [18] pre-
sented an experimental assessment of their DOGMA system by comparing the performance
with other RDF database systems in many cases, like query time and index size. Most re-
cently, Morsey et al. [88] compared four popular triple stores through measuring queries per

second (QpS) and query mixes per hour (QMpH) over different size datasets on the basis of
their DBPSB benchmark.

All these reports have provided valuable insight on the performance of RDF stores.
However, all these evaluation experiments operate on an application level but have not gone
into the system-level to discover performance inhibitors and bottlenecks. In contrast, we
will present a detailed system-level evaluation of current triple stores in Chapter 3.

2.4 RDF Data Compression

As the terms in a RDF statement consist of long string characters in the form of either
URIs or literals, storing and retrieving such information directly on an underlying database
namely a triple store will result in (1) unnecessarily high disk-space consumption and (2)
poor query performance (querying on strings is computationally intensive).

Compression has been extensively studied in various database systems, and has been
considered as an effective way to reduce the data footprint and improve the overall query
processing performance [1, 24, 69, 122]. In terms of efficient storage and retrieval of RDF
data, the approaches described in [45] are geared toward efficient storage and transfer, as
opposed to having direct access to the data for efficient processing. In comparison, the
approach dictionary encoding has been shown to be an efficient way to ameliorate these
problems. In conventional dictionary encoding approaches, for all elements, their ids are
retrieved (or generated) through the sequential access of a single dictionary. This method
is easy to implement, and is commonly adopted by the current triple stores such as RDF-
3X [89] etc. Regardless, it does not avail of potential speed-up by parallel implementations
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and is not suitable for compressing large data sets due to time considerations and memory
requirements. Consequently, encoding triples in parallel based on a distributed architecture
with multiple dictionaries, becomes an attractive choice for this problem.

Though various distributed solutions used to manage RDF data have been proposed in
the literature [56, 61], their main focus is on data distribution after all the statements have
been encoded. To our knowledge, currently there exists only two efficient methods focused
on parallel dictionary encoding of RDF data. One is based on parallel hashing [51] and the
other uses the MapReduce model [116].

Goodman et al. [51] adapt the linear probing method on their Cray XMT machine, and
realize the parallel encoding on a single dictionary through parallel hashing, exploiting spe-
cialized primitives of the Cray XMT. Their evaluation has shown that their method is highly
efficient and the run-time is linear with the number of used cores. This method requires
that all data is kept in memory and is deeply reliant on the shared memory architecture of
the Cray XMT, making it unsuitable for commodity distributed memory systems. They re-
port an improvement by a factor of 2.4 to 3.3 compared to the MapReduce system on an
in-memory configuration. By comparison, on similar datasets, our approach outperforms
the MapReduce system by a factor of 2.6 to 7.4, both on-disk and in-memory.

Compared with [51], the MapReduce method proposed by Urbani et al. [116] is more
general in that it can be run on ordinary clusters and on-disk. There are three main elements
to their system: (1) the popular terms are cached in memory by sampling the data set, so
that these popular terms assigned to each task could be encoded locally and consequently
prevent eventual load balancing problems, (2) a hash function is used to assign grouped
terms to reduce tasks, which then assign the term identifier, keeping the consistency of
the encoding, and (3) the MapReduce framework facilitates the parallel execution of the
program. Although their evaluation on the Hadoop framework has shown that their system
is efficient and scales well, as we will show in Chapter 5, our approach is much faster and
more flexible, and also support both disk and in-memory implementations.

2.5 Parallel Join Approaches

Data warehouses and the web comprise enormous numbers of data elements and the per-
formance of data-intensive operations on such datasets, for example for query execution, is
crucial for overall system performance. Joins, which facilitate the combination of records
based on a common key, are particularly costly and efficient implementation of such op-
erations can have a significant impact in improving the performance on a wide range of
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workloads, ranging from databases to decision support and Big Data analytics.

A significant corpus of research in parallel joins on shared-memory systems has al-
ready achieved significant performance speedups through improvements in architecture at
the hardware level [7, 20, 75]. Nevertheless, as applications grow in scale, the associated
scalability is bounded by the limit on the number of threads available and the availability
of specialized hardware platforms. Though GPU computing has become a well-accepted
high performance parallel paradigm and there are many reports on GPU implementations
of parallel joins [57, 71], as in shared-memory architectures, when the scale of data is high,
the memory and I/O eventually become bottlenecks. As a consequence, the efficient paral-
lelisation of join on distributed memory machines becomes increasingly desirable.

In this section, we introduce the conventional approaches for parallel joins, including
both inner- and outer joins. We discuss their potential performance issues in the presence
of large scale data, especially in the case of skewed data. Moreover, related techniques and
state-of-the-art methods, which can efficiently handle the data skew, are also presented and
discussed.

2.5.1 Inner Joins

The join2 is one of the most popular operation used in various data management systems.
It combines two relations based on a common join key. For example, the join between a
relation R with attribute a and another relation S with attribute b, is evaluated by the pattern
R on S where R.a = S.b.

Basic Approaches

Various distributed join algorithms have been proposed [39, 66, 77, 101, 119, 127], all of
which can be considered variations of two fundamental distributed frameworks: hash-based
and duplication-based joins. Such approaches can be broadly decomposed into an initial
distribution stage followed by a local join process. This latter process is well studied and
techniques such as the sort-merge join and the hash join are commonly used. We have
selected the hash-join as the local join process for our analysis. To capture the core per-
formance of queries, we focus on exploiting the parallelism within a single join operation
between two input relations R and S over an n-node system, assuming both R and S are in
the form of <key, value> pairs and |R|< |S| in the following.

2Unless otherwise stated, a join means an inner join throughout this thesis.
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Fig. 2.9 The hash-based distributed join approach. The dashed square refers to the remote
computation nodes and objects.

Rk

Hash Table 
Sk Replication

SnS1R1 Rn...

Fig. 2.10 Duplication-based distributed join framework.

In the hash-based framework, the basic parallel join algorithm contains four phases, as
illustrated in Figure 2.9: partition, distribution, build and probe. In the first phase, the
initially partitioned relation Ri and Si at each node are partitioned into distinct sets Rik and
Sik respectively, according to the hash values of their join key attributes. Each of these sets is
then distributed to a corresponding remote node in the second phase. These two phases can
be considered as a redistribution process, after which, the sequential join of local fragments
commence. In the build phase, the relation Rk composed from the redistribution at each
node (namely Rk =

⋃n
i=1 Rik) will be scanned, and an in-memory hash table will be created

with the join key attribute. The final probe phase scans each tuple in Sk (Sk =
⋃n

i=1 Sik) to
check whether the join key is in the hash table, and the output will be created in the case of
a match.

The duplication-based distributed join framework is shown in Figure 2.10. The join
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implementation includes three phases: duplication, build and probe. The first phase just
simply duplicates (broadcasts) the tuples of Ri at each node to all other nodes. This means
that, after the broadcast, the composed relation Rk at each node will be equal to the full input
R, namely, Rk =

⋃n
i=1 Ri = R. The following two phases are very similar to the final two

phases of the hash-based implementation, i.e. that local lookups for Sk will commerce once
the in-memory hash table of Rk is created.

Since each phase can be parallelized across nodes, both the schemes above offer the
potential for scalability. However there are significant performance issues with both ap-
proaches. For the hash-based scheme, while a near linear speedup has been demonstrated
under ideal balancing conditions [39] the presence of significant data skew dramatically
impacts performance [40] due to node hot spots. Although duplication-based methods can
handle skew, the broadcasts of each Ri to all the nodes incurs a heavy time-cost and building
a large hash table based on

⋃n
i=1 Ri at each node has detrimental impact on performance due

to the associated memory and lookup cost [46].
In fact, data skew is a significant problem for multiple communities. For example,

databases [75], data management [16], data engineering [20] and web data [78]. Joins with
extreme skew can be found in the semantic web field. For example, in [78], the most fre-
quent item in a real-world dataset appeared in 55% of entries. Therefore, it is very important
for practical data processing systems to perform efficiently in such contexts.

Dealing with Skew

Currently, different techniques and algorithms have been proposed to handle the join skew
[6, 77, 127, 133], and all of them so far rely on the conventional frameworks already de-
scribed. Further, different techniques, such as DHT [125], dynamic scheduling [81] and
statistically based methods [6] etc., have been applied in the implementation of joins to
handle the skew issue. Here, we discuss two representative and influential methods - one
implements load assignment by histograms while the other one is the state-of-art PRPD
method. We describe each in turn.

Histograms. Distributed histograms were proposed by Hassan et al. [6] in an effort to
improve the redistribution plan to process data skew. Their approach is divided into two
parts: (1) histograms for R, S and R on S are built at each node, in either local or global view
or both, and (2) based on the complete knowledge of the distribution and join information
of the relations, a redistribution plan to balance the workload for each node is formulated.

Their experimental results show that this method is efficient and scalable in the presence
of data skew, nevertheless, two main problems can be identified that hamper its performance:
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(1) histograms are built based on the redistribution of all the keys of R and S, which leads to
high network communication, and (2) although only the tuples participating in the join are
extracted for redistribution, thus reducing part of the network communication, this operation
is based on the pre-join of the distributed keys, which incurs a significant time cost.

PRPD. Xu et al. [127] propose a hybrid distributed geography called PRPD (partial redis-

tribution & partial duplication) for inner joins, by combining the two conventional patterns
described. For a single skew relation S (assume R is uniformly distributed), the high skew
tuples Sloc of S are retained locally and other tuples Sredis are redistributed based on hash-
ing. For R, the tuples Rdup with keys contained in Sloc are broadcast to all the nodes, and the
rest Rredis are redistributed as normal. The final joins are composed by Rredis on Sredis and
Rdup on Sloc at each node.
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Fig. 2.11 An example of the data movements in PRPD implementation.

An example about the PRPD implementation is demonstrated in Figure 2.11 (only with
key operations). The key {1} is highly repetitive in the relation S and thus can be considered
as skew. For a common hash-based implementations, all the tuples with the key {1} in S2
will be transferred to the first node and thus lead the first node to be the hot spot. In contrast,
in PRPD, none of such tuples will be transferred. Instead, only a single tuple with key {1}
in R2 is duplicated to the first node. In this scenarios, the cost network communication can
be highly reduced. Meanwhile, from the final to-be-joined data at each node, it can be seen
that the workload at each node becomes more balanced as well.
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The experimental results of the PRPD show that this approach can indeed achieve sig-
nificant performance when compared with the basic hash approach, in the presence of data
skew. Even so, PRPD may still suffer from two major problems.

• Global skew: Global operations like statistical calculations or broadcasts for the skew
keys at each node are required initially. As the split of R and S fully relies on the skew
keys in S, the final join will fail if any node does not have global knowledge of such
keys.

• Broadcast: The processing of the tuples of the duplicated part from R at each node
involves broadcasting, which leads to significant network communication as the num-
ber of such tuples as well as the number of nodes increases. In addition, it could also
bring in redundant join operations.

Consider another similar example in Table 2.1, where the tuples in relation R and S at
each node in a 2-node system are shown. Assuming that {1,2} is the skew key set at node
1 while {1,4} for node 2, then the global skew set should be {1,2,4}. If S2 or R2 or both
relations at node 2 are only partitioned based on a subset of global knowledge, such as the
local skew {1,4}, then: (a) in the first case, as Rdis on Sdis = {3}, the join results for the
tuples with key {2} in S2 are lost, and (b) in the last two cases, the join Rdup on Sloc only
commences on the key {1,4}, and misses the part of {2}. We can also observe that when the
relations at node 2 (see 2′) are partitioned over {1,2,4}, then there is no miss for the output
results. In the more general case, we assume that the high skew keys in Si at each node are
simply broadcast so that all nodes can exchange their local skews.

Table 2.1 An example of data partitioning in the PRPD algorithm

n S R skew Sloc Sdis Rdup Rdis

1 1,1,1,2,2,3 1,3 1,2,4 1,2 3 1 3

2 1,1,1,2,4,4 2,4 1,4
1,4 2 2,4 /0

1,2,4 /0 4 2
1,4 2 4 2

2′ 1,1,1,2,4,4 2,4 1,2,4 1,2,4 /0 2,4 /0

For the second potential issue, following the same example, the duplication part of R is
{1} at node 1 and {2,4} at node 2′, and there exists redundancy in the final join Rdup on Sloc_1

over the key {4} at node 1. This redundancy is the result of the uneven partitioning of the
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skew tuples in S over each node before the join. In our case, the tuples with key {4} of
S appear twice on node 2′ but do not appear on node 1. Because this key is considered
as a skew key, all the tuples with {4} in R are duplicated and join with the Sloc_i at each
node, even though Sloc_i does not contain {4} (e.g. node 1). Obviously, when the number
of such uneven tuples is large, the redundant computation will be significant, and will have
a severe impact on performance. To improve performance here, [127] proposes a solution
that redistributes the skew tuples evenly to all the nodes before the join. However, this pre-
redistribution will generate extra communication costs, while more complex and careful
global statistical operations for all tuples of S are required. The authors in [127] do not
provide any detailed implementation or experimental details regarding this pre-procesing.
In contrast, as we will present in Chapter 6, our proposed algorithms does not require such
operations at all and can also outperform PRPD under various join workloads.

2.5.2 Outer Joins

Outer joins are popular in complex queries and frequently used in OLAP [47, 95] and large-
scale data analysis. Unlike inner joins, the operation does not discard tuples from either
relation that do not match with tuples in the other [14]. For example, for a left outer join
(◃▹) between two inputs R and S on their attributes a and b, the following Query 3 returns
not only the matched tuples in the form of <x,a,y>, but also <x,a,null>, when values do
not match.

select R.x R.a S.y

from R left outer join S on R.a = S.b (Query 3)

Basic Methods

Currently, similar as for inner joins, implementations for distributed outer joins utilise one of
two distributed patterns [126]: hash-based and duplication-based outer joins. As left outer

joins are the most commonly used outer joins, we simply focus on this kind of operation
between two relations R and S on an n-node system in the following.

As shown as Figure 2.12, for hash-based approaches, parallel outer joins contain three
phases: partition, redistribution and local outer joins. In the first phase, the relations Ri

and Si, initially arbitrarily partitioned across each computation node i, are partitioned into
distinct sets Rik and Sik (k ∈ [1,n]) respectively, according to the hash values of their join
key attributes. Each of these sets is then distributed to a corresponding remote node k

in the second phase. After that, the sequential outer joins of local fragments commence.
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Fig. 2.12 Hash-based distributed outer joins.

Similar to the inner joins, this scheme can achieve near linear speed-up under ideal balancing
conditions for distributed systems [39]. However, when the processed data has significant
attribute value skew, the join performance will dramatically decrease due to the emergence
of computational hot spots [40].

Duplication-based outer joins differ significantly from inner joins. As demonstrated in
Figure 2.13, there are two distinct stages involved: (1) An inner join between R and S,
composed by a duplication and local inner join phase in which the former phase duplicates
Ri at each node to all other nodes, and the latter is the same as that for sequential inner
joins, formulating the intermediate results Ti at each node i. (2) An outer join between
R and T . This stage is similar to the redistribution-based method described above, but
only redistributes T instead. The duplication in this framework can efficiently reduce hot
spots resulting from attribute value skew. Nevertheless, this operation is costly and only
suitable for small-large table outer joins. Additionally, such a scheme will still encounter
performance bottlenecks when there exists join product skew [6], because in such scenarios
the redistributed T could be very large (e.g. Cartesian product) or suffer from skew itself.

As stated previously, various techniques have been proposed for distributed inner joins
to handle skew [6, 27, 77, 127, 132], regardless, little research has been done on outer joins.
The reason for this may be the assumption that inner join techniques can be simply applied
to outer joins, as identified in [126]. However, as shown in our evaluations later in Chapter 6,
applying such techniques for outer joins directly may lead to poor performance.

Although many systems can convert outer joins to inner joins [49], providing an oppor-
tunity then to use inner join techniques, this approach necessitates rewriting mechanisms,
which may prove complex and costly. Additionally, current research on outer joins fo-
cuses on outer join reordering, elimination and view matching [14, 60, 80]. State-of-the-art
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Fig. 2.13 Duplication-based distributed outer joins.

methods designed specified for outer join implementation achieve significant performance
improvements [126], however, as we will describe below, they are based on the duplication-
based method that can be only applied for small-large table outer joins, which does not meet
our requirements in aspect of large-large table outer joins.

State-of-the-art Approaches

Applying PRPD. The described PRPD algorithm illustrates an efficient way to process
the high skew tuples. PRPD is actually a hybrid method combining both the hash-based
and duplication-based join schemes, in which the two distributed patterns are supported by
outer join implementations. Therefore, we can simply use the Rredis ◃▹ Sredis and Rdup ◃▹

Sloc to replace the corresponding inner joins in the scenarios of outer joins. Regardless,
there would exist one possible performance issue: the cardinality of the intermediate results
in Rdup ◃▹ Sloc will be large because the Sloc here is high skewed, and this will bring in
significant time-costs.

DER. Xu et al. [126] propose another algorithm called DER (duplication and efficient redis-

tribution), which is the state-of-the-art method for optimization of outer joins. The method
comprises two stages. (1) They duplicate Ri to all the nodes and then implement the inner
joins. In contrast to the conventional approach, they record the ids of all non-matched rows
of R at this stage. (2) They do not redistribute any tuples in the second stage, instead, they
just redistribute the recorded ids according to their hash values and then simply organize the
non-match join results on that basis. The final output is the union of the inner join results in
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the first stage and the non-matched ones in the second stage.

In fact, this method shows an efficient way to extract non-matched results. Notice that
the join in the first stage of the conventional duplication-based method is a inner join but
not a outer join, the reason is that the outer join brings either redundant or erroneous non-
matched output. For a two-node system for example, if the output of the duplicated tuple
{1,a} is {1,a,null} on both nodes, there is no match for this tuple in S and there is a redundant
output. Further, if the {1,a,null} appears only on one node, there is a match on the other
node, output {1,a,null} will result in error. The conventional approach to alleviate this
problem is by redistributing the intermediate results. We can also use another, naive, way
to solve this problem by outputting the non-matched results and then redistribute them.
Regardless, DER uses a more ingenious way, in that each tuple can be indicated by a row-id
from the table R, which is redistributed. Consequently, the network communication and the
workload can be greatly reduced, and their experimental results demonstrate that the DER
algorithm can achieve significant speedups over competing methods.

As DER must broadcast Ri, it is designed to work best for small-large table outer joins.
In this scenario, since R is small, the redistributed part in the second stage will remain small
even when S is skew. This is because DER only processes the non-matched part, the number
of which is always less than |R| at each node. In contrast with the PRPD algorithm, the
broadcast part Rdup is typically small, and we expect that integrating DER into PRPD can fix
the skew problem as described for Rdup ◃▹Sloc previously. Our experiments in the Chapter 6
will demonstrate that that this hybrid method (which refer to as PRPD+DER) is indeed very
efficient on handling skew in large-large outer joins. Regardless, this approach inherits the
two performance issues of PRPD as described, and we will also show that our proposed
algorithms can still outperform this optimized technique during join implementations.

2.6 X10 Parallel Programming Language

X10 [22] is a multi-paradigm programming language developed by IBM. It supports the
asynchronous partitioned global address space (APGAS) model and is specifically designed
to increase programmer productivity, while being amenable to programming shared memory
and distributed memory supercomputers.

It uses the concepts of place and activity as the kernel notions to exploit parallelism
in the available hardware. A place is a logical abstraction of the underlying heterogeneous
processing element in the hardware such as cores in a multi-core architecture, GPUs, or a
whole physical machine. Activities are light-weight threads that run on places. X10 sched-
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ules activities on places to best utilize the available parallelism. The number of places is
constant through the life-time of an X10 program and is initialized at program startup. Ac-
tivities on the other hand can be forked at program execution time. Forking an activity can
be blocking, where in the parent returns after the forked activity completes execution, or
non-blocking, where in the parent returns instantaneously, after forking an activity. Further-
more, these activities can be forked locally or on a remote place.

X10 provides an important data structure called distributed arrays (DistArray) for pro-
gramming parallel algorithms. One or more elements in the DistArray can be mapped to
a single place using the concept of points [22]. Additionally, we used the following three
crucial parallel programming constructs for our compression implementation.

- at(p) S: this construct executes statement S at a specific place p. The current activity
is blocked until S finishes executing on p.

- async S: a child activity is forked by this construct. The current activity returns
immediately (non-blocking) after forking S.

- finish S: this construct is used to block the current activity and then waiting for all
activities forked by S to terminate.

Based on the experiences derived from the development work of this thesis, we find that
there are a number of advantages to using the X10 language, and in turn the APGAS model,
to implement parallel/distributed algorithms/systems: (1) flexible and efficient scheduling.
APGAS, like PGAS, separates tasks from the underlying concurrency model, thereby al-
lowing one to implement an efficient scheduling strategy irrespective of the number of tasks
forked using async; (2) APGAS, being derived from both MPI and OpenMP programming
models, extracts parallelism at both the distributed and single machine hierarchies; and (3)
the abstract programming model supports the development of succinct code which is easier
to debug and maintain.

2.7 Conclusion

In this section, we primarily presented related work to that of this thesis, focusing on current
high performance RDF stores, RDF benchmarks and associated techniques such as index-
ing, data encoding and parallel joins.

In the first two sections, we introduced the novel data structure and optimization tech-
niques employed in some typical single-node triple stores, which can compute queries very
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fast. We also classify the indexing methods used in current distributed solutions into four
types and show that there exists complexity trade-off between them, in terms of data loading
and querying performance. Then, we describe the existing RDF benchmarks as well as four
popularly used benchmark datasets. Additionally, we present related evaluation work on
RDF stores.

In the latter three sections, we first presented current data compression techniques, espe-
cially the two distributed dictionary encoding implementations, one implemented on a Cray
XMT supercomputer and one based on the MapReduce model. After that, we described
the detailed implementations of different parallel inner- and outer joins. We focused on
analyzing the performance issues of the conventional join approaches while demonstrating
how state-of-art methods can efficiently handle data skew over large scale data. Finally, we
introduced the modern parallel programming language X10 highlighting its advantages for
development, from the basis of our own development experiences.



Chapter 3

Runtime Characterization of Triple
Stores

3.1 Introduction

The performance of RDF stores becomes increasingly important with the growth of the
Semantic Web. As described in Chapter 2, current RDF benchmarks and experiments are
concentrated on evaluating the response time and query throughput of individual stores to
show the general weaknesses and strengths of RDF implementations, but have not suffi-
ciently given insight reasons for their conclusions.

In this chapter, we focus on a more detailed analysis of RDF stores. Especially, we try to
conduct a more detailed system-level evaluation of currently triple stores, with the following
three main targets:

• To allow the dynamics and behaviors of RDF query execution to be better understood.

• To discover performance inhibitors and bottlenecks of current RDF stores.

• To give insightful suggestions for RDF store developments and help in the design of
efficient distributed stores, optimized for parallel RDF processing.

We choose four of the most popular and mature triple stores, available as open-source
software: Jena [86] and Sesame [19], both written in Java, RDF-3X [89], a state-of-the-
art store for scalable SPARQL processing and, Virtuoso [44], a commercial multi-purpose
and multi-protocol data store. Compared to the conventional high-level evaluations, we
construct several new suitable metrics for RDF stores, focus on profiling their low-level
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implementations. Moreover, we create triples up to 5 billions on the basis of the BSBM
[15] benchmark and implement our experiments over two different platforms: a standard
(128GB RAM, 12cores, standard HDD) and an enterprise platform (768GB RAM, 40 cores,
enterprise SAN).

Rather than a common benchmarking effort, the work present in this chapter should be
read as an analysis of the runtime Characterization of queries for a representative set of RDF
stores. We only consider loading times with regard to the feasibility of our experiments and
we do not focus on the compliance to the SPARQL specification or the feature-set of each
store. In this light, our measurements and analysis aim at guiding development of RDF
stores, rather than evaluating existing ones.

The rest of this chapter is structured as follows: In Section 3.2, we provide a general
work flow of RDF query processing in triple stores. The detailed methods we use to collect
the data for our proposed metrics are shown in Section 3.3. In Section 3.4, we describe the
experimental environments. We present the test results and discussion in Section 3.5 and
conclude in Section 3.6.

3.2 RDF Store Querying

Query performance is always the most important issue for an RDF system, therefore we
focus on the query process in this section.

Similar to traditional database systems in terms of system architecture, the main compo-
nents of Jena, Sesame, RDF-3X and Virtuoso include a query engine, a storage subsystem
and a database. The query engine is used to parse the query from a user or an application
program and produce an execution plan, represented as a tree of relational operations [70].
The storage subsystem includes a buffer or even its own file cache manager, which, as the
name suggests, manages the buffering of data and reduces the number of disk accesses.

The general process of query implementations for the four triple stores is illustrated in
Figure 3.1, which comprises three main phases from top to bottom: query parsing, query

planning and query execution. Unlike performance evaluations done previously, which have
only focused on the time cost of entire query process, in our evaluations, we will measure
the time cost of each phase to track performance more precisely.

To better understand the insight implementation of triple stores, we examine the detailed
process of the three phases in turn. As the first query parsing process is simple, namely the
strings of input queries are analysed based on the SPARQL syntax, here, we just focus on
the latter two phases.
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Parsing Planning
Query

Join Data Access

Triple i

Triple i+1

...

Execution

B/B+ Tree

Page

Buffer/Cache

Fig. 3.1 The work flow of the general query process in triple stores.

3.2.1 Query Planning

The sequence of underlying implementations of a query such as joins rely on the responsible
query plan, and an unoptimized plan will bring large number of redundant intermediate
results and thus impacts the query performance because of the memory consumption as
well as result materialization. SPARQL queries typically generate deep query plans and
RDF lacks information about access patterns available in relational databases (e.g. foreign
keys). This makes query planning, and in particular join order optimization, challenging and
resource-consuming. Currently, most RDF store’s query optimizer can only collect limited
statistics, such as RDF-3X’s histograms as described previously, and Jena which collects the
number of times a predicate appears. Further, some systems (for example, Virtuoso) cache
query plans for later use. We will examine this time for each store so as to demonstrate their
differences.

3.2.2 Query Execution

Joins. The join implementations in an RDF store has been extensively studied in previous
chapters - candidate results of two sub-graphs will join based on their join keys following
the responsible query plan. As the execution time of SPARQL queries is dominated by
such operations, here we just report on the join methods used in the four stores examined.



44 Runtime Characterization of Triple Stores

Namely, Jena and Sesame only use nested-loop joins, RDF-3X uses merge joins as well
as hash joins and Virtuoso uses all the three types of joins. The latter two systems always
choose the most efficient joins in the planning phase according to the cost of each kind of
join, which means that they could spend more time on the query planning and consequently
reduce the query execution cost.

Data Access. If a join operation organizes the general operation of all the triple patterns
in a query, then the data access process can be considered as the detailed implementation
of retrieving bindings for single triple patterns. This process is always costly and thus an
efficient indexing structure is always needed so as to enable fast location of the required
data pages and then retrieve them. Jena [86], Sesame [19] and RDF-3X [89] use B/B+
Tree indexes, suitable for range queries, and the index scheme of Virtuoso contains primary
key and bitmap indices. Jena also provides three triple indexes on spo, pos and osp to
accomodate different triple patterns, while Sesame offers two indexes spoc and posc by
default, and RDF-3X maintains 15 indexes (6 indexes and 9 aggregated indices) for covering
all the possible join patterns. The redundancy is offset by index compression methods.
Virtuoso provides two full indexes posg and pogs, where the g indicates the graph name,
and three partial indexes sp, op and gs as default. All systems use a dictionary, mapping
values to numeric identifiers. The triple indexes, and most operations, operate on these
numeric identifiers.

Data Caches. Practically all RDF stores (and all databases) employ caching mechanisms
for triple indexes and dictionaries to improve the performance of frequently encountered
queries. This kind of data cache is always implementation-specific. For example, Sesame
employs a caching and buffering approach using the Java heap. During data retrieval, it will
access the buffer or cache to check whether the required data is there and start an index scan.
If there is no matched data, the needed B-tree node will be read into the buffer first before
seeking to the exact data position. Depending on the location of the requested data, some
B-tree nodes will be processed directly, some will be read from the disk cache and some
will be read directly from disk. Caches influence data access operations like index scans,
page reads and triple lookups. To obtain a more precise description of the performance
of such operations, we record the number of index scans and their timing, the number of
the pages read and the number of the triple lookups for a single query. All these data
is useful for describing the dynamics of data searching, which is directly associated with
query performance.
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3.3 Methodology and Metrics

The previous section gives insight to the workings of RDF stores in general. In this section,
we describe in detail the methodology and the metrics used in our experiments. We have
instrumented Jena, Sesame and RDF-3X by modifying their source code. Virtuoso already
provides some metrics1 itself, which we retrieve using the Virtuoso JDBC driver.

