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Abstract

In winter 2009 a number of physicists met in Paris to discuss the prospect of ob-

serving the CMB B-mode polarization using a novel technique called bolometric in-

terferometry. This was the first meeting of what would later become the QUBIC

collaboration. In this thesis we discuss the scientific reasons for CMB observation, we

present a detailed explanation of how QUBIC will use bolometric interferometry to

measure CMB polarization and in particular we discuss the author’s contribution to

the project. As part of the sub-mm optics research group in the National University of

Ireland Maynooth the author was charged with the design and modeling of the optics

that would focus the beam from the sky onto the bolometric detectors. This thesis

describes various types of reflecting and refracting optics that were investigated. The

results we present are useful not only for the QUBIC instrument, but for the design

of imaging experiments in general.

Detection of CMB B-mode polarization is one of the supreme goals of modern cosmo-

logy. The faintness of this signal, combined with the interferometric observing tech-

nique, places extreme performance specifications on the QUBIC optics. Fortunately,

as we shall show, there are types of well-known reflecting and refracting telescopes

that are suitable for QUBIC. In this thesis I propose a design for the quasi-optical

combiner that will perform as required.



1 The Cosmic Microwave Background

Between the idea

And the reality

Between the motion

And the act

T. S. Eliot

1.1 A signal from the early Universe

The Cosmic Microwave Background (CMB) is a highly red-shifted thermal radiation

signal from the early Universe. From its initial prediction and detection to current

attempts to map its polarization the CMB has profoundly deepened our understand-

ing of the Universe. To date the CMB has the most accurately measured black body

spectrum in nature. Its black body spectrum corresponds to a temperature of T = 2.7

K and it is responsible for a “glow” across the cosmos not associated with a stellar

or galactic source. Initially thought to be spurious systemic noise, the CMB has al-

lowed us to quantify the curvature of space time as well as ordinary and dark-matter

densities. A plethora of scientific knowledge has emerged from the quantification of

CMB temperature anisotropies. Detection of CMB polarization is expected to her-

ald a new era of understanding of inflationary cosmology. In this chapter we briefly

discuss the characteristics of the Microwave Background from its origin to its tem-

perature and polarization spectrum. We also present the case for the further study

of the CMB concluding with the importance of detecting the extremely faint B-mode

polarization.
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1.2 A brief history of CMB observations

For almost 50 years cosmologists have made remarkable attempts to observe the CMB

with greater and greater sensitivity. These efforts culminated in May 2009 with the

launch of ESA’s Planck satellite [1]. Like many scientific milestones the initial discov-

ery of the CMB was purely accidental. Predicted by Alpher, Gamov and Hermann in

1947 [2] as a consequence of a Freidmann-Lemâıtre Universe it lay undetected until

1965 when two radio astronomers (Penzias and Willson) encountered excess noise in

a well calibrated horn antenna. The signal causing this noise appeared isotropic and

they estimated that it corresponded to a temperature of 3.5 ± 1.0 K. Following dis-

cussions with various other researchers the noise was linked with the relic black body

radiation predicted by Alpher and Herman. In 1965 two papers were published that

would dramatically influence the course of far infrared astronomy over the next 50

years. The first by Penzias and Wilson detailed their observations [3]. This was com-

plimented by Dicke, Peebles and Roll who used the Hot Bang cosmological paradigm

to offer an explanation for the thermal background noise [4].

Large scale galaxy surveys have revealed that the structure of the Universe is not

uniform in all directions. Cosmologists ascertain that modern structures have evolved

from anisotropies within the primordial fluid. In the 1970’s physicists realized that

these anisotropies would have imprinted themselves onto the CMB in the form of

temperature fluctuations. Over the next 20 years CMB cosmology was dominated

by attempts to observe these fluctuations. In 1992 the DMR (Differential Microwave

Radiometers) on NASA’s COBE (Cosmic Microwave Explorer) satellite detected tem-

perature anisotropies in the CMB at the level of ∆T
T
≈ 10−5 [5]. Also the FIRAS (Far

Infrared Absolute Spectrophotometer) instrument on COBE gave a definitive meas-

urement of the CMB’s power spectrum [6]. The FIRAS data gave an excellent fit to

a back-body spectrum with a temperature of 2.726 K. Stephen Hawking commented

that the COBE results were the “greatest scientific discovery of the century”.

Fluctuations in the primordial fluid imposed a damped oscillating temperature power

spectrum on the CMB. A model of the CMB power spectrum is shown in Figure 1.1.

Here the various classifications of temperature anisotropies are indicated1. In the past

two decades a number of CMB experiments have detected the primary peak of the

1A brief description of these temperature anisotropies will be given in section 1.3.3
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temperature spectrum as well as the damped second and third peak. NASA’s WMAP

(Wilkinson Microwave Anisotropy Probe) observations have produced a remarkably

precise power spectrum [7] [8]. This measured power spectrum is shown in Figure

1.2 and is consistent with the power spectrum resulting when one assumes a ΛCDM

dominated Universe. It is predicted that the acoustic peaks in the CMB’s temperat-

ure power spectrum are the result of quantum fluctuations occurring in the Universe

within 10−35 seconds of the Big Bang. ESA’s Planck satellite currently operating in an

L2 orbit has been designed to measure with the minutest of precision the remaining in-

formation from the temperature anisotropies and also measure the CMB’s polarization

to a high degree of accuracy [9].

Figure 1.1: Simulated angular power spectrum of CMB primary temperature aniso-

tropies. The levels of tensor anisotropies resulting from gravitational waves

are also shown. This image is taken from http://nedwww.ipac.caltech.

edu/level5/March05/Scott/Scott4.html and was generated using the

well-known CMBFAST computer program [10]
.

Thompson scattering of photons off electrons in the primordial fluid led to the po-

larization of the CMB. In the 1970’s cosmologists estimated that photons scattered

during the era of recombination would have their polarization states frozen within the

CMB. The detection of CMB polarization is of primary importance in modern cos-

mology. The degree of CMB polarization is extremely small and it wasn’t until 2002

that the DASI (Degree Angular Scale Interferometer) experiment detected a definitive

polarization signal in the CMB [11].
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Figure 1.2: CMB power spectra measured by WMAP. Top : WMAP temperature

power spectrum. These results are consistent with the ACBAR and CBI

measurements. Bottom : The cross correlation of the temperature power

spectrum and the E-mode polarization power spectrum. All figures taken

from http://lambda.gsfc.nasa.gov/product/map/dr4/m_images.cfm.

The polarization signal detected by DASI is referred to as the E-mode polarization

of the CMB. Another even fainter signal dubbed the B-mode polarization has been

predicted by theorists and currently lies unobserved. Quantification of the CMB B-

mode polarization is the Sanctum Sanctorum of CMB cosmology with repercussions

11
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for inflationary models as well as Grand Unification theories.

1.3 Modern Cosmology and the CMB

1.3.1 The Big Bang and the expanding Universe

The CMB was predicted as a thermal radiation fossil of the Big Bang. The Big

Bang theory is in part a result of careful consideration of the consequences of general

relativity and cosmological observations. The Einstein equation

Gµν = 8πGTµν − gµνΛ (1.3.1)

describes the coupling of the energy momentum tensor Tµν of a massive object to

the space time occupied by the object [12]. Here Gµν is the Einstein tensor, Λ is

the cosmological constant, G is Newton’s gravitational constant and gµν is the metric

tensor. The metric tensor quantifies the separation of events in space time. Assuming

the Universe itself is homogeneous and isotropic the metric, which is dependent on the

curvature of space, can be written as

(ds)2 = c2(dt)2 −R2(t)
[ (dr)2

1−Kr2
+ r2(dθ)2 + r2sin2θ(dφ)2

]
. (1.3.2)

This was derived independently in the 1930’s by Friedmann, Robertson and Walker.

Here R(t) is the cosmological scale factor while K is a measure of the curvature of

3-dimensional space. Also r, θ and φ are co-moving spherical coordinates. Assuming

the Friedmann Robertson Walker metric to be correct the Einstein equation reduces

to

(Ṙ
R

)2

+
c2K

R2
=

8πGρ

3
+

Λc2

3
(1.3.3)

which allows us to relate the variation of the cosmological scale factor (R) to the

density (ρ), curvature (K) and the cosmological constant (Λ) of the Universe.
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Equation (1.3.3) is referred to as the Friedmann equation and the quantity
(
Ṙ
R

)
is

called the Hubble parameter H(t) [13]. The Friedmann equation indicates that the

scale factor R of the Universe may vary over time. This was first verified by Edwin

Hubble who investigated the redshift of visible light from Cepheid stars in local galaxy

clusters [14]. Hubble’s results and numerous others that have followed indicate that

the Universe is expanding. The value of H is currently measured to be H = 70.5± 1.3

kms−1 Mpc−1. This value has been derived from the WMAP 5 year data combined

with distance measurements from Type Ia supernovae (SN) and the Baryon Acoustic

Oscillations (BAO) in the distribution of galaxies.

For simple Friedmann models Λ = K = 0. The critical mass density required for

a flat Universe (K = 0) is ρc =
3H2

0

8πG
. Here H0 refers to today’s Hubble parameter

(the Hubble constant). Equation 1.3.3 shows that three competing properties of the

Universe contribute its current expansion. These are the quantity of matter within

the Universe , its cosmological constant and its curvature. It is convenient to express

these in terms of the critical density.

We define the mass contribution to the expansion as ΩM = ρM0/ρc. Here ρM0 is the

current mass density of the Universe while ρc is the critical mass density. Observation-

ally ρM0 has been measured to be ≈ 10−28 kgm−3 while ρc is ≈ 10−26 kgm−3. Therefore

ρM0 < ρc and so ΩM is less than unity [15].

Analogous to ΩM we define the contribution factor of the cosmological constant as

ΩΛ = Λ
3H2

0
and the curvature contribution as ΩK = − K

R2
0H

2
0
. Here R0 represents the

present scale factor of the Universe. These parameters allow us to rewrite equation

(1.3.3) as

ΩM + ΩΛ + ΩK = 1. (1.3.4)

A full set of CMB observations will allow cosmologists to determine the values ΩM ,ΩΛ

and ΩK in equation (1.3.4) and fully describe the expanding Universe.

Proponents of the Big Bang theory use the results of Hubble and equation (1.3.3) to

argue that if the Universe is currently expanding there must be an epoch in its history

when all matter and radiation were compressed into a singularity of infinite pressure
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and temperature. This singularity expanded outwards in an event dubbed the Big

Bang to give birth to our Universe.

In the relatively early stages of the Universe the energy density would have been signi-

ficantly greater than the present value due to the Universe’s more compact size. When

T > 4000K, within 370,000 years of the Big Bang, all matter was ionized due to the

thermal energy of electrons exceeding the binding energy of neutral hydrogen, helium

and deuterium. Until this time the average path length of photons was restricted

due to Thompson scattering from free electrons. Photons and baryons were there-

fore coupled together by their interactions with the free electrons into a hot ionized

plasma [16].