We measure the time cost for the parsing phase starting from the time we get a query
string (in-process), to the time we get the query tree. At this point, the planning phase starts.
We consider that the planning phase is finished when we get an execution plan. Note that
for the purposes of this chapter, any runtime decisions (for example, sideways information
passing techniques used in RDF-3X) are counted as part of the execution phase and not as
part of the planning. The execution phase is finished when the last result has been received.

Index and Search Range [a,b] have been confirmed.
1: Counter1: scan_start_time
2: read (index.root())
3: binary search to get child node
4: while triple_id < a do
5: read (child.node())
6: Counter2: page_read_1++
7: end while
8: release(tree.root())
9: end read

10: Counter3: scan_number++
11: Connter4: scan_end_time

Fig. 3.2 Pseudo codes of four counters in a scan implementation.

For Virtuoso, we retrieve other relevant metrics using the corresponding SQL statements
after each query. For the other three systems, all other metrics are collected through inserting
counters in their program codes. For example, four counters are assigned for an index scan
as pseudo codes are demonstrated in Figure 3.2. We define the start of an index scan with the
reading of the root node of the index and the end with release of the root node. A separate
counter for the number of pages accessed is used in this process (Counter 2 in the code),
here it indicates only part of pages read, while there would be no scan when reading the
consequent content pages, where we also insert the Counter 2.

1http://docs.openlinksw.com/virtuoso/ptune.html
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A triple is located in a slot of data page and an extra id is used to indicate its slot. Our
lookup counters increment every time when the system looks up this id to check whether
it meets the searching range. For RDF-3X, the triple lookup operation happens during its
scan process. For Jena and Sesame, the lookups are accompanied with the results retrieve
process.

Lastly, we monitor the CPU usage during all the tests with SYSTEMTAP2, a tool for
gathering information about system utilization in the Linux operating system. The CPU was
sampled every second. For the purposes of this work, we consider 100% CPU usage when
a single logical processing unit is fully utilized (i.e. a dual-core machine with two threads
per core can have up to 400% CPU usage).

We will present results for some metrics across all queries and for some others, we will
focus on specific queries. The metrics used here are summarized in Table 3.1, where the
general means the most common used metrics and the detailed indicates the new ones we
proposed.

Table 3.1 Metrics List

Metrics General Detailed

Data Loading Time !

Disk Space Consumption !

QMpH !

Query Parsing Time !

Query Planning Time !

Query Execution Time !

Number of Index Scans !

Scan Time !

Number of Lookups !

Number of Read in Pages !

3.4 Experimental Settings

3.4.1 Benchmark

For our experiments, we have used the Berlin SPARQL Benchmark (BSBM) [15]. BSBM
generated synthetic datasets of arbitrary size, representing an e-commerce use-case in which

2http://sourceware.org/systemtap/
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a set of products is provided by various vendors and consumers post reviews around those
products. We created a series of datasets, the largest of which is composed of 5 billion
triples, occupying around 1.2 TB in N-Triples format.

In terms of queries, we have concentrated on the explored use-case of BSBM. Although
the corresponding query set is suitable for use with Jena, Sesame and Virtuoso, several
query features such as the aggregation operations describe and optional are not supported
by RDF-3X. Consequently, we rewrote the queries3 to cater to RDF-3X.

3.4.2 Platform

All the experiments were conducted on two platforms, a standard platform (SP) and enter-

prise platform (EP). Their configurations are shown in Table 3.2. The standard platform we
have used is an iDataPlex node with 2 Intel Xeon X5679 processors, 128GB RAM with a
single 1TB SATA HDD. The enterprise platform consisted of a high-memory server IBM
x3850 X5, an enterprise-grade IBM XIV SAN and two IBM System Storage SAN48B-5
fiber channel switches. The server was equipped with 4 Intel Xeon E7-8850 processors,
768GB RAM and two Emulex 8GB FC Single-port HBAs, each connected to one switch.
The XIV SAN used 156 HDDs and was connected to each switch on six fiber channel ports.

Table 3.2 The Configurations of Test Platforms

Machine Standard Platform Enterprise Platform

CPU 2*6 Cores, 2.93GHz 4*10 Cores, 2.00GHz
RAM 128GB 768GB
Disk 1TB XIV SAN

Linux Kernel rhel-2.6.32-220 rhel-2.6.18-308
Java Version 1.6.0_25 1.6.0_25

3.4.3 Setup

We have experimented on Jena v2.6.4, Sesame v2.6.5, RDF-3X v0.3.7 and Virtuoso Open
Source v6.1.5. We set the Java heap size for Jena and Sesame to 40GB on SP and 240GB
on EP. For Virtuoso, the system parameters NumberOfBuffers and MaxDirtyBuffers were
set to 5242880 and 3932160 on SP and 31457280 and 23592960 on EP. For Jena, we have
configured the optimizer with the statistic optimization strategy. For Sesame we have set

3http://code.google.com/p/para-computing-long/downloads/list



48 Runtime Characterization of Triple Stores

the index configuration to spoc, posc and opsc. The rest of the parameters were left to the
default values.

Moreover, we chose 150 query mixes for our experiments, of which 50 query mixes
were used in the warm-up phase and the other 100 were in the hot-run. To minimize the
caching effects of previous queries, we empty the file system cache before running the query
mixes of each test. Additionally, our experiments have been limited by the following three
conditions, in terms of systems and time limitations: (1) hard disk space, (2) loading time
(with a cut-off at 100 hours) and (3) query execution time (with a cut-off at 24 hours).

3.5 Results and Discussion

In this section we present and analyze the results derived from the metrics described previ-
ously and provide insight on the runtime characteristics of the aforementioned RDF stores
for the platforms used.

3.5.1 Loading

The results of loading time and disk consumption over SP and EP are shown in Figure 3.3
and Figure 3.4 respectively. Sesame performs poorest in terms of loading capability - 250M
triples take more than 100 hours. A possible explanation for this lies in the relatively small
page size used by Sesame, which is only 2KB, that leads to very frequent index updates.
On EP, the situation is improved as 500M is loaded in about 34 hours. For Jena, 500M
was loaded in 80 hours for SP while the performance on EP was dramatically superior -
5B loaded in 70 hours (not shown). In comparison, RDF-3X took 75 hours. Virtuoso and
RDF-3X achieved much faster loading speeds than Jena and Sesame on SP, but their loading
time on EP is at the same levels as in SP, indicating that they did not exploit the hardware.
In the meantime, it takes days for the four systems to load large datasets, highlighting the
requirements for parallel processing in the presence of big RDF data.

For disk space requirement, it can be observed that this metric is linear increasing with
the increment of loaded triples. Moreover, the index compression methods of RDF-3X pay
off, resulting in the smallest index size. Virtuoso (also using index compression) uses nearly
10% more space. Jena and Sesame generate much larger indexes about 2 times larger than
those of RDF-3X, though they have less indexes.
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Fig. 3.3 Data loading time on the two platforms.
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Fig. 3.4 Disk space required for various datasets.
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3.5.2 QMpH

There are 25 queries in a Query Mix, which is the same as the BSBM configuration, and
Figure 3.5 shows the QMpH result on the basis of our rewritten queries. As expected, per-
formance decreases with an increasing dataset size for all stores in both platforms. This
change is essentially linear as demonstrated in the figure. We also note that RDF-3X per-
formed the worst of all stores, which comes in contradiction with the description in [90].
We will explain this further in the following part about the cost breakdown of query imple-
mentations.

Comparing the two platforms, EP appears to have worse QMpH than SP, which is sur-
prising. In terms of hardware configuration, SP has only one advantage, namely CPU clock
speed. We draw the conservative conclusion that computation is CPU-bound and explain
this further in Section 3.5.7.

With the results mentioned above, regarding to our test strategy, the maximum number
of triples for each store in our experiments is also expressed in Figure 3.5 according to the
terminal points of different curves. We measured the QpS of 250M triples on SP for all
stores, which we believe could indicate a general performance measure for our test. Based
on that, we also listed three queries with the best QpS and three with the worst for each
store as shown in Table 3.3. Since Q5, Q8 and Q12 appear frequency in that list, with the
interest in outstanding queries, we chose these three queries as main analysis objects for our
proposed metrics in the following.

Table 3.3 Special queries for RDF stores with 250M triples on standard platform

RDF Store Best Queries Worst Queries

Jena Q2, Q9, Q12 Q3, Q4, Q5
Sesame Q2, Q9, Q12 Q5, Q10, Q11
RDF-3X Q2, Q11,Q12 Q5, Q7, Q8
Virtuoso Q2, Q9, Q12 Q3, Q5, Q8

3.5.3 Cost Breakdown

Table 3.4 shows the cost breakdown between query parsing, planning and execution, across
all stores and queries for 250M triples. For most stores, the runtime is dominated by execu-
tion time. Query parsing represents a small fraction of the cost, so we will exclude it from
further discussion. Planning cost differs significantly per store, with Virtuoso spending sig-
nificantly more time than the other stores. For Q5, Q7 and Q8, we see that the execution
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time of RDF-3X is nearly 100%. Especially for Q7, which appears four times in the query
mix, and its QpS for RDF-3X is only 0.03, which is extreme low while other stores is in the
order of ten, leading RDF-3X a worse QMpH as described.

Table 3.4 Breakdown of different queries for 250M triples on the standard platform (in %)

Q.
Jena Sesame RDF-3X Virtuoso

Par. Pl. Exe. Par. Pl. Exe. Par. Pl. Exe. Par. Pl. Exe.

1 2 1 97 4 96 0 0 82 18 0 100 0
2 20 16 64 21 77 2 0 98 1 0 96 3
3 2 1 96 4 96 0 0 87 13 0 100 0
4 2 1 97 4 96 0 0 93 7 0 100 0
5 0 0 100 0 0 100 0 1 99 0 100 0
6 - - - - - - - - - - - -
7 3 2 96 2 5 93 0 0 100 0 97 3
8 2 1 97 2 3 95 0 1 99 0 100 0
9 2 2 96 2 96 2 0 100 0 0 96 4

10 3 1 96 1 2 97 0 7 93 0 98 2
11 2 2 96 0 0 100 0 76 24 0 71 29
12 3 2 95 5 94 1 0 90 10 0 97 3

3.5.4 Planning and Execution

Query 12 is chosen as being representative for further analyzing planning costs. The results
in Figure 3.6 show that: (1) Planning costs for Virtuoso and Jena are fairly constant and are
not significantly influenced by dataset size. We attribute this to the plan caching and the
statistical approach taken in these systems respectively. (2) Sesame and RDF-3X clearly
demonstrate an increase in planning costs as the dataset size increases. This means that
these two systems have more complex optimization strategies in the presence of different
workloads.

Among the four stores, the query planner of Virtuoso dominates its query runtime, espe-
cially for Q5 (not shown). For this query, the whole query runtime is 808.4 ms and Virtuoso
takes 808.3 ms on query planning. This illustrates that performance failures in the query
plans can be lethal in RDF stores. On the other hand, the significant effort for optimization
pays off, as shown in the execution times in Figure 3.7, where Virtuoso significantly outper-
forms other stores. We should nevertheless note that this optimization cost is not amortized
over the (lower) execution time, as we describe next.
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Fig. 3.6 The planning time of Query 12 by varying the number of triples (in logscale).
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Fig. 3.7 The execution time of Query 5 by varying the number of triples (in logscale).

Query 5 is a bad query for all four stores, as evident in the execution times presented in
Figure 3.7. It can be seen that the execution time is basically linear with the data size for
Jena, Sesame and RDF-3X, with the latter performing better. The time cost of Virtuoso is
practically constant with the dataset size, indicating that a large portion of the computation
for this query is done during the planning phase as stated above.

3.5.5 Number of Scans and Scan Time

In terms of number of scans and scan time, the Virtuoso-provided metric locks is always 0
for all the queries in our experiments, which indicates no index is locked during the query
implementation, we assume the reason is that perhaps the results are stored in the store cache
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Fig. 3.8 The number of index scans of Query 8 by varying the number of triples.

0 1 0 0 2 0 01 0 0

1 0 1

1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

1 0 7

 

Sc
an

 tim
e (

us
)

N u m b e r  o f  t r i p l e s  ( M i l l i o n )

 J e n a  S P
 S e s a m e  S P
 R D F - 3 X  S P
 J e n a  E P
 S e s a m e  E P
 R D F - 3 X  E P

Fig. 3.9 The scan time of Query 8 by varying the number of triples.

and there is no need to search the triples through an index scan. And it is also possible that
the lock refers to the number of locks needed for synchronization, and the implementation
contains only read operations. We report then number of scans and scan time only for Jena,
Sesame and RDF-3X, since the instrumentation in Virtuoso does not support these metrics.
In Figure 3.8 and Figure 3.9, we show results for Query 8 respectively. The curves do not
change after 250M triples. It can be seen that the number of scans for RDF-3X is smaller
than Jena and Sesame. We attribute this to the fact that RDF-3X maintains indexes for all
term permutations. For the time spent on scanning, as shown in Figure 3.9, it is significantly
higher for RDF-3X (again, this is due to its architecture). In the same figure, Sesame spent
much less time on scanning, since it is using its proprietary in-memory cache, namely part
of the required data can be retrieved directly without any scans, compared to the file cache
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used by Jena.

3.5.6 Number of Lookups and Read in Pages

Figure 3.10 and Figure 3.11 show the number of triples retrieved (triple lookups) and num-
ber of read in pages for Query 5 respectively. These both grow linearly with dataset size.
Given the fact that this operation heavily relies on sequential data access. In the meantime,
it can be observed that RDF-3X retrieves large number of data on both metrics. In compar-
ison, Jena and Sesame performs nearly the same, are much smaller. The difference in page
reads between Sesame and Jena is attributed to the proprietary cache of the former. Com-
paring these two results with Figure 3.7, we see that even though RDF-3X accesses more
data, it strongly outperforms Sesame and Jena, which indicates that the implementation of
joins in RDF-3X is much faster. This means that the operations of merge-join and hash-join
could be potential faster than nested joins in this scenario.

3.5.7 CPU Usage

For all systems, we observed very low CPU usage and although Jena, Sesame and Virtuoso
support concurrent evaluation of multiple queries, no system parallelizes the execution of
single queries. The CPU usage of Jena and Sesame was almost identical (70% ∼ 80%)
on both platforms. RDF-3X and Virtuoso reached 100% CPU on the standard platform,
and Virtuoso reached 200% on the enterprise platform. Given that SP and EP have 24 and
80 logical processing units respectively, none of the systems exploit the parallel nature of
modern architecture for the evaluation of single queries.

3.6 Conclusions

This chapter has conducted a comparative analysis of the runtime characterization of a rep-
resentative set of RDF stores, namely, Jena, Sesame, RDF-3X and Virtuoso. We have de-
scribed the dynamics and behaviors of the query execution on the basis of experimental data
and queries derived from the BSBM benchmark.

The main findings of this work are the following: (1) Investing in query optimization
pays off in general, but, in SPARQL, it is easy to arrive at a situation in which the run-
time performance is dominated by optimization. (2) Planning failures are potentially catas-
trophic. In our experiments, although RDF-3X was the fastest system in most queries,
failure in a single query resulted in it having the worst overall performance. (3) None of the
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Fig. 3.10 The number of triple lookups of Query 5 by varying the number of triples. For
each dataset, Jena and Sesame performs nearly the same, are much smaller than RDF-3X.
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Fig. 3.11 The number of read in pages of Query 5 by varying the number of triples.

RDF stores examined can exploit modern parallel architectures for single queries. This is
expected to have a very negative effect on analytical workloads. (4) Using very fast stor-
age, in most cases, did not have the expected impact on performance. This indicates that
either the datasets used were completely served by data in memory and caching techniques
performed adequately, or that query processing in RDF stores is actually CPU-bound.

All these investigations and findings demonstrate detailed aspects of triple stores and
also provide deeper understanding for their behaviors during query execution. This helps
us to confirm the main modules and the data flows of our proposed analytical framework as
presented in the Figure 1.8 of Chapter 1 in a parallel case. Additionally, the results presented
in this chapter show that standalone stores could encounter serious performance bottlenecks
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in the presence of big RDF data. Therefore, in the following Chapter 4, we will investigate
how to efficiently process large datasets using distributed systems.



Chapter 4

Design and Evaluation of Parallel
Hashing over Large-scale Data

4.1 Introduction

The previous chapter has provided a detailed analysis of the runtime characteristics of triple
stores. The collected results have also demonstrated that RDF stores meet performance
bottlenecks in the face of huge RDF data as the limitation of sequential implementations.
We aim to apply parallel techniques to large-scale RDF management systems, namely, we
have to find efficient parallel strategies to process big data at first. For example, the detailed
parallelism patterns or thread cooperation strategies etc. over a distributed system need
to be considered. As hash tables are commonly used in high-performance analytical data
processing systems, which often run on servers with large amounts of memory, and they
have been employed in the implementations of encoding, joins and indexing of our proposed
framework, the focus of this chapter is on investigating efficient parallel hashing algorithms
for processing massive data.

In fact, hash tables are the dominant structure for applications that require efficient map-
pings, such as database indexing, object caching and string interning. The O(1) expected
time for most critical operations puts them at a significant advantage to competing meth-
ods, especially for large data problems. Regardless, similar to other big data problems, as
applications grow in scale, parallel hashing on multiple CPUs and/or machines is becoming
increasingly important. Currently, there are two dominant parallel hashing frameworks that
are widely used and studied: distributed and thread-level parallel hashing.

For the first framework, as shown in Figure 4.1, the threads at each computation node
(either logical or physical) build their own hash tables first, and then process the initial
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partitioned data (refer as keys for simplification throughout this chapter) through accessing
a local or remote hash table(s). In general, this access is determined by hash values of
the processed keys. This approach is very popular in distributed systems. Considering the
target for high performance computing, in the following we only discuss the conditions of
full parallelism, rather than the hash tables used in peer-to-peer systems, for example, the
commonly studied Distributed Hash Tables (DHTs) [107].

In thread-level hashing, (Figure 4.2), a single hash table is constructed on the single
underlying platform, and multiple available threads operate with coordination on that table
in parallel. This particular model is widely studied for multithreaded platforms which range
in scale from commodity servers to supercomputers. As there exists no costly network
communication (though possible NUMA) under this scheme, it always performs very fast.

The two parallel schemes scale in terms of processing large numbers of items by em-
ploying new nodes or threads. However, both approaches meet performance issues when
processing massive data. With distributed hashing, the large number of frequent and irreg-
ular remote accesses of hash operations across computational nodes is costly in terms of
communication. Moreover, when the processed data has significant skew, the performance
of such parallel implementations will dramatically decrease because all the popular keys
will flood into a small number of nodes and cause hot spots. For parallel hashing on multi-
threaded architecture platforms, the cooperation between threads can efficiently balance the
workloads, regardless, both for the skewed or non-skewed data, the associated scalability is
bound by the limit on the number of threads available, the availability of specialized hard-
ware predicates and possible memory contention. Furthermore, memory and I/O eventually
also become bottlenecks at very large scale.

In general terms, the memory hierarchy of modern clusters consists of a distributed
memory level (across nodes) and a shared memory level (multiple hardware threads/cores
accessing the memory of a single node). We are proposing a structured parallel hashing

(SPH) framework (shown in Figure 4.3) that blends distributed hashing and shared-memory
hashing, divided into two phases: (1) items are grouped and distributed globally by each
thread, and (2) hash tables are constructed on each node and each of them is only accessed
by a local thread(s).

The primary idea is a straightforward bulk-operation scheme, however, in so far as we
are aware the approach has not been previously described in the literature. Intuitively, this
method has two advantages: (a) reduced remote memory access, load imbalancing and the
associated time-cost arising from memory allocation, table locks and communication in
distributed hashing, and (b) support for high scalability compared to thread-level hashing
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(there are no hardware limitations as our approach operates using predicates available on all
platforms).

In fact, such bulk operations are widely applicable. For example, we have implemented
joins for parallel data processing using a similar approach in the following chapters (also
see [29, 31]). Namely, tuples of an input relation are redistributed to all the computation
nodes. From that basis, local hash tables are created for lookup conducted by the other rela-
tion. In such application scenarios, the following three questions arising from the proposed
framework are becoming to be interesting:

• performance: will the responsible implementations be scalable and can they achieve

comparable performance or even outperform the other two approaches?

• parallelism: how will the performance change with varying the number of threads

over each hash table, if the whole available threads are fixed for a given system?

• impact factors: how will the high-level data distribution as well as the underlying

hash table designs impact on the performance?

The answers will give us an insight of the underlying hash implementation as well as an
option to further improve the performance of applications using hash tables over distributed
memory.

This chapter makes three main contributions. First, we propose a simple high-level par-
allel hashing framework, structured parallel hashing, targeting efficient processing of mas-
sive data on distributed memory. Second, we conduct a theoretical analysis of the scheme
and present an efficient parallel hashing algorithm based on it. Finally, we evaluate on an
experimental configuration consisting of up to 192 cores (16 nodes) and large datasets of up
to 16 billion items (long integers). The experimental results demonstrate that the proposed
approach is efficient and scalable. It is orders of magnitude faster than conventional dis-
tributed hashing methods, and also achieves comparable performance with a shared memory
supercomputer-based approach, on a socket-for-socket basis.

The rest of this chapter is organized as follows: In Section 4.2, we conduct a theoretical
analysis of different hashing frameworks. We present an efficient parallel hashing algo-
rithm in Section 4.3. In Section 4.4, we experimentally evaluate our work, followed by a
discussion in Section 4.5 and the conclusions in Section 4.6.
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4.2 Theoretical Analysis of Hashing Frameworks

In this theoretical analysis, we make four assumptions: (1) our hash function produces a
uniform distribution, (2) slot accesses after a hash collision follow a uniform random dis-
tribution, (3) each node can communicate with multiple remote nodes at the same time,
and (4) the memory access and data transfer inside a physical node is zero (compared to
the network-based operations). The first two assumptions are popular in currently theoret-
ical studies [36] and the latter two are natural for an ideal distributed system. In addition
to this, we refer to the distributed and thread-level hashing frameworks as HF1 and HF2
respectively, and our structured parallel hashing framework as HF3.

In general, the total time cost T to insert N items in a framework can be divided into
three parts: distribution time for item transfers across memory resident in different nodes
tm, time for probing tp and time costs due to memory contention tc . As threads work in
parallel in each framework, T would be the same as the time t by a single thread (assuming
equal load). Specifically, we have tm = 0 for HF2 as there is only a single shared memory
location.

4.2.1 Distribution

We assume that the time cost of moving an item to the node itself is 0, and the time t(x) to
transfer x items to a remote node is t(x) = δ0 +δ1 · x, where δ0 is a constant that represents
the latency for each data transfer1 while δ1 is the time for transferring a single item.

In a cluster with n physical nodes in which each has a constant number of threads e, there
will be ne hash tables in HF1 and n in HF3, and each thread will process N/ne items. Since
the items are processed one by one in HF1, the number of item transfers will be N/ne. In
HF3, items are grouped into n chunks by each thread (namely total ne ·n chunks with N/n2e

items each) and moved to the corresponding n nodes. Since the ratio of moved items to a
remote node is (n−1)/n, the item transfer time in HF1 and HF3 is:

tm1 =
n−1

n
· N

ne
· (δ0 +δ1) (4.1)

tm3 =
n−1

n
·n · (δ0 +δ1 ·

N
n2e

) (4.2)

This indicates that: (1) if n is a constant, t will be O(N), and (2) for a given N, t will be

1Note that connections for data transfer could be retained, regardless, extra time cost for remote accesses
still exist, such as memory allocation etc.
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O(n). Additionally, if n is fixed, the time difference (tm1− tm3) between HF1 and HF3 will
be O(N). It means that with the increment of N, HF3 will spend less time on item transfers

than HF1.

4.2.2 Slot Probing

In each framework, threads insert items using a pseudo-random probe sequence. For a
successful insertion, the last probed slot is empty, while the slot accessed before (if any)
is occupied. For a hash table with c slots and v elements (load factor at end of execution
α = v/c≤ 1), according to the theorem for standard hashing presented in [36], we have the
function between the average number of probes l in a successful search and v:

l(v) =
1
α

c

∑
i=c−v+1

1
i

(4.3)

HF1 and HF3 implement insertion on individual partitions of distributed memory. There-
fore, we have v1 = N/ne and v3 = N/n. Moreover, for the single node with e′ threads
in HF2, there exists v2 = N and each thread processes N/e′ items. Normally, we have
l(v1) = l(v2) = l(v3) = l0 ≈ (−1/α) · ln(1−α), because N is a great number (for example
16 billions in our experiments) and there is N >> ne. If the time for a single probing oper-
ation is η0, equal in each framework, then with the same load factor α , the probing time for
a single thread would be:

tp1 = tp3 = η0l0 ·
N
ne

(4.4)

tp2 = η0l0 ·
N
e′

(4.5)

This implies that for a given underlying platform, the probing time of each framework
will be O(N). And for a fixed input, HF1 and HF3 can reduce the probing time by increasing

the number of nodes n.

4.2.3 Memory Contention

We define a conflict as the situation where more than one thread try to access the same hash
table slot at the same time. The probability that a thread accesses a specified slot of a hash
table (c slots and v elements) is 1/c. With w threads, the probability that i (1 ≤ i ≤ w)
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threads access the same slot would be:

p(v, i) =
(

w
i

)(
1
c

)i(
1− 1

c

)w−i

(4.6)

There will be i−1 thread conflicts when i threads access a same slot. Under the condition
that w << v, the average number of conflicts for probe operations for a thread would be:

c(v,w) =
w

∑
i=1

(i−1)p(v, i)

=p(v,2)+
w

∑
i=3

(i−1)p(v, i)

≈p(v,2)≈ w(w−1)α2

2v2

(4.7)

For uniformly expressing the cost of the three approaches, here we refer to the number of
items processed by each thread as hkvk, where the subscript k means the identify of each
framework, namely k = 1,2,3. Then, we have h1 = 1, h2 = 1/e′ and h3 = 1/e, which are
all constant. If we assume that the waiting time λ0 resulting from a single conflict in each
framework is the same and there are w̄k threads accessing a hash table, then, with the average
number of probings described previously, we have:

tck = λ0 · l0hkvk · c(vk, w̄k) =
λ0l0α2hk

2
· w̄k(w̄k−1)

vk
(4.8)

With a limited2 n, e and e′, λ0l0α2hkw̄k(w̄k−1)/2 will be a limited constant. Because vk

is O(N), the time tck will be o(1/N). It means that when processing very large-scale data,

the time cost for memory contention can even be neglected in all frameworks.

4.2.4 Performance Comparison

When processing large data (tck = 0), the time difference ∆Ti j = ∆Ti−∆Tj between HF3,
HF2 and HF1 is:

∆T13 = δ0 · (n−1) · ( N
n2e
−1) (4.9)

∆T23 = η0l0 · (
N
e′
− N

ne
)− (n−1) · (δ0 +δ1 ·

N
n2e

) (4.10)

2For example, for the cluster we use in our experiments, there is n = 16 and e = 12. For a supercomputer,
the e′ could be hundreds or thousands.
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With a limited n, e and e′ ≥ 2e, if we set N→∞, then we have: (1) there is always ∆T13 > 0
and (2) let k1 = η0l0/e and k2 = k2

1 +(δ1/e)2 +(2−4e/e′) · k1δ1/e, there will be ∆T23 > 0
when

n≥ e′

2k1e
· (k1 +

δ1

e
+
√

k2) (4.11)

This implies that when processing a very large data set, (i) our hash framework is always

faster than HF1, and (ii) it can perform better that HF3 with increasing the number of

computation nodes, at least based on a high-level theoretical analysis and on a simplified
model. This assertion will be tested in the experimental evaluation.

4.3 Parallel Hashing

In this section, we present an efficient parallel hashing algorithm based on our framework.
We focus on techniques to (1) maintain consistency in the distribution phase, and (2) avoid
hash collisions and memory contention during hash operations. Additionally, motivated
by the performance of data storage and information lookups in our applications (namely
encoding, joins and indexing) [27, 29, 31, 33, 34], we just focus on the hash operations of
insertion and searching.

4.3.1 Distribution

For an n-node system and t threads per node, all the threads read and distribute items in
parallel. We introduce an integer parameter i to subdivide items based on a common (n× t)-
based hash partitioning, namely set h(key) = key mod |n× t × i| to group and distribute
items, based on the hash values of their key. Then, groups with hash values in the range
[k · (t · i),(k+1) · (t · i)], are sent to the k-th node (k ∈ [0,n−1]).

After the distribution, each computation node (rather than thread) has total t×n×(t× i)

chunks of data to be processed locally. We treat all of them as a data cuboid where each
chunk is indexed by (t,m,n), which represents that the chunk comes from the t-th thread
with the hash value m at the n-th node. The detailed implementation at each node is given in
Algorithm 1. The array item_c is used to collect the grouped items, and its size is initialized
by the number of thread t and the modulo value m. Since each thread manages its own
items, the reading and distribution operations can be performed in parallel across threads.