Due to expansion approximately 370,000 years after the Big Bang the temperature of

the Universe had decreased to below 4000 K. Photons no longer possessed sufficient

energy to overcome the binding energy of hydrogen (B = 13.6 eV). The primary

mechanism allowing the fluid to remain ionized ceased and neutral hydrogen began to

form. This is known as the era of recombination. Photons were decoupled from the

baryonic matter due to the lower Thompson scattering cross section of neutral atoms.

The primordial photons began to propagate with a near infinite path length. The

Universe had become transparent. These photons were red shifted by the continuing

expansion of the Universe and are responsible for the signal we now call the CMB. On

cosmological timescales the epoch of recombination was almost instantaneous. As such

the photons we detect originate from a sphere whose radius is proportional to the time

elapsed since recombination. This is referred to as the surface of last scattering. This

surface is the furtherest back in time we can observe the Universe by the detection of

electromagnetic waves.

1.3.2 CMB temperature power spectra

An inflationary epoch during the Universe’s lifetime has been proposed to solve prob-

lems with the Big Bang theory such as the Horizon Problem. Inflation assumes that

before t < 10−35 seconds the cosmological constant dominated the Universe’s dynam-

ics. Therefore Friedmann’s equation reduces to

14



Ṙ2 =
Λc2R2

3
, (1.3.5)

whose solution is simply R = R(0)e
√

Λ
3
ct. Hence the Universe underwent a rapid

exponential expansion.

Inflation solves the Horizon Problem (and explains why K ≈ 0) but can also explain

why complex structures have evolved. It is proposed that during inflation the mi-

croscopic quantum fluctuations within the Universe expanded. When this occurred

these fluctuations became frozen within the space-time metric on a macroscopic scale.

Therefore they became classic perturbations described readily using the theory of

General Relativity and

gµν = gµν + hµν . (1.3.6)

Here gµν is the original smooth metric while hµν represents the perturbation to the

metric [17].

Perturbations in the metric can be expressed in both scalar and tensor form. Consid-

erations of the symmetry conditions and the equations of continuity that the perturb-

ations must obey have led cosmologists to derive the oscillator equation [18]

Θ̈+Ψ̈− Rρ

1 +Rρ

HΘ̇− Rρ

1 +Rρ

HΦ̇+
k2

3

( Θ

1 +Rρ

+Ψ
)
− Rρ

Rρ + 1

(
1+3cs

2
)

Θ = 0. (1.3.7)

Here k is an arbitrary wave number while the gravitational potential perturbations are

described by Ψ (the Newtonian potential) and Φ (the curvature fluctuation). The para-

meter Θ represents the temperature field while Rρ = (pb + ρb)/(pγ + ργ) ≈ 3ρb/4ργ is

the ratio of the photon to baryon density. Finally the value cs represents the speed of

acoustic waves traversing the fluid2.

2The values of Ψ and Φ in the oscillator equation are referred to as Bardeen potentials. The diagonal

terms of the huv tensor in equation (1.3.6) are calculated from these potentials. As a result of the

selected gauge symmetry applied to the metric perturbations all other terms in huv are null. A

full discussion of (1.3.7) and the variables involved is outside the scope of this thesis.
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Equation (1.3.7) is analogous to the simple damped oscillator equation ÿ+2αωẏ+ω2y =

0 where ω is the angular frequency of oscillation and α is the damping ratio. It indicates

that the gravitational driving force attempting to compress the primordial baryonic

fluid competed with the restoring force of the fluid’s pressure. These compressions

and rarefactions caused sound waves to oscillate throughout the ionized plasma with

a frequency

ω2 =
k2

3(1 +Rρ)
= c2

sk
2 (1.3.8)

and are responsible for all primary anisotropies present in the CMB’s power spectrum.

It is the behavior of this photon and baryon super-fluid that leads to the CMB power

spectrum profile shown in Figure 1.1. The amplitudes of the acoustic peaks depend

solely on the initial conditions we place on the primordial Universe. For example Figure

1.3 demonstrates how the profile of the CMB temperature power spectrum varies with

the four fundamental cosmological parameters. By using present day observations

to measure the amplitude and the angular scale of the CMB’s acoustic temperature

anisotropies we can quantify the fundamental parameters whose values, as explained

using equation (1.3.4), dedicate the evolution of the Universe.

The most convenient way to express the power spectrum of the CMB over the full

sky is to decompose it into spherical harmonics. The temperature of the CMB can be

expressed in terms of a summation of Legendre polynomials as

T (θ, φ) =
∞∑
l=2

l∑
m=−l

almYlm(θ, φ). (1.3.9)

where the spherical harmonic Ylm(θ, φ) is the angular portion of the solution to Laplace’s

equation in spherical coordinates. Here θ is taken as the polar (colatitudinal) coordin-

ate with θ ∈ [0, π] while φ is the azimuthal (longitudinal) coordinate with φ ∈ [0, 2π].

The order l is an integer and m can equal −l, −l + 1, ...., l. Current interests lie in

mapping the fluctuations of the CMB’s power spectrum over angular scales of l < 100.

The l = 0 term in (1.3.9) is ignored as it represents the CMB’s constant isotropic

temperature which dominates any fluctuations by a factor of 105. The l = 1 term is
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Figure 1.3: CMB tempertaure power spectra as fundamental parameters are varied.

The parameters that are varied are: (a) dark energy density today Ωe, (b)

the equation of state of dark energy we, (c) the physical baryon density

Ωbh
2 and (d) the physical matter density Ωmh

2. This image has been taken

from [19].

also omitted for the reason that any intrinsic temperature fluctuation stored within

this harmonic level will be obscured by the Earth’s Doppler dipole anisotropy effect.

Early Universe models indicate that CMB temperature fluctuations should obey Gaus-

sian quantum statistics. In this case

CT
l =

1

2l + 1

l∑
m=−l

| alm | 2 =
〈
| alm | 2

〉
(1.3.10)

and all the information contained within the temperature fluctuations can be obtained
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by calculating the expectation values of the coefficients of (1.3.9). The temperature

anisotropies of the CMB

(∆Tl)
2 =

1

2π
l(l + 1)CT

l . (1.3.11)

are then readily related to the power spectrum C l
T [20].

Plots of the temperature anisotropy (1.3.11) versus angular scales have become ubi-

quitous within CMB cosmology. Figures 1.1 and 1.3 and are examples of such plots.

The profiles of such graphs are directly related to dynamics of the Universe before

and during recombination. Temperature fluctuations of the CMB are divided into two

groups referred to as primary and secondary anisotropies and we discuss these in more

detail in the following sections.

1.3.3 Primary temperature anisotropies

In Figure 1.1 the main categories of primary temperature anisotropies are labeled.

A brief explanation of these anisotropies follows. The amplitude of these primary

anisotropies are solely dependent on the angular scale at which one observes the CMB

power spectrum.

The dominant anisotropies at l < 100 are referred to as the Sachs-Wolfe anisotropies

[21]. This is the super-horizon region of the CMB power spectrum3 and represents

regions of the Universe outside the Hubble radius at the time of recombination4. The

acoustic waves responsible for the acoustic peaks in the CMB’s temperature spectrum

did not oscillate over these scales. At l < 100, δT
T

is related to the perturbation of

the gravitational potential which generates, via the Sachs Wolfe effect, a gravitational

redshift and therefore intrinsic temperature fluctuations within the CMB’s low scale

power spectrum.

The dominant feature on the CMB temperature power spectrum is the primary peak.

The oscillator equation (1.3.7) tells us that compressions and rarefactions transversed

3As such from regions of the Universe that are too large to have ever been in causal contact.
4The Hubble radius is defined by c/H(t). It is roughly the size of the observable radius at time t.

The value H(t) indicates the Hubble parameter and was defined when dicussing equation (1.3.3).
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the primordial baryonic fluid. These acoustic waves generated regions of higher and

lower densities and hence temperatures fluctuations within the fluid. During recom-

bination the temperature differences between photons propagating from these crests

and troughs became imprinted onto the surface of last scattering. The first peak is due

to the fundamental harmonic of the primordial acoustic waves. It is the temperature

anisotropy caused by the maximal compression of the baryon fluid. Both its amplitude

and position are highly dependent on the curvature of the Universe.

The higher order peaks are due to the higher harmonics of the acoustic waves within

the baryon fluid. The amplitudes of these are dampened in accordance with equation

(1.3.7). The second peak represents the restoring radiation pressure’s response to the

compression of the primary peak. The amplitude of the secondary peak is damped

due to baryon loading. Essentially the increased gravitational potential of the recently

compressed baryonic mater dampens the radiative pressure’s restoring force. Such

damping is present in at all higher order peaks on the CMB power spectrum associated

with a rarefaction [22].

The third peak is due to the secondary compression of the fluid (occurring when the

angular scale corresponds to the horizon over which one and a half acoustic oscillations

took place). The amplitude of the third peak is magnified due to the presence of dark

matter increasing the gravitational potential of the well into which the fluid was being

compressed. On smaller angular scales the higher order peaks are suppressed due to

photon diffusion. Also referred to as Silk damping this occurred when the photons that

occupied smaller horizon scales migrated from hot dense regions to cooler ones. Due

to the coupling between the photons and baryons the migrating photons would have

pulled the baryons into these cooler regions. This matter diffusion led to a reduction

of temperature anisotropies that were caused by the oscillating acoustic waves and

thus dampened the higher order fourth and fifth peaks [23].

1.3.4 Secondary anisotropies

Whereas primary anisotropies can be accounted for by considering the equation of

state of the primordial fluid during recombination, secondary CMB anisotropies are

classed as changes to the power spectrum that occurred between the surface of last
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scattering and an observer. Most secondary temperature fluctuations are local and

due to astronomical foregrounds. Local foregrounds include objects such as the sun

and the moon whose effects can be negated by observing the sky in a direction where

these objects are not visible. Astrophysical foregrounds refer to sources of emission

or absorption fixed within the observing reference frame. Synchrotron, free-free and

thermal dust emissions are all examples of such sources. The most famous astro-

physical foreground in all CMB sky maps is of course the equator region of the map

indicating our own Milky Way galaxy. An example of the galactic foreground present

on a CMB full sky map is shown in Figure 1.4. An entire library of methods involving

multi-frequency observations exists to take account of these foregrounds and produce

credible CMB observations. Descriptions of the brute force likelihood analysis that

was performed on the COBE data set is outlined in [24] and [25], more recent analysis

techniques are discussed in [26] and [27].

Figure 1.4: COBE 4 year full sky map. The foreground emission from the Milky Way

Galaxy is the dominant feature of this map. This image has been taken

from http://www.casca.ca/lrp/vol2/firstplanck/planck.html.

Much has been written on the subjects of primary and secondary CMB anisotropies. To

approach these subjects in any detail is beyond the scope of this thesis. For an excellent

and detailed discussion of the most dominant CMB secondary anisotropies the reader

is referred to [28]. Here other causes of secondary anisotropies including gravitational

and electromagnetic interactions are discussed in detail. Gravitational foregrounds

include lensing and the Rees-Sciama (RS) effect. Gravitational lensing affects both
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CMB temperature and polarization anisotropies5. The RS effect will cause a drop in

the energy of CMB photons due to a net redshift effect when the photons enter and

exit an expanding potential well. Electromagnetic foregrounds include interactions

such as the Sunyaev−Zel’dovich (SZ) effect in which photons scatter off hot electrons

in galaxy clusters. On average these interactions lead to a a gain in the photon’s

energy and therefore lead to an increase in temperature.

1.3.5 CMB Polarization

Due to photons interacting with electrons via Thompson scattering, CMB polarization

anisotropies were also generated at the surface of last scattering. A full account of

the origin of these CMB polarization anisotropies is provided in [29]. Here it is shown

that if an electron scatters photons from an anisotropic temperature distribution the

scattered plane wave may contain a polarization anisotropy. Due to the symmetry of

the problem the only temperature anisotropy that can lead to such polarization effects

are quadrupole temperature anisotropies. An illustration of the Thompson scattering

of photons within such a quadrupole temperature anisotropy is shown in Figure 1.5.

Figure 1.5: Polarization anisotropy via Thompson scattering. Here ε indicates the

direction of polarization. Image taken from Wayne Hu’s home page http:

//background.uchicago.edu/~whu/physics/physics.html.

Quadrupole temperature anisotropies are described by the Y2,m group of spherical

harmonics. There are three distinct categories of quadrupole patterns for such tem-

perature anisotropies. These correspond to the m = 0,±1 and ±2 modes of the l = 2

5We will begin a discussion of CMB polarization in section 1.3.5
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harmonic. Each of these quadrupole temperature anisotropies occurred within the

primordial fluid and have physically distinctive origins. Scalar, vector and tensor per-

turbations of the fluid give rise to Y2,0, Y2,±1, Y2,±2 temperature anisotropies 6. It

has been shown that scalar perturbations of the fluid give rise to oscillating acoustic

waves via (1.3.7). This in turn gives rise to Y2,0 quadruple temperature anisotropies at

the troughs and peaks of the density anisotropies generated by these acoustic waves.

Meanwhile tensor perturbation that give rise to Y2,±2 quadrupole temperature aniso-

tropies are generated by primordial gravitational waves stretching and compressing the

metric. During recombination Thompson scattering of photons converted the quadru-

pole temperature anisotropies due to scalar and tensor perturbations into a partially

polarized CMB signal. These two quadrupole anisotropies are shown in Figure 1.6. In

consequence it is estimated that the CMB is polarized at a level of approximately 10

% of its temperature anisotropy [30].

(a) A Y2,0 temperature anisotropy arises from a

scalar perturbation of the primordial fluid.

(b) A Y2,±1 temperature anisotropy arises from

a tensor perturbation of the primordial fluid.

Figure 1.6: Quadruple temperature anisotropies that lead to part polarization of the

CMB during recombination. These images have been taken from [30].

Classically, partially polarized light is described by the Stokes parameters

S0 = I = Ex
2 + Ey

2 (1.3.12)

S1 = Q = E2
x − E2

y (1.3.13)

6It is expected that due to the short mean free path of photons vortical motions of the primordial

fluid that generate vector temperature anisotropies would have dissipated

22



S2 = U = 2ExEy cos δ (1.3.14)

S3 = V = 2ExEy sin δ (1.3.15)

where the value I is the total intensity of the electric field. The values of Q and U

completely describe the orientation of a linearly polarized wave while the term δ is the

difference in phase between the x and y components. The value V represents the de-

gree of circular polarization. There is no known mechanism that can generate circular

polarization in the CMB (or in any other galactic signal) so we will ignore this para-

meter. The Stokes parameters are dependent on a fixed coordinate system. A more

convenient way exists of expressing CMB polarization that removes this requirement.

These are the so called E-mode and B-mode polarization states. Stokes parameters

are invariant under a 180◦ rotation. We can therefore generate the terms Q± iU and

decompose them into the spin-2 spherical harmonic terms

Q± iU =
∞∑
l=2

l∑
m=−l

a±2
lm±2Ylm. (1.3.16)

We then take the terms elm = 1
2
(a

(2)
lm + a

(−2)
lm ) and blm = − i

2
(a

(2)
lm − a

(−2)
lm ). The E-mode

polarization state is then defined as

E =
∞∑
l=2

l∑
m=−l

elmYlm (1.3.17)

while the B-mode polarization is defined as

B =
∞∑
l=2

l∑
m=−l

blmYlm. (1.3.18)

Such a decomposition of polarization anisotropies is analogous to splitting any vector

field into its divergence and curl components. The E-modes represent the curl-free

components of the polarization while the B-modes identify the gradient-free compon-

ents. The crucial benefit of this decomposition is that E-modes are the direct result

of scalar perturbations while B-modes originate from tensor perturbations.
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We now define the auto- and cross-correlation functions of the CMB power spectra

as:

〈
aT∗lma

T
lm′

〉
= CTT

l δll′δmm′ ,
〈
aT∗lma

E
lm′

〉
= CTE

l δll′δmm′〈
aE∗lma

E
lm′

〉
= CEE

l δll′δmm′ ,
〈
aT∗lma

B
lm′

〉
= CTB

l δll′δmm′〈
aE∗lma

B
lm′

〉
= CBB

l δll′δmm′ ,
〈
aB∗lma

B
lm′

〉
= CBB

l δll′δmm′ .

(1.3.19)

These are analogous to (1.3.10) yet offer a full description of the CMB power spectrum.

Of these terms CTB
l and CEB

l vanish due to parity considerations. The complete

measurement of the remaining four data sets is one of the main goals of modern

observational cosmology.

Assuming a flat sky approximation the spin-2 harmonics representing the CMB polar-

ization can be reduced to Fourier modes. Under this approximation the polarization of

the E-modes occurs parallel or perpendicular to the wave vector. For the B-modes the

polarization aligns at a 45◦ angle to the wave vector. An example of these polarization

alignments is shown in Figure 1.7.

Figure 1.7: The CMB TT , TE, EE and BB power spectra. The wave vector is point-

ing out of the page. This image is taken from [31]

The flat sky pattern for both E and B-modes are shown in Figure 1.8. A superposi-

tion of these patterns is shown in Figure 1.9. In both patterns areas of polarization

“hotspots” can be identified. In the E-mode patterns distinctive areas of divergence

are observable while in the B-mode pattern areas of significant handedness are vis-

ible [32]. A succinct explanation of how CMB polarization can be decomposed into

both E/B-modes is presented in [33].

Figure 1.10 shows a predicted power spectrum for all four CMB observables. These

spectra have been generated by the CMBFAST program using the results of the
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(a) E polarization Fourier modes. (b) B polarization Fourier modes.

Figure 1.8: Using a flat sky approximation plane wave Fourier modes can describe the

CMB polarization. The flat sky E and B Fourier modes are shown. The

wave vector runs horizontally along both graphs.

(a) Superposition of E Fourier modes. (b) Superposition of B Fourier modes.

Figure 1.9: E and B-mode polarization patterns generated from the superposition of

80 flat sky Fourier modes. Images taken from [34].

WMAP experiment [10]. We note that the level of B-mode polarization anisotrop-
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ies is not yet known. Upper limits of the BB signal would have been set prior to all

calculations. It is apparent that the level of temperature anisotropies dominates both

the E and B-mode polarization intensities. The EE spectrum peaks on scales where

the temperature anisotropy (TT spectrum) begins to undergo damping. We can see

that acoustic oscillations in the primordial fluid also generate a number of peaks along

the EE power spectrum. The strong correlation between the temperature anisotropies

and E-mode polarizations (the TE spectrum) reinforce the prediction that both these

anisotropies have a common origin, namely acoustic waves generated via (1.3.7)

Figure 1.10: The CMB TT , TE, EE and BB power spectra. This image is taken

from [31]. It has been generated by the CMBFAST program using the

results of the WMAP experiment [10]. For more information visit http:

//www.cmbfast.org.

It is expected that gravitational lensing of the CMB will occur. This lensing acts

to smooth out both the temperature and E-mode power spectra. This effect can

occur at a level of 10 % in the damping tails of these spectra. Another result of

gravitational lensing is that the CMB B-mode signal has two separate sources. The

first is due to temperature quadrupole anisotropies caused by tensor perturbations

of the the primordial fluid. These anisotropies are expected to be caused by relic

gravitational waves propagating throughout the early Universe. The second source is
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the gravitational lensing of E-mode polarization by intervening foreground structures

in the Universe. This creates B-modes at the µK level. This lensing mixes some of the

polarized power between E and B-modes. This source of B-modes peaks over the same

scales as does the E-mode polarization. At these scales the lensed signal dominates

the expected pure B-mode signal. The QUBIC experiment described in this thesis is

designed to observe in the multipole range l ≈ 35− 125 where the primordial B-mode

signal is expected to constrain current theories best. Unfortunately foregrounds from

lensing place a strict limit on the detectability of the B-mode polarization signal. It is

predicted that if the ratio of tensor-to-scalar perturbations of the primordial plasma

is less than 6×10−4 B-mode polarization will not be detectable [35]. A comprehensive

treatment of CMB lensing is given by [36] .

1.3.6 The CMB and Inflation

Three widely used inflationary models are referred to as small-, large- and hybrid-

field models. The tensor-to-scalar ratio of the CMB power spectrum is defined as r =

CT
l /C

S
l . Here CS

l represents the part of the CMB’s spectrum that can be attributed to

temperature anisotropies caused by scalar perturbations within the primordial fluid.

Meanwhile CT
l represents the parts of the power spectrum that can be attributed to

tensor perturbations. The scalar spectral index of the CMB (ns) is defined by assuming

a power-law for the scalar perturbations in the primordial fluid. It has been shown

that ns − 1 ∼ ln(PR)
ln(k)

where PR are the scalar perturbations due to fluctuations in the

matter density of the Universe whose wavenumber is k [37]. As shown in Figure 1.11

the variation of the tensor-to-scalar ratio (r) to the scalar spectral index (ns) of the

the CMB is dependent on the Universe’s inflationary mechanism.

Complete measurement of the TT , TE, EE and BB polarization data sets will allow

us to determine both the tensor-to-scalar ratio and the scalar spectral index of CMB

anisotropies. Detection of E-modes and B-modes will allow physicists to ascertain the

energy scales of the Universe when inflation occurred 10−35 seconds after the Big Bang.

Between the Big Bang and the inflationary epoch unification of the electromagnetic,

weak and strong nuclear forces are predicted as well as Grand Unification via super-

symmetry or super-strings. Full measurement of all CMB data sets will allow use to

asses the validity of these predictions [38].
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Figure 1.11: The relationship between r and ns depends of the inflationary model. The

image has been adapted from the “zoo plot” shown in [37].