It is obvious that, for a given input dataset, the size of the cuboid (which is proportional
to the number of received items for even data distributions) at each node will be constant, no
matter how large the parameter i is. Nevertheless, with a larger i, the chunks of the cuboid
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Algorithm 1 Item distribution at each node
1: Initialize items_c:array[array[array[item](m)]](t)
2: for i ∈ threads async do
3: Read in item file f
4: for item ∈ f do
5: des← hash(item.key)
6: items_c(i)(des).add(item)
7: end for
8: for j← 0..(m−1) do
9: Push items_c(i)( j) to r_items_c(i, j,k) at node k, where k = m/n

10: end for
11: end for

would be more fine-grained. This means that the size of the transferred data as well as the
allocated memory each time will be smaller. Furthermore, if we process the cuboid data at
the unit of a chunk, the workload of each local thread would also be more uniform. However,
inter-node communication will become more frequent, negatively affecting performance.
We will examine this trade-off in our evaluation.

4.3.2 Processing

Since the number of received items at each node can be easily recorded in the distribution
phase, we can directly allocate the required size hash table and initialize it. In the mean-
time, during key insertion, there exist various hashing strategies to minimize hash collisions
and different mechanisms like the lock-based and non-blocking approaches are proposed to
address the problem of memory contention [36, 58, 59]. As we focus on the parallelism
over hash tables, we adopt linear probing for hash collisions and CAS (compare-and-swap)
for memory contention in our implementations, which is very popular in recently stud-
ies [41, 50, 51, 59, 106, 131]. In addition, we propose a new range-based algorithm, aimed
at removing memory contention.

CAS

Compare-and-swap ensures the slot for the key that it is about to insert does not have another
key inserted during its operation [106]. As shown in Figure 4.4, the hash table is initialized
by two arrays. One array is used to hold the items, and other one is a status array using
CAS to indicate whether the corresponding slot in the former array is filled or not. In the
operation of insertion, the slot of an item is located by its hash value. The thread first checks
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Fig. 4.4 CAS-based Implementation.

whether that slot in the item array is filled or not. If not, the thread would atomically check
and set the slot at the same index of the status array. If the slot is already set, the thread will
continue to the next slot.

The details of our implementation is shown in Algorithm 2. We use the array ht to store
the items while the array stat is used to indicate occupancy. Each slot in the stat array is
initialized with the element atomicBoolean to support the CAS operations. After that, the
received data chunks will be scheduled as a task queue and assigned to all the available
threads. For each item, the initial location of the slot will be calculated by a hash function
h1(k). The empty slot searching process will start with the position h1(k) of ht. If a slot is
not occupied and the CAS operation over stat also returns the value of true, then the item
will be inserted, otherwise, the next slot will be probed. We use a modular arithmetic to
cycle the location of an array from the bottom to the top and the searching process will be
repeated until a free slot is found. The insertion progress will be ended when all the inserting
tasks are finished.

There are two possible issues when using CAS: (1) the ABA problem as described
in [59]. The key value of a slot in our implementation only changes from null to another
value and never changes back again, as the same as the scenarios in [106], therefore the ABA
problem could not exist in our implementations; and (2) the contention hot spots problem as
presented in [41]. In fact, this problem becomes a performance issue because [41] focuses
on the study of continuously changing the same variable with multi-threads. In contrast,
threads in our method do not work on a specified slot but over the whole table instead. From
the probability as we analyzed in Section 4.2, it is clear that the performance of our imple-
mentations will be not affected by such an issue, at least for the massive uniform distributed
data.
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Algorithm 2 CAS-based implementation at each node
1: Allocate buffers for hash table ht:array[item],

stat:array[atomicBoolean](true),
2: for each r_items_c(i, j,k) async do
3: for item ∈ r_items_c(i, j,k) do
4: e← h1(item.key)
5: Search an empty slot start from the eth position
6: if ht(e).null∧ stat(e).CAS(true,false) then
7: ht(e)← item
8: else
9: e++, Continue searching

10: end if
11: end for
12: end for

Range

We propose the range-based approach from the basis of the parallel radix join [20] algo-
rithm, which is commonly used in recent research targetting efficient parallel joins [16, 20].
The main idea is that the subdivided data is assigned to individual threads and then each
thread processes the data independently. Regardless, the method for joins focuses on work-
load assignment at the hardware-level, such that the size of data chunks is set to the cache
size so as to minimize the cache miss etc. Compared to that, our approach is concentrated
such that all the threads can work on a given hash table without any influence from each
other.

In general, as demonstrated in Figure 4.5, we map chunks of data in the cuboid to the

Computation Node

to be processed items

Start

Offset

Fig. 4.5 Range-based Implementation.
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specified hash table according to the value of index m as we described previously. Because
we can easily calculate the size of the mapped chunks, the mapped range on a hash table
can be simply presented by two values: the start point start and the size offset. If threads at
each node process the items in the unit of chunk section (according to index m), then all of
them would work in a specified range, and no memory contention happens.

The detailed implementation at each node is presented in Algorithm 3. We first compute
the size of each range by Sk=∑i, j item_c(i, j,k).size. When inserting an item, three param-
eters - the item, the start slot Rk−1 and the end slot Rk of the range, are transferred to the
hash function h2 to locate the start probing point in the hash table. Similarly, we also use a
modular arithmetic to ensure that the probings work in the specified range. The program is
terminated when all the places finish item insertion.

Algorithm 3 Range-based implementation at each node
1: Compute the kth Range:Sr
2: The end slot of the kth Range Rk=∑r<k Sr
3: Allocate buffers for hash table: ht:array[item]
4: for each items_c(i, j,k) async do
5: for item ∈ items_c(i, j,k) do
6: e← h2(item.key,Rk−1,Rk)
7: Searching a empty slot start from the eth slot
8: if ht(e).null then
9: ht(e)← item

10: else
11: e++, Continue searching in [Rk−1,Rk]
12: end if
13: end for
14: end for

The calculation of each range depends on the distribution of values in the hashtables,
which can be easily computed in our data distribution phase. Therefore, the proposed range

method fits our framework well. We will evaluate its performance and compare it with the
popular CAS method.

Searching

Searching is very similar to the insertion operation as described. Keys are mapped to loca-
tions in the same way as in Section 4.3.1 and threads can independently search on the hash
table. Because no thread synchronization is required in this phase (assuming no concur-
rent writes), threads in the CAS-based implementations can freely access any slot without
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checking the status array. For the range-based implementation, an additional operation is
required to read the range.

4.4 Evaluation

Platform. Our evaluation platform is the High-Performance Systems Research Cluster lo-
cated at IBM Research Ireland. Each computation unit of this cluster is an iDataPlex node
with two 6-core Intel Xeon X5679 processors running at 2.93 GHz, resulting in a total of 12
cores per physical node. Each node has 128GB of RAM and a single 1TB SATA hard-drive
and nodes are connected by Gigabit Ethernet. We implement our algorithms with the paral-
lel language X10 [22] over the RHEL with Linux kernel 2.6.32-220. We use X10 version
2.3 and compiling it to C++ over gcc version 4.4.6.

Dataset and Metric. Table 4.1 shows the input and output parameters for our experiments,
with bold font indicating default values. We have generated several datasets up to 16 billion
integers. Data follows a uniform distribution when Zipf factor is equal to 0, or a skewed
distribution with the associated α parameter. We mainly measure the runtime of each test in
terms of: distribution time, insertion time, hashing time and search time as described. In the
meantime, two types of hash tables based on our framework are examined: (1) Structured

Distributed Hash Tables (SDHT), in which there is a single thread per logical computation
node. Therefore, this kind of hash table does not suffer from memory contention, but at
the cost of reduced flexibility in terms of load balancing. (2) Hybrid Parallel Hash Tables

(HPHT) have multiple threads per logical node operating with the CAS or range strategies
(referred to as Range in the following) as described before.

In the following, we first conduct the performance comparison of each hash framework
on a basic test. Then, we evaluate the scalability of SDHT and compare the performance of
HPHT using different lock-free strategies. Finally, we study the impact factors of our hash
tables and compare our results with current implementations as presented in [85] and [51].
Because the standard deviation between executions was very small in our tests, we record
the mean value based on ten measurements.

4.4.1 Comparison of Frameworks

We conduct a simple performance comparison of the three hashing frameworks already
described based on the CAS strategy. We implement the thread-level parallel one a single
machine with 12 node, and other two parallelism on a distribute system with the same node,
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Table 4.1 Experimental Parameters.

Input Parameters

Parameter Values

Hash table implementation SDHT, HPHT, CO_U, RHH_U
Dataset size (billions) 0.5, 1, 2, 4, 8, 16

Zipf factor 0, 0.2, 1, 1.8
Load factor 0.6, 0.75, 0.9

#Threads 12, 24, 48, 72, 96, 120, 144, 168, 192
#Threads/Table 4, 12
#Threads/Core 1

Hash Collision Strategy CAS, Range
i parameter 1, 10, 100
Key length 32 bits, 64 bits

Output Parameters

Parameter Description

Read time Time to read data from disk
Distribution time Time to distribute items

Insertion time Time to insert to hash-table
Hashing time Sum of Distribution and Insertion time

Search time Time to search for all items
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Fig. 4.6 Performance comparison of three frameworks.
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but just use 6 cores each machine (namely a small machine). We process 10 million keys
and present the result in Figure 4.6. There, the configure 2×6 indicates a configuration of
two machines using 6 cores each. It can be seen that our framework HF3 performs much
better than HF1. However we are slower than HF2 initially but when using 4 machines (24
cores), our implementation become faster. All this is consistent with our theoretical analysis
in Section 4.2.

4.4.2 Structured Distributed Hash Tables

We test the scalability of our SDHT by varying the number of processing threads and the
size of input data. The results are shown in Figure 4.7. We can see that the time cost for
inserting and searching is almost the same and linear with the number of nodes. For a small
number of threads, distribution time is not linear, since for a single node there is no network
communication and for two nodes (24 threads), only 50% of the data needs to be transferred
over the network. With more than 72 threads, the distribution cost decreases linearly with
the number of nodes. Overall, the hashing time follows the same pattern.

To study the scalability of our algorithm with increasing input size, we fix the number of
threads to 192 (16 nodes), start our tests with 500 million integers and repeatedly double the
size of the input until 16 billion. The results are presented in Figure 4.8. The hashing time
is linear with the size of the input, and nearly matches the ideal speedup scenario. The same
holds for distribution, insertion and searching. Furthermore, the time spent in the insertion
phase is nearly the same as the searching phase, and both are less than that of the distribution
phase.

From the results above, we can see that hash table construction scales very well both with
the number of threads and the input size. We also notice that, with a 16-node cluster, the
item distribution costs about 60% more than insertion and searching. We will characterize
the possible factors in Section 4.4.4.

4.4.3 Hybrid Parallel Hash Tables

We elaborate on the performance of HPHT for different strategies and input parameters. HPHT
uses multiple threads per node (could be logical or physical), and by extension, multiple
hashtables. We choose two typical cases: four threads and three logical nodes per physical
node (4×3) and twelve threads and one logical node per physical node (12×1). We further
experiment with regard to scalability with the number of threads.

Figure 4.9 presents runtimes to process 1 billion integers. Similar to SDHT, both the CAS
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and Range implementations scale well with the number of threads. With detailed runtime
comparison, we find that the proposed Range method performs much faster than CAS, both
for insertion and searching. There are three possible reasons: (1) hash table construction
in CAS is more complex (using extra-arrays); (2) there is extra atomic compare-and-swap
operations in CAS while there is no memory contention in Range; and (3) regarding search,
although there are no compare-and-swap operations for CAS, Range still benefits from su-
perior memory locality for individual threads.

Given a fixed number of threads, the implementation configured with 12× 1 performs
worse than 4×3 for each algorithm, and both of them are slower than SDHT. Although HPHT

is slower than SDHT when processing uniformly distributed integers, HPHT scales equally
well. Moreover, HPHT features thread coordination, which would be advantageous in some
scenarios, such as against the data skew.

To validate this claim, we conduct a test on 16 nodes under dataset skew. Each dataset
contains 1 billion integers following the Zipf distribution (α = 0.2, 1 and 1.8). To support
the thread coordination in Range operations, we also set the parameter i to 10 in each im-
plementation (recall that threads in Range operations process data chunks according to the
value of modulo, so there will be no thread coordination if i = 1). As shown in Figure 4.10,
distribution time and insertion time increases with the skew of the dataset for all settings.
However, for a ≥ 1, HPHT significantly outperforms SDHT, indicating superior load balanc-
ing, mainly during insertion. Additionally, the configuration with 12×1 is still slower than
4×3, which means that hash tables with moderate parallelism could be a better choice even
in the presence of high skewed data.
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Fig. 4.10 Runtime by varying Zipfian factor in each implementation.
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Table 4.2 Detailed Time cost of processing different integer lengths

# Threads
64-bit integer (sec.) 32-bit integer (sec.)

Dis. Ins. Sear. Dis. Ins. Sear.

48 38.63 53.05 55.65 18.26 55.39 56.91
72 29.02 39.28 38.26 15.03 37.44 36.24
96 25.51 28.80 28.77 13.22 27.66 28.94

120 21.23 22.84 22.78 11.34 22.27 24.01
144 19.78 18.46 20.10 10.47 18.61 18.92
168 16.37 16.26 16.74 9.33 16.00 17.01
192 16.40 14.26 14.19 9.98 14.12 15.01
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Fig. 4.12 Time cost with varying the parameter i.
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4.4.4 Impact Factors

We also test factors with potential performance impact. As the curves with different num-
bers of threads per place are nearly the same, both in SDHT and HPHT, we only present results
with the configuration 4×3 based on CAS and Range implementations. The factors we have
considered are (a) the load factors of hash tables, (b) the length of the processed keys and
(c) the parameter i, mentioned in Section 4.3.1.

Three different values for load factor (0.6, 0.75 and 0.9) are examined in our tests. Fig-
ure 4.11 shows the hashing time for 1 billion integers. Once again, we observe that all the
implementations scale well with the number of threads. Moreover, as expected, hashing
time increases with the load factor. For both strategies, the runtime with load factor 0.6 and
0.75 is nearly the same. For a load factor of 0.9, in Range, runtime increases by nearly 20%
while for CAS, it increases only by 3%. This also indicates that hash collisions have a more
significant effect on the performance for the Range implementation. There is a trade-off
between the memory consumption and the load factor, therefore, in real implementations,
assigning the load factor to 0.75 would be a better choice for Range and 0.9 if using CAS.

We test the time of processing 1 billion integers represented with 32 bits or 64 bits. Be-
cause the CAS and Range implementations show the same characteristics, we only present
the execution time for the Range algorithm as shown in Table 4.2. The time spent on dis-
tributing the 32-bit integers is about a half of that for the 64-bit objects, while the insertion
and the search time do not change. This is in contrast with the conclusion in [85] that vary-
ing the size of integers has no effect on time. This difference shows the essential difference
between our implementation and other general algorithms: we used a high-level structured
method to group items that need to be sent to the remote nodes, while other methods send
many short messages that overwhelm the network, leading to significant inter-node com-
munication and coordination overhead. This can also be observed in our results in that
the distribution with 168 threads and 192 threads takes nearly the same time, because the
transferred data chunks become too small.

Finally, we evaluate how the data partitioning in the distribution phase affects the exe-
cution time. The parameter i is set to 1, 10 and 100 respectively and the results are present
in Figure 4.12. The runtime in both CAS and Range with i = 10 is slightly greater than
that with i = 1, and is fairly linear with the number of threads. However, when setting
the parameter to 100, the time cost decreases at first and then increases with the number
of threads, leading to bad scalability. The decrease in the size of transferred data for each
thread at the beginning reduces the distribution time, but as the number of threads increases,
the vastly increased number of chunks incurs significant coordination overhead. The above
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result, together with our experiments regarding skew, indicate that higher i should be chosen
for larger data sizes and higher skew.

4.4.5 Comparison with Current Implementations

The latest evolution with distributed parallel hashing is reported in [85], using 768 threads
on a cluster to process 19.2 million items takes 18.2 secs using UPC and 27.4 secs using
MPI. In comparison, our best performing implementation can process 1 billion items in just
13 secs with 192 threads, and we also achieve linear scale with the increment of threads.
This is similar as the results presented in Figure 4.6, and the great difference evident arises
from the different hashing frameworks utilised.

Table 4.3 Comparison with results presented in [51] (time in seconds)

Algorithm
16 Sockets 32 Sockets

Read. Hash. Read. Hash.

Cray CO_U 123 90 123 46
Cray RHH_U 124 150 123 77

SDHT 57 113 30 59

Range 4×3 70 257 32 152
Range 12×1 72 570 36 301

CAS 4×3 68 331 32 192
CAS 12×1 72 842 37 466

We also conduct a detailed comparison with the fastest performing implementation in the
literature, presented in [51]. [51] implements thread-level parallel hashing on a Cray XMT
supercomputer using two techniques: CO and RHH3. Although the approach in [51] also
optimizes hashing of skewed loads, it is not the focus of this thesis. Table 4.3 shows the file
reading and hashing time to process 5 billion integers. The Cray XMT is a shared-memory
architecture using a specialized interconnect and a latency-tolerant model. Since a direct
comparison of processor speeds in not meaningful, we group the results on a per-socket
basis. We observe that, SDHT is faster than RHH and slower than CO if we do not consider
the reading time. If we consider reading time, SDHT is faster than all other techniques and
systems. HPHT is slower than all other approaches, but still remains within an order of
magnitude of the best performing system. Overall, although our system relies exclusively
on low-cost commodity hardware, we observe that it achieves comparable performance to

3the results presented here were obtained by communication with the authors
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a shared-memory system using a specialized interconnect and processor architecture. With
increasing nodes, it is expected that we can even outperform [51] on the hash operation on
the basis of the theoretical analysis in Section 4.2.

4.5 Discussion

The study of distributed parallel hashing main focuses on (1) low-level communication
schemes such as the use of the IBM LAPI [83], and (2) parallel programming paradigms or
languages, such as the use of Java, MPI and UPC [43, 85, 98]. In these implementations,
hash operations are always accompanied with frequent and irregular remote memory ac-
cess with a concomitant increase in low-level communication overhead and the associated
performance hit. Therefore, they are more suitable for processing small data, but not for
massive data.

There is long history of theoretical studies [72, 84] in terms of the thread-level parallel
approaches. By employing different hashing strategies, implementations on various plat-
forms have achieved excellent performance [50, 51, 106]. Our implementation performs
comparably or slightly worse than the fastest one [51], however our approach relies on low
cost commodity hardware, adding to its flexibility.

GPU computing has become a well-accepted parallel computing paradigm and there are
many reports on implementations of parallel hashing based on that [8, 48]. Implementa-
tions of these hash tables exhibit strong performance. However, GPU memory is limited
so therefore such methods cannot work with excessively hash tables of the sizes shown in
this thesis. In addition, reading data into GPUs takes a considerable time, adding significant
overhead for a simple task, from the perspective of computation.

Although parallel hash joins are widely studied in modern parallel database manage-
ment systems [7, 16, 20], there is little research focuses on the parallelism of underlying
hash tables. With the increase in size of process datasets in this domain [7], we expect that
the hash strategies used in our hash tables can further improve join performance here.

The idea behind our method is straightforward, yet not trivial, and does not appear in
the literature. Consequently we believe that the evaluations conducted here and the results
described are of value to the community as a basis for understanding the merits of the
approach. Moreover, our theoretical analysis in Section 4.2 confirm that our structured
method is faster for large datasets - a result verified through our experiments. Finally we
also contribute a range-based strategy for our hashing implementation, which is shown to
be faster than the commonly used CAS method within our framework.
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4.6 Conclusions

In this chapter, we proposed a high-level structured framework for parallel hashing, which
has been designed for processing massive data. This framework supports (a) distributed
memory while avoiding frequent remote memory access, and (b) thread coordination on a
per-partition basis. Based on that, we presented an efficient parallel hashing algorithm by
employing the popular CAS and our proposed range-based lock-free hashing strategies.

The experimental evaluation results show that our implementation is highly efficient and
scalable in processing large datasets. Moreover, this hash framework demonstrates useful
flexibility in that it can employ various hashing techniques and can be run on commodity
hardware. Finally, the proposed Range lock-free strategy is faster than the conventional
CAS operation and presents better load balancing characteristics than approaches which
use a single thread per partition. Additionally, we have characterized the performance of
our hash implementations through extensive experiments, thereby allowing us to make a
more informed choice for our high-performance implementations over distributed memory.

In the following chapters, we will present a detailed implementation of our proposed
framework, and focus on techniques to improve the performance for the three core opera-
tions (encoding, joins and indexing) we have described.



Chapter 5

Scalable RDF Data Compression using
X10

5.1 Introduction

With the study of triple stores and parallel hashing in the previous two chapters, now we
turn to the detailed implementations of our framework. In this chapter, we will propose an
efficient dictionary encoding method to compress large RDF data in parallel. Our solution
is based on a distributed architecture with multiple dictionaries. Namely, the RDF data is
partitioned and then compressed using a dictionary on each computation node. However,
similar to the state-of-art MapReduce method [116] as described in Chapter 2, there exist
three main challenges under this schema:

• Consistency - a term appearing on different compute nodes should have the same id.

• Performance - ensuring consistency based on naive methods can lead to serious per-
formance degradation.

• Load balancing - the heavy skew of terms which characterizes real world linked
data [78] may lead to hotspots for the nodes responsible for encoding these popu-
lar terms.

Both in space and time, the mapping of a term need always keep its uniqueness. For ex-
ample, once the term “dbpedia:IBM" is first encoded as id “101" on node A, when encoding
this string on another node B, we should also use the same value “101". Hash functions are
potentially useful, but the length of the hash required to avoid collisions when processing
billions of terms makes the space cost prohibitive.
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We can ensure the consistency of the compression in the above example by copying the
mapping [dbpedia:IBM, 101] from node A to node B, but network communication cost and
dealing with concurrency (e.g. locking on data structures) would lead to low performance.

Compared with the two issues above, load balancing presents a bigger challenge as the
distribution of terms in the Semantic Web is highly skewed: there exist both popular (like
predefined RDF and RDFS vocabulary) and unpopular terms (like identifiers for entities that
only appear for a limited number of times). For a distributed system, like ours, any com-
pression algorithm needs to be carefully engineered so that good network communication
and computational load-balance are achieved. If terms are assigned using a simple hash dis-
tribution algorithm, the continuous re-distribution of all the terms would undoubtedly lead
to an overloaded network. Furthermore, popular terms would lead to load-balancing issues.

For the sake of explanation, let us categorize terms into three groups: high-popularity
terms that appear in a significant portion of the input triples, low-popularity terms that ap-
pear less than a handful of times and average-popularity terms (which is also the largest
portion of RDF data). The state-of-the-art MapReduce compression algorithm [116] effi-
ciently processes high-popularity terms. The very first job in the algorithm is to sample and
assign identifiers to popular terms, using an arbitrarily chosen threshold. These identifiers
are then distributed to all nodes in the system, and used to encode terms locally at each node.
This dramatically improves load balancing and speeds up computation. For the rest of the
terms, the data is repartitioned, and identifiers are assigned. For low-popularity terms, this
also works well, as there are not many redundant data transfers. For low-popularity terms,
we can either retrieve their mappings (possibly for multiple nodes), or we can send the data
to the node where it is going to be encoded. In either case, the number of messages will
be limited. For medium-popularity terms, the situation is different: Assume a term that
appears 10000 times, and we have 100 compute nodes. If all nodes would need to retrieve
the mapping from a single node, we would need 200 messages. If we repartition the terms,
we would need at least 10000 messages. One can easily see the situation reversed for a
term that appears 100 times (i.e. partitioning data might be more efficient that retrieving
mappings). Then the question is: how can we reconcile efficient encoding of popular and

non-popular terms?

To solve the above problems, we propose a straightforward but very efficient and scal-
able solution for compressing massive RDF data in parallel in the following. We develop an
algorithm and present its detailed implementation using the X10 language [22]. We eval-
uate performance with up to 384 cores and with datasets comprising of up to 11 billion
triples (1.9 TB). Compared to the state-of-the-art [116], our approach is faster (by a fac-
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tor of 2.6 to 7.4), can deal with incremental updates in an efficient manner (outperforming
the state-of-the-art by several orders of magnitude) and supports both disk and in-memory
processing.

The rest of this chapter is organized as follows: Section 5.2 introduces the proposed
RDF compression algorithm and the detailed implementation. Section 5.3 discusses op-
timizations and improvements for the algorithm. Section 5.4 describes the experimental
framework and provides a quantitative evaluation of the algorithm. Section 5.6 concludes
the work done in this chapter.

5.2 RDF Compression

In this section, we first describe the details of our RDF compression algorithm and its de-
tailed implementation using X10 language. Then, we present its difference as well as its
advantages compared to the state-of-art method.

5.2.1 Main Algorithm

We describe the implementation of an RDF compression algorithm on a distributed memory
system. We use distributed dictionaries, one per place (recall that a place is a logical ab-
straction for an underlying processing element), for encoding the input data sets. Each data
set is first divided into a number of chunks and assigned for processing on separate places.
The initial partitioning of chunks is random. The overall implementation strategy for each
place and the corresponding data flow are shown in Figure 5.1.

Input Statements

Remote

Dictionaries

Parsing into Terms

Filter

Grouped 

Unique

Terms

Grouped 

IDs

Local Dictionary

Local Compression

Fig. 5.1 Data flow of the RDF compression in our implementation.

First and foremost, every statement in the input set is parsed and split into individual
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terms, essentially, the subject, the predicate, and the object. All these parsed terms are
filtered to remove the replications, and the extracted unique terms are then divided into
individual groups according to their hash values. The number of groups is set to the same as
the number of places, and all terms in a aforementioned group have the same hash. In order
to maintain consistency, the hash value of each term maps this term to a single dictionary
in the distributed memory system where it gets encoded. The groups of unique terms are
pushed to the dictionaries responsible for encoding these terms. Every place builds a local
dictionary, for encoding, based on the grouped unique terms and the corresponding group
of ids received from remote nodes. Once all terms are encoded the grouped ids are retrieved
and the statements in the input data set are compressed.

5.2.2 Detailed Implementation

We divide the whole process into four phases and present their detailed implementations
based on the X10 language as the following four steps.

Step 1: Initialization. We use the DistArray objects provided to implement our dis-
tributed data structures. The initialization for these objects, at each place, is shown in Algo-
rithm 4.

In this process, the detailed meanings of the initialized objects at each place are:

• dict is the dictionary that maintains the term-id mappings during the whole compres-
sion process.

• term_c collects the terms and keeps them in sequence for subsequent encoding.

• local_key_c is the array that collects the groups of unique terms that need to be sent
to remote places for encoding.

• local_value_c is the array that collects all the encoded unique ids from remote places.
The sequence of ids in local_value_c is the same as terms in local_key_c, thereby
making it easy to insert the terms and their respective encodings into the local dictio-
nary.

• remote_key_c is a temporary data structure used to receive the serialized the grouped
unique terms that are sent from remote places.

Step 2: Term Grouping and Pushing. After the parsing, we employ a hashset structure
to process the parsed terms and to extract the unique ones that need to be transferred to
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Algorithm 4 Dictionary encoding part I: Initialization
the number of places: P
Global initialize DistArray objects: dict term_c, local_key_c, local_value_c, re-
mote_key_c

1: finish async at p ∈ P {
2: dict(here):hashmap[string,long]
3: term_c(here):array[string]
4: local_key_c(here):array[array[string]]
5: local_value_c(here):array[remote_array[long]]
6: remote_key_c(here):array[remote_array[char]]
7: }

Algorithm 5 Dictionary encoding part II: Filter and Push Terms
1: finish async at p ∈ P {
2: Initialize key_f:array[hashset[string]](P)
3: Read in file fi
4: for triple ∈ fi do
5: terms(3)=parsing(triple)
6: for j← 0..2 do
7: des=hash(terms( j));
8: if terms( j) ̸∈ key_f(des) then
9: key_f(des).add(term( j))

10: end if
11: term_c(here).add(term( j))
12: end for
13: end for
14: Copy the terms in key_c(i) to local_key_c(here)(i)
15: for n← 0..(P−1) do
16: Serialize local_key_c(here)(n) to ser_key(n)
17: Push ser_key(n) to remote_key_c(n)(here) at the place n
18: end for
19: }

remote places. This is done for all terms irrespective of their popularity. Using the hashset
guarantees that any given term can possibly move to a remote place just once, per current
place.

The detailed implementation is given in Algorithm 5. A hashset is initialized at each
place. Each hashset collects terms according to their hash values. Before adding the parsed
term into the term_c queue, a term is added to the hashset: key_f, if not already present.
After processing all the triples, the filtered terms will be copied into local_key_c, and then
serialized and pushed to the assigned place for further processing.
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The structure local_key_c is kept in memory for the later local dictionary construction
as shown in Figure 5.1. The serialization/deserialization process is used only when the push
array objects are neither long, int nor char, otherwise we directly transfer the data. Since
the terms collected by each hashset are the unique ones to be sent to remote places, the
network communication and later computational costs are significantly reduced. We use the
finish operation in this part to guarantee the completion of the data transfer at each place
before the term encoding.

Step 3: Term Encoding. Once the grouped unique terms have been transferred to the appro-
priate remote places, the term encoding can commence. The term encoding implementation
at each place is similar to sequential encoding. The received serialized char arrays, repre-
senting the grouped unique terms, are deserialized to string arrays. Then the terms in such
arrays access the local dictionary sequentially to get their numerical ids. In this process, if
the mapping of a term already exists, its id is retrieved, else, a new id is created, and the
new mapping is added into the local dictionary. In both cases, the id of the encoded term is
added into a temporary array for so that it can be sent back to the requester(s). The value
of a new id is determined by the summation of the largest id in the dictionary and the value
P, the number of places. This guarantees there is no clash between term ids assigned at
different places. Furthermore, each id is formatted as an unsigned 64-bit integer in order
to remove limitations regarding maximum dictionary size1.

We also write out the new mappings in this phase, as they build up the final dictionary.
Once the encoding of the grouped unique terms is complete, we shift the activity to
the corresponding place where the terms originated, and retrieve the ids. We then proceed
in processing the following group. All encoding happens in parallel at each place, and
we use the finish operation synchronization. The details of the algorithm are given in
Algorithm 6.

Step 4: Statement Compression The statements at each place can be compressed after all
the ids of the pushed terms have been pulled back. Since the terms and their respective ids
are held in order inside arrays, we can easily insert these mappings into the local dictionary.
Once inserted, we encode the parsed triples in array term_c. Finally, we write out the ids
to disk sequentially as shown in Algorithm 7. The whole compression process terminates
when all individual activities terminate. Note that, in the actual implementation, we build a
temporary hashmap to hold all the mappings and discard it after the encoding to optimize
memory use.

1it is possible to use arbitrary- or variable-length ids in order to further optimize space utilization, but this
is beyond the scope of our work.
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Algorithm 6 Dictionary encoding part III: Encode Terms and Pull Back IDs
1: finish async at p ∈ P {
2: Initialize key_c:array[string], value_c:array[long]
3: for i← 0..(P−1) do
4: Deserialize remote_key_c(here)(i) to key_c
5: for key ∈ key_c(i) do
6: if key ∈ dict(here) then
7: value_c.add(id)
8: else
9: id = (dict(here).size+1)∗P

10: dict(here.id).put(key,id)
11: value_c.add(id)
12: Out-writing <key,id>
13: end if
14: end for
15: at place(i)
16: Pull value_c(i) to local_value_c(here)(i)
17: end for
18: }

Algorithm 7 Dictionary encoding part IV: Statement Compression
1: finish async at p ∈ P {
2: for i← 0..(P−1) do
3: Add <key,id> from local_key_c(here)(i) and local_value_c(here)(i) to dict(here)
4: end for
5: for term ∈ term_c(here) do
6: id = dict(here).get(term).value()
7: Out-writing id
8: end for
9: }

5.3 Improvements

In this section, we present a set of extensions to our basic algorithm which improve effi-
ciency and extend the applicability of the approach to a larger set of problems and compu-
tation platforms. The section concludes with a brief account of the theoretical complexity
of our algorithm.
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5.3.1 I/O and Data Transfers

X10 does not yet provide efficient I/O operation libraries for reading large data sets, as noted
by Zhang et al. [130]. Moreover, using the standard at{p} construct for copying data incurs
a substantial penalty for deep copying data structures. In order to alleviate these bottlenecks,
Zhang et al. [130] recommend the use of mmap system call and array.asycCopy method.
We adopt the latter approach and extend the first one with the zlib compression library to
provide more efficient reading of large data sets.

Our preliminary experiments suggest that using just the mmap approach for large I/O
operations scales well to medium sized data sets with less than hundreds of gigabytes of
data. However, for very large data sets measured in tera-bytes, reading gzip-compressed
files in memory and decompressing them on the fly results in substantially improved I/O
performance. Moreover, compressing data in the gzip format also reduces disk space usage.

The X10 standard library does not provide any interface for reading and writing com-
pressed gzip files, so we build a small library based on zlib and integrate it with our X10
code via the foreign function interface. We use the compressed datasets only while reading,
since the resultant output is comparatively small and we simply write it out in bytes using
the OutputStreamWriter class in the X10 standard library.

5.3.2 Flexible Memory Footprint

In our algorithm, the DistArray objects (Figure 5.1) are kept in memory throughout the
compression process. This limits the applicability of the method to clusters with sufficient
memory to hold all data structures in memory.

To alleviate this problem, we divide the input data set into multiple chunks, usually a
multiple of the number of places. The corresponding code change is shown in Algorithm 8.
The encoding process is divided into multiple loop iterations corresponding to each chunk.
In each of these compression iterations, a place is assigned a specified number of chunks
(line 2), while the local DistArray objects are reused. This method makes our algorithm
suitable for nodes with various memory sizes, provided the chunks are small enough. Note
that the chunks can be made smaller by simply dividing the input data set into more chunks.
It is expected that too many such chunks would lead to a decrease in performance, as there
would be redundant filter and push operations for the same terms at the same place in dif-
ferent loops. We assess this trade-off through the evaluation in Section 5.4.3.
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5.3.3 Transactional Data Processing

A commonly occurring scenario is real-time processing of RDF data sets. In such cases,
data is inserted as part of a transaction, and normally the chunks of data inserted are very
small containing only a few hundred statements. In such a scenario, there is no need to
distribute data sets. Instead, one could just compress the data set using a single cluster
node. In our prototype, the number of cluster nodes is controlled by the X10_NPLACES

option. Furthermore, parallel transactions with multiple data sets on multiple nodes are also
supported using the same option. Finally, an optimized data-node assignment strategy can
be integrated with our implementation if needed, but such a strategy is out of the scope of
this paper. Similarly, in this paper, we do not address rolling back transactions or deletes. In
general, although our system can be extended to support transactional loads, its main utility
is in encoding large datasets.

Algorithm 8 Processing Data Chunks in Loops
1: for i← 0..(loop−1) do
2: Assign each place c data chunks
3: Parallel processing at each place
4: end for

5.3.4 Incremental Update

Another typical application is the incremental update of RDF data sets. It is often required
that such systems must encode a new dataset as an increment to already encoded datasets.
Typically, the new input data set is large. In this scenario, local dictionaries could be read
in memory before the encoding process. The extension of our algorithms for incremental
update is shown in Algorithm 9.

Algorithm 9 Processing Update
1: finish async at p ∈ P {
2: for <key,id> ∈ local_dict do
3: table(here.id).add(key,id)
4: end for
5: Processing new data
6: }
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5.3.5 Algorithmic Complexity

Our compression algorithm with the aforementioned improvements has a worst case com-
putational complexity linear in the number of statements of the input datasets O(|N|) and the
number of places O(|P|). Herein, we describe the formulation of our worst case complexity.

For a given place, the worst case complexity of the algorithm is |P|, where |P| is the
number of places. This complexity is determined by the largest loop at line 13 in Algo-
rithm 5. The total complexity of the algorithm is O(|P| × |P| × |loop|/|P|), because there
are a total of |P| places and all their implementations are nested inside the loop variable in
Algorithm 8. The divisor (|P|) arises because each of these loops run in parallel. Therefore,
the overall worst case complexity is (O(|loop| × |P|)). Based on this, (1) For a constant
number of places, the complexity of the algorithm is: O(|loop|), hence, the complexity of
the algorithm is linear in the value of loop. Moreover, if the size of each chunk is fixed,
assuming k triples per chunk and the total number of triples are N, then the loop would
be (|N|/|k|/|P|). Thus, the complexity of the algorithm will be O(N), namely linear with
the number of input triples N. (2) Similarly, for a constant input size, the complexity of the
algorithm will be O(P) linear in the number of places or cores in the underlying execution
architecture, provided each logical place is mapped to a single core (as in our case).

5.4 Evaluation

We have conducted a rigorous quantitative evaluation of the proposed encoding algorithm.
We divide the presentation of our evaluation into different sections. Section 5.4.1 describe
the experimental setups. Section 5.4.2, compares the runtime and compression performance
of our algorithm against the MapReduce implementation [116]. We also evaluate the run-
time performance of our algorithm for the transactional and incremental update scenarios
as described previously. Section 5.4.3 examines the scalability of our algorithm and com-
pares it against the scalability achieved by the MapReduce approach for increasing both
numbers of processing units and input data set size. Finally, we present the load-balancing
characteristics of our system in Section 5.4.4.

5.4.1 Experimental setup

Platform. Our evaluation platform was the High Performance Systems Research Cluster

in IBM Research Ireland. Each computation unit of this cluster is an iDataPlex node with
2 Intel Xeon X5679 processors each with 6 hardware cores running at 2.93 GHz, resulting
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in a total of 12 cores per physical node. Each node has 128GB of RAM and a single 1TB
SATA hard-drive. Nodes are connected by Gigabit Ethernet switch. The operating system
is Linux kernel version 2.6.32-220 and the software stack consists of Java version 1.6.0_25
and gcc version 4.4.6.

Setup. We have used X10 version 2.3 compiled to C++ code. We set the X10_NPLACES

to the number of cores and the X10_NTHREADS to 1, namely, one activity per place, which
avoids the overhead of context switching at runtime.

We compare our results with the MapReduce compression programme [116]. We use
the latest version and run it on Hadoop v0.20.2. We set the following system parameters:
map.tasks.maximum and reduce.tasks.maximum to 12, the mapred.child.java.opts to 2 GB
and the rest of the parameters are left to the default values. The implementation parameters
are configured with the recommended values: samplingPercentage is set to 10, samplingTh-

reshold to 50000 and reducetasks to the number of cores. We have verified the suitability of
these settings with the authors (of [116]).

We empty the file system cache between tests to minimize the effects of caching by the
operating system and run the test three times, recording average values.

Datasets. For the evaluation, we have used a set of real-world and benchmark datasets
(as Table 5.1): DBpedia [12], LUBM [53], BTC2011, Uniprot [10]. We chose these data
sets because they vary widely in terms of size and kind of data they represent, as described
in Chapter 2. The popularity and diversity of these datasets contributes to an unbiased
evaluation.

5.4.2 Runtime

Data Compression. We perform the encoding using 16 nodes (192 cores) and report the
compression results achieved by our algorithm in Table 5.1: Column # Stats gives the num-
ber of statements (triples) in each benchmark. The size of the input data sets is given both
in the terms of plain and gzip format in columns 3 and 4. The output column is composed
of the compressed statements and the corresponding dictionary tables at all places. Finally,
the resulting compression ratio is calculated by dividing the size of the input files (in plain
format) by the size of the total output. The compression ratios for the four data sets are
similar: in the range of 4.1−4.5. Note that although these ratios are smaller than the com-
pression ratio achieved by gzip, our output data can be processed directly and we can also
compress these outputs further using gzip, if need be. We achieve smaller compression
ratios compared to MapReduce [116], because we use 64-bit integers to encode all terms,
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while their approach uses smaller integers for encoding parts of terms as well as further
gzip compression on their output data.

Table 5.1 Dataset information and compression achieved

Dataset # Stats.
Input (GB) Output (GB) Compr.

Plain Gzip Data Dict. Ratio

DBpedia 153M 25.1 3.5 3.5 2.7 4.1
LUBM 1.1B 190 5.5 24.8 17.7 4.5

BTC2011 2.2B 450 20.9 65.6 40 4.3
Uniprot 6.1B 797 58.7 136 46.4 4.4

Runtime and Throughput. We compare the runtime and throughput between our approach
and that of the MapReduce framework in two cases: disk-based and in-memory compres-
sion. In the first case, the reading and writing data is on disk (or HDFS based on disk).
For the latter, we process all data in memory. For memory based I/O, we pre-read the
statements in an ArrayList at each place and also assign the output to ArrayList. As
MapReduce does not provide such mechanisms, we instead set the path of the Hadoop pa-
rameter hadoop.tmp.dir to a tmpfs file system resident in memory. The results of these
two cases are shown in Table 5.2 and Table 5.3. We define runtime as the time taken for
the whole encoding process: reading files, performing encoding and writing out the com-
pressed triples and dictionaries. The throughput is described in terms of two aspects: (a)
rate, which is calculated by dividing the input size (in plain format) by the algorithm run-
time, and (b) statements processed per second that is calculated by dividing the number of
processed statements by the runtime.

From Table 5.2, our approach is 2.9−7.3× faster than the MapReduce-based approach
for disk-based computation, and 2.6−7.4× for in-memory as illustrated in Table 5.3. The
smallest speedup occurs for the BTC2011 benchmark, however it should be noted that in
this instance, whereas we compress N-Quads, MapReduce discards the fourth term in the
input data and just compresses the first three terms. Moreover, the compression throughput
of Uniprot in both cases is much higher than the other three datasets. We attribute this
to the large number of recurring popular terms. Comparing the two cases, the in-memory
compression is faster than the disk-based one for both algorithms, although not dramatically
so. Moreover, the improvements we achieved in Table 5.3 are greater than those in Table 5.2
for the LUBM and Uniprot data sets, marginally greater for DBpedia and slightly smaller
for the BTC2011 data set. This illustrates that the two algorithms gain disproportionally
from the faster I/O over different data sets (with our system showing better gains overall).
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Table 5.2 Disk-based runtime and rates of compression (192 cores)

Dataset
Runtime (sec.) Rates (MB/s)

Imprv.MapR. X10 MapR. X10

DBpedia 430 59 59.7 435 7.3
LUBM 1739 453 111.9 429.5 3.8

BTC2011 2817 956 163.6 482 2.9
Uniprot 6160 1515 132.5 538.7 4.0

Table 5.3 In-memory runtime and rates of compression (192 cores)

Dataset
Runtime (sec.) Rates (MB/s)

Imprv.MapR. X10 MapR. X10

DBpedia 368 50 69.8 514 7.4
LUBM 1382 254 140.8 766 5.4

BTC2011 1809 708 254.7 650.8 2.6
Uniprot 5076 937 160.8 871 5.4
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Fig. 5.2 Throughput of the two implementations using 192 cores, based on disk-based and
memory-based cases with the four datasets.

Moreover, Figure 5.2 shows that the maximum number of statements processed per second
is about 6.51M, higher than any method in the literature.

Transactional. We simulated two transactional processing scenarios with in-memory com-
pression: (1) sequential transactions on a single node and (2) multiple parallel transactions
on multiple nodes using the LUBM data set. To simulate transactions, we first encode the
1.1 billion triples in the LUBM8000 benchmark. Next, we prepare a RDF data set that con-
tains 1M triples, split into 10K, 1K, 100, and 10 chunks, respectively. After encoding is
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complete, we encode these new input chunks (every 10 chunks) sequentially and record the
corresponding encoding time. For the multiple parallel transaction scenario, we could only
record the encoding time for our implementation since Hadoop uses a centralized model for
data storage.

Results are presented in Table 5.4. One can clearly observe that our approach is orders of
magnitude faster than the MapReduce approach for the sequential case. The latter is neither
optimized nor suitable for this use-case, since the startup overhead dominates the runtime,
as evident from the observation that the average time to process chunks with different sizes
is approximately the same. For our system, we observe that the average runtime of our
approach increases with increasing chunk sizes, and the trend moves toward linear for the
sequential case. This means that, for a single place, overhead takes a larger proportion of
the runtime.

Table 5.4 Processing 1M statements in the transactional scenario

# Stats Avg. runtime per 10 chunks (sec.)
per chunk MapR. X10 X10_Para.

100 439 0.211 0.164
1K 441 0.359 0.391

10K 454 1.761 0.648
100K 454 17.177 2.192

Since we are using 192 cores and the number of chunks used in this scenario is 10,
for each transaction with the parallel processing by our prototype, the chunks can be com-
pressed at once by 10 places in parallel. The results in Table 5.4 show that the runtime is
around 0.2 seconds when the number of statements is less than 100 in each chunk, which is
slightly worse than our expectations for real-time applications, although still well within an
acceptable range. Upon further analysis, we have found that this increase in program run-
time is due to underlying bottlenecks in the X10 runtime implementation, which we have not
addressed in this thesis: (a) Every async call forks an underlying pthread (Posix thread)
atomically, which leads to execution time overhead. (b) Type initializations in X10 are ex-
pensive, because all type initializations are internally guarded by locks. Our implementation
still performs reasonably well even with these implementation overheads.

Updates. We evaluate the incremental updates scenario for RDF compression using the
LUBM8000 dataset and by splitting it into 2, 4, and 8 chunks, respectively. The result-
ing datasets are compressed in 2, 4 and 8 different executions respectively. Before each
compression cycle, we empty the cache as to simulate real world conditions. The results
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Table 5.5 Incremental update scenario with different chunk size

# Chunks Chunk Size
Runtime (sec.)

Imprv.MapR. X10

1 190 GB 1739 453 3.8
2 95 GB 2468 551 4.5
4 47 GB 3900 755 5.2
8 23 GB 6704 1164 5.8

comparing our approach and MapReduce are shown in Table 5.5. As expected, the per-
formance for both algorithms decreases with increasing number of chunks, because of the
additional process required during the encoding (e.g. reading the dictionary into memory).
However, the increase in program runtime for our approach is much smaller than MapRe-
duce. A possible explanation is that because our dictionary reading operation is faster, the
startup overhead of our system is lower. It is also possible that the efficacy of the popular-
ity caching technique used by MapReduce decreases disproportionately as the number of
chunks increases.

5.4.3 Scalability

We test the scalability of our algorithm by varying the number of processing cores and the
size of the input data set. We use the LUBM benchmark in our tests as it facilitates the
generation of datasets of arbitrary size.

Number of Cores. We fix the input data set to 1.1 billion triples and double the number of
cores from 12 (single node) till 384. The test results for our algorithm and the MapReduce-
based approach are shown in Figure 5.3. These results demonstrate that the run time for
both algorithms decreases with an increase in the number of cores.

The speedup obtained with an increasing number of cores compared to a baseline of 12-
cores for both algorithms is presented in Figure 5.4. In our system, with a small number of
cores, the runtime is not linear, since for a single node there is no network communication.
Nevertheless, starting from 24 cores, the speedup becomes almost linear (scaled speedup,
not shown in the figure, is approximately 1.95). This result supports our theoretical analysis
in Section 5.3.5, and we attribute the small amount of loss to network traffic. In contrast, the
speedup of the MapReduce-based approach is almost linear (or even better) initially before
plateauing for values of 92 cores and greater. This result mirrors the result obtained by
Urbani at al. [116]. There can be several reasons for the latter slowdown: we hypothesize
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that this may be due to load imbalance, increased I/O traffic and platform overhead.

Size of Datasets. To study the scalability of our algorithm with increasing input data size,
we create a large LUBM data set with 11 billion triples, which is roughly equivalent to the
LUBM80000 benchmark. We split this data set into a number of chunks, each of which
contains 140K triples, al•lowing us to study the effect of loop from Algorithm 8.

We start our tests with 690 million triples and repeatedly double the size of the input until
we reach a dataset comprising 11 billion triples. Additionally, for each dataset, we also vary
the number of chunks read per loop for our implementation. The results are presented in
Figure 5.5. We see that the runtime for both algorithms is nearly linear with the size of the
input data sets. We also notice that MapReduce achieves a slightly super-linear speedup
until 5.5 billion triples. After that, MapReduce speedup becomes linear with the input size.
For our algorithm, we have experimented with 1, 5, and 10 chunks in each loop.
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Fig. 5.5 Runtime by varying size.

One can see that the scalability of our algorithm is not linear with input data when
reading 1 chunk per loop. But, speedup becomes better as we increase the number of chunks
read per loop, and it matches the ideal linear speedup scenario when reading 10 chunks
per loop. The reason may be the same as for the transactional case mentioned above, i.e.
that a large number for loop results in additional runtime overheads as a result of forking
threads and object type initializations. Small chunks also results in redundant filter and push

operations for the same terms at the same place in different loops. Such an interpretation is
in sympathy with our expectations described in Section 5.3.2.

Furthermore, Figure 5.5 investigates the trade-off between reduced memory consump-
tion and performance as well. For the optimal scalability case with reading 10 chunks at a
time, we need to process 10× 140K = 1.4M triples in each loop. Since, in Table 5.1, we
show that 1.1 billion triples is about 190 GB, the size of 1.4 million triples would be about
250 MB, which is well within the RAM availability of most machines. Not withstanding
this optimal case implementations using 5 chunks at a time (125 MB) and 1 chunk at a time
(25 MB) is only accompanied with little and moderate scalability loss respectively.

5.4.4 Load Balancing

We measure the load-balance characteristics of our algorithm in terms of five metrics defined
later in this section. We instrument our code with counters to gather data for the first four
metrics. The data for the final metric is obtained using the tracing option provided by the
X10 implementation.

• number of outgoing terms: The number of terms transferred to a remote place. This
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metric gives insight into the communication load balance achieved by our algorithm.
For example, the larger the number of outgoing terms, the greater the associated net-
work traffic.

• number of misses: The number of terms that are not already encoded (missed) in the
dictionary and hence require the generation of a new id.

• miss ratio: The number of misses divided by the sum of hit and miss for the local
dictionary.

• number of processed terms: the number of terms processed by a computing node.

• received bytes: the size of processed terms in bytes at a computing node.

We encoded 1.1 billion LUBM triples on a varying number of cores to gather data for
the first three metrics described above. The results are presented in Table 5.6. We can see
that the average values of the three metrics for all the tests are very close to the maximum
values, suggesting excellent load balancing performance. The scalability of our algorithm
with an increasing number of processing cores is highlighted well in these results. There
is a clear linear decrease in all three metrics with an increase in the number of processing
cores. Finally, the results also illustrate a consistent almost uniform miss probability for
each dictionary. The average miss ratio is about 94.5%, indicating that we have redundant
computation on average for 5 out of every 100 terms. This ratio approached the ideal value
of 100%, which is nevertheless difficult to achieve in a distributed systems without signifi-
cant coordination overhead. Additionally, our implementation is still based on the all-to-all

communication, which could possibly affect the performance. However, our system does
not repartition all the data, but only transfers the mappings that are necessary for each node.
In this sense, our system performs useful computation in terms of data locality in 94.5%
of the cases, meaning that although our approach does require communication between all
nodes, only moving the data when actually needed.

The last two metrics capture the load at each compute node in terms of the number
of terms processed and size of data received in bytes. These metrics are important for
measuring computational load balance and are used here to provide comparison with the
performance available using the MapReduce approach. Since MapReduce divides the whole
compression into three separate jobs and the implementation does not provide the relative
metrics, we extract the reduce input records and reduce shuffle bytes in the reduce phase of
each job from the Hadoop logs. These two items indicate the number of records processed
and the corresponding data sizes for each of the 192 reduce tasks.
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Table 5.6 Detailed term information during encoding 1.1 billion triples

# Core
# Outgoing (M) # Misses (M) Miss Ratio

Max Avg. Max Avg. Max Avg.

24 11.65 11.59 10.95 10.95 95.7% 94.5%
48 5.85 5.78 5.46 5.46 96.1% 94.5%
96 2.94 2.89 2.73 2.73 96.1% 94.5%

192 1.48 1.43 1.35 1.35 96.4% 94.5%
384 0.74 0.70 0.90 0.87 96.4% 94.5%

Table 5.7 Comparison of received data for each computing node when processing 1.1 billion
triples using 192 cores (in millions)

Algorithm
Recv. Bytes Recv. Records

Max. Avg. Max. Avg.

MapR.
Job1 9.94 4.02 24.04 1.73
Job2 135.61 79.77 30.91 17.28
Job3 120.81 106.82 19.61 17.28

X10 194.71 187.82 1.48 1.43

The results are summarized in Table 5.7 and demonstrate that the difference between the
maximum and the average value of these metrics for our implementation is much smaller
than MapReduce, indicating better load balancing (in addition to the results, the minimum
number of bytes received is 184.70M and the minimum number of records received is 1.37M

in our approach, also showing minimal skew). Furthermore, when comparing the sum total
of bytes received across the two implementations, it is clear that our proposed technique
results in better performance. Consequently even when comparing with the reduce phase
of MapReduce, our system results in a lighter workload and less network communication,
especially taking into consideration that we are using a longer representation (64 bits).

5.5 Discussion

Based on the above results, we can see that our proposed implementation is highly effi-
cient and much faster than the state-of-art method [116]. It should be highlighted: though
the presented implementation is based on the X10 parallel language, our proposed method
actually can be easily implemented by any other modern parallel language used in high

performance computing such as MPI etc. In the meantime, compared with MapReduce
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method [116], our algorithm has the following two obvious differences, which make our
method have more notable advantages in both computation and network communications
when processing large-scale RDF data.

1. We do not quantify any skew. We just employ a filter structure (for example a simple
hashset) to process the terms and to extract the unique terms that need to be trans-
ferred to the remote node. This is done for all terms irrespective of their popularity.
Using the filter guarantees that any given term can possibly move to a remote node
just once per current node, which is shown to be very efficient for handling the data
skew existing in the semantic web in our evaluations in Section 5.4.

2. We only need to send unique terms to remote dictionaries and retrieve their ids, but not
transfer any triples at all. In comparison, the approach [116] has to follow the MapRe-
duce model strictly. It has to decompose all the triples in the form of <key,value> pairs
and redistribute all of them among all the nodes. Furthermore, all the terms have to
be redistributed again after the encoding process so as to reconstruct all the id triples.
This could bring very heavy network communication and also computations, impact-
ing the encoding performance.

5.6 Conclusions

In this chapter, we have introduced an efficient dictionary encoding algorithm for the com-
pression of big RDF data. We have presented an extensive quantitative evaluation of the pro-
posed algorithm and conducted a comparison with a state-of-art system using the MapRe-
duce model[116]. Our main conclusions are that the proposed algorithm is: (1) Highly
scalable both with increments in number of cores and in the size of the dataset, (2) Compu-
tationally fast, encoding 11 billion statements in about 1.2 hours, and achieving a 2.6−7.4×
improvement over the MapReduce method, (3) Flexible for various semantic application
scenarios, (4) Robust against data skew, showing excellent load balancing, and (5) Suitable
for use and further development as part of a high performance distributed system.

We will build efficient indexes for the encoded triples in Chapter 8. Before that, we will
focus on improving the join (both the inner- and outer joins) performance for our framework
in the following two chapters.



Chapter 6

A Novel Framework for Handling Skew
in Parallel Joins on Distributed Systems

6.1 Introduction

Following the three operations as described in our proposed framework, we now investi-
gate efficient parallel join methods over large-scale data in this chapter. More specially,
since data skews exist naturally in various applications, we focus on efficient skew handling
techniques in join implementations.

As we have stated in the related work in Chapter 2, although different techniques and
algorithms have been proposed to handle skew in joins, all of them so far still rely on the
conventional frameworks already described, namely the hash-based and duplication-based
joins. In contrast, in this chapter, we propose a novel framework as an alternative to the
conventional approaches, called query-based distributed join, for efficiently handling data
skew in massively parallel joins on distributed systems. From this basis, we also propose a
new method called query with counters (QC), for directly and efficiently processing skews
in parallel outer joins.

For both the inner- and outer joins, we develop efficient distributed algorithms and im-
plement our parallel joins using the X10 language [22]. We evaluate performance on an
experimental configuration consisting of 192 cores (16 nodes) and large datasets of 1 billion
tuples with different skews. Moreover, we also compare our approaches with the state-of-
art methods and show experimentally that our algorithms performs faster in the presence of
high skew.

The rest of this chapter is organized as follows: In Section 6.2, we present our query-

based distributed join framework. In Section 6.3 we apply the framework to outer joins.
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The detailed implementation of our proposed approaches are presented in Section 6.4. We
provide a quantitative evaluation of our inner join algorithms in Section 6.5 and the outer
joins in Section 6.6. We conclude the work in Section 6.7.

6.2 Query-based Distributed Join

In this section, we first introduce our query-based distributed join framework and its detailed
work flow. Then we analyze how this scheme can efficiently handle data skew. Furthermore,
we also discuss its advantages and disadvantages compared with current approaches.

6.2.1 Framework

Assuming the input relations are R and S, where |R| < |S| and S is skew, there are N com-
puting nodes, and before the join operations the ith node has a subset of both relations Ri

and Si. As shown in Figure 6.1, our framework has two different communication patterns -
distribution and query, between local and remote nodes, which obviously makes it different
from the conventional hash-based and duplication-based frameworks. Here, we divide its
detailed work flow into the following four phases.
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Fig. 6.1 Query-based Distributed Join Framework. The dashed rectangle refers to the remote
computation nodes and objects.

R Distribution

The relation R is processed in the same way as the hash-based implementations, in that each
Ri is partitioned into N chunks, and each tuple is assigned according to the hash value of its
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key by a hash function h1(k) = k mod N. After that, all the chunks Ri j will be transferred
to the jth node. There are two reasons to do so: (1) R is relatively small such that we can
afford the distribution cost, and (2) R can be considered as a uniform distributed data set, as
adding skew to the relation R would violate the primary key constraint [16].