1.4 Recent CMB experiments

The intricacies of the CMB’s anisotropies are matched by the profusion and meticulous

design of experiments designed to measure them. In the past two decades the number

of CMB experiments has grown dramatically and the pace of novel discoveries about

the CMB has accelerated. As we shall explain the results of these experiments have

enabled many facets of the standard cosmological model to be verified. A selection of

recent CMB experiments is shown below in Table 1.1. These experiments have taken

measurements over a wide range of frequencies and detection devices have included

transition edge sensors (TES), polarization sensitive bolometers (PSB) and high elec-

tron mobility transistors (HEMT). The list includes balloon borne (BB), ground based

South Pole (SP) and satellite (Sat) missions. Many of the experiments have now been

decommissioned however others are, at the time of writing, observing the CMB (Obs).

Others are still in the planning stages.

As one can see a significant amount of progress has been made in recent years as regards

observing CMB anisotropies. In July 2010 pictures of PLANCK’s first full sky survey

were released by ESA. One of these images is shown in Figure 1.12. It is expected that

analysis of such maps will allow quantification of both CMB temperature and E-mode

anisotropies with unprecedented accuracy.

Current efforts focus on quantifying the scalar-to-tensor ratio of the primordial per-

turbations. Within the past 12 months conversations about a space borne mission
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Figure 1.12: Image of the full microwave sky observed by the PLANCK satellite. Image

taken from http://sci.esa.int/science-e/www/object/index.cfm?

fobjectid=47333.

to measure B-modes have begun. Other endeavors of future CMB experiments in-

clude measuring the lensing of peaks, observing the integrated Sachs-Wolfe aniso-

tropies due to dark energy and examining whether non Gaussianity exists within the

CMB [52], [53].

1.5 The CMB and the cosmological parameters

It is expected that measurement of the polarization coefficients shown in equation

(1.3.19) will allow complete and unambiguous determination of the cosmological para-

meters shown in equation (1.3.4). Inclusion of these values into the Einstein - Fried-

mann equations will allow physicists to describe the past present and future of the

Universe.

Following the success of COBE, the WMAP satellite measured the amplitudes of the

acoustic primary and secondary CMB temperature power spectrum peaks with ex-
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quisite accuracy. Current knowledge of CMB anisotropies from a selection of CMB

experiments have generated values for the cosmological constants all in agreement

with the WMAP temperature power spectrum. The information pertaining to the

cosmos derived form these data sets is summarized in this section. The temperature

anisotropy power spectrum measured by the WMAP satellite is shown in Figure 1.2.

WMAP became the first mission to report an accurate observation of the primary peak

oscillation of the temperature power spectrum. Since then a number of different ex-

periments have observed the primary and higher order peaks of the CMB temperature

anisotropies. Figure 1.13 compares the WMAP power spectrum to the spectra meas-

ured by several other experiments including the ACBAR, BOOMERanG, CBI and

DASI. A number of polarization sensitive experiments have also successfully measured

the TE and EE CMB power spectra. Figure 1.14 compares the TE and EE power

spectra obtained from the DASI and CBI interferometers to the QUAD imaging CMB

telescope.

The consistency of measurements from multiple experimental sources has lead cosmo-

logists to conclude many things about the Universe. The amplitude and angular scale

of the primary peak in the TT power spectrum is highly dependent on the curvature

of the Universe. The position and amplitude of the primary peak in several CMB

observations has led cosmologists to the conclusion that the Universe is spatially flat

(K = 0). Therefore ΩM + ΩΛ ≈ 1. The amplitudes of the secondary and third higher

order peaks are related to the quantity of ordinary and cold dark matter present within

the primordial plasma. Analysis of WMAP’s 5-year data sets have indicated that:

• The age of the Universe, t0, is 13.72± 0.12 Gyr.

• The Hubble constant, H0, is 70.5± 1.3 kms−1 Mpc −1.

• The physical baryon density, Ωbh
2, is 0.02267±0.0005. Here h = H0/(100 kms−1

Mpc −1) where H0 is Hubble’s constant.

• The physical dark matter density, Ωch
2, is 0.1131± 0.0034.

• The dark energy density, ΩΛ, is 0.726± 0.015

• The scalar spectral index, ns, is 0.96± 0.013.
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Figure 1.13: The WMAP temperature anisotropy power spectrum has been con-

firmed by several ground based and baloon borne instruments. Here

the TT power spectra obtained from the ACBAR, BOOMerANG, CBI

and DASI. CMB experiments are compared. Image taken from http:

//www.astro.ucla.edu/~wright/CMB-DT.html. The green line shows

the best fit ΛCDM model to the WMAP data. A complete description

of the cosmological parameters determined from WMAP observations is

presented in [54] [55].

These figures have been refined from the values calculated using WMAP’s data with

information obtained from the observations of galaxy clusters, supernovae and quasars.

The state of the art of experimental cosmology has thus generated the concordance

ΛCDM theory of cosmology. This predicts that roughly only about 4% of the Universe

is composed of the ordinary baryonic matter (protons and neutrons) we interact with

every day. The majority of matter present in the Universe is dark matter. Neither

the nature or evolution of this dark matter is understood. However the most startling

conclusion of the concordance ΛCDM theory is that approximately 75% of the mass-

energy density of the Universe is composed of a mysterious form of energy dubbed

“dark energy”. The current accelerated expansion of the Universe is attributed to this

dark energy [8] [56].

It is predicted that the scalar perturbations that give rise to the quadrupole aniso-

tropies that cause temperature and polarization anisotropies will generate a TE power
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(a) TT power spectrum obtained from various

CMB experiments.

(b) The TE power spectra obtained from vari-

ous CMB experiments.

(c) The EE power spectra obtained from vari-

ous CMB experiments.

Figure 1.14: CMB E-modes were first observed by the DASI interferometer. Several

other experiments have verified these results. Image taken from [48]. The

black lines show the power spectra expected in the best-fit ΛCDM model

to the WMAP 5-year data.

spectrum out of phase with the TT spectrum. As shown in Figure 1.14 results from the

several CMB polarimeters have indicated as much and therefore reinforce the current

theories of the early Universe. From observation of E-mode polarization and upper

limits placed on the BB power spectrum we conclude that r = CT
l /C

S
l < 0.27 (95%

c.l) [48]. Finally, a firm-detection of B-mode polarization anisotropies would provide

direct evidence for inflation and the energy scale at which it occurred.
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1.6 Conclusions

In this chapter we have provided a general introduction into the origin and nature

of the CMB. We have provided a brief explanation of both its temperature power

spectrum as well as its E/B-mode polarization. One of the most remarkable aspects

of CMB cosmology research is that the countless hours of work by so many scientists

and engineers over the past 40 years began on the back the two page article published

by Penzias and Willson. These gentlemen would later receive the noble prize for

their detection of the CMB yet in the authors opinion the most remarkable part

of their submitted paper is the line “this excess temperature is, within the limits of

our observation, isotropic, unpolarized and free from seasonal variations”. We have

shown how many of the cosmological parameters have been quantified by continuing to

observe the CMB within the limits of modern observation techniques. These pursuits

have allowed us to gain a remarkable insight into the nature and composition of the

Universe. We have also outlined the reasons cosmologists now wish to measure the

extremely faint B-mode signal. It is expected that detection of the CMB B-mode

signal will allow us to estimate the energy levels at which inflation occurred. As such

cosmologists are now beginning to vigorously pursue the detection of CMB B-modes.

This thesis is concerned with the design and modeling of an optical system for the

proposed QUBIC CMB mission. QUBIC will attempt to detect B-modes down to a

tensor-to-scalar ratio of ∼ 0.01 using a novel observation technique we call bolometric

interferometry. In the next chapter we present the QUBIC mission.
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Name Year Freq (GHz) Location or

Type

Detector

Type

Measured aniso-

tropy

ACBAR [39] 01 - 05 150, 220 &

289

SP Bolometers 1st temperature

peak.

Archeops [40] 02 150, 220 &

289

BB PSB Temperature peaks

and polarization

detection.

BICEP1/2 [41] Obs 100 & 150 SP PSB & TES B-mode.

BOOMERanG/03

[42]

99-00 90-410 BB Bolometer Temperature

peaks.

CAPMAP/ PIQUE

[43]

00 -03 100 New - Jersey HEMT mix-

ers

Limits on polariza-

tion anisotropies.

COBE [5] 1989 31 - 90 Sat Radiometer Sachs Wolf aniso-

tropies. Black body

spectrum

DASI [11] 00 -03 26-36 SP Heterodyne

interfero-

meter

Higher order tem-

perature peak and

E mode polariza-

tion.

KECK AR-

RAY [44]

Future 100, 150 &

220

SP TES Scalar-to-tensor ra-

tio within 0.02

MAXIMA/

MAXIPOL [45]

99 - 00 140 & 420 BB bolometers Doppler peak of an-

isotropies.

MBI-4 [46] Obs 26-36 Pine Bluff

Obs

Bolometric

Interfero-

meter

Limitations on

scalar-to-tensor

ratio.

Polarbear [47] Obs 150 Atacma

Chile

TES B-modes.

PLANCK [9] Obs 26-36, 100 -

857

Sat PSB &

HEMT

mixers

Higher order tem-

perature peaks.

QUaD [48] 05-08 100 & 150 SP PSB E-mode polariza-

tion. Limits on B

mode polarization.

QUIET [49] Future 40 & 90 Atacma

Chile

B-modes

QUBIC [50] [51] Future 150 SP Bolometric

Interfero-

meter

Scalar-to-tensor ra-

tio within 0.01

WMAP [7] 01 23-94 Sat Radiometer 1st and 2nd tem-

perature peaks

Table 1.1: CMB Experiments



2 QUBIC: An Experiment designed to

measure CMB B-mode polarization

2.1 Introducing QUBIC

QUBIC (Q and U Bolometric Interferometer for Cosmology) is a CMB polarimeter

designed to measure the B-mode polarization and therefore the tensor-to-scalar ratio

of the CMB anisotropies [57] [58]. The instrument will employ incoherent receivers

to observe fringe patterns generated by interfering CMB sky signals. This is a novel

technique of gathering information about the CMB and it is hoped to improve on

heterodyne CMB interferometers such as DASI whose sensitivity was limited due to

the narrow bandwidth of the coherent detectors. The goal of the QUBIC collaboration

is to construct an instrument whose sensitivity is on par with a B-mode imager yet

whose interferometric nature allows a high degree of systematic error control as well as

extremely accurate calibration. The proposed experiment is the outcome of merging

both the MBI [46] and BRAIN [59] CMB experiments. The collaboration consists of

a number of institutions from France, Italy, the U.K., Ireland and the U.S.A.