Push Query Keys

In this phase, we scan each tuple in the relation S at each node and insert them in a set of
local hash tables Ti (the number of hash tables is N). The tuple assignment is according
to h1(k) = k mod N as well, such that the tuples having the hash value j are put into the
jth hash table Ti j. The structure of the hash tables is shown as Figure 6.2(a). It supports
the 1→ n mappings, such that tuples with the same keys will be stored in the same bucket.
After that, iterations on each hash table commence and all keys in each hash table are picked
up and kept sequentially in memory. Finally, we push the keys from the hash table Ti j to the
j node, where these keys are called the query keys of the node j in our approach.
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Fig. 6.2 The data structure used in query-based distributed join: (a) the local hash tables of S
(left), and (b) the query keys of a remote node and its corresponding returned values (right).

Return Queried Values

In this step, we first build a local hash table T ′i at each node, based on the received tuples
from the first phase. After that, we look up each of the received query keys in T ′i and output
the matched values. If there is no matching keys, the value will be set to Null. All these
values are also kept sequentially as well as the corresponding query keys. This process can
be seen in Figure 6.2(b), where all the values are called returned values, because we push
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these values back to the nodes where the query keys originally come from after finishing the
lookups.

Result Lookups

After receiving sets of returned values from remote nodes, we start to scan these values at
each node. Take a node i for example, for the returned values from jth node, we first check
whether the value is null. If the value is null, we continue scanning the next value. If it
is not, it means that there is a match between R and S. The reason is that each query key
is extracted from S, and a non-null returned value means that this key exists in R as well.
Therefore, we look up the corresponding query key in the corresponding hash table Ti j and
output the join results. The join operation ends with the output of all the results.

1

2
3

4

1    3

1

1

1

…

1

2

3

4

1

1

1

…

1

2

3

4

2    4

1

3
2

4

1

3

2

4

S1 R1

Node 1 Node 2

S2 R2

redistribution

query

Fig. 6.3 An example of the query-based implementation over a two-node system.

6.2.2 Handling Data Skew

We refer to our algorithm as query-based because the process of transferring keys to remote
nodes and retrieving the corresponding values looks like a query. It can be seen that, though
S is skewed, we do not transfer any tuples of this relation in our framework. Instead, we just
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transfer the keys of S. More exactly, we only distribute the unique keys of S on the basis of
1→ n structure of hash tables Ti. An example of such implementation is demonstrated in
Figure 6.3. It can be seen that after the redistribution of the relation R, the relation S1 and S2

at the two nodes only needs to query the key set {1,3} and {2,4} to the responsible remote
node to retrieve their values.

For a common case, assuming that there exists skew tuples, which have the same key ks,
and this key appears ns (large number) times in the relation S. Using the conventional hash-
based method, all these ns tuples will be transferred to the h1(ks)-th node, which results in
a hot spot both in communication and in the following probing operations. By comparison,
our framework efficiently addresses this problem in two aspects: (1) each node will receive
only one key (or maximum N keys if these tuples are distributed on the N nodes), and (2)
each query key is treated as the same in the following look up operations.

6.2.3 Comparison with other Approaches

In addition to efficient handling of data skew, compared with the conventional frameworks,
our scheme still has two other advantages: (1) network communication can be highly re-
duced, because we only transferred parts of keys in S, and their corresponding returned
values, and (2) computation can be decreased when S is high skew, because (a) though we
have two lookup operations on Ti and T ′i , the hash tables in Ti will be very small, (b) skew
tuples will be looked up only once instead of checking all of them and (c) lookup opera-
tions for the tuples that are not participating in the join results are removed by just checking
whether the returned value is null or not.

Taking a higher level comparison with the histograms [6] and the PRPD [127] methods
as described previously, there are two other advantages to our approach: (1) we do not need
any global knowledge of the relations in the presence of skew while [6] and [127] require
a global statistic to quantify the skew, and (2) our approach does not involve redundancy of
join (or lookup) operations while the other two have, because each node in our method is
just query what I need, while [6] and [127] have broadcast behavior, such that some nodes
may receive some tuples what they do not really need.

In our framework, we have to build local hash tables for Si at each node, which could
be time-costly. Additionally, when the skew is low, the number of query keys will be un-
competitive as well, and the two-sided communication will decrease the performance. We
assess the balance of these advantages and disadvantages through evaluation with real-world
datasets and an appropriate parallel implementation in Section 6.5.
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6.3 Applying to Outer Joins

The main difference between the implementation of inner joins and outer joins is to dis-
tinguish the matched and non-matched tuples over a distributed system. From the basis of
the proposed join framework, in this section, we show how we use a simple structure to
seamlessly realize such function for the outer joins.

The new approach is demonstrated in Figure 6.4. We can see that the used general
communication patterns are the same as the query-based framework. The only difference is
that a data structure named query counter has been integrated, and that is the reason why
we call this method query with counters. Similar to the process described for the inner join
implementation, we also divide the detailed work flow into four steps. Since the first two
steps R distribution and push query keys are the same as the query-based joins, we only
described the third and the fourth steps.
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Fig. 6.4 The Query with Counters approach for outer joins. The dashed rectangle refers to
the remote computation nodes and objects.

We call the third step count matches and return queried values. In this step, we first
build a local hash table T ′i with the data structure <key, (value, counter)> at each node, in
which the key and value are the received tuples from the first phase while the counter is an
integer and initialized as 0. After that, we look up each of the received query keys in T ′i and
output either a matched value or Null. The same as the inner joins, all these values are kept
sequentially as the corresponding query keys and pushed back to the nodes where the query
keys originally come from after finishing the lookups. The detailed process can be seen in
Figure 6.5. If a match exists, the returned value will be the matched value, meanwhile, we
also increase the corresponding counter by one. If there is no match in Ri, the returned value
will be set to Null, and there is no operation for the counters.
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Fig. 6.5 The data structure used in QC algorithm: (a) the local hash tables of S (left), and
(b) the query keys of a remote node and its corresponding returned values (right).

The fourth step is also the result lookup. After receiving sets of returned values from
remote nodes, we can formulate the final join results. We divide this process into two kinds
of lookup: (1) Matched result lookup, which is the same as the inner joins, through scanning
the received values at each node and lookup the responsible local hash tables of T . (2) Non-
matched result lookup, through checking whether the counter is 0. We iterate all the keys
in the hash table T ′ and check the corresponding counter. For each counter = 0, we output
the non-matched result of the corresponding key directly. The reasons are: (1) the query is
based on the hash-based implementation, and (2) the key in R with counter = 0 means that
this key has never been matched with the query keys, and also means it has no match in S.
The join operation ends with the output of all the results.

It is obvious that this new algorithm inherits the skew handling advantages from the
query-based framework and that only the unique keys of the relation S are transferred re-
gardless of their popularity. Moreover, by using a local query counter, we can directly
identify the non-matched results while the described methods [6] and [127] needs more
complex pre-distribution or redistribution operations. In the meantime, although the pre-
sented DER [126] algorithm has done specified optimization for the inner implementation
of outer joins, it still needs to redistribute the row-ids. All of these highlight that our ap-
proach is more straightforward on processing outer joins. We will evaluate its performance
and compare it with the state-of-art techniques in Section 6.6.

Additionally, the QC join approach we use here can also be easily applied to other kinds
of joins directly. For example, the returned null can be applied directly for right outer-joins
and the counters for anti-joins etc.
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6.4 Implementation

As the QC algorithm is mainly based on the proposed query-based join framework, in this
section, we only present the detailed implementation of the basic query-based method using
the X10 framework (detailed QC implementation in X10 is given in Appendix A). We com-
pare our algorithms with the state-of-art PRPD algorithm [127] and PRPD+DER [127] [126]
respectively. Since they do not provide any code-level information, we have also imple-
mented them in X10.

6.4.1 Parallel Join Processing

R Distribution. We are interested in high performance distributed memory join algorithms,
therefore, we first read all the tuples in ArrayList at each node, and then start to distribute
the relation R. The pseudocode of this process is given in Algorithm 10. The array R_c

is used to collect the grouped tuples, and its size is initialized to the number of computing
nodes N. Then, each thread reads the arraylist of R and groups the tuples according to the
hash values of their keys. After that, the grouped items are serialized and sent to the corre-
sponding remote place. This process is done in parallel, and we use the finish predicate to
guarantee the completion of the tuple transfer in each place before pushing query keys.

Algorithm 10 R Distribution
1: finish async at p ∈ P {
2: Initialize R_c:array[array[tuple]](N)
3: for tuple ∈ list_o f _R do
4: des=hash(tuple.key)
5: R_c(des).add(tuple)
6: end for
7: for i← 0..(N−1) do
8: Serialize R_c(i) to ser_R_c(i)
9: Push ser_R_c(i) to r_R_c(i)(here) at place i

10: end for
11: }

Push Query Keys. The detailed implementation of the second step is given in Algorithm 11.
A set of hashmap is initialized at each place. Each hashmap collects tuples of S according to
their hash values. If the key of a tuple has already been in the hashmap, then only the value
part of the tuple will be added in the hash table. After processing all the tuples, the keys
in each hash table will be extracted by an iteration on its keyset. These keys will be kept



6.4 Implementation 107

Algorithm 11 Push Query Keys
1: finish async at p ∈ P {
2: Initialize T:array[hashmap[key,ArrayList(value)]](N)
3: for tuple ∈ list_o f _S do
4: des=hash(tuple.key);
5: if tuple.key ̸∈ T(des) then
6: T(des).put(tuple.key, tuple.value)
7: else
8: T(des).get(tuple.key).value.add(tuple.value)
9: end if

10: end for
11: for i← 0..(N−1) do
12: Extract keys in T(i) to local_key_c(here)(i)
13: Serialize local_key_c(here)(i) to ser_key(i)
14: Push ser_key(i) to remote_key_c(i)(here) at place i
15: end for
16: }

in local_key_c, and then serialized and pushed to the assigned place for further processing.
In this process, both the array[hashmap] and local_key_c are DistArray objects, which
are kept in memory for the subsequent result lookups, as mentioned in Section 6.2. We use
the finish operation in this part to guarantee the completion of the data transfer at each place
before the next phase commences.

Return Queried Values. This phase starts after the grouped query keys have been trans-
ferred to the appropriate remote places. The implementation at each place is similar to a
sequential hash join. The received serialized tuple and key arrays, representing the dis-
tributed R and grouped query keys respectively, are deserialized. For the tuples, all the
<key,value> pairs are placed in the local hash table T’. The keys are used to access this
hash table sequentially to get their values. In this process, if the mapping of a key already
exists, its value is retrieved, otherwise, the value will be considered as null. In both cases,
the value of the query key is added into a temporary array so that it can be sent back to the
requester(s). All these processes take place in parallel at each place, and we use the finish
operation for synchronization. The details of the algorithm are given in Algorithm 12.

Result Lookups. The join results at each place can be looked up after all the values of the
query keys have been pushed back. Since the query keys and their respective values are held
in order inside arrays, we can easily look up the keys in the corresponding hash tables to
organize the join results as shown in Algorithm 13. The entire join process terminates when
all individual activities terminate.
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Algorithm 12 Return Queried Values
1: finish async at p ∈ P {
2: Initialize T’:hashmap, value_c:array[value]
3: for i← 0..(N−1) do
4: Deserialize r_R_c(here)(i) to tuples
5: Put all <tuple.key,tuple.value> into T’
6: end for
7: for i← 0..(N−1) do
8: Deserialize remote_key_c(here)(i) to key_c
9: for key ∈ key_c do

10: if key ∈ T’ then
11: value_c.add(T’.get(key).value)
12: else
13: value_c.add(null)
14: end if
15: end for
16: Push value_c(i) to r_value_c(i)(here) at place i
17: end for
18: }

Algorithm 13 Results Lookups
1: finish async at p ∈ P {
2: for i← 0..(N−1) do
3: Deserialize r_value_c(here)(i) to local_value_c
4: for value ∈ local_value_c do
5: if value ̸= null then
6: Look corresponding key in T(i)
7: Output join results
8: end if
9: end for

10: end for
11: }

6.4.2 The PRPD-based Methods using X10

For our purposes, the implementations of the PRPD and PRPD+DER algorithm have been
described in the previous Chapter 2. As the PRPD needs to partition the tuples according
the frequency of their keys at the beginning, we add a key sampling process on S to measure
the skew, wherein we use a hashmap counter with two parameters: (1) sample rate, namely
the ratio of the tuples to be sampled, and (2) threshold, namely the number of occurrences
of a key in the sample after which the corresponding tuples are considered as skew tuples.
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6.5 Evaluation of Inner Joins

In this section, we present the results of our experimental evaluation for the inner joins
on a commodity cluster. We conduct a quantitative evaluation of our implementation and
compare them to the results obtained by other algorithms.

6.5.1 Platform

Our evaluation platform is the High Performance Systems Research Cluster in IBM Re-
search Ireland. Each computation unit of this cluster is an iDataPlex node with two 6-core
Intel Xeon X5679 processors running at 2.93 GHz, resulting in a total of 12 cores per phys-
ical node. Each node has 128GB of RAM and a single 1TB SATA hard-drive and nodes are
connected by Gigabit Ethernet. The operating system is Linux kernel version 2.6.32-220
and the software stack consists of X10 version 2.3 compiling to C++ and gcc version 4.4.6.

6.5.2 Datasets

The evaluation is implemented on two relations R and S, which are both two-column tables
that are populated with random data. The key and payload are both set to 8-byte integers.
We fix the cardinality of R to 256 million tuples and S to 1 billion tuples. Join with such
characteristics are common in data warehouses and column-oriented architectures.

Three key distributions are examined in our tests: uniform, low skew and high skew. We
only add skew to S, following the Zipf distribution. The skew tuples are evenly distributed
on each computing node and the skew factor is set to 1 for the low skew (top ten popular
keys appear 14% of the time) and 1.4 for the high skew dataset (top ten popular keys appear
68% of the time). Again, highly skewed datasets are very common in a variety of settings
in data warehouses and also in non-relational stores (e.g. see [78]).

6.5.3 Setup

We set the X10_NPLACES to the number of cores and N_Thread to 1, namely one place
for one single activity, which avoids the overhead of context switching at runtime. The
parameter sample rate is set to 10%, and the threshold is set to a reasonable number 1000
based on preliminary results. In all experiments, we only count the number of matches,
but do not actually output join results. Moreover, we record the mean value based on ten
measurements and we empty the file system cache between tests to minimize the effects of
caching by the operating system.
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6.5.4 Runtime

We examined the runtime of three algorithms: the conventional hash-based algorithm, the
PRPD method [127] and our query-based approach. We implement these tests using 16
nodes (192 hardware cores) of the cluster on the datasets with different skews, and present
the results in Figure 6.6. We can see that each algorithm has its strengths and weaknesses:
(1) when the distribution is uniform, hash and PRPD perform nearly the same and much
better than our query-based implementation, (2) with low skew, PRPD becomes the faster
with our approach being slightly slower, and (3) with high skew, our approach outperforms
the other two and the hash-based implementation shows very poor performance.
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Fig. 6.6 Runtime comparison of the three different algorithms. The join is implemented on
256M on 1B with different skew by using 192 cores.

In the meantime, we also observe that with the increase of the data skew, the time cost
of hash method increases sharply while our scheme decreases sharply, which means that our
framework has total opposite properties compared with the commonly used hash-based join
framework. In the meantime, PRPD is a hybrid method, still in the scope of the conventional
approaches, so it has reasonable robustness against skew. Our method performs best under
high skew conditions, so our new join framework can be considered as a supplement for the
existing schemes. In fact, a system could pick the correct implementation based on the skew
or the input so as to minimize runtime.

We have examined the time breakdown on each phase (not shown in the figure) and
found that the time cost of our push query keys and return queried values phase is about three
times more than the S redistribution and build & probing phases of the hash-based imple-
mentation respectively. This has corroborated our expectation mentioned in Section 6.2.3.
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6.5.5 Network Communication

The number of received tuples (or query keys in our algorithm) for each place indicates
both network load and load balancing. As R is uniformly distributed, we only show the part
of transferred tuples (keys) of S in each algorithm. We implement our test on 192 cores,
and collect the received tuples (keys) at each place by inserting counters. The results of the
average number of received tuples for each place in each algorithm is shown in Figure 6.7.
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Fig. 6.7 The average number of received tuples (or keys) for each place of the three different
algorithms.

We can see that the three algorithms receive the same number of tuples when the dataset
is uniform. This is reasonable, since the partial redistribution of PRPD is ineffective as there
is no skew and the number of query keys is equal to the number of total keys in our approach.
With the increase in skew, the received tuples in the hash-based method does change. In
contrast, PRPD and our method show a significant decrease, as they are grouping skewed
results more effectively. In addition, our method transfers much less data than PRPD. All of
this shows that our implementation can reduce the network communication more efficiently
than other approaches under skew.

6.5.6 Load Balancing

We analyze the load balancing of each algorithm based on the metric: number of received

tuples (keys) of S at each place. We have three reasons to do so: (1) R is uniform distributed,
which has no effect for the balance at each place. In the meantime, the broadcast part
of R in PRPD does not weaken the balancing as well. (2) The number can indicate the
communication and computing time cost, the more tuples (keys) a place receives, the more
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time will be spent on data transferring and join (lookup) operation at this place. (3) We have
to push the values back and implement the results lookups in our query-based algorithm,
however, (a) the number of returning values is the same as the received keys, which has the
same effect for load balancing, and (b) the final lookups take only a very small part of the
whole runtime that can even be neglected.

Table 6.1 The number of received tuples or keys (in millions)

Algo.\Skew
0 1 1.4

Max. Avg. Max. Avg. Max. Avg.

hash-based 5.21 5.21 57.68 5.20 324.23 5.21

PRPD 5.21 5.21 6.73 3.98 3.62 0.95

query-based 5.21 5.21 1.68 1.65 0.09 0.08

As the place that receives the maximum number of tuples dominates the final runtime,
we just report results of the maximum and average number of the metric, which is shown
in Table 6.1. We can see that all three algorithm achieves perfect load balancing when the
dataset is uniform. With the skew increase, the load balancing of hash-based algorithm
becomes much worse. In the meantime, though PRPD has notable improvement for that
condition, our query-based approach is still much better than PRPD, which has nearly not
been effected by the data skew.

6.5.7 Scalability

We test the scalability of our implementation by varying the number of processing cores on
all three datasets. We start our test with 4 nodes (48 cores), 8 nodes (96 cores) and 16 nodes
(192 cores). The detailed time cost of each phase is shown in Figure 6.8.

We can see that the implementation generally scales well with the number of cores.
In detail, when the dataset is uniformly distributed, all four phases (referred to as phase 1
etc. according to Section 6.4.1) scale well and the time-cost in the second and third step
dominates the whole performance. When the distribution is skewed, we observe that phase
1 and phase 2 still scale well while phase 3 is slightly effected by increasing the number
of cores, and the time-cost of phase 4 becomes extremely small. This is reasonable: (1) in
phase 1 & phase 2, the operations are relying on the cardinalities of R and S at each node,
but not the skew. (2) in phase 3, tuples are evenly distributed, which leads to the number
of received query keys at each node not obviously changing when increasing the number
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Fig. 6.8 The detailed time cost of query-based join approach on different key distributions
by increasing number of cores.

of cores. Take the tuples with the same key k1 for example, the h1(k1)-th node will always
receive one k1 from each node. It means that this node first receives 48 k1 and then 96 k1

when increasing the number of cores to 96. In the meantime, this increase will be leveraged
by the decrease of the non-skewed query keys received at this node. (3) in phase 4, the size
of the hash tables at each place built for S will decrease with the increment of the cores and
the skew. That is why the time is only in the order of tens of ms when the skew is 1.4.

6.6 Evaluation of Outer Joins

In this section, we report the experimental results for outer joins following the same metrics
as presented above. The platform information and the setup configuration of our evaluation
are the same as the inner joins. We made some modifications for the test datasets: (1) we set
the cardinality of R is set to 64M tuples, and (2) for the two skewed datasets of S, we vary
the selectivity factors of the joins and set to 100% as the default value.

6.6.1 Runtime

We examined the runtime of four algorithms: the basic hash-based algorithm (referred as
Hash), PRPD+Dup, PRPD+DER and our QC approach. We implement these tests using 16
nodes (192 cores) of the cluster on the default datasets with different skew.



114 A Novel Framework for Handling Skew in Parallel Joins on Distributed Systems

Performance

The results in Figure 6.9 show that: (1) when S is uniform, the first three algorithms per-
form nearly the same and much better than our QC implementation; (2) with low skew,
PRPD+DER becomes the fastest and our approach is better than the other two methods; and
(3) with high skew, our approach outperforms the other three. In this process, the method
PRPD+DER performs very well under skew, which confirms our expectation in Chapter 2.
At the same time, the PRPD+Dup implementation shows the worst poor performance under
skew, even worse than Hash, which means that skew handling techniques designed for inner
joins can not always be applied for outer joins directly.

We also observe that with increasing of data skew, the time cost of Hash increases
sharply while our scheme decreases sharply, which indicates that our QC approach has
opposite properties compared with the commonly used hash-based join algorithm. In the
meantime, although both the PRPD+Dup and PRPD+DER algorithms can be considered as
hybrid methods on the basis of the conventional hash-based and duplication-based meth-
ods, the runtime of PRPD+Dup increases even more sharply than Hash, while PRPD+DER
decreases with skew and shows its robustness against skew. This confirms that state-of-
the-art optimization for outer joins can bring in significant performance improvements. QC
performs the best under high skew conditions, where conventional methods fail. As such,
our method can be considered as a supplement for the existing schemes. In fact, the opti-
mizer in a system could pick the correct implementation based on the skew of the input so
as to minimize runtime.
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Fig. 6.9 Runtime comparison of the four algorithms under different skews (with selectivity
factor 100% over 192 cores).
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Selectivity Experiments

We also examine how join selectivity affects the performance for each algorithm. For both
the low skew and high skew distributions, we created two different S that have the same
cardinality as the default dataset but only 50% and 0% of the tuples join with a tuple in R.
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Fig. 6.10 Runtime of the four algorithms under low skew by varying the join selectivity
factor (skew = 1 over 192 cores).
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Fig. 6.11 Runtime of the four algorithms under high skew by varying the join selectivity
factor (skew = 1.4 over 192 cores).

The results for the low skew dataset are presented in Figure 6.10. There, the PRPD+Dup
algorithm shows lower runtime with decreasing selectivity, and the runtime of the other
three methods does not change or slightly decreases. This is reasonable: (1) PRPD+Dup
has to process the intermediate matched join results, the number of which depends on the
join selectivity; (2) the transfer and join operations in Hash remain the same with different
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selectivity; (3) though the number of the non-matched results increases with decreasing
selectivity, PRPD+DER only needs to redistribute the non-matching row-ids for Rdup ◃▹Sloc,
which remains small because Rdup is always small; and (4) the number of operations on
counters and the final result lookups decreases with decreasing selectivity, leading to slightly
performance improvement in our QC algorithm. These also appear when the dataset is
highly skewed as shown in Figure 6.11. There, PRPD+Dup changes sharply, showing its
sensitivity to the join selectivity. In contrast to this, our QC algorithm is robust and also
outperforms the other three methods, demonstrating its strong ability in handling high skew
in outer joins again.

6.6.2 Network Communication

Performance regarding communication costs is evaluated by measuring the number of re-
ceived tuples. We implement our test on 192 cores, and collect the received tuples (keys) at
each place by inserting counters. The results of the average number of received tuples for
each place are shown in Figure 6.12.

We can see that all the four algorithms receive the same number of tuples when the
dataset is uniform. This is reasonable, since all tuples in Hash, PRPD+Dup and PRPD+DER
are processed only by redistribution as there is no skew and the number of query keys is
equal to the number of total keys in our QC algorithm. With the increase in skew, the re-
ceived tuples in Hash and PRPD+Dup does not change. In contrast, PRPD+DER and our
method show a significant decrease, demonstrating they can handle the skew effectively.
In addition, our method transfers much less data than PRPD+DER. All of this shows that
our implementation can reduce the network communication more efficiently than other ap-
proaches under skew.

6.6.3 Load Balancing

With the same reason as we presented for inner joins, we analyze the load balancing of
each algorithm based on the same metric, namely number of received tuples (keys) at each

place. The responsible results are shown as Table 6.2. It can be seen that all four algorithms
achieves perfect load balancing when the dataset is uniform. As the skew increases, the load
balancing of the hash-based algorithm and PRPD+Dup becomes much worse. In the mean-
time, though PRPD+DER shows better improvement for that condition, our QC approach is
still much better than PRPD+DER, which highlights the efficiency of skew handling again
for the proposed query-based framework.
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Table 6.2 The number of received tuples at each place (millions)

Algo.\skew
0 1 1.4

Max. Avg. Max. Avg. Max. Avg.

Hash 5.94 5.94 62.40 5.93 347.78 5.94
PRPD+Dup 5.94 5.94 62.43 5.96 347.80 5.96
PRPD+DER 5.94 5.94 3.95 3.85 0.92 0.84

QC 5.94 5.94 2.12 2.12 0.43 0.43
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Fig. 6.13 The runtime breakdown of the QC algorithm under skews by varying number of
cores (with selectivity factor 100%).
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6.6.4 Scalability

We test the scalability of our QC implementation by varying number of processing cores
under skew, from 24 cores (2 nodes) up to 192. The results are shown in Figure 6.13. It can
be seen that the implementation generally scales well with the number of cores. Doubling
number of cores brings in 1.30x - 1.44x speedup for the low skew dataset and 1.68x - 1.92x
for high skew. In detail, phases 1, 2 and 4 scale well and phase 3 is slightly affected by
increasing number of cores. The reason would be the same as what we have stated for the
inner joins, namely the received unique keys at each place would also slightly increase with
cores.

6.7 Conclusions

In this chapter, we have introduced a new framework for parallel joins, the query-based dis-

tributed join, which specifically targets joins with very high skew over distributed systems.
We have presented a detailed implementation of our approach using the X10 system.

From these results, our main conclusions are that the proposed framework is: (a) robust

against data skew, showing excellent load balancing, (b) scalable, speedup achieved with in-
crements in the number of nodes (threads), (c) highly efficient, since we can process the join
256M on 1B with high skew in only 13 seconds, which is magnitudes faster compared with
the conventional hash-based implementation, and also outperforms the state-of-art PRPD
algorithm, and (d) novel, can be considered as a new approach and alternative to the two
conventional frameworks commonly used.

Moreover, we have also extended the framework for processing large-large table outer
joins and introduced a new outer joins algorithm, query with counters. The experimental
results also show that our implementation is scalable and performs faster than the state-of-art
PRPD+DER techniques [127] [126] under high skew.

As we see from the results that when the input is low skew or uniformly distributed, the
query-based implementations becomes noncompetitive compared with the existing meth-
ods. To address this issue, in the next chapter, we will combine our method with approaches
that partition data according to key skew, such as PRPD, so as to achieve more robust and
even higher performance in the presence of different data skews.



Chapter 7

High Performance Skew-Resistant
Parallel Joins in Shared-Nothing Systems

7.1 Introduction

In the previous chapter, from the analysis as well as the experimental results we can see that
the state-of-art join methods designed to handle data skew over distributed systems offer
significant improvements over naive implementations, and the join performance could be
further improved using the proposed query-based joins in the presence of high skew. How-
ever, our method encouters a performance bottleneck when processing low-skewed datasets.
The reason is that the number of transferred keys and retrieved values will be extremely large
when processing large-scale data, and the two-sided communication decreases the perfor-
mance consequently.

To achieve an efficient and robust join performance over a range of skew conditions on
distributed systems, in this chapter, we further refine the query-based approach and present
a new join algorithm called PRPQ (partial redistribution & partial query). Similar to the
query with counter algorithm described in the previous chapter, the PRPQ method can also
be easily applied to outer joins. Regardless, we are more interested in the performance and
characteristic of each join framework (or distributed join patterns), in terms of computa-
tion and network communication during join executions. Therefore, compared to the last
chapter, we only focus on studying inner joins.

In this work, we also conduct a performance comparison of four parallel join algo-
rithms (the three methods evaluated previously and the new proposed PRPQ) based on a
theoretical analysis of their implementations. Moreover, we present more exact and more
detailed experiments for our method over different large datasets. The experimental results
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demonstrate that the proposed PRPQ algorithm is indeed robust and scalable under different
skew conditions. Specifically, compared to the state-of-art PRPD [127] method, it achieves
16%−167% performance improvement with 24%−54% less network communication un-
der different join workloads, figures that confirm the theoretical analysis.

The rest of this chapter is organized as follows: In Section 7.2, we introduce our PRPQ
algorithm. We conduct a theoretical analysis of different parallel join approaches in Sec-
tion 7.3. The detailed implementation of our algorithm is presented in Section 7.4. Sec-
tion 7.5 provides a quantitative evaluation of our approach while Section 7.6 concludes the
chapter.

7.2 PRPQ Joins

In this section, we first present the PRPQ algorithm, and then conduct an intuitive compari-
son with the query-based method and the state-of-art PRPD algorithm.

7.2.1 The PRPQ Algorithm

The PRPQ joins can be considered as a hybrid approach based on both the hash-based
and query-based implementation. With the same assumption as previously that the input
relation R is uniformly distributed and S is skew. In PRPQ, the relation R is distributed in
a similar fashion as in the query-based algorithm, namely, all the tuples are redistributed to
the responsible nodes according to the hash value of their join keys. However, the relation
S at each node is split into two parts according to its skewed keys: (1) the high skewed part
h (with tuples whose keys appear more times than the specified threshold) is processed with
the query-based scheme, and (2) the remaining part S′, that is processed by the hash-based
implementation.

As shown in Figure 7.1, the tuples in each Ri, hi and S′i at each node i are first hash-
partitioned based on the hash value of their join keys. After the redistribution of R and
the building of the hash table Rk at each node, the keys in each hik will query all remote
Rk to retrieve their responsible values and formulate the responsible outputs. On the other
hand, the S′ik will be distributed to the k-th node and join with Rk there. Note that, as hik

are all entirely independent from each other and only query their corresponding remote
nodes (which is the same as the query-based implementation), we do not need any global
operation, instead, we only need to quantify the local skew at each node, which can be easily
achieved.
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Fig. 7.1 The PRPQ join approach. Only the high skew part of S implements the query
operations, and the rest is processed as the basic hash method.

7.2.2 Compared to the QUERY-BASED Algorithm

We apply the query scheme only for the high skew tuples and all the low skew tuples are
just simply redistributed. Even when there exists large numbers of low skewed tuples, the
number of query keys and returned values will be still small. Therefore the PRPQ can
efficiently remedy the shortcoming of the basic query algorithm and improve its robustness.

Moreover, inheriting from the advantages of the basis query algorithm, PRPQ can also
highly reduce the network communication when processing skewed data. The reason is that
none of the highly skewed tuples are distributed, but only their unique keys as well as the
corresponding returned values, which are always very small. Furthermore, as PRPQ adopts
the complementary advantages of both hash-based and query-based implementations, the
method should, for any kind of inputs, outperform both algorithms for a suitable threshold
t. We will exam this conjecture through our evaluation in Section 7.5. In addition to this,
PRPQ has an extra operation, namely quantifying the skew to partitioning the tuples. How-
ever, we only need to quantify the local skew (namely for each Si) at each node, which can
be easily achieved.

7.2.3 Comparison with PRPD

Similar to the query-based approach, taking a higher level comparison with the PRPD [127]
method as described, PRPQ also has two main advantages on (1) skew quantification and
(2) redundancy removement, as presented in Chapter 6.

In fact, the first advantage means our PRPQ method will be more flexible or more ef-
ficient in the face of different join workloads, especially for the unevenly distributed ones.
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Taking an extreme condition for example, for a 106-node system, if a key in S follows the
linear distribution over the computation nodes (e.g. appearing 106 times on the first node,
106− 1 on the second node etc. and only 1 time on final node), then how can we define

the global skew using PRPD? [127] proposes a solution that redistributes the skew tuples
evenly to all the nodes before the join. However, this pre-redistribution will generate extra
communication costs, while more complex and careful global statistical operations for all
tuples of S are required. The authors in [127] do not provide any detailed implementation
or experimental details regarding this pre-processing. Therefore, for PRPD in what follows,
we do not consider any rebalancing operations for the uneven skew of S but just adopt a
general method, namely each node just broadcasts its local skew keys so as to organize the
global skew. In contrast, by simply using a threshold such as 106/2, PRPQ will know that
the key is skew in the first half million nodes and non-skew for the remaining nodes.

Moreover, in the condition where there are many mid-skewed tuples, for instance, the
relation Si at each node i contains 1 million totally different unique keys (assuming uniform
distributed) where each key appears 40000 times, then, should we consider these keys as

skew? If so, each node under the PRPD scheme has to broadcast the responsible 1 million
tuples of Ri to all the nodes, which means that each node will receive 106 ·106 = 1012 tuples
over the 106-node system. In comparison, using PRPQ, each node just receives (106/106) ·
106 = 106 keys and the corresponding 106 values. This indicates that PRPQ can further
significantly reduce the network communication (considering a key or value as a half tuple)
and potentially improve the join performance over PRPD. We will demonstrate this detailed
performance difference using different workloads in our evaluations in Section 7.5.

Additionally, the main difference between the PRPQ and PRPD algorithm is in process-
ing skewed tuples, namely using query, a duplication-free way, to replace the conventional
duplication method, thus the extension or theoretical analysis from PRPD [127] can be ap-
plied to our approach directly. For example, regarding the skewed-skewed joins, similar to
the approach taken in PRPD, if R is skewed, the skewed part of R can be used to query
the corresponding non-skewed part of S, the skewed part of S can be used to query the cor-
responding non-skewed part of R, and others would be hash-redistributed, for our PRPQ
method.

7.3 Theoretical Comparison of Parallel Join Approaches

To support our above assertions, and also to conduct a more valuable comparison of different
distributed join patterns, in this section, we conduct a theoretical performance analysis of
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the four parallel join approaches: the most commonly used hash-based algorithm, the state-
of-art PRPD algorithm, our basic query-based joins and the refined PRPQ algorithm. We
track their computation and communication costs over a distributed architecture for a join
implementation and give an insight into their characterization in the presence of skew data.
Specifically, we also compare the performance of the PRPQ algorithm versus PRPD.

7.3.1 Skew in Parallel Joins

We begin by developing some analysis of skew and its impact on parallel joins by consider-
ing a common parallel DBMS (PDBMS) with n≥ 2 computing nodes (threads) over which
we organize a simple data model. We assume tuples in R and S are simply <key, payload>

pairs and key is their join attribution. If there are many tuples in S that have the same key but
with different payload, then S is considered as skew data. For the purpose of the following
analysis we impose that relation R is uniformly distributed while S is skewed and let the
number of keys in each Si (i ∈ [1,n]) follow the distribution function f (r), where r is the
rank of a key according to its frequency of occurrence and f (r)> f (r+1).

Si

Ri

h

f(r)
t
t'

l' '

Fig. 7.2 Distribution of the tuples in S at each node based on the rank of keys.

As shown in Figure 7.2, we divide the keys of S in two parts: the high skew part with h′

keys and the low skew part with l′ keys. To highlight the skew, we assume that h′ << l′ and
the high skew tuples form a large part of relation S. A typical example for this kind of input
is one where the data follows the Zipf distribution with high skew.

In the hash-based framework, the redistribution of tuples in relations R and S deeply
relies on the hash function, and all the tuples with the same join attribute will be transferred
to the same remote node. To simplify the tracking of tuples after the redistribution, we
define E j

i as the key at the i-th node with rank j, and assume that E j
i ≡ j (mod n). With
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the hash function h(E) = E%n for tuple transferring, tuples with the rank (k+ x ·n) will be
flushed into the k-th node. On this basis, we set h′ = h ·n and l′ = l ·n, then the number of
tuples1 N1

k the k-th node receives will be:

(|Rk|/n) ·n distribution of R

+ [∑h+l−1
i=0 f (k+ i ·n)] ·n distribution of S

= |R|/n+n ·∑h+l−1
i=0 f (k+ i ·n)

We note that the number of hash operations in join operations C1
k at the k-th node would

be equal to N1
k , since the total number of hash operations for A on B is |A|+ |B|, where |A| is

for adding (hash table building) and |B| is for reading (hash table probing).
The differences in the number of received tuples and hash operations between the k-th

and (k+1)th-node is ∆1 = n ·∑h+l−1
i=0 [ f (k+ i ·n)− f (k+1+ i ·n)]> 0, which means that the

1-st node receives the highest number of tuples with the highest number of hash operations,
while the n-th node receives the lowest respectively. This leads to the scenario where the
first few nodes are prone to becoming hot spots resulting in performance bottlenecks. The
performance hit arise due to: (1) communication costs as large numbers of tuples are trans-
ferred to hot spots over the network, and (2) load imbalance: a large number of hash table
lookups are implemented at hot spots in the probing phase. Such issues impact system scal-
ability which will be reduced as employing new nodes cannot yield improvements because
large number of skew tuples will remain distributed to the same nodes. For example, with
increasing n, the large number of tuples with key E1

i will still flood into the first node in this
case.

7.3.2 PRPD Joins

The detailed analysis and implementation of the PRPD algorithm has been presented in
Chapter 2. Using the data model in Figure 7.2, the relation S is split into two parts based
on the threshold t set for the frequency of occurrence of a key: (1) a locally kept part Sloc;
tuples with f (r)≥ t are considered as high skew and are kept locally, not participating in the
redistribution phase, and (2) the redistributed part Sdis; the remaining tuples with f (r) < t

are redistributed as in the basic hash-based implementation. In the meantime, the relation

1In our analysis, we denote the algorithms under consideration with a superscript in the cost of
Nk and Ck and with a subscript for ∆. We use the numerals 1, 2, 3, 4 for this purpose. For example,
N1

k refers to Nk for the hash algorithm, C2
k refers to Ck for the PRPD algorithm etc.
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R is divided into two parts as well: (1) the duplicated part Rdup (shown in Figure 7.2 as the
shaded area); the tuples which contain the keys in Sloc are broadcast to all the nodes, and (2)
the redistributed part Rdis; the remaining part of R which is redistributed as normal. After
the duplication and the redistribution operations, the final join is composed by Rdis on Sdis

and Rdup on Sloc respectively at each node.
As the split of R and S fully relies on the skew keys in S and the final join will fail if any

node does not have global knowledge of such keys, broadcasts for the skew keys at each
node are required initially. Based on this, each node in PRPD will receive hn ·n keys in the
skew sharing process. It is possible that a portion of such received keys are repetitive. To
quantify this, we assume that the repetition appears only on keys with the same rank and
the ratio β = | ∪n

i=1 E j
i |/n is the same for each rank, then the number of received unique

keys will be β · hn2 at each node. In fact, β indicates whether the skew tuples are evenly
partitioned. Noting that β is in the range [1/n,1], we distinguish two extreme cases: (1)
β = 1/n: E j

i = E j
i′ for ∀i, i′ ∈ [1,n], thus all skew tuples are replicated evenly over each

node; (2) β = 1: skew keys are unique to each node.
To simplify the split of Ri in PRPD, we make an additional assumption that the received

βhn2 unique keys are uniformly distributed. Therefore, the duplication part of Ri is βhn2/n

at each node and tuples in the remaining part Ri_dis will be uniformly distributed as well. We
consider a single key or value as 1/2 tuple in terms of its size, then the number of received
tuples N2

k at the k-th node is:

hn ·n/2 duplication of skew keys

+ βhn ·n duplication of Rdup

+ [(|Rk|−βhn)/n] ·n distribution of Rdis

+ [∑h+l−1
i=h f (k+ i ·n)] ·n distribution of Sdis

= |R|/n+hn(n/2+βn−β )+n ·∑h+l−1
i=h f (k+ i ·n)

As both Ri and Si are split based on received hn2 skew keys, we treat this process the
same as a join (i.e. as a lookup Si and Ri over a hashset composed by the received keys),
and take into account the number of hash operations. Consequently, the number of hash
operations C2

k for the k-th node can be written as:
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|Sk|+hn2 split of S

+ |Rk| split of R

+ (|R|/n−βhn)+n ·∑h+l−1
i=h f (k+ i ·n) Rdis on Sdis

+ βhn2 +∑
hn
i=1 f (i) Rdup on Sloc

= C+ |R|/n+hn · (n+βn−β )

where C= |R|/n+ |S|/n+∑
hn
i=1 f (i)+n ·∑h+l−1

i=h f (k+ i ·n).
The differences in received tuples and hash operations between the k-th and (k + 1)-

th node is the same, i.e. both are ∆2 = n ·∑h+l−1
i=h [ f (k + i · n)− f (k + 1+ i · n)]. Recall

that the subscript 2 here refers to the PRPD algorithm. Clearly, ∆2 > 0, suggesting that
the load imbalance still exists in PRPD. However, compared to the basic hash algorithm:
∆1−∆2 = n ·∑h−1

i=0 f (k+ i · n) > 0. In other words, the load imbalance between each node
in PRPD is smaller than that in the hash-based approach. In fact, ∆2 indicates that the load
imbalance is the result of and occurs in the low skew part, where the difference between
each f (r) is always very small, and as a consequence, PRPD will always achieve good load
balancing. When the low skew part is uniformly distributed, nodes in PRPD will be fully
load balanced.

7.3.3 Query-based Joins

Following the detailed work flow and implementation of the query-based joins as presented
in Chapter 6, the number of tuples that the k-th node receives N3

k is:

(|Rk|/n) ·n distribution of R

+ [(hn+ ln)/n] ·n ·1/2 query of skew keys

+ [(hn+ ln)/n] ·n ·1/2 returned values

= |R|/n+(h+ l) ·n

We can see that N3
k here is a constant and totally independent from the node location k,

implying that each node is always fully load balanced in terms of communications. Cor-
respondingly, if we do not consider the iteration operation on hash tables to extract the
keys, then the number of hash operations C3

k for the k-th node is:
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|R|/n+(h+ l) ·n join between R and query keys

+ (h+ l) ·n+ |Si| join between returned values and S

= |R|/n+ |S|/n+2(h+ l) ·n

This shows that C3
k is also a constant, and that each node is fully load balanced. There-

fore, there are no hot spots in our query-based framework. In the meantime, we also notice
that (h+ l) ·n intermediate elements in the basic query algorithm take part in the join twice,
both at the local and remote nodes, a number that could yield a heavy workload. The differ-
ence between the amount of computation required by the algorithm and that required by the
hash-based algorithm is ∆31 =C3

k −C1
k = |S|/n+n · [2(h+ l)−∑

h+l−1
i=0 f (k+ i ·n)]. When Si

is low skewed, namely when f (r) ≈ f (r+1) = c, then ∆31 = 2(h+ l) ·n > 0. In this case,
the number of unique keys at each node will be (h+ l) · n = |Si|/c. Obviously, for a fixed
size input, when c is very small such as c = 1, the ∆31 = |Si|will be much greater than 0, im-
plying a much heavier computational load of query-based joins. Furthermore, though there
exists N3

k = N1
k in this scenario, the two-way communication of a large number of |S|/n keys

(or values) could also be more costly than the one way transmission of |S|/n tuples. This
suggests that when the input is low skew with low repetitive keys, such as when uniformly
distributed, the query-based joins will have much heavier work load than the hash-based
joins and could also spend more time on communication. This also clearly clarifies why
query-based joins could meet performance bottlenecks in the the face of non-skew data.

7.3.4 PRPQ Joins

Based on the workflow of PRPQ, with the knowledge of local skew, the number of received
tuples N4

k at the k-th node is:

(|Rk|/n) ·n distribution of R

+ [∑h+l−1
i=h f (k+ i ·n)] ·n distribution of Sdis

+ (hn/n) ·n ·1/2 query of skew keys

+ (hn/n) ·n ·1/2 returned values

= |R|/n+hn+n ·∑h+l−1
i=h f (k+ i ·n)
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For computation, we also need to split S over the local high skew keys, and the hash table
Rk only needs to be built once so that both supports the query and join operations. Using
the previously defined C, the relative number of C4

k is:

|Sk|+hn split of S

+ |R|/n+n ·∑h+l−1
i=h f (k+ i ·n) Rdis on Sdis

+ hn lookup query keys

+ hn+∑
hn
i=1 f (i) join of returned values and S

= C+3hn

We note that the differences in communication and computation between each node in
PRPQ depends only on the low skew tuples, an observation which also explains the load-
balancing performance of PRPD. Moreover, we apply the query scheme only for the high
skew tuples and all the low skew tuples are just simply redistributed. Even when there exists
large numbers of low skewed tuples, we can see that the number of query keys and returned
values is hn. This is still relatively small and efficiently remedies the shortcoming of the
basic query algorithm and improves its robustness. As PRPQ adopts the complementary
advantages of both hash-based and query-based implementations, the method should, for
any kind of inputs, outperform both algorithms for a suitable threshold t. We will exam this
conjecture through the evaluation given in Section 7.5.

7.3.5 Performance Comparison

We focus on comparing the performance of our PRPQ algorithm with the state-of-art PRPD.
We assume that both algorithms have the same threshold configuration, and each node has
a priori knowledge of its local skew keys hn.

With respect to network communication, the load balancing of PRPD and PRPQ is sim-
ilar as they both depend on the low skew part. Additionally, decreasing the threshold t (t ′

shown in Figure 7.2) can further improve load balancing, because the low skew part de-
creases, leading to a smaller difference between each node - ∆2 and ∆4 in both algorithms.
By comparing the network load, the difference of received tuples between PRPD and PRPQ
at each node is:

∆N24 = Nprpd−Nprpq = [(n−1) ·β +(n/2−1)] ·hn≥ 0
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In other words, PRPQ always has less network communication than PDPR, while Nprpd =

Nprpq only when h = 0 (i.e. no skew tuples are detected) and therefore all tuples are pro-
cessed by the basic hash algorithm.

Moreover, by increasing hn (namely decreasing t), both algorithms can achieve better
load balancing, however, N2

k and N4
k will increase, suggesting that there is a trade-off be-

tween communications and load-balancing. On the other hand, the cost of the increase in
communication is O(n) for PRPD while O(1) for PRPQ, showing the network load associ-
ated with PRPD is more sensitive to load balancing than PRPQ. In contrast to PRPD, PRPQ
is agnostic of the factor β , which demonstrates that the network load of this scheme is more
robust to dataset partitioning (no matter how evenly the skew tuples are partitioned).

Similarly, for computation, PRPD and PRPQ achieve absolute balancing only when the
low skew keys are uniformly distributed. Since normally the number of high skew keys in
Si will be relatively small compared to |Ri|, namely, |Ri| > hn, the difference of the hash
operations between PRPD and PRPQ for each node is:

∆C24 =Cprpd−Cprpq

= (|R|/n−hn)+ [(n−1) ·β +(n−2)] ·hn≥ 0

This demonstrates that PRPQ has less computation overhead than PDPR under all condi-
tions. Additionally, as in the analysis of network communication, Cprpd =Cprpq only when
h = 0, while increasing h, β or n can amplify their difference.

We assume the time cost t(x) to transfer x tuples is t(x) = δ0 + δ1 · x, where δ0 is a
constant that represents the latency for each data transfer while δ1 is the time for transferring
a single tuple. Because of the all-to-all communication in PRPD (broadcast of keys and
tuples) and PRPQ (push keys and return values) both take place twice, here we just need
consider their time difference on transferring the data, namely δ1 · x. Combining with the
above two equations, if we define the time cost of an ideal single hash table operation as λ1,
then we can calculate the time difference between PRPD and PRPQ:

∆T24 = δ1 ·∆N24 +λ1 ·∆C24

= δ1 · [(n−1) ·β +(n/2−1)] ·hn+

λ1 · [(n−1) ·β +(n−3)] ·h+λ1|R|/n

As N23 ≥ 0 and C23 ≥ 0, clearly ∆T23 ≥ 0. In other words, PRPQ can outperform PRPD
through efficiently reducing both the network communication and computation in joins,
rendering PRPQ more suitable for modern high performance computing systems. Moreover,
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in the general case where n ≥ 3, ∆T23 increases with increasing n, β or h. For example,
the time difference between PRPD and PRPQ is 3 seconds when n=100, if you increase
n to 200, the time difference could become 6 seconds. This implies that PRPQ has more
robust performance under different conditions. For instance, in scenarios that involved the
processing of massive uncertain datasets over a large computing center, both the number of
high skew keys and the nodes will be large, and the skew tuples could be heavily unevenly
partitioned as well. This would render our proposed PRPQ method a better choice than the
PRPD algorithm under such a scenario.

7.4 Implementation

We present the detailed implementation of the PRPQ algorithm using the X10 framework.
As extracting skew tuples at each node is based on local skew quantification, we add in the
parameter threshold in our implementations, namely the number of occurrences of a key
after which the corresponding tuples are considered as skew tuples. We first discuss how we
deal with this parameter and then describe the PRPQ implementation.

7.4.1 Local Skew

There are various ways to measure local skew quickly, such as sampling, scanning etc.
However efficient skew measurement does not concern us here and so we just count key
occurrences and store them in descending order at each node in a flat file. In each test with
parameter t, each node will pre-read the responsible keys (keys appear more than t times) in
an ArrayList and consider them as the required skew keys. These pre-processes make the
performance comparison more fair and meaningful because: (1) The total join performance
is very sensitive to the chosen skew keys and operations like sampling cannot guarantee the
same set of keys are selected, and (2) the extra time cost for skew extraction is removed, so
that the focus is on analyzing runtime performance only.

7.4.2 Parallel Processing

Similar to the query-based joins, the implementation of PRPQ is divided into the following
four phases as well.

R Distribution: We are interested in high performance distributed memory join algorithms,
therefore, we first read all the tuples in an ArrayList at each node, and then commence
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Algorithm 14 R Distribution
1: finish async at p ∈ P {
2: Initialize R_c:array[array[tuple]](n)
3: for tuple ∈ list_o f _R do
4: des=hash(tuple.key)
5: R_c(des).add(tuple)
6: end for
7: for i← 0..(n−1) do
8: Push R_c(i) to r_R_c(i)(here) at place i
9: end for

10: }

Algorithm 15 Push Query Keys
1: finish async at p ∈ P {
2: Initialize T:array[hashmap[key,ArrayList(value)]](n)

S’_c:array[array[tuple]](n) and skew:hashset[key]()
3: Read the skew keys in skew based on t
4: for tuple ∈ list_o f _S do
5: des=hash(tuple.key)
6: if tuple.key ∈ skew then
7: Add tuple in T(des)
8: else
9: Add tuple in S’_c(des)

10: end if
11: end for
12: for i← 0..(n−1) do
13: Extract keys in T(i) to key_c(here)(i)
14: Push key_c(here)(i) to remote_key(i)(here),

S’_c(i) to r_S’_c(i)(here) at the place i
15: end for
16: }

distribution of the relation R. The pseudocode of this process is given in Algorithm 14.
The array R_c is used to collect the grouped tuples, and its size is initialized to the num-
ber of computing nodes n. Then, each thread reads the ArrayList of R and groups the
tuples according to the hash values of their keys. Next, the grouped items are sent to the
corresponding remote place.

Push Query Keys: The implementation of the second step is given in Algorithm 15. The
skew keys are first read into a hashset based on the parameter t. Next all the tuples in S

will be checked for skew such that hashmap collects the skew tuples while the arrays S′_c

collects the non-skew tuples. After processing all the tuples, the keys in each hash table will
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Algorithm 16 Return Queried Values
1: finish async at p ∈ P {
2: Initialize T’:hashmap, value_c:array[value]
3: for i← 0..(n−1) do
4: Put received tuples of r_R_c(here)(i) into T’
5: end for
6: for i← 0..(n−1) do
7: Lookup received r_S’_c(i) in T’
8: Output join results of non-skew part
9: end for

10: for i← 0..(n−1) do
11: for key ∈ remote_key_c(here)(i) do
12: if key ∈ T’ then
13: value_c.add(T’.get(key).value)
14: else
15: value_c.add(null)
16: end if
17: end for
18: Push value_c(i) to r_value_c(i)(here) at place i
19: end for
20: }

Algorithm 17 Result Lookup
1: finish async at p ∈ P {
2: for i← 0..(n−1) do
3: for value ∈ r_value_c(here)(i) do
4: if value ̸= null then
5: Look corresponding key in T(i)
6: Output join results of the skew part
7: end if
8: end for
9: end for

10: }

be extracted by an iteration on its keyset. These keys will be kept in key_c, the same as
S′_c, both are pushed to the assigned place for further processing.

Return Queried Values: The implementation of this phase at each place is similar to a
sequential hash join. The received tuples and key arrays, representing the distributed R,
S′ and grouped query keys respectively. For the tuples, all the <key,value> pairs of R are
placed in the local hash table T ′, and S′ looks up the match in T ′ to output the join results for
the non-skew tuples. Meanwhile, the query keys access T ′ sequentially to get their values.
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In this process, if the mapping of a key already exists, its value is retrieved, otherwise,
the value is considered as null. In both cases, the value of the query key is added into a
temporary array so that it can be sent back to the requester(s). The details of the algorithm
are given in Algorithm 16.

Result Lookup: The join results for the skewed tuples can be looked up after all the val-
ues of the query keys have been pushed back. Since the query keys and their respective
values are held in order inside arrays, we can easily look up the keys in the corresponding
hash tables to organize the join results as shown in Algorithm 17. The entire join process
terminates when all individual activities terminate.

7.5 Experimental Evaluation

Platform. Our experiments were executed on the High Performance Systems Research

Cluster in IBM Research Ireland. Each computation unit of this cluster is an iDataPlex
node with two 6-core Intel Xeon X5679 processors running at 2.93 GHz, resulting in a total
of 12 cores per physical node. Each node has 128GB of RAM and a single 1TB SATA
hard-drive and nodes are connected by a Gigabit Ethernet. The operating system is Linux
kernel version 2.6.32-220 and the software stack consists of X10 version 2.3 compiling to
C++ and gcc version 4.4.6.

Datasets. The datasets used as benchmarks were chosen to mimic joins in decision support
environments. We mainly focus on the most expensive operation in such scenarios: the join
between the intermediate relation R (the outcome of various operations on the dimension
relations) with a much larger fact relation S [16]. We fix the default cardinality of R to
64M tuples and S to 1B tuples. Because data in warehouses is commonly stored following
a column-oriented model, we set the data format to <key, payload> pairs, where both the
key and payload are 8-byte integers.

As the primary keys in R should be unique, we only add skew to the corresponding
foreign keys in S. We list the input of S in the table below in bold font indicating default
values. For the Zipf distribution, the skew factor is set to 0 for uniform, 1 for low skew
(top ten popular keys appear 14% of the time) and 1.4 for high skew (top ten popular keys
appear 68% of the time). Such workloads are common in recently studies [16, 20, 75]. For
the linear distribution case, the f (r) = 46341− r is for low skew while f (r) = 23170 is
for uniform but highly repetitive; both contain 46341 unique keys (1B tuples). When S is
uniform, the tuples are created such that each of them matches the tuples in the relation R
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with the same probability. For the skew datasets, the unique keys of tuples are uniformly
distributed and each of them has a match in R. Moreover, we distribute all the tuples in R

evenly to all computing nodes while we use both even and sort-range2 methods for S.

Table 7.1 Datasets with different key distribution and partitioning used in our tests

S Key distr. Partition Size

Zipf skew = 0, 1, 1.25, 1.4 evenly, 512M,
Linear f (r) = 46341− r, 23170 sort-range 1B, 2B

Setup. We set the system parameter X10_NPLACES to the number of cores and the N_Thread
to 1, namely one place for one single activity, which avoids the overhead of context switch-
ing at runtime. In all experiments, we only count the number of matches, but do not actually
output join results. Moreover, for PRPD and PRPQ, we implemented a test series with dif-
ferent t for each data set, as shown in Figure 7.4. When we present the results, we always
choose the point t with the best achieved run time.

7.5.1 Runtime

We consider the runtime of the four algorithms: the hash-based algorithm (referred as Hash),
PRPD [127], PRPQ and the basic query approach (referred as Query). We implement these
tests using 16 nodes (192 hardware cores) of the cluster on the default datasets.

Performance

The results in Figure 7.3 illustrate that: (1) when S is uniform, the Hash, PRPD and PRPQ
algorithms perform nearly the same and much better than the Query implementation, which
matches our analysis about the shortcomings of the query-based joins; (2) with low skew,
PRPD and PRPQ is comparatively faster that the other two approaches; and (3) with high
skew, Hash is the worst while the other three perform much better, demonstrating their
capacity to handle skew.

It can also be seen that with increasing data skew, the time cost of Hash increases sharply
while that of Query decreases. This demonstrates that Query is more suitable for processing
high skew datasets. Moreover, PRPD and the PRPQ algorithm change much more smoothly
compared to the two basic approaches and their time cost decreases with increasing skew,

2All tuples are sorted according to the rank of the keys, and then equal-sized partitioning based on the
number of places.
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Fig. 7.3 Runtime of the four algorithms.

demonstrating their robustness against skew. Furthermore, for the high skew case, we note
that PRPQ outperforms Query with threshold t = 32, which implies that those tuples with
keys appearing less than 32 times perform better in Hash than in Query. This confirms our
analysis and expectation described in Section 7.2.2.

PRPQ vs PRPD

Figure 7.3 also shows that the best performance achieved by PRPQ is better than PRPD
under different skew scenarios. To conduct a more detailed comparison, we implemented a
series of tests on different datasets and with different partitioning strategies. The threshold t

ranges between values that enable us to always capture the skew keys and present the results
in Figure 7.4 where: (1) evenly refers to S being evenly distributed to all the nodes; (2) range

refers to the sort-range partitioning; (3) Linear 0 means that S follows the linear distribution
f (r)= 23170 while Linear 1 refers to f (r)= 46341−r; (4) the first two numbers in brackets
indicate the value of t for which the best performance is achieved by PRPD and PRPQ
respectively while the third one demonstrates the relative speedups of PRPQ over PRPD
based on their best runtime.