2.2 Interferometry

2.2.1 Interferometers in astronomy

The development of interferometry is synonymous with the quest to investigate the

heavens with greater and greater angular resolution. The angular resolution of an op-

tical instrument is of course ∼ λ
D

where D is the diameter of the observing instrument
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and λ is the wavelength of the sky signal. The smaller this ratio the closer two celes-

tial bodies can be to one another yet still be resolved by an instrument. For cost and

weight reasons, restrictions are placed on the physical size of an antenna’s diameter

D. By combining two or more antennas separated by a baseline B astronomers can

measure the intensity of the sky signal in terms of the spatial frequency B
λ

1. In inter-

ferometry |B| > D and thus by combining two smaller antenna apertures astronomers

can generate an image with the resolution that would be obtained if an antenna of

diameter |B| was used. Depending on the baseline B celestial bodies can be viewed

with higher and higher angular resolution.

Modern interferometry began in 1890 when Michelson published a paper detailing how

to measure the profile of a star by recording the visibility of interfering signals with

various baselines [60]. The fringe visibility Imax − Imin/Imax + Imin, where Imax and

Imin are the maximum and minimum intensity in the fringe pattern, is a measure

of the fringe contrast. In 1921 Michelson used such a device in the Mount Wilson

Observatory in California to calculate the diameter of α Orionis [61]. In the 1950’s

Ryle applied the principles of stellar interferometry to radio astronomy. The first

radio interferometer was constructed at the Mullard Radio Astronomy Observatory

at Cambridge University UK. To date the most ambitious project in radio astronomy

is the ALMA project in north Chile. It will consist of sixty four 12 m telescopes

operating in ten bands between 1 cm and 0.3 mm [62].

The output of an interferometer is the mutual coherence function of the sky signal. In

accordance with the van Cittert − Zernike theorem the mutual coherence function

of a signal, and therefore the output of an interferometer, is related to the intensity

of the input signal. Aperture synthesis allows us to derive the intensity Iν ∼ E2 of an

incident signal from the response of an interferometer at various baselines R(B). If

an interferometer points in a direction s = s0 + σ where s0 is the centre of the region

under observation and the sensitivity of the antenna is A(σ) then the total response

of the instrument is

R(B) = exp

[
iω

(
1

c
B · s0 − τ

)]
dν

∫ ∫
S

A(σ)I(σ)exp
(
i
ω

c
B · σ

)
dσ (2.2.1)

1 The term baseline refers to the displacement between the centres of any two collecting antennas.
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where the bandwidth (dν) is taken into account 2. From equation (2.2.1) we can define

the function

V (B) =

∫
S

∫
A(σ)I(σ)exp

(
i
ω

c
B · σ

)
dσ (2.2.2)

which is called the visibility function of the interferometer. The visibility determines

the power response of an interferometer to any incident sky signal. From equation

(2.2.2) it is apparent that V (B) is a fringe pattern whose spatial frequency is dependent

on the baseline length. We can define the coordinate system ω
2πc

B = (u, v, w) where

u, v, and w are measured in units of wavelength. If the field being mapped is small

then the visibility becomes independent of w so that V (u, v, w) ≈ V (u, v, 0) and

V (u, v) =

∫ ∞
−∞

∫ ∞
−∞

A(x, y)I(x, y)ei2π(ux+vy)dxdy (2.2.3)

where I(x, y) ≈ I(σ) is the intensity received from a patch of sky. Equation (2.2.3)

is the fundamental law of aperture synthesis. It shows that the response of an inter-

ferometer, V (u, v), is the inverse Fourier transform of the spatial intensity pattern of

the area of sky under observation. By observing the sky with a range of baselines the

brightness distribution of an extended source can be calculated3.

2.2.2 Radio receivers

Radio receivers are devices that measure the spectral power density of an incident

signal. Incoherent radiometers are receivers in which the phase of the signal is not

preserved during detection. The most common detection devices used in such instru-

ments are bolometers. Bolometers function on the principle that any electric field fall-

ing onto a conductor will increase its resistance due to heating effects. If the bolometer

2The term I(σ) is the intensity distribution of the received signal over the patch of sky. Therefore

R(B) is essentially the power response of the interferometer to a sky signal incident over a baseline

B. The exponential term outside the integral describes the phase response of the instrument at

the map center. Here τ is used to account for geometrical and instrumental delays.
3All material in this section is discussed in detail in [63] and [64]. These two resources offer a

comprehensive review of the state of the art methods for both radiometry and interferometry.
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is adequately biased the change in resistance can be measured allowing calculation of

the power of the incident signal. If the radiation incident on the bolometer is chopped

with a modulating frequency νc then the change in temperature of the detector is

|∆T | = P0

G
√

1 + (2πνcτt)2
(2.2.4)

where τt = C/G is the thermal time constant for a heat capacitance C and an electrical

conductance G. The power of the input signal P is equal to P0e
2πiνct. For a bolometer

detector to be useful it must have a short thermal time constant τt so that chopping

frequencies faster than instrumental and weather changes can be used. Sources of

noise on a bolometer include Johnson noise, phonon noise and amplifier or load resistor

noise. The measure used to define the quality of a bolometer is referred to as the noise

equivalent power (NEP). This is the power required to fall on the bolometer to raise

its output by an amount equal to the RMS noise. Its value is equal to

NEP = 2εkTBG
√

∆ν (2.2.5)

where ε is the emissivity of the background, ∆ν is the device’s bandwidth, k is the

wavenumber and TBG is the background temperature. Traditionally bolometers have

proven popular within CMB experiments. They have been recently employed within

the PLANCK, QUaD, BICEP and CLOVER telescopic systems. By using a wire grid

the bolometers used in these experiments were made polarization sensitive [65].

Traditionally heterodyne detectors are used in interferometry. However the QUBIC

experiment is a novel instrument that will mix interferometry with incoherent ra-

diometry. The purpose of these efforts is to combine the large bandwidth and there-

fore the sensitivity of incoherent bolometer detectors with the error control offered by

interferometers. In QUBIC bolometer detectors will be used to measure the spectral

power density of visibility patterns produced by interferometry.
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2.2.3 Additive Bolometric Interferometry

The goal of QUBIC is to use bolometric interferometry in order to constrain the

CMB’s tensor-to-scalar ratio to within 0.01 [50]. Although the design of the instrument

has evolved during the early stages of the collaboration the intended function of the

experiment remains the same. A signal will be collected by a number of horn antennas.

The signal is then split into orthogonally polarized beams via orthomode transducers

(OMTs) and re-emitted into the cryostat using secondary horns. The combiner then

focuses the beams onto an array of incoherent detectors where they interfere due to a

geometrical phase shift. After being split by the OMTs the phase of each orthogonally

polarized beam will be modulated. As we will briefly explain it is these controlled

phase shifts that will allow recovery of the sky polarization from the final intensity

pattern.

Figure 2.1 shows a schematic diagram of the QUBIC cryostat initial design. If sky

signals E1 and E2 enter each of the receiver horns they will be separated by the OMTs

into co-polar and cross-polar components (E1‖ + E1⊥) and (E2‖ + E2⊥) respectively.

These polarized signals are then re-emitted into the optical combiner via the secondary

horns. The time averaged power output from a single bolometer will be related to the

modulus of total electric field incident on the detector array. Assuming unity gain

and ignoring any imposed phase shifts the power response of a single bolometer (Sk)

is related to the squared sum of the electric field components

Sk ≈ (E1‖ + E1⊥ + E2‖ + E2⊥)× (E1‖ + E1⊥ + E2‖ + E2⊥). (2.2.6)

This response can be expanded into

Sk ≈ (E1‖
2 + E1⊥

2 + E2‖
2 + E2⊥

2) + (2E1‖E1⊥ + 2E2‖E2⊥)

+(2E1‖E2‖ + 2E1⊥E2⊥) + (2E1‖E2⊥ + 2E1⊥E2‖)
(2.2.7)

where the terms (2E1‖E2‖ + 2E1⊥E2⊥) and (2E1‖E2⊥ + 2E1⊥E2‖) correspond to the

Stokes I and U components of the cross correlated sky signal respectively. Assuming

that the CMB contains no V component this information is sufficient to quantify the

degree of CMB polarization.
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Figure 2.1: A simple bolometric additive interferometer. The initial designs for the

QUBIC instrument resembled this illustration. Here the dimensions are

indicative only. This image is taken from [57].

The model of Figure 2.1 is a simplification of the QUBIC instrument. It is expected

that the final QUBIC design will consist of at least 144 sky horns. Equations (2.2.6)

and (2.2.7) become more complicated when more than two sky horns are considered.

Such matters will be discussed briefly.

Within astronomy there are two approaches to beam combination using an optical

device. The first is Michelson interferometry in which beams are combined at the

pupil plane of the instrument. Here the instrument combines beams from two sep-

arate yet superimposed entrance apertures. The second is Fizeau interferometry in

which beams are combined at the image plane of an instrument. Here the entrance

apertures are displaced from one another and so the beams from these apertures can

only combine at the instrument’s image plane [66]. Crucially whereas the output for

a Michelson/multiplying interferometer is proportional to E2
0 cosφ, where E0 is the

sky signal and φ indicates the phase shift between the interfering beams, the output
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for a Fizeau/adding interferometer is proportional to E2
0 + E2

0 cosφ. The QUBIC in-

strument will therefore function as a CMB Fizeau interferometer. A simple optical

Fizeau interferometer can be constructed by putting two pinholes in a mask in front

of a Cassegrain telescope. The MBI collaboration was one of the first experiments to

use such principles at far infrared wavelengths [46].

A visual example of the intensity pattern resulting from several apertures in a Fizeau

interferometer is shown in Figure 2.2. The fringe patterns from baselines of various

orientations are shown. The resulting intensity that the bolometer array detects is

the furtherest image on the right hand side. The visibilities of the CMB polarization

components are contained in this summed electric field. A brief outline of the QUBIC

design to date and how the B-mode polarization is recovered from the imaged fringe

patterns is presented below.

(a) (b) (c) (d) (e)

Figure 2.2: A simple bolometer additive interferometer: (a) Gaussian beam from a

single entrance aperture, (b) - (d) fringe patterns from individual baselines

of equal length yet various orientations and (e) the intensity pattern at the

focal plane of the Fizeau interferometer resulting from all three baselines.

All images taken from http://www.qubic.org/.

2.3 The QUBIC experiment

Heterodyne CMB interferometers and imagers such as DASI, CBI and QUaD have

successfully observed E-mode polarization [67]. Although upper limits were placed

on the scalar-to-tensor ratio these instruments were not sensitive enough to observe

B-modes. QUBIC is a proposed advance on these experiments that implements inco-

herent detectors to detect the power contained in the visibility patterns from multiple

baselines. QUBIC is a combination of the MBI and BRAIN collaborations both of
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which were investigating the use of bolometric interferometry. These efforts were com-

bined in 2008. BRAIN had launched three pathfinder campaigns at Dome C during

the Antarctic summers of 2006, 2007 and 2009. The MBI collaboration constructed a

four horn prototype Fizeau interferometer and upon implementation of a Cassegrain

optical combiner made observations in 2008 and 2009.