We can see that, for any given t, PRPQ always performs better than PRPD. This is
consistent with our theoretical analysis in Section 7.3.5, and highlights again the fact that
PRPQ will always be faster than PRPD. Looking at the speedup figures, PRPQ can achieve
16% - 176% performance improvement over PRPD. The maximum achieved speedup of
2.67× happens in the case of Linear 0 evenly dataset. This is due to the fact that the number
of picked skew keys hn is always large and in sthis case, the key distribution at each node
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Fig. 7.4 Runtime of PRPD and PRPQ with increasing threshold t over different datasets
(64M on 1B with 192 cores).
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follows f (r) = 23170/192 = 121, namely each key appears 121 times. Thus, when t < 121,
all the hn = 46341 keys at each node will always be processed as skew keys, which makes
the defined time difference ∆T24 large. This also appears in the cases Figure 7.4(a), (b)
and (e): with a small t at the beginning, a large hn leads to a large ∆T24. With increasing
t, the difference decreases to 0 as hn becomes smaller and smaller. Finally, the variations
of the results achieved for different t values are only minor for the PRPQ algorithm while
those in PRPD change more sharply, demonstrating that our algorithm is less affected by the
input parameters. Defining the t in a range that achieves better performance would require
additional, more complex or costly operations, therefore, we can expect that our algorithm
could profit more on performance than PRPD in real applications.

Cardinality Experiments

We also examine the speedups by varying the cardinalities of the two input relations. For
the Zipf distribution, we create data sets in which both relations are half the default size
(scale 0.5, namely 32M on 512M) and double the size (scale 2, namely 128M on 2B). We
vary the threshold and record the best achieved runtime. Table 7.2 shows the results, which
demonstrate that our algorithm can achieve higher performance irrespective of the input
size.

Table 7.2 Speedup achieved by PRPQ over PRPD with varying the size of inputs (using 192
cores).

Skew 1 1.4

Scale 0.5 1 2 0.5 1 2

Speedup 1.42 1.16 1.20 1.44 1.22 1.48

7.5.2 Network Communication

Communication costs are evaluated through measuring the number of received tuples at
each place. The average number of received tuples is presented in Table 7.3. We can see
that all four algorithms receive the same number of tuples when the dataset is uniform.
This is reasonable, since there is no skew and all the tuples of PRPD and PRPQ are only
processed by the partial redistribution while the number of query keys and returned values
(both consider 1/2 tuple) is equal to the number of total tuples in Query. With increasing
the skew, the number of the received tuples in Hash do not change, as all tuples still need to
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be redistributed. In contrast, the other three methods show a significant decrease, as a large
number of skewed tuples are not transferred in PRPD and PRPQ while Query groups the
skewed tuples and only transfers the unique keys.

We also track the number of received tuples for different threshold t values and present
the results in Figure 7.5. It can be seen that in PRPD the number first decreases and then
increases, showing a trade-off between the number of duplicated and redistributed tuples.
For PRPQ, the number of received tuples is always increasing, however, it is less than PRPD
for each given t, a result that is consistent with the analysis in Section 7.3.3. Combining this
with the value where best performance is achieved, t is set to 27 and 214 for PRPD, values
that are greater than the values of 24 and 25 for PRPQ respectively. This is the reason why
PRPQ clearly transfers less data than PRPD in Table 7.3, notably 24%−54% less under the
skews.
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Fig. 7.5 Average number of received tuples at each place by varying the threshold (64M on
1B with 192 cores).

7.5.3 Load Balancing

As previously discussed, the computation Ck has the same characterization as the commu-
nication Nk with regard to load balancing for each algorithm, therefore we evaluate this
metric by the number of received tuples. The values for the maximum and average number
of received tuples at each place are shown in Table 7.3 as well. We can see that all four
algorithms achieve perfect load balancing when the data set is uniform. With increasing
skew, the difference between the value of the maximum and the average for Hash increases,
indicating poor load balancing in the presence of skew. In comparison, PRPD and PRPQ
have more tolerance, showing their ability for handling the skew. The basic Query algorithm
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is balanced, in line with our theoretical analysis in Section 7.3.3. We also note that the dif-
ference between the maximum and average values in PRPQ is smaller than that in PRPD
under skews, manifesting slightly better load balancing. This is consistent with the analysis
in Section 7.3.5: decreasing t can further improve the load balancing (as mentioned, t in
PRPQ is smaller than PRPD).

Table 7.3 Detailed number of received tuples at each place (millions)

Skew/ 0 1 1.4
Algo. Max. Avg. Max. Avg. Max. Avg.

Hash 5.94 5.94 62.40 5.93 347.76 5.94
PRPD 5.94 5.94 3.53 3.51 1.16 1.13
PRPQ 5.94 5.94 2.65 2.64 0.53 0.52
Query 5.94 5.94 2.12 2.12 0.43 0.43

7.5.4 Scalability

We evaluate the scalability of our PRPQ implementation by varying the number of process-
ing cores on the three default datasets, from 24 cores (2 nodes) up to 192. Results are pre-
sented in Figure 7.6, and each phase there is consistent with the implementation explained
in Section 7.4.2.
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Fig. 7.6 The runtime breakdown of PRPQ under different skews by increasing the cores
(64M on 1B).

It can be seen that PRPQ generally scales well under different skews. Notably, the rela-
tive speedup achieved between 48 and 96 cores is close to the ideal 2x, which is obviously
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greater than that between other nodes. This could be attributed to the network overhead,
that the network is extended at the beginning and the data set becomes comparably small
for the underlying system when using 192 cores.

With details for each phase, under low skew, phase 2 and 3 scale well and are the dom-
inant factor of the runtime achieved. In the case of high skew, the third phase becomes
comparably much smaller and the second phase starts to dominate the performance, which
decreases with increasing the number of cores. As the second phase mainly focuses on data
transfer and the third, on join operations, the network load has a higher impact on the join
performance than on the computation workload. For example, in the case of 192 nodes and
high skew, the second phase takes 8.812 secs while the third takes only 0.739 secs (note that
this also includes the time to push back the returned values). Finally, we note that cost of
the fourth phase is extremely small and can therefore be ignored. The reason is that both
the size of hash tables in T and the number of looked up elements (returned values) at each
place relies only on the number of picked skew tuples, which is very small in our tests,
resulting in a final lookup cost in the order of tens of milliseconds.

7.5.5 Comparison with Hash-based Joins

We conclude our analysis with a comparison with the commonly used Hash algorithm, by
analyzing the performance improvement achieved for joins in each algorithm for different
numbers of nodes.
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Fig. 7.7 Speedup ration over the hash algorithm under different skews by varying the nodes
(64M on 1B).

Figure 7.7 presents the speedup ratio of PRPD, PRPQ and Query algorithm over the
basic hash method with increasing number of nodes from 2 (24 cores) to 16 and for skew
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values 1 and 1.4 respectively. All three algorithms consistently achieve speedups, demon-
strating their ability to handle skew on distributed architectures. Furthermore, their speedups
generally increase with increasing number of nodes as well as with increasing the degree
of skew for a fixed number of nodes. Furthermore, for high skewed data, PRPQ achieves
nearly linear speedup while PRPD and Query do not. This can be attributed to the follow-
ing reasons: (1) For Query, the frequency of each element at each place decreases with
increasing nodes, namely the ratio of low frequency elements increases. This in turn has a
negative effect on speedup, as Query is not good at processing such low frequent data. (2)
In comparison, via the variable t, PRPQ always knows high-frequency elements by Query

and low-frequency elements by Hash. This presents an optimal way to process the data and
achieves better speedups. (3) The broadcast cost increases with increasing the number of
nodes, which results in scalability loss in PRPD.

7.6 Conclusions

In this chapter we have introduced a new approach for parallel joins which we have called
PRPQ (partial redistribution & partial query), which targets high-performance, robust joins
in distributed systems. We have conducted a theoretical analysis of our method and also
presented a comparative quantitative evaluation.

The experimental results demonstrate that the proposed PRPQ algorithm is efficient and
robust in the presence of different data skews. Moreover, the results associated with the
theoretical analysis also highlight that our implementation always outperforms the state-of-
art PRPD algorithm [127] under different join workloads.

We envisage that this new proposed join procedure can contribute to the performance
of query executions in our framework. In the next chapter, we will detail the design of
an efficient indexing structure, to meet the speed requirements on data loading and data
querying of a large data analysis system.





Chapter 8

Fast Distributed Loading and Querying
of Large RDF Data

8.1 Introduction

Fast loading speed and query interactivity is important for the exploration and analysis of
RDF data in a web-based (large-scale) analytical environment. In such scenarios, large
computational resources should be tapped in a short time, which requires very fast data
loading of the target dataset(s). In turn, to shorten the data processing life-cycle for each
query, exploration and analysis should also be done in an interactive manner.

In the previous chapters, we have proposed new approaches to improve the performance
of RDF encoding and parallel joins. The former method has laid a solid foundation for data
storage as the output encoded triples can be loaded as indexes directly. The latter technique
can be used for SPARQL query executions with the results retrieved from the built indexes.
It can be seen that the indexes play a pivotal role in system implementations, consequently,
an efficient index targeting fast data loading and retrieving becomes critical. We next turn
to the design of such an index for our system.

In Chapter 2, we divided the indexing approaches of existing distributed RDF systems
into four types based on their data partitioning and placement patterns, namely similar-
size partitioning, hash-based partitioning, sharded/partitioned indexes and graph-based par-
titioning. From the analysis of their advantages and disadvantages, we concluded that the
techniques outlined operate on a trade-off between loading complexity and query efficiency,
with the earlier ones in the list offering superior loading performance at the cost of more
complex/slower querying and the latter ones requiring significant computational effort for
loading and/or partitioning.
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In this chapter, we propose efficient methods for processing RDF using dynamic data re-
partitioning to enable rapid analysis of large datasets. Our approach adopts a two-tier index
architecture on each computation node: a lightweight primary index, to keep loading times
low, and a series of dynamic, multi-level secondary indexes, calculated as a by-product of
query execution, to decrease or remove inter-machine data movement for subsequent queries
that contain the same graph patterns. We are applying a set of parallel techniques that
combine the loading speed of similar-size partitioning with the execution speed of graph-

based partitioning in our framework. The detailed elements of our approach are as follows:

1. We use fixed-length integer encoding for RDF terms and constant-time operations for
indexing (i.e. indexes are based on hash-tables), so as to increase access speed.

2. During indexing, we do not use network communication, so as to increase loading
speed.

3. We maintain a local lightweight primary index supporting very fast retrieval, to avoid
costly scans.

4. We use secondary indexes supporting non-trivial access patterns that built dynami-
cally, as a byproduct of query execution, to amortize costs for common access pat-
terns.

5. We optionally reduce secondary indexes into filters, so as to to reclaim memory.

From that basis, we summarize the contribution of this chapter as follows: (1) We
present a dynamic distributed RDF indexing that can both load data and compute queries fast
on large RDF data, with a focus on analytical queries. (2) We implement our system with
the X10 language and evaluate our system on a cluster using the LUBM benchmark [53].
(3) Experimental results show that our primary index results in very fast loading speeds:
It takes only 7.4 minutes to load 1.1 billion triples on 16 nodes, for a throughput of 2.48
million triples per second, outperforming RDF-3X [89] by a factor of 53 and 4store [54] by
a factor of 16. (4) Our secondary indexes significantly speed up computation, bringing the
performance of our approach close to that of RDF-3X and 4store: It takes about 9, 4 and 0.4
seconds to execute the two most complex LUBM queries over our primary, 2nd level and
3rd level indexes respectively, outperforming RDF-3X in all cases, and 4store for the latter
two cases. For the other queries and indexes, our approach still stays within an interactive
response time. Additionally, our tests also show, by using filters, we can achieve 1.14 -
3.45x execution speedup, with minimal storage overhead (up to 1.2% of index size).
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The rest of this chapter is organized as follows: In Section 8.2, we describe the de-
tailed implementation of the data loading with the primary index building. We present the
methods for secondary indexes building in Section 8.3 and approaches to generate the re-
sponsible distributed filters in Section 8.4. In Section 8.5, we evaluate a prototype of our
implementation and compare to RDF-3X and 4store. In Section 8.6, we discuss both the
techniques used in our design and the comparison with related work. Finally, in Section 8.7,
we conclude the chapter.

8.2 Data Loading

The data loading process contains two parts, triple encoding and primary index building.
Since the former implementation has been presented in Chapter 5, we just focus on the
latter one. We refer to the primary index as (l1), consequently the secondary indexes as
2nd-level (l2), 3rd-level (l3), etc. as in the following chapters.

After the parallel encoding implementation, we build the primary index l1 for the en-
coded triples at each node. Similar to many triple stores, the index itself contains all the
data. We use a modified vertical partitioning approach [3] to decompose the local data into
multiple parts. Triples in [3] are placed into n two-column vertical tables (n is number
of unique properties), which has been shown to be faster for querying than a single table.
However, in [3], to efficiently locate data, all the subjects in each table are sorted, which is
time cost (Nlog(N)) in terms of data loading, especially when the tables are huge.
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Fig. 8.1 The triples and the primary index for a simple two node system (vertical tables in
the dashed square compose the P→ SO and PS→ O part of l1).

In comparison to that, we only use linear-time operations for indexing, inserting each
tuple in an unordered list in a corresponding vertical table. To support multiple access
patterns, we build additional tables. By default, we build P→ SO, PS→ O and PO→ S,
corresponding to the most common access patterns. For example, Figure 8.1 shows the
vertical tables of the primary index l1, which is based on partitioning on the predicate and
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the predicate-subject of each encoded triple at each node (note that the triples are in the
form of integers in this step, we use the string format in our examples just for the sake of
readability). As each node builds their tables independently, there is no communication over
the network for this step. As we will show in the evaluation, local indexing is very fast, so
we could support additional indexes, e.g. to support more efficient joins on the predicate
position, with minimal impact on performance.

As in all RDF stores, there is an element of redundancy in terms of data replication.
Our index consumes more space than the vertical partitioning approach in [3], or a com-
pressed index approach such as the one found in [89]. Nevertheless, our focus is on speed
and horizontal scalability, which increases total available memory. In addition, based on
the fast encoding method described above, the build process of the primary index is very
lightweight: (1) triples are encoded and indexed completely in-memory and all accesses are
memory-aligned, reducing CPU cost; (2) there is no global index as we only build an index
for local data on each computation node, reducing the need for communication; (3) we avoid
sorting, or any non-constant time operation, meaning that the complexity of our approach is

O(N), where N is the number of local statements; and (4) the encoding algorithm achieves
good load balancing, which translates to good load balancing for the (local) indexing. The
above factors contribute to very fast indexing, as we will show in our evaluation.

A1 ?b ?c ?d
p1 p2 p3

(a) A SPARQL query.

<A1 p1 ?b>

join1

[?b]  ?c

join2

[?c]  ?b  ?d

Level 1

Level 2

Level 3

<?b p2 ?c> <?c p3 ?d>

(b) An execution plan.

Fig. 8.2 An example of a simple SPARQL query graph and its query plan.

8.3 Data Querying

Once we have built the primary index, we can compute SPARQL queries through a sequence
of lookups and joins. In this chapter, we only focus on queries consisting exclusively of ba-
sic graph patterns (BGPs), since filters, aggregations etc. have been studied in the literature
in parallel databases for decades. Figure 8.2(a) shows a simple but common SPARQL query,
which consists of three triple patterns that form a graph pattern. The evaluation for such a
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query is to find all the solution mappings from variables in the three patterns to RDF terms
of the underlying data. A reasonable execution plan for this query is shown in Figure 8.2(b).
It has three lookup operators (one for each triple pattern) and two join operators, where the
bracket indicates the join variable. In the following discussion, we assume that there is no
join with predicate variables, since this is the most uncommon category of joins and our in-
dexes could easily be adapted to efficiently support this (creating additional indexes would
not significantly affect loading speed).

Parallel Hash Joins

In our system, with the primary index l1, we can easily look up the results for a statement
pattern at each node. For example, for the two-node system with the same triples as stated
in Section 2.1.1, for the two triple patterns of join1 in Figure 8.2(b), through looking up the
vertical tables with properties p1A1 and p2, we can get the bindings for the variables ?b and
(?b,?c) at each node:

node 1 node 2

?b B1,B2 B3
(?b,?c) (B1C2) (B1C1),(B2C3)

This lookup process can be implemented in parallel and independently for each node.
Nevertheless, a join between any two sub-queries cannot be executed independently at each
node since we have no guarantee that join keys will be located on the same node. We adopt
the parallel hash-join implementation in our system. Namely, results of each subquery are
redistributed among computation nodes by hashing the values of their join keys, so as to
ensure that the appropriate results for the join are co-located [120]. For join1, we redistribute
all results of the first two triple patterns by hashing bindings for the variable ?b, and then
implement the local joins for the received terms at each node. The detailed flow of this
process is shown in the first two segments of Figure 8.3. Similarly, join2 is based on hashing
the bindings of ?c, for both the intermediate results from join1 and the results of the third
triple pattern.

Secondary Indexes

The local lookup for each triple pattern at each node is very fast, since we only need to
locate the corresponding index table in l1, and then retrieve all the elements. E.g. for the
pattern <?b p2 ?c >, we can find the vertical table p2 and return its results in constant time
(since we are using hashtables to index terms in the partitioned tables).
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For join operations, as we have to redistribute all results for each triple pattern as well as
the intermediate results, data transfers across nodes become costly, in terms of bandwidth
and coordination overhead. Although many SPARQL queries with deep join trees gener-
ate large volumes of intermediate results anyway, compared to the hash- or graph-based
partitioning approaches, for the lower levels of the join tree, our approach would transfer
much more data. Therefore, efficient strategies are required to minimize data movement and
improve query performance.

Algorithm 18 Query Execution and Secondary Index Building
The primary index l1 has been built, let Q be a query queue to be processed, l the
secondary indexes initialized as /0 at each node, r the intermediate results to be joined
initialized as /0.

Main procedure:

1: for each Q ∈Q do
2: r=plan(Q) //Plan query with root r
3: compute(r)
4: end for

Procedure compute(n):
5: ri = l.lookup(n)
6: if ri ̸= null then
7: return ri // If an index already has the result
8: else
9: for each child c in n parallel do

10: if c is a triple pattern then
11: lri=l1.lookup(n)
12: rc=redistribute(lri)
13: else
14: rc=compute(c)
15: end if
16: r.add(rc)
17: if isIndexable(rc) then
18: l.index(c,rc)
19: end if
20: end for
21: return join(r)
22: end if

We build secondary indexes (l2 ... ln), based on the redistribution of data during query
execution. The build process of such indexes is presented in Algorithm 18. We have a queue
of queries Q. For each query Q, we assume a planning method (which is beyond the scope
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of our work) that results in an execution plan represented as a tree with root r. We assume
that queries in the queue are processed sequentially and each node keeps a set of indexes of
various levels l1..n. All nodes start with index l1 built and all other indexes are empty.

We evaluate the expressions in the tree bottom-up, in parallel (lines 9 and 14), redis-
tributing results as required (line 12). The function isIndexable() determines whether
nodes should retain the (indexed) data from remote nodes. An example criterion for in-
dexing is the depth of the subtree (corresponding to the indexing level described in the
following), which we also use in our implementation. The construct parallel do implies
synchronization at end for. Results from existing indexes are re-used when possible (lines
6 and 7). Once the results of all children of a node become available, a join is executed. Note
that this process implies a high degree of parallelism since individual joins are executed in
parallel and multiple join expressions are calculated in parallel, when possible.

An example for the query in Figure 8.2 over the data in Figure 8.1 is shown in Figure 8.3.
In this figure, for the pattern <?b p2 ?c> in join1, we get its results from the table p2 of l1 at
each node, then redistribute all of them on the value of ?b. In this way, the tuple < B1 C1 >

at node 2 is sent to node 1 (based on hashing B1) and the tuple < B2 > is sent to node 2.
Joining can now be done locally.
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Fig. 8.3 Example of query execution and secondary index building.

After redistributing results, a set of new tables is built on l2: for ∗p2∗ and A1p1∗. The
join2 is executed in a similar manner: since there is no table for ∗p3∗ in l2, the data from
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l1 is redistributed. The results for join1 are already available, but need to be redistributed,
since we are now joining on a different variable ?c.

After this redistribution, the result can again be performed locally. Two new tables are
generated: ∗p3∗ on l2 and A1p1∗ p2∗ on l3.

As shown above, the index is constructed by a simple copy of the redistributed data,
which is introduced by a join of a query. Namely, it is a byproduct of query execution.
The secondary indexes are re-used by other queries that contain patterns in common. Note
that we are using the term indexing instead of caching, because the data is re-partitioned on
demand and is fully indexed in a sharded manner, as opposed to storing intermediate results
and re-using them, such as the cache used in centralised RDF stores [114, 115]. In practice,
this means that, indexes can be re-used for any query containing them. The consequent
cost is that we need to re-compute the joins locally for every query. In principle, we could
combine this approach with caching.

Index Levels

Based on the example above, we define the stratified semantics of the query execution plans
in our system.

Definition 1. Given an execution plan containing a finite set of general operations, which
may have both lookups and joins. The level L of an operation is assigned to Lk (k ≥ 1) in
the plan as follows:

- all triple pattern lookups are L1 operations and

- an operation with Lk+1 consists of a join between a set of Li (i≤ k) operations, where
there exists at least one i = k and the join variable in Lk+1 and Lk is different.

For example, in the execution plan in Figure 8.2, three lookup operations are located in
L1, join1 is assigned to Level 2 because both its inputs are L1 operations, and consequently
join2 is an L3 operation.

According to Algorithm 18, with a built second-level index l2, the execution of a join
located in L2 will be cost-free in terms of network communication. This means that, there
are only local joins for the queries that contain only L1 and L2 operations, for some given
query patterns. However, for a query containing higher level operations, we still need to
transfer the intermediate results to remote nodes. An l3 index allows executing L3 operations
with no network traffic, and so on.
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In the process of building the k-th level index lk, if we run all possible queries, what will

the data on each node look like? In fact, according to the terminology regarding graph par-

titioning used in [61], the 2nd-level index in our method on each node will construct a 2-hop
subgraph, the 3rd-level one will be a 3-hop subgraph, and lk will be a k-hop subgraph. This
means that our method essentially does dynamic graph-based partitioning starting from an
initial equal-size partitioning, based on the query load. Therefore, our system can combine
the advantages of fast data loading and efficient querying. We will show that this design
is indeed efficient in our evaluation presented in Section 8.5. In addition, the theoretical
results from [61] can be applied for our approach as well.

8.4 Distributed Filters

Secondary indexes lk reduce the network communication for a query. As k increases, the
transferred data between nodes decreases, resulting in improved performance. However,
the space for the entire index l also increases, constituting a trade-off between space and
performance. In the meantime, the higher level an index is, the larger its size could be.
There are two main reasons for this: (1) lk+1 has more tables than lk, as its properties are
constructed by combining the properties of lk with other indexes’; and (2) the size of a table
in lk+1 could be larger than that in lk, for example lk+1 could include the cartesian product

of elements in lk.
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(b) join in its full path.

?a ?b ?c
p1 p2

?c ?d
p3

(c) join in its main path.

Fig. 8.4 A complex SPARQL query graph and the join in its graph path.

Various strategies can be applied to reduce the size of l, such as reuse of repeated parts
between each index, building indexes for frequent graph patterns etc. [67]. Orthogonally
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to these approaches, we introduce distributed filters as a compact alternative to secondary
indexes.

Because some elements taking part in a join could not possibly have a contribution to
the output, if we know their join results (for example as intermediate results from a previous
query), we can remove such elements before performing the join. Filters operate by filtering
out intermediate results at the source, based on aggregate results stored during previous
query executions and are focused on a join point (e.g. the join on ?c in Figure 8.4(a)), or,
otherwise expressed, an operator on the query plan.

For a join on v between two graph patterns of a query si and s j, we propose one of the
following: (1) full path filters, which contain all values of v after the join of si and s j, and
(2) main path filters, containing the results of v over the join between the main path graph
of si and s j. The main path graph is defined as the graph consisting only of the triples with
a single constant (most commonly the predicate).

For example, the query graph shown in Figure 8.4(a), contains a join between a L3 and
L2 operation on ?c. The join results of ?c in Figure 8.4(b) can be used instead of an l4 table,
constituting a F4 filter. Bindings for c are filtered at source according to this filter, for this

particular query or any query that subsumes this query. Figure 8.4(c) shows the structure
of a main path filter for the same query.

These two filters have their own advantages and shortcomings: (1) the full path filter can
remove more redundant elements. It is also a byproduct of query implementation and can
be applied to our system by projecting out the desired variables and eliminating duplicates.
However, the usage of such a filter is limited to queries that subsume the entire pattern;
(2) the main path can be used in more queries, especially since it corresponds to the less
selective part of the query, essentially capturing the structure of the graph. Regardless, like
many other path filters [76], it can only remove part of the redundant elements, since it is
less selective than the query. In addition, it needs pre-execution (or a less efficient query
plan starting from the non-selective part).

For a specified query, obviously, the size of a filter will be much smaller than the corre-
sponding indexes, because we only store the (discrete) results for the join variable. In the
meantime, we should also notice that a filter is less efficient than a index, as it only reduces

the network communication, while the index can remove such communication. In addition,
the filtering operation bears some, relatively small, computational cost. We will compare
the performance of both techniques in our evaluation in Section 8.5. In fact, we can adopt
a hybrid construction for the high-level index, e.g. using index architectures for some join
patterns while applying filter architectures for others, so as to achieve the best balancing be-
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tween performance and space. In addition, for full path filters, it is easy and computationally
inexpensive to reduce an index to a filter. Finally, we should note that filters are partitioned
in the same way as secondary indexes across the network, placing an equal space burden on
all nodes.

8.5 Evaluation

We present an experimental evaluation of our approach to determine the performance of
our lightweight indexing, the secondary indexes and the distributed filters. We run the
LUBM [53] benchmark over a commodity cluster and compare loading speed and perfor-
mance of query execution with a top-performing RDF store running on a single node as well
as a cluster RDF store.

The evaluation platform is the same as the described previously. We use 16 IBM
iDataPlexr nodes with two 6-core Intel Xeonr X5679 processors clocked at 2.93 GHz,
128GB of RAM and a single 1TB SATA hard-drive, connected using Gigabit Ethernet. We
use Linux kernel version 2.6.32-220, X10 version 2.3 compiling to C++ and gcc version
4.4.6.

8.5.1 Setup

Although in this chapter we are focusing on an indexing method, as opposed to a full clus-
tered RDF store, we have performed comparisons on query execution with RDF-3X [89]
and 4store [54]. The former represents the state-of-the-art in terms of a single machine
stores while the latter is a clustered RDF store designed to operate main in-memory1. We
have modified the setup so as to isolate the BGP processing costs and nullify, to the extent
possible, the advantage of our approach and 4store regarding I/O performance. Specifically,
we do not count the time spent on query parsing, plan generation, dictionary lookup or
result output, so as to focus on analyzing the core performance of query execution. More
exactly, we only report times for the operations of index location, index scanning and the
relative joins in the execution phase. To achieve this:

• For RDF-3X, we deployed version 0.3.7 on a single node2. We add responsible pro-

filing counters to the source code as the same as the ones in Chapter 3.

1Refer to http://4store.org/trac/wiki/Tuning
2Note that we use single-node RDF-3X as this open-sourced triple store is popular used as a performance

reference for RDF stores, and also for cluster solutions such as [61].

http://4store.org/trac/wiki/Tuning
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• For 4store, we installed the latest version 1.1.5 on 16 nodes. We use the default
indexes and set the value of the system parameter segment to 256 as a recommended
value. In the meantime, we also set soft-limit to -1, so that we can retrieve all the
results. As 4store has provided the desired profiling tools, we can directly get the
time taken to locate the results and perform the joins on the backend systems (storage
layer), through examining the bind time. We have confirmed this with the 4store
community.

We do not compare MapReduce-based approaches since, due to platform overhead, they
do not execute interactive queries in reasonable time. For example, SHARD [97], has run-
times for LUBM in the hundreds of seconds.

8.5.2 Benchmark

We load LUBM(8000), containing about 1.1 billion triples (about 190GB) and run all 14
queries on this data. As our system does not support RDF inference, we use a modified
query set to get results for most queries, which is given in Appendix B. For example, since
the basic graph pattern <?x type Student> returns no results in Query 10, we use <?x type
GraduateStudent> instead.

We have chosen LUBM because our system currently only supports BGPs and because
LUBM includes BGPs with varying selectivity and complexity. Although there exist well-
known weaknesses in this benchmark, such weaknesses mainly affect query planning and
data distribution, which is not the focus of our system. As future work, we are planning
to experiment with more complex benchmarks, in terms of structure and features (such as
aggregation).

To conduct a precise performance comparison, we load and query data on memory, so as
to reduce the effect of I/O. Therefore, we set the index locations of RDF-3X and 4store to a
tmpfs file system resident in memory at each node, so that queries can be fully implemented
over distributed memory. For data loading, because our tmpfs file system at each node
cannot hold all 1.1 billion triples, we load data from hard-disk to memory for the two stores.
Although our system can operate completely in distributed memory, in the interests of a fair
comparison, we read data from disks as well during the data loading process.

8.5.3 Data Loading Time

We load 1.1 billion triples and build three primary indexes (on P, PO and PS). For RDF-3X
and 4store, we report the time to load data from disk into the memory partition(s). For both
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systems, we are using the default indexes.

Table 8.1 Time to load 1.1 billion triples

RDF-3X 23296 seconds

4store 7078 seconds

Our system
Read from disk: 103 seconds
Triple encoding: 254 seconds
Building l1: (P, PO, PS) 86 seconds
Total: 443 seconds

As shown in Table 8.1, we take 103 seconds to read the data into memory, 254 seconds
to encode triples and 86 seconds to build the primary index l1, for an average throughput
of 429MB or 2.48M triples per second. In comparison, 4store takes 7078 seconds, for an
average throughput of 155K triples per second. The reason is that our loading process is
totally in parallel at each core and our indexes are very lightweight, while 4store needs to
do global sorts and uses a master node for coordination.

We also see that RDF-3X takes about 6.5 hours, for an average throughput of 47K triples
per second, performing much worse than the other two systems (presumably because we are
running on one node and because of the heavier indexing scheme of RDF-3X). From the
results reported in [61], the graph-based partitioning method is even slower than RDF-3X,
highlighting the advantage of our approach, in terms of loading speed.

8.5.4 General Query Performance

We execute all LUBM queries using l1 and l2, since the number of joins in most queries is
small. Although our system does not use a cache as such, one could consider executions
with secondary indexes as warm runs and l1 as a cold run (we explain further the costs and
benefits of additional index levels later in this section).

Table 8.2 shows the execution time for each query. Both RDF-3X and 4store are very
fast for most queries, staying under 1ms, since many queries in LUBM are very simple.
There is only a marginal difference between cold and warm runs, since we are operating
in-memory. In our system, the execution over l2 is generally much faster than over l1, which
shows that query performance can be highly improved by building a secondary index. The
lowest speedup is achieved on Q2, Q9, Q6 and Q14, the reasons being that (1) Q2 and
Q9 contain the L3 operations (as defined previously), hence intermediate results still need
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Table 8.2 Execution times for the LUBM queries over RDF-3X and 4store with cold and
warm runs, as well as our system with the primary index l1 and second-level index l2 (ms)

Q.
RDF-3X 4store Our system #

cold warm cold warm l1 l2 Results

1 0.19 0.17 9 8 500 14 4
2 11303 11217 4635 4510 8244 3917 2528
3 0.26 0.25 24 22 1635 20 6
4 0.34 0.28 0.45 0.32 10597 445 10
5 0.22 0.18 4.08 3.57 1012 13 146
6 409 382 6.49 5.71 12 12 20 mil.
7 0.64 0.54 0.19 0.15 8129 731 0
8 1.73 1.55 0.69 0.64 5145 564 1874
9 10253 9803 18148 17972 9533 4173 0

10 0.21 0.17 5.76 4.79 986 15 4
11 0.21 0.17 1.24 1.20 505 13 0
12 125 124 0.24 0.20 1285 384 125
13 202 199 18.49 16.01 1141 18 19905
14 1147 1055 21.19 20.45 16 16 63 mil.

redistribution over a l2 index; and (2) Q6 and Q14 contain only a single triple pattern, thus
l2 is not built.

Comparing the warm run of RDF-3X and our implementation with the 2nd-level index:
(1) our approach is slower than RDF-3X for simple and selective queries such as Q1 and
Q3. RDF-3X uses some hundreds of µs to finish the operations of lookup and joins for
candidate results while our system (also 4store) has to do synchronization over a distributed
architecture, which has an overhead of about 10 ms, which is still acceptable; (2) our system
is much faster at complex queries, for example Q2 and Q9, as we can implement joins in
parallel; and queries having low selectivity, for example Q6 and Q14, since it has higher
aggregate I/O; or possible both reasons, such as Q13.

Meanwhile, compared to 4store, we are generally slower, such as for the Q1, Q5, Q6,
Q10, Q11 and Q13. Regardless, the difference in the time cost is very small, only of the
order of ms. The possible reason could be the overhead of our implementation, because we
only adopt hash join as local joins in our method and we have to build the hash table first
and then implement probings. We are also slower on Q4, Q7, Q8 and Q12, in the order of
100 ms, it could be that 4store optimizes the coordination between each node. However, this
difference is still acceptable as our approach is still suitable for interactive applications (in
ms).
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Considering the most complex queries Q2 and Q9, we are obviously much faster3, of
the order of sec. Moreover, we can further improve our performance by employing higher
level indexes. On the other hand, our method is also faster on the simple queries Q3 and
Q14. The reason for this could be that: (1) for Q3, the used hash join performs very fast in
the presence of small-large table joins, and (2) for Q14, we can quickly locate the required
indexes and then organize scans for a large number of tuples.

Most importantly, it should be highlighted that we have parallelised all the operations
and distributed everything, in terms of data loading (including triple encoding and primary
indexing building) and data querying (including joins, secondary indexing building and fil-
tering). For LUBM, our approach is at least an order of magnitude faster at loading data
while still keeping query response time within an interactive range.

8.5.5 Indexes and Filters

We examine the time cost to build indexes and filters, and examine query performance on
executing Q2 and Q9, which are the most complex queries. We first build the second-level
and third-level index for these two queries and then replace the third-level index by either
the main path or the full path filter.

11
.30

3

10
.25

3

11
.21

7

9.8
02

8.2
44 9.5

33

0.3
76

0.4
21

3.9
17 4.1
73

0.5
1

0.3
04

0.4
46

0.4
4

2.7
3 3.6

48

2.7
3

1.2
07

4.6
35

18
.14

8

4.5
1

17
.97

2

0
2
4
6
8

1 0
1 2
1 4
1 6
1 8
2 0
2 2

 

Ru
nti

me
 (s

ec
)

 R D F - 3 X  c o l d
 R D F - 3 X  w a r m
 4 s t o r e  c o l d
 4 s t o r e  w a r m
 q u e r y  o v e r  p r i m a r y  i n d e x
 b u i l d  2 n d - l e v e l  i n d e x i n g
 q u e r y  o v e r  2 n d - l e v e l  i n d e x
 b u i l d  3 r d - l e v e l  i n d e x
 q u e r y  o v e r  3 r d - l e v e l  i n d e x
 q u e r y  w i t h  3 r d - l e v e l  m a i n  p a t h  f i l t e r
 q u e r y  w i t h  3 r d - l e v e l  f u l l  p a t h  f i l t e r

Q 2 Q 9

Fig. 8.5 Runtime for RDF-3X and 4store, and detailed runtime of each implementation for
our system (over Q2 and Q9 using 192 cores).

3For 4store: (i) for Q2, the whole query time is 335 seconds; and (ii) for Q9, here we only provide the
results when running without system parameter soft-limit. If we set this parameter to -1, the execution time is
more than 7 hours.
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Figure 8.5 shows that building a high-level index takes only hundreds of ms, which is
extremely small compared to the query execution time. This operation is very fast, since it
only involves indexing using in-memory hash tables. We can also see that, the higher the
level of index is, the lower the execution time. For example, with l3, Q2 and Q9 can be
executed in 0.45 seconds, which is much faster than l2 and RDF-3X. The reason is that, for
l3, there is no data movement between nodes for joins. Figure 8.5 also demonstrates that,
with a filter, query execution time is higher than with l3 (because we still have to redistribute
elements over the network), but faster than with l2 (speedups from 1.14 to 3.45), showing a
trade-off between space and performance.
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Fig. 8.7 Number of elements in a filter (index).

To further investigate the effect of filters, we record the total number of received ele-
ments and compare to l2 without a filter. The results are presented in Figure 8.6, showing
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that network communication can be greatly reduced through filters - a finding further sup-
ported by the performance improvement evident in Figure 8.5. With a main path filter,
about 70% of data movement associated with Q2 is eliminated. However, we observe that
the transfer time is reduced by only 37%, the reason being the communication overhead and
the computational cost of filtering. Figure 8.6 shows that a full path filter can sometimes be
better than a main path filter. For example, network communication is 0 when Q9 is using
a full path filter, much less than that of the main path filter. In contrast, both filters perform
the same for Q2. For a full l3 index, network communication is zero.

In Figure 8.7, we show the space overhead for each option (expressed as elements, rep-
resented by long integers). We see that, for either method, the cost is much smaller than
the number of tuples transferred without a filter (a maximum of 2 million elements stored
compared to a minimum of 72 million triples transferred). For comparison, we also include
the space cost for l3 (it can be also seen that the size of a filter is up to 1.2% of the index
size).

8.5.6 Load Balancing and Scalability

Because data skew is very common in RDF data [78], we measure load distribution across
nodes on Q2 and Q9. We execute both queries over the primary index using 192 cores by
recording the number of received elements on each core. As shown in Table 8.3, for the
two redistributed operations in each query, there is nearly no skew in Q9. In contrast, there
exists obvious skew in Q2, which indicates that skew-handling techniques such as the ones
presented in Chapter 6 and Chapter 7 can be applied in our system to further improve the
performance for such queries.

Table 8.3 Number of received tuples at each core (millions) for 192 cores

# received elements
L1 L2

Max. Avg. Max. Avg.

Q2 0.987 0.871 0.801 0.532
Q9 1.595 1.593 0.377 0.375

We also test the scalability of our implementation by varying the number of processing
cores. We run Q2 and Q9 over the second-level index and double the number of cores
from 12 (a single node) all the way to 192. The results are presented in Table 8.4. It can
be seen that the execution time of both queries decreases with increasing the number of
cores. Nevertheless, both queries reach a plateau at around 4 seconds. The reason for this
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Table 8.4 Runtime by varying the number of cores over 2nd-level index

# nodes 12 24 48 96 192

Q2 20.804 15.613 13.027 6.827 3.917
Q9 11.453 9.516 7.908 5.272 4.173

is that overhead starts dominating the runtime. With 192 cores, for each core, there will be
approximately 191 (one from each other node) messages, with the associated coordination
overhead, for a total of 532K and 375K tuples transferred for Q2 and Q9 respectively. As
future work, we will work on methods to reduce the distribution for small indexes, so as to
avoid this messaging and coordination overhead.

8.6 Discussion

We position our work against related work in batch processing oriented RDF systems, (clus-
tered) triple stores, graph partitioning based systems and other literature from the database
community.

RDF processing systems geared towards batch processing [79, 120] are based on archi-
tectures developed for a similar-size data partitioning model. In this respect, these systems
are similar to the one proposed here in terms of fast data loading and minimal or no pre-
processing. However, they execute queries directly over the raw data without any encoding
process or additional index, resulting in a heavy network communication costs for com-
plex queries and significant startup overhead. For example, while [79] can process massive
datasets with zero loading time, its minimum runtime is in minutes, not seconds.

Systems such as SHARD [97] and the one in [62] generally adopt hash-based partition-
ing techniques. This leads to slower loading of RDF data, e.g. 0.5 hour to load 270 million
triples is reported in [61]. These systems are similar to our system using the 2nd-level index.
Therefore, they can avoid communication for simple queries containing only L1 operations.
For complex queries with higher-level operations, our system is much faster, because large
amounts of data in these systems still needs to be redistributed across the network to perform
joins.

Clustered RDF stores such as Virtuoso Cluster [44], BigData [112], YARS2 [56] and
4store [54] distribute indexes (typically SPO, POS etc.) over nodes in a cluster to improve
I/O and join throughput. They are more similar in operation to single-node RDF stores than
to our approach, offering lower loading speeds but also persistence and more space-efficient
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indexing. As shown in our tests, we are much faster than 4store in data loading and also
outperform it for complex queries.

Systems using graph-based partitioning such as the ones in [61, 128, 129], are similar
to the ones using high-level indexes proposed here, which impacts positively on query per-
formance. However, graph partitioning and triple placement in these systems happens at
indexing time, hampering loading throughput. For example, the system described in [61]
takes 4 hours to assign 270 million triples according to a 2-hop construction. Although [129]
stores data as a graph, time spent on graph partitioning will still increase exponentially with
increasing either the size of a graph or the parameter hop, because the connections between
vertexes becomes more complex. In contrast, our system has no such costly operations,
but organizes the sub-graph dynamically. Moreover, our incremental indexing process has
proven to be very lightweight, requiring only hundreds of ms, in addition to query execution
time.

Database cracking [64, 65] is an adaptive indexing technique that incorporates contin-
uous self-organization of data storage based on selections in incoming queries. This idea
has influenced the design of the secondary index used in the system described here. How-
ever, research on cracking is concentrated on incrementally sorting the raw data on a single
machine, so as to reduce data lookup time. In comparison, we focus on reducing network
communication and apply some concepts behind cracking to distributed systems and RDF
data. Additionally, as data in our indexes is unordered, we can also apply the existing crack-
ing methods to our local index, so as to further improve the final query performance of our
system.

Result recycling refers to re-using intermediate results from past query executions. We
apply a similar approach to [67], examining caching in a column store using an operator-
at-a-time architecture. The main differences with our approach is that (1) we apply this
on a distributed setting, (2) we store the remote data rather than the materialization of the
intermediate results (i.e. we re-execute the joins locally) and (3) we apply this on RDF data,
using indexing structures with different characteristics. In fact, the eviction and retention
strategies in [67] could be adapted to our system.

Path-based filters proposed for semi-structured data [124] and RDF data [76] can effi-
ciently identify and then reduce elements participating in joins by pre-joining sub-graphs.
The two filters proposed here are similar to those in [76], which filter only for the unique
items of a join. However, there exist four main differences: (1) the height of filters in [76] is
limited, as they pre-join all the possible sub-graphs, which is extremely costly both in terms
of time and space. In comparison, our full path filter is a byproduct of query processing and
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filters are only built for the specified join point; (2) [76] applies filters on a single machine
and focuses on techniques to reduce the size of filters while we use partitioned filters in a
distributed system and have much less pressure in terms of space. We can incorporate the
techniques in [76] to reduce the size of local filters; (3) filters in [76] are mainly used to
reduce the time to lookup underlying sorted data, while we focus on reducing inter-machine
communication; and (4) the structure of filters in [76] is similar to our main path filter, which
can be less efficient than our full path filter for some queries, as shown in our experiments.

8.7 Conclusion

In this chapter, we present a distributed RDF data processing method designed for fast
loading and querying over large-scale data. Based on a simple similar-size data partitioning
infrastructure, we propose a dynamic two-tier index architecture and introduce the design
of a pair of performance-enhancing distributed filters. Our implementation is tested with
the LUBM benchmark [53] and the experimental results demonstrate that our approach can
load data at least an order of magnitude faster than a clustered store operating in RAM
while remaining within an interactive range for query processing and even outperforming
state-of-the-art systems for expensive queries.



Chapter 9

Conclusions and Future Work

With the continuously increasing spread of the semantic web, an efficient RDF data man-
agement systems is becoming critical for the development of application which seek to take
advantage of big RDF data. In this thesis, we have introduced a scalable analysis frame-
work with several novel techniques for efficiently processing large scale RDF data. Here,
we summarize the contributions of this thesis and suggests directions for future work arising
from the developments undertaken.

9.1 Summary of Conclusions

Systemic Evaluation of RDF Stores

As RDF stores have developed, there have been various benchmarks and experiments that
have attempted to evaluate the response time and query throughput of individual stores to
show the weaknesses and strengths of triple store implementations. However, these evalua-
tions have primarily focused on the application level and have not sufficiently investigated
system-level aspects to discover performance inhibitors and bottlenecks. In Chapter 3, we
proposed metrics based on a systematic study of the impact of triple store implementation on
the underlying platform. We chose some popular triple stores as use cases, and performed
our experiments on both a standard and an enterprise platform. Through detailed time cost
and system consumption measures of queries derived from the Berlin SPARQL Benchmark
(BSBM), we described the dynamics and behaviors of query execution across these systems.
The collected data provides insight into different triple store implementation as well as an
understanding of performance differences between the two platforms. The results allow us
to identify performance bottlenecks in existing triple stores implementations which is useful
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in our design efforts for large RDF data processing.

Efficient Parallel Hashing for Massive Data

Since hash tables are commonly used in high performance data analysis systems, we fo-
cused on investigating efficient parallel hash algorithms for processing large-scale data in
Chapter 4. Currently, hash tables on distributed architectures are accessed one key at a time
by local or remote threads while shared-memory approaches focus on accessing a single
table with multiple threads. In comparison, a relatively straightforward "bulk-operation"
approach seems to have been neglected by researchers. Based on such a method, we have
introduced a high-level parallel hashing framework, structured parallel hashing, targeting
efficiently processing massive data on distributed memory. We presented a theoretical anal-
ysis of the proposed method and described the designs of our hashing implementations.
The analysis with evaluations have shown that the proposed method can vastly outperform
distributed hashing methods and can even offer performance comparable with approaches
based on shared memory supercomputers which use specialized hardware predicates. More-
over, we also characterize the performance properties of our hash implementations through
extensive experiments, which allows us to make a more informed choice for our high-
performance implementations.

Scalable RDF Compression

For interoperability, the semi-structured data elements in the semantic web are represented
by long strings. This representation is not efficient for the purposes of semantic web ap-
plications that perform computations over large volumes of information, and the use of
dictionary encoding for this purpose is particularly prevalent in RDF database systems. In
contrast to most of the centralized implementations, in Chapter 5, we have proposed a scal-
able and efficient dictionary encoding scheme for encoding large RDF data over distributed
architectures. We have described the detailed implementation and optimization of our algo-
rithm using the X10 language and evaluated its performance on a cluster of up to 384 cores
with datasets of up to 11 billion triples. The experimental results have demonstrated that our
method is computationally fast and has achieved very high throughput in terms of RDF en-
coding. Further, when compared to the state-of-art MapReduce algorithm, we demonstrated
a speedup of 2.6−7.4× and excellent scalability.
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Efficient and Robust Parallel Joins

The performance of joins in parallel database management systems is critical for query
implementations. As data skew naturally exists in many applications, poorly engineered
join operations always result in load imbalance and performance bottlenecks. State-of-the-
art methods designed to handle such a problem offer significant improvements over naive
implementations, however, performance could be improved further through removal of the
dependency on global skew knowledge and the redundancy on data movements.

In Chapter 6, we introduced query-based joins, a novel parallel join approach for han-
dling data skew in distributed architectures. We presented the detailed implementation of
our method and also evaluated it over a distributed system with different datasets. The ex-
perimental results have shown that the new approach has the property of robustness against
skew, which can be considered as a supplement for the existing hash-based and duplication-
based schemes. Moreover, we have extended our framework to distributed outer joins and
proposed the efficient query with counters algorithm, which is also shown to be faster than
the state-of-the-art method in the presence of high skew.

As the query-based joins performs badly when processing low skewed data, in Chap-
ter 7, we have proposed another more efficient and robust join algorithm referred to as
PRPQ (partial redistribution & partial query). We have conducted a theoretical analysis
and presented detailed implementation as well as evaluations of this algorithm. The exper-
imental results over various join workloads have demonstrated that the PRPQ algorithm is
indeed robust and scalable under a wide range of skew conditions. Specifically, compared
to the state-of-art PRPD method, we have achieved 16%−167% performance improvement
and 24%−54% less network communication, which confirms our theoretical analysis.

Dynamical Indexing over Distributed Systems

Indexing methods in current distributed RDF systems are not suitable for a high perfor-
mance data analysis system, as all of them meet performance bottlenecks on either data
loading or querying when processing large amounts of data. In Chapter 8, we have proposed
an efficient method for processing RDF using dynamic data re-partitioning to enable rapid
analysis of large datasets. Our approach adopts a two-tier index architecture on each com-
putation node: (1) a lightweight primary index, to keep loading times low, and (2) a series
of dynamic, multi-level secondary indexes, calculated as a by-product of query execution,
to decrease or remove inter-machine data movement for subsequent queries that contain the
same graph patterns. In addition, we have proposed methods to replace some secondary in-
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dexes with distributed filters, so as to decrease memory consumption. Experimental results
on a commodity cluster of 16 nodes show that our multi-level indexing approach can indeed
improve loading speeds by an order of magnitude while remaining competitive in terms of
performance. Our system can load 1.1 billion triples at a rate of 2.48 million triples per
second and provides competitive performance to RDF-3X and 4store.

9.2 Future Work

Extension of Current Implementations

The final implementation in Chapter 8 has demonstrated that our designs can very quickly
process large scale RDF data. Regardless, we can investigate further extensions to our
approach through the application of methods for skew handling, index size reduction and
incremental sorting as discussed, which could further improve performance.

Moreover, as our implementation over the distributed system are mainly based on bulk
operations, in which the transferred chunks are normally very large. In this scenario, saving
network communications would make a great contribution to the performance. Therefore,
additional techniques on this aspect can be further investigated. For example, efficient com-
pression/decompression methods for data communication would be very relevant, although
there will be a trade-off between the computation and communication cost.

Finally, as we focus on applying parallel techniques to RDF data processing, the given
workloads as well as the network topology of test platform in our evaluations is relatively
simple. In order to meet the challenges of more complex workloads and networks, efficient
scheduling and predictive approaches can be further developed on the basis of our frame-
work, so as to satisfy the latency and throughput requirements. In the meantime, efficient
data placement strategies can also be considered, to further exploit locality of data access,
and consequently optimize core utilization and reduce network consumption.

Applied to RDF Reasoning

RDF reasoning, namely inferring additional information from the presented RDF data, is a
crucial problem for the semantic web. It has been used for deriving higher-level knowledge,
assisting decision support and data cleaning. For a RDF management system, it can also be
used for enriching the results of queries by adding implicit information.

In terms of big data reasoning, there exist significant challenges, as the research of arti-
ficial intelligence traditionally focuses on rich knowledge structures (instead of large scale
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data) and the computational cost of many methods central to the area. It is clear that ap-
plying parallel techniques on reasoning would also encounter similar computation, network
communication and load balancing problems as those solved here.

To be associated with the techniques proposed in this thesis, the dictionary encoding
method can be used to improve reasoning ability, as the computation cost can be highly
reduced over numbers rather than long strings. Moreover, because the computation of well-

founded semantics can be modeled as a sequence of join and anti-join operations, it can be
foreseen that our proposed join algorithms can also be applied for increasing the reasoning
processing performance.

Towards a High Performance RDF Analysis Engine

Currently, our system can compute simple SPARQL queries, however we can further extend
the system so as to include a larger set of functionality, such as inclusion of aggregates, and
thus be able to run more complex benchmarks. In addition, although our system has much
lower coordination overhead than systems based on Hadoop, we can reduce it further by
limiting the number of nodes involved in cheap operations.

Moreover, as this thesis is concentrated on system implementations, the details about
query plan generation has not been discussed. In fact, similarly to other data management
systems, that process will be critical for SPARQL query execution as well. For example,
choosing a suitable join order would obviously improve the query performance. In this
scenario, efficient strategies as well as detailed time cost model for query plan optimization
have to be considered. Additionally, for a completed RDF system, besides the functions of
data storage and data querying, other management operations such as data adding/deleting
and result materialization need to be considered as well.

We anticipate that with extensions to our framework, a highly efficient distributed man-
agement system specifically for analyzing large RDF data can be developed, and this would
represent a significant contribution to semantic web applications in this big data era.

9.3 Concluding Remarks

In this thesis, from the basis of studying current triple stores and parallel hashing, we have
introduced the design of a scalable framework for analyzing large-scale RDF data. We
have presented the details of three core operations, in terms of system implementations:
(1) underlying dictionary encoding, (2) parallel joins and (3) indexing operations. We have
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proposed various techniques to improve the performance of each of these operations and
demonstrated their efficiency through performance comparisons with the state-of-art meth-
ods. Moreover, the final system-level evaluation has shown that we can load large RDF data
very fast while remaining within an interactive range for query processing.
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Appendix A

The Detailed Implementation of Query
with Counters

R Distribution
1: finish async at p ∈ P {
2: Initialize R_c:array[array[tuple]](N)
3: for tuple ∈ list_o f _R do
4: des← hash(tuple.key)
5: R_c(des).add(tuple)

6: end for
7: for i← 0..(N−1) do
8: Serialize R_c(i) to ser_R_c(i)

9: Push ser_R_c(i) to r_R_c(i)(here) at place i

10: end for
11: }

Push Query Keys
12: finish async at p ∈ P {
13: Initialize T:array[hashmap[key,ArrayList(value)]](N)
14: for tuple ∈ list_o f _S do
15: des← hash(tuple.key);
16: if tuple.key ̸∈ T(des) then
17: T(des).put(tuple.key, tuple.value)

18: else
19: T(des).get(tuple.key).value.add(tuple.value)
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20: end if
21: end for
22: for i← 0..(N−1) do
23: Extract keys in T(i) to local_key_c(here)(i)
24: Serialize local_key_c(here)(i) to ser_key(i)

25: Push ser_key(i) to remote_key_c(i)(here) at place i
26: end for
27: }

Count Matches and Return Queried Values
28: finish async at p ∈ P {
29: Initialize T ′:hashmap, value_c:array[value]
30: for i← 0..(N−1) do
31: Deserialize r_R_c(here)(i) to tuples
32: Put all <tuple.key, (tuple.value, 0)> into T ′

33: end for
34: for i← 0..(N−1) do
35: Deserialize remote_key_c(here)(i) to key_c

36: for key ∈ key_c do
37: if key ∈ T ′ then
38: value_c.add(T ′.get(key).value)

39: T ′.get(key).counter++

40: else
41: value_c.add(null)

42: end if
43: end for
44: Push value_c(i) to r_value_c(i)(here) at place i

45: end for
46: }

Results Lookups State finish async at p ∈ P {
47: for i← 0..(N−1) do
48: Deserialize r_value_c(here)(i) to local_value_c

49: for value ∈ local_value_c do
50: if value ̸= null then
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51: Look corresponding key in T (i)

52: Output matched results
53: end if
54: end for
55: end for
56: for key ∈ T ′ do
57: if T ′.get(key).counter == 0 then
58: Output non-matched results
59: end if
60: end for
61: }





Appendix B

Rewritten LUBM SPARQL Queries

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix ub: <http://www.lehigh.edu/ zhp2/2004/0401/univ-bench.owl#>

Q1:
select ?x
where { ?x rdf:type ub:GraduateStudent.

?x ub:takesCourse <http://www.Department0.University0.edu/GraduateCourse0>. }
Q2:
select ?x ?y ?z
where { ?x rdf:type lubm:GraduateStudent.

?y rdf:type lubm:Department.
?z rdf:type lubm:University.
?y lubm:subOrganizationOf ?z.
?x lubm:memberOf ?y.
?x lubm:undergraduateDegreeFrom ?z. }

Q3:
select ?x
where { ?x rdf:type ub:Publication.

?x ub:pub-licationAuthor <http://www.Department0.University0.edu/AssistantProfessor0>.}
Q4:
select ?x ?y1 ?y2 ?y3
where { ?x rdf:type ub:FullProfessor.

?x ub:worksFor <http://www.Department0.University0.edu>.
?x ub:name ?y1.
?x ub:emailAddress ?y2.
?x ub:telephone ?y3.}

Q5:
select ?x
where { ?x rdf:type ub:GraduateStudent.

?x ub:memberOf <http://www.Department0.University0.edu>.}
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Q6:
select ?x
where { ?x rdf:type ub:GraduateStudent.}
Q7:
select ?x ?y
where { ?x rdf:type ub:GraduateStudent.

?y rdf:type ub:Course.
?x ub:takesCourse ?y.
<http://www.De-partment0.University0.edu/AssociateProfessor0> ub:teacherOf ?y.}

Q8:
select ?x ?y ?z
where { ?x rdf:type ub:GraduateStudent.

?y rdf:type ub:Department.
?x ub:memberOf ?y.
?y ub:sub-OrganizationOf <http://www.University0.edu>.
?x ub:em-ailAddress ?z.}

Q9:
select ?x ?y ?z
where { ?x rdf:type ub:GraduateStudent.

?y rdf:type ub:FullProfessor.
?z rdf:type ub:Course.
?x ub:advisor ?y.
?y ub:teacherOf ?z.
?x ub:takesCourse ?z.}

Q10:
select ?x
where { ?x rdf:type ub:GraduateStudent.

?x ub:takesCourse <http://www.Department0.University0.edu/GraduateCourse0>.}
Q11:
select ?x
where { ?x rdf:type ub:ResearchGroup.

?x ub:subOrganizationOf <http://www.University0.edu>.}
Q12:
select ?x ?y
where { ?x rdf:type ub:FullProfessor.

?y rdf:type ub:Department.
?x ub:worksFor ?y.
?y ub:subOrganizationOf <http://www.University0.edu>.}

Q13:
select ?x
where { ?x rdf:type ub:GraduateStudent.

?x ub:undergraduateDegreeFrom <http://www.University0.edu>.}
Q14:
select ?x
where { ?x rdf:type ub:UndergraduateStudent.}
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