2.3.1 QUBIC specifications

The design features of QUBIC were driven by one simple dictum. In order for addit-

ive bolometric interferometry to be a reasonable approach to observing B-modes the

sensitivity of any instrument must be comparable to that of an imager. QUBIC (with

all six modules, 2 at each of 3 frequencies) aims to constrain a tensor to scalar ratio

of 0.01 (at the 90 % confidence level) in one year of taking data.

Every aspect of the QUBIC experiment from the number of sky horns to the size

of the detector array was driven by this requirement. As one would expect inherent

difficulties were encountered between the science requirements of the instrument and

the engineering feasibility of any design. For example the number of sky horns and

the beam size of these horns must be large enough to observe the CMB at the required

angular scales yet must also fit behind an optical window that can be constructed.

The QUBIC design represents a collective effort of more than 1 year to rectify such

issues 4. The study of whether an additive interferometer can be constructed with a

sensitivity on par with an imager was carried out at the APC in Paris 5. The most

prominent results of this study are shown below.

The QUBIC collaboration had hoped to purchase the horn antennas used by the

cancelled CLOVER experiment [68]. These horns were designed to operate at 97

GHz. Therefore an initial analysis of the sensitivity of a bolometric interferometer was

carried out at frequencies from 90 to 100 GHz. There are two fundamental parameters

driving the design of QUBIC. The first is the size of the primary beam of the sky horns

while the second is the total number of these horns. Both these values are directly

related to the tensor-to-scalar ratio we wish QUBIC to be capable of detecting. In

4The author of this thesis has been directly involved in these efforts.
5Université Paris Diderot-Paris 7,Laboratoire APC,Bâtiment Condorcet,Case 7020,75205 Paris Ce-

dex 13. Website: http://www.apc.univ-paris7.fr/APC_CS/en/home
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Figure 2.3 it is shown that a beam size of 15◦ will allow QUBIC to observe a tensor-

to-scalar ratio of 0.01 if an array of 144 sky horns is implemented. If 10 observing

modules are implemented and the NET of the bolometers is 200 µK Hz1/2 r ≈ 0.01

is achievable within 1 year of operation.

Figure 2.3: An r ≈ 0.01 will be observable within one year of operation if 10 modules

of 144 horns are implemented and each has a 15◦ FWHM beam on the

sky. This plot was created at the APC for the QUBIC white paper using

formula found in [69].

A more comprehensive plot relating the detectable tensor-to-scalar ratio, the size of the

beam observing the sky and the number of back-to-back horns is displayed in Figure

2.4. Here it is shown that the minimum beam size and number of horns required to

achieve a 0.01 ratio forces implementation of a 400 mm diameter optical window. It

is shown once again that at least 144 horns whose primary beams are approximately

15◦ FWHM are required to detect r < 0.016.

6In Figure 2.4 the effect of bandwidth is not taken into account. A complete discussion of con-

sequences of bandwidth in QUBIC is presented in [70].The conclusions will be discussed in a later

chapter
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Figure 2.4: Minimal scalar-to-tensor ratio detectable versus the beam size for three

observing modules. The number of sky horns are shown in parenthesis.

The angular scales at which the primordial B-mode power spectrum is most likely to

be observed is between lmin = 30 and lmax = 200. Assuming a flat sky approximation

l = 2π × u and u = B
λ

[71]. Here |B| is the physical separation of the antennas of

a given baseline and u is the spatial frequency of the fringe patterns. Therefore the

multipoles at which we observe the sky are related to the baseline displacements by

l =
2π

λ
×B. (2.3.1)

In accordance with the Nyquist sampling criteria the bolometer array must be large

enough to sample the fringe patterns from each individual baseline at least twice. The

locations of the fringe maxima are given by

nλ = |B| sin θ (2.3.2)
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where θ is the angle subtended by the fringe of order n for a baseline of length |B|.
Under the paraxial approximation sin θ ≈ xf

f
. Here xf is the location of the first fringe

maximum above the central axis and f is the focal length of the optical device that

combines the two signals at its focal plane. For a given focal length the maximum

size of a bolometer is determined by the Nyquist criterion for the longest baseline

(smallest fringe possible). The total number of bolometers required is determined by

the need to sample at least one fringe (n = 1) of the shortest baseline pattern. If we set

xf = nb ×Db where nb is the number of bolometer detectors sampling a single fringe

while Db is the size of a single bolometer, then the number of bolometers required by

QUBIC is related to the baseline separation by

nb =

(
fλ

|B|Db

)
. (2.3.3)

As shown in equation (2.3.3) the number of bolometers is dependent on the focal

length of the combiner, the wavelength at which QUBIC will observe and the length

of the baselines. As we can see small baselines require a larger number of bolometers.

Assuming the smallest multipole at which B-modes are observable is l = 30 Table 2.1

lists the maximum number of bolometers required by QUBIC for various wavelengths

and focal lengths.
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Table 2.1 lists the number of bolometers required for designs operating at different

wavelengths and focal lengths. The off-axis locations of the first fringe generated by

the smallest and longest baselines are also listed. The number of bolometers required

in order to capture at least 95 % of the power re-emitted from the secondary horns is

also shown. This figure has been calculated using simple quasi optical methods that

we will discuss shortly. With the exception of a 100 mm focal length combiner and 5

mm bolometers all these systems will adequately sample the fringe patterns according

to the Nyquist criterion. Ultimately the limitations on the size of the bolometer

detectors and the maximum number of detectors that can be manufactured will decide

the maximum focal length permissible for the combiner. The value of 2500 shown

in Table 2.1 is the absolute upper limit of the number of transition edge sensors

(TES) bolometers that can be multiplexed together without the electronic overhead

involved (e.g. power consumption) becoming too cumbersome. The TES bolometer

detectors that are being developed for QUBIC are composed of a Niobium Silicon

(NbSi) compound. This technology allows the critical temperature of the bolometer

to be adjusted by varying the Nb concentration. TES bolometers are well suited to

multiplexing by SQUID devices and can operate at low temperatures. These detectors

can be constructed to be between 3 mm and 5 mm in diameter [72]. During a meeting

of collaborators in Paris at the end of July 2009 the various instrument designs listed

in Table 2.1 as well as the requirements inferred from Figure 2.4 were all considered.

The following blue print design for QUBIC was then agreed upon.

• The sky signal will be collected by 2 × 3 modules of 144 back-to-back horns

operating at 90, 150, and 220 GHz. The bandwidth of these single-moded horns will

be approximately 25%. The signal received by the horns will propagate through phase

shifters 7. The horns will produce beams of high Gaussicity of at least a 14◦ FWHM 8.

The horns will be arranged in a square grid and will be capable of observing the sky

over the l = 30− 200 multipoles .

• Phase shifting sequences will be carried out by inserting a combination of strip-

line delays at the back end of the sky horns. Also the back end of the sky horns will

7Phase shifters in QUBIC are implemented to modulate the polarized beams generated by the

OMTs. As we shall later discuss its is this phase shifting process that allows us to recover the

Stokes visibilities from the final intensity pattern.
8A beam size of 14◦ FWHM rather than the value of 15◦ FWHM previously stated was eventually

agreed upon.
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require polarized switches which will be used during calibration.

• Orthomode transducers (OMTs) will be used to split the incident sky signal

into two orthogonally polarized beams. The OMTs are placed at the back end of

the sky horns. These polarized beams then propagate into the optical combiner via

separate secondary horns. This model therefore requires twice as many secondary as

sky horns.

• The optical window must be large enough to ensure a very low edge taper of the

beam from the sky facing horn antennas. The window will be constructed from either

HDPE as in the QUaD experiment or zotefoam as in BICEP. QUBIC’s optical window

will have to be larger (≈ 400 mm ) than both these examples. Based on the QUaD

and BICEP examples the window thickness is expected to be at least 100 mm.

• The detectors will be superconducting TESs. The focal plane in each module

will consist of at least 900 of these sensors. The maximum number of these is limited by

multiplexing complexities. The space available for wiring on the substrate ultimately

limits the number of sensors that can be multiplexed. The signal from the sensors will

be amplified by SQUID circuits. All detectors will be laid out with an ≈ 100% filling

factor. The number of elements should be enough to ensure that at least 95% of the

power incident on the focal plane is captured. We consider a bare array (no coupling

optics). For the optical simulations in this thesis we usually consider all power falling

on the detector sensitive area as being captured. The target noise equivalent power

(NEP) of the TES devices is 5-10×10−18W/
√
Hz with a time constant shorter than

10 ms.

• The cryogenics will consist of a 4K pulse tube cooler for each module combined

with a 100 - 300 mK dilution unit for the focal plane. A maximum upper limit of 1 m3

has been placed on the dimensions of the 4 K units.

• A high level of redundancy (the number of baseline pairs that exist with equal

separation and direction) exists in the number of baselines. In an ideal instrument

the fringe patterns generated from each equivalent baseline should be identical to

one another. This will not be the case in a practical instrument due to wavefront

aberrations imposed on the beams by the optical combiner. However a period of

calibration is proposed for QUBIC in which every baseline is examined individually.
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The discrepancies between each baseline can be used to calibrate the gain, phase and

polarization mismatches between all channels. Thus systematic errors that introduce

uncertainties into the Stokes visibilities can be minimized.

The optical combiner is responsible for producing the summed signal from all possible

baselines over the detector array. Originally the prototype MBI experiment attemp-

ted to implement a Bulter combiner to sum all incident signals. Later a Cassegrain

telescope was used to combine the baselines and MBI observed fringes. The vast in-

crease in the number of baselines from MBI to QUBIC essentially rules out the use

of a Bulter combiner due to the complexity involved in adding all signals. For this

reason an optical combiner will also be used in QUBIC. The fringes observed by MBI

demonstrate the applicability of an optical combiner to bolometric interferometry [73].

The design and modeling of the optical combiner are the subject of this thesis.

A diagram illustrating the diameter of the primary and secondary horns as well as the

size of the necessary optical window is shown in Figure 2.5. It is estimated that if

the above specifications are followed QUBIC will be able to observe a scalar-to-tensor

ratio of 0.01 within 2 years of operation [69]. A plot showing this conclusion is shown

in Figure 2.6.

2.4 Phase Shifting and equivalent baselines

Phase shifters are implemented in the QUBIC experiment in order to modulate the

re-transmitted signal from the secondary horns. The fields are phase shifted in order

to assist the recovery of the polarization components of the sky signal. We will now

briefly discuss the theory behind this phase shifting scheme. As we shall see a nat-

ural consequence of data sampling in this manner leads to the notion of “equivalent

baselines”. We suppose our interferometer has Nh = Nl×Nl sky horns and the signal

entering the jth horn is written as Eje
2πiνt where ν represents a single frequency. For

the moment we will not consider the polarization of the signal. A time dependent

phase shift Φj(t) is applied to this signal and it then propagates through the optical

combiner to the bolometer detector k where a geometrical phase shift ∆jk results. The

power measured by a single bolometer detector Sk is the auto and cross-correlation of

all beams from the secondary horns
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Figure 2.5: Diameter of front end optics. Here the secondary horns are shown green

and red indicating orthogonal polarization states. The sky horns are shown

in blue while the diameter of the optical window is shown in red. This

is the smallest window required to ensure at least a 99% of the power

from the most extreme horns enters the combiner. Figure taken from

http://www.qubic.org/.

Sk(t) ∝
∣∣∣ Nh∑
j=1

Eje
i(∆jk+Φj(t))

∣∣∣2 =

Nl∑
j,m=1

EjE
∗
me

(∆jk−∆mk+Φj(t)−Φm(t)). (2.4.1)

In a similar manner to equations (2.2.6) and (2.2.7) when this equation is expanded

the cross terms will contain the Stokes parameters of the incident signal. We rewrite

equation (2.4.1) as
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Figure 2.6: Implementation of a 144 array of sky horns with a 14◦ beam size will allow

QUBIC to obtain a scalar-to-tensor ratio of 0.01 over an operation period

of 1 to 2 years. This plot was created at the APC for the QUBIC white

paper using methods found in [69]

Sk(t) ∝
Nl∑

j,m=1

EjE
∗
me

(Φj(t)−Φm(t)) = Vjme
i(Φj(t)−Φk(t)) (2.4.2)

where the Vjm represents the visibilities we wish to recover. We have suppressed the

time independent geometric phase shifts (∆(j/m)k) as they do not affect the problem

of visibility recovery [74].

In order to recover the visibilities we apply known phase shifts to the incident beams.

When one includes a full description of the polarization using the Stokes parameters

and the definition of visibility introduced in equation (2.2.2) the RHS of equation

(2.4.2) can be expanded to give the response of a single bolometer as [75]
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Sk(t) = Nh

∫
I(n)A(n)dn +

∫
U(n)A(n)dn

∑Nh

j=1 cos(Φ
‖
k,i − Φ⊥k,i)

+
∫
V (n)A(n)dn

∑Nh

j=1 sin(Φ
‖
k,i − Φ⊥k,i) +

∑Nb

b=1Re[VI(ub)](cos(∆Φ
‖‖
k,b) + cos(∆Φ⊥⊥k,b )) −

∑Nb

b=1 Im[VI(ub)](sin(∆Φ
‖‖
k,b) + sin(∆Φ⊥⊥k,b ))+

∑Nb

b=1 Re[VQ(ub)](cos(∆Φ
‖‖
k,b)− cos(∆Φ⊥⊥k,b )) −

∑Nb

b=1 Im[VQ(ub)](sin(∆Φ
‖‖
k,b)− sin(∆Φ⊥⊥k,b ))+

∑Nb

b=1 Re[VU(ub)](cos(∆Φ
‖⊥
k,b) + cos(∆Φ

⊥‖
k,b)) −

∑Nb

b=1 Im[VU(ub)](sin(∆Φ
‖⊥
k,b) + sin(∆Φ

⊥‖
k,b))+

∑Nb

b=1 Re[VV (ub)](cos(∆Φ
‖⊥
k,b)− cos(∆Φ

⊥‖
k,b)) −

∑Nb

b=1 Im[VV (ub)](sin(∆Φ
‖⊥
k,b)− sin(∆Φ

⊥‖
k,b))

+nk
(2.4.3)

where the Stokes visibilities are defined as Vs(uB) =
∫
S(n)A(n)e2iπuB·ndn where n is

the direction the instrument is pointing and uB is the displacement of a baseline b in

units of wavelength. Also nk is the noise on a bolometer k. The letter S stands for the

I,Q, U or V Stokes parameter. Once again the value A(n) is the antenna’s sensitivity

and Nb is the number of baselines. The term ∆Φ
‖‖
k,b = Φ

‖‖
k,i − Φ

‖‖
k,j is the total phase

shift difference at detector k between the ith and jth horns that make the b baseline

(likewise for the ∆Φ⊥⊥k,b , ∆Φ
‖⊥
k,b and ∆Φ

⊥‖
k,b terms).

Although seemingly complex the signal over all bolometers shown in equation (2.4.3)

can be grouped into the simple linear expression

S = A ·X + n. (2.4.4)

Here the phase shifting sequences are known coefficients contained in the matrix A

while N = n · nT is the noise covariance matrix. We can then solve this signal for the

unknown Stokes visibility terms

X = (At ·N−1 · A)−1 · At ·N−1 · S. (2.4.5)
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Equation (2.4.5) is summed over all possible baselines (Nb). However such a conven-

tional approach causes problems. The length (D) of the matrix X is equal to 3+8×Nb

where Nb = Nh(Nh−1)/2. Here Nh is the number of sky horn antennas. It is clear for

a large horn array that this number is excessively large. For example a 10× 10 array

will produce a matrix whose length is 39603. As many data samples as unknowns are

required and so a large amount of data retrieval from the sky must be followed by

manipulation of large matrices. It is too cumbersome to proceed this way.

For QUBIC it has been suggested that all horns separated by equivalent baselines can

be treated as a single unit during the phase shifting sequences. Therefore equation

(2.4.4) can be re-expressed to consider the phase shifting sequences applied to all

equivalent baselines only. The number of possible equivalent baselines (Neq) is equal

to 2(Nh −
√
Nh). The value D is thus reduced to 180 for a 10× 10 array [75] 9.

We define the noise covariance matrix (N) for the recovered visibilities as σ2(ATA)−1

where σ2 is the variance of the white noise that contaminates the received signals. It

has been shown that this noise is minimized by ensuring that the orthogonal relation-

ship

∑
t

A∗tmAtm′ = 0 form 6= m′ (2.4.6)

exists between the phase shifting sequences [74]. This means that the Stokes visibilities

are recovered with minimal noise when the phase shifts between varying equivalent base

lines are orthogonal10. This process of inducing orthogonal phase shift sequences over

the various equivalent baselines is referred to as the coherent summation of equivalent

baselines. This ensures that the recovered visibilities are maximally independent of

one another. Due to the orthogonal phase shifting sequences the diagonal elements of

the noise covariance matrix are then σ2Nh

Nt

1
N2

eq
while all other elements are zero. Here

Nt is the number of time samples. When a bolometer detector array is considered

the noise becomes dependent on the beam size of the sky horns (Ω) and the noise

9The concept of equivalent baselines was introduced by Romain Charlassier of the APC Paris in [75].

In this section we are summarizing the conclusions of this document.
10It is not necessary for the subject of this thesis to explain how orthogonal phase shift sequences can

be calculated. An excellent discussion regarding possible phase shifting sequences is given in [74]

and [75].
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equivalent temperature (NET ) of the individual bolometers. The diagonal elements

of the covariance matrix become

Nij = δij
4(NET 2)Ω2Nh

Nt

1

N2
eq

. (2.4.7)

when we only consider a monochromatic instrument. As shown the signal noise re-

ceived by each bolometer is inversely proportional to the number of equivalent baselines

implemented. Equation (2.4.7) is fully derived and discussed in [69]. The minimum

number of equivalent baselines required to reduce the noise sufficiently to observe B-

modes has been calculated using equation (2.4.7). It has been shown that when the

FWHM of the sky horns is greater than 10◦ and the number of horns is greater than

144 the noise incident on each bolometer will be low enough so that the sensitivity of

a bolometric interferometer is comparable with that of a bolometric imager.

The implementation of identical phase shifting schemes for equivalent baselines places

practical constraints on the performance of the optical combiner. If equation (2.4.7)

is summed over equivalent baselines in order for a full noise reduction proportional
1
N2

eq
the fringe patterns generated by each baseline in a redundant group must be as

similar as possible. In effect each bolometer must image multiple redundant fringes

with minimized variance due to wavefront aberrations. Thus any optical combiner

implemented in QUBIC must possess an aberration free field-of-view that extends

over as much as the detector array as possible. During the design phase of QUBIC

there was a significant amount of work done to assess what level of aberration would

be acceptable. As discussed later in Section 6.4 the effect of the aberrations is to

reduce the overall sensitivity of the instrument. It was decided that a certain level of

aberration would be tolerable so long as they did not reduce the overall sensitivity of

the instrument by more than 10 %. As shown in Table 2.1 limitations on the number of

bolometer detectors that can be implemented restrict the focal length to a maximum

value of 300 mm at 150 GHz or 400 mm at 100 GHz. These focal lengths are extremely

small when one considers the large entrance diameter created by the back-to-back horn

array. A pupil size of at least 140 mm2 is required for a 12 × 12 back-to-back horn

array of 14◦ beams. A low focal ratio optical combiner will therefore be required

that produces unaberrated fringe patterns while combining beams over a large field

of view. These are extremely difficult criteria to meet. The requirement of aberration
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free fringe patterns may be relaxed if an efficient calibration method is developed to

take account of the wavefront aberrations in the combing beams. At time of writing

such issues are under investigation. However from the point of view of prudence this

thesis is concerned with designing Fizeau combiners as diffraction limited as possible

over the entire horn array.

2.5 Quasi optical analysis techniques

2.5.1 Methods for the optical modeling of CMB experiments

We have introduced the QUBIC experiment that is currently being designed in order to

detect a CMB tensor-to-scalar ratio of 0.01. In order to achieve this QUBIC will require

an extremely well designed and characterized optical combiner to induce geometrical

phase shifts in the combining beams. The author’s role in QUBIC has been to design

and model such an optical combiner in light of the requirements and restrictions placed

on the cryostat, detectors etc. We will conclude this chapter by briefly discussing the

optical design and analysis techniques we have implemented in order to achieve this

task.

This thesis concerns best practice for implementation of a quasi optical combiner

within a bolometric CMB interferometer. From considerations presented in the previ-

ous sections the combiner implemented in QUBIC must be a fast, blockage-free system

that has a large diffraction-limited field-of-view. As a starting point for designing such

a device geometrical optics (GO), also known as ray-tracing, was used.

To fully model the behavior of any system designed using GO methods, analysis tech-

niques that treat light as a wave phenomenon must next be implemented. This is

especially true for QUBIC and all CMB experiments where the millimeter wavelengths

and component sizes involved will generate a large degree of diffraction. Also if we

wish to model the fringes generated by equivalent baselines, modeling techniques that

can account for interference must be employed.

The basis for understanding the behavior electromagnetic signals propagating through

various components is Maxwell’s equations. Figure 2.7 indicates the various methods
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available to model the electromagnetic behavior of an optical system. These methods

are based on various analytical solutions and approximations to Maxwell’s linear differ-

ential equations. The variety of methods is produced by imposing certain assumptions

onto the three dimensional Maxwell equations. For example forcing a beam of light

to travel in a region in which no source of charge is available produces the Helmholtz

equation which is solvable using Fourier transform techniques. The methods we have

used to model the fringe patterns produced by the QUBIC optical combiner are quasi

optics (modal analysis), Fourier and physical optics.

Figure 2.7: Analysis methods for optical modeling. This image is taken from [76].

Figure 2.7 indicates the various methods available to model the electromagnetic be-

havior of an optical system. Approximate source field methods essentially adopt the

Huygens principal of secondary wavelets to solve Maxwell’s equations. In these meth-
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ods a source electric field generates an envelope of wavelets. The field created by

these wavelets interact with the various optical components becoming redirected and

refocused. All techniques use propagator functions to transfer the wavelet envelopes

from one optical component to the next. The choice of propagator functions and how

the electric fields interact with the optical components differentiates the diffraction

integral, modal analysis and physical optics techniques from one another.

The diffraction integral approach utilizes Fourier transforms to propagate the electric

field through the optical system. The optical components are phase transformers that

refocus the electric field by reshaping its phase front11. The Gaussian mode techniques,

referred to as quasi-optics from this point onwards, employs sets of closed Gaussian

polynomials to describe the propagation of diffracting electric fields. Physical optics

uses Green function solutions to Maxwell’s equations to propagate the electric field

from one component to another. The incident electric field induces a distribution

of time varying electric and magnetic currents across a reflector surface. The field

re-emitted by these currents is then calculated and propagated to the next reflector.

The varying currents re-emit the electric field with a wavefront curvature equal to the

reflector formation.

Physical optics is a full vector analysis of a reflecting optical system. As such the

electric field can be independently calculated in all three spatial dimensions over a

range of distances. A full treatment of polarization and concerns such as spillover is

possible. Fourier and quasi optics are both scalar optical analysis techniques. Here the

various components of the electric field all satisfy a single scalar wave equation. As

such scalar optics will not provide an adequate analysis of polarization of an electric

field. Also because scalar optics assume paraxial fields the accuracy of the techniques

decreases rapidly when one moves outside the paraxial region. Paraxial restrictions

simply mean we only consider or attempt to model the behaviour of the propagating

field at small (< 30◦) angles relative to the propagation axis.

11The diffraction integral analysis technique will be referred to as Fourier optics from this point

onwards.
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2.5.2 Geometrical optics

Geometrical optics (GO) concerns the design and analysis of an optical system when

the wavelength of light is negligible when compared with the optical component size

and pencils of rays are assumed. The design of all refractive optical systems generally

begins by considering Snell’s law and the behavior of a ray at any surface boundary.

By combining a pencil of rays at equi-phase locations a wavefront can be considered.

Essentially all astronomical optical instruments involve transforming a plane wavefront

from the sky into a spherical wavefront converging on a camera device. This of course

is an ideal situation. In reality all transformed wavefronts will vary from a spherical

approximation. In GO the Hamilton characteristic function is a powerful tool that

allows us to quantify the variance of a given wavefront from a required planar or

spherical wavefront [77] :

W (σ, ρ, φ) =
∑
l

∑
m

∑
n

l+nkm+n,nσ
l+nρm+n cosn φ (2.5.1)

where ρ is the normalized aperture radius, σ is the field radius and φ is the azimuthal

angle at the aperture. The value k is a coefficient that quantifies the contribution of

each term in the expanded function. The characteristic function is a polynomial rep-

resentation of the separation of a point on a given wavefront from an ideal reference

front. Each term in the extended polynomial describes a particular classical phase

aberration and gives the magnitude of their contribution to wavefront error. For ex-

ample the classic coma aberration can be written as 3k11σ
3ρ cosφ while astigmatism

is described by 2k22σ
2ρ2 cos2 φ. The reduction of these aberrations is the fundamental

goal of all optical design. A multitude of high performance systems can be designed

from geometrical aspects. This is because consideration of the Hamilton function

allows us to describe the wavefront aberration in terms of the surface properties of

the optical devices. For example the wavefront coefficients 3k11 and 2k22 are equal

to 1
2
S11 and 1

2
S111 respectively. Here S11 and S111 are called the Seidel coefficients.

It has been shown that under paraxial approximations S11 = −L
2
y2
(

1
f

)2 (
1+M
1−M

)
and

S111 = L2
(

1
f

)
for a spherical mirror. Here f is the focal length of the mirror, L is the

Lagrange invariant of the system, M is the magnification and y is the incident height

of the marginal ray. Therefore the characteristic function allows us to calculate the
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appropriate surface properties to minimize wavefront aberrations. The most element-

ary example of this is that the wavefront reflected from a parabolic mirror will not

contain spherical aberration [78].

The initial design of the optical combiner was carried out using geometrical optics

to derive dual reflector combiners with minimum wavefront aberrations. The Zemax

software package was used to examine the propagation of rays through these possible

combiners12. Zemax is a geometrical software package that will graphically illustrate

the path of rays through an optical system. It also uses the characteristics of the

defined optical surfaces to calculate the aberrations induced on a propagating wave-

front. Zemax is a robust software package that can provide a fast initial assessment

of a possible combiner.

In reality (and especially for CMB observations) the wavelength of light is not negligible

as assumed in GO. Although Zemax offers some methods to model interference and

diffraction they are highly reliant on ray optics as propagating functions for the electric

field. Although the initial design of QUBIC was done in Zemax accurate fringe pattern

simulations were done using the techniques of physical optics.

2.5.3 Physical optics (PO)

The behavior of electromagnetic fields in any region of space is described by Maxwell’s

equations

jωεE−∇×H = −JE

jωµH−∇× E = −JM

. (2.5.2)

Here JE and JM represent electric and magnetic source currents. These equations

represent a linear system. Therefore the entire electromagnetic field through a region

can be obtained by the superposition of fields produced by individual source currents.

The radiated field produced by an entire volume of source distributions is obtained by

integrating the system’s impulse response to each source current. A physical optics

12Zemax is an industry standard software package that allows the user to design and analyze optical

systems. For more information visit http://www.zemax.com.
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analysis can only be implemented where the variables ε and µ are fully quantifiable.

Here ε and µ are the electric permittivity and magnetic permeability constants of the

medium respectively. It is clear from the curl and gradient operators that physical op-

tics considers contributions in all dimensions around source currents. This means that

physical optics is a vector analysis technique where the components of the electric and

magnetic field must be calculated separately in all directions. This and the fact that

the current contributions are recalculated at each optical surface means that phys-

ical optics is the most involved and time consuming technique for modeling reflector

systems that we will use.

Maxwell’s equations can be solved using dyadic Green functions to obtain the electric

field and magnetic field generated by a distribution of source currents 13. The dyadic

Green functions are 3 × 3 dimensional matrices and serve as propagator functions

within physical optics. The excited electric field radiated by a current distributed over

a surface S is

E(r) = k2Z
4π

∫
S

[
JE

(
− j
kR
− 1

k2R2 + j
k3R3

)

+(JE · R̂)R̂

(
j
kR

+ 3
k2R2 − 3j

k3R3

)]
e−jkRds

− k2

4π

∫
S
(JM × R̂)1+jkR

k2R2 e
−jkRds

(2.5.3)

while the magnetic field is

H(r) = k2

4πZ

∫
S

[
JM

(
− j
kR
− 1

k2R2 + j
k3R3

)

+(JM · R̂)R̂

(
j
kR

+ 3
k2R2 − 3j

k3R3

)]
e−jkRds

− k2

4π

∫
S
(JE × R̂)1+jkR

k2R2 e
−jkRds.

(2.5.4)

13A full description of how equation (2.5.2) can be solved to find the generated electric and magnetic

field is beyond the scope of our discussion. An excellent treatment of such matters as well as some

practical modeling examples is presented in [79].
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Equations (2.5.3) and (2.5.4) are given in the TICRA GRASP technical manual for

the electric and magnetic fields radiated by a current distribution over a surface S 14.

Here r is the point at which the fields are calculated, R = r − s is a vector from a

source point s on the surface S to r, R = |R| and R̂ = R/R. The value Z is simply

the impedance of free space.

When these fields interact with a reflector they will generate source currents over

its surface. Using the PO approximation (discussed next) the currents induced on a

reflector’s surface can be readily calculated from incident electric and magnetic fields

by

JE = 2n̂×H i

JM = 2n̂× Ei
(2.5.5)

where n̂ is the surface normal of the reflector. The electric and magnetic field re-

emitted by this surface can then in turn be calculated using equations (2.5.3) and

(2.5.4). In this manner the electric field on a incident beam can be propagated through

any number of sequential reflectors using physical optics.

Throughout this thesis the TICRA GRASP9 software (General reflector and antenna

farm analysis software package) is the work horse we have employed to accurately

perform a PO analysis of possible optical combiners. The above mentioned PO ap-

proximation assumes that the surface currents on a curved finite scatterer are the

same as those on an infinite planar surface that is tangent to the curved surface at any

considered location. GRASP9 calculates the electric field reflected by from a surface

by

Es ≈ EPO (2.5.6)

where Es is the scattered field and EPO is the field calculated using the PO approx-

imation and equation (2.5.3). This approximation breaks down at the edge of any

reflector where the source current distributions display special behavior that cannot

be accounted for by the PO approximation. In order to model diffraction at the edge

14GRASP9 is an industry standard PO software package used to model antennas at long wavelengths.

For more information visit http://www.ticra.com
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of reflectors GRASP9 uses a method referred to as the physical theory of diffraction

(PTD). The scattered field is therefore described by

Es ≈ EPO + EPTD. (2.5.7)

A full discussion of the calculation of the scattered field contribution EPTD is presented

in [80]. In order to achieve sufficient sensitivity the QUBIC optical combiner must focus

as much power as possible onto the bolometer detectors. Therefore in the designs

considered the edge taper at each reflector is extremely low. We expect that the

contribution from EPTD to be minor and the PO approximation will offer an adequate

analysis of the fringe patterns generated by the optical combiner. GRASP9 is the

final tool implemented in the optical design. It offers no optimization techniques or

wavefront error analysis however quantification of spillover and blockage are possible.

GRASP9 has been used in this thesis to calculate the fringe patterns generated by

various competing designs for the optical combiner.

2.5.4 Quasi optics

Quasi optics (QO) can be loosely defined as the study of optical systems that span the

middle ground between the two limiting cases of ray-tracing at optical wavelengths

and performing physical optics at long wavelengths. In such systems the diameter

of the optical components are moderate compared to the wavelength. The electro-

magnetic wave is initially highly collimated however begins to spread outward during

propagation. When we assume the field is scalar and confine the propagating beam to

the paraxial region we find that one of the most efficient method of analysis is carried

out using Gaussian beam modes. Here the electric field is described using Gaussian

functions that are essentially eigenvectors to a reduced wave equation. As the beam

propagates certain parameters that describe the beam’s profile (e.g. width) will vary

however the electric field can always be described by Gaussian functions. By under-

standing these varying parameters the resultant electric field can be predicted after

interaction with various lenses and reflectors. All theory discussed in this section is

covered in detail in [81] and [82].
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When an electromagnetic field is propagating through a linear, isotropic, homogeneous

and non-dispersive medium the electric and magnetic fields described by Maxwell’s

equations can be decoupled and written as a propagating wave. A single scalar wave

equation can now describe the behavior of all components of the electric and magnetic

vectors. When the scalar electric field for a monochromatic wave is substituted into

the scalar wave equation we obtain the time independent Helmholtz equation

(∇2 + k2)Ψ = 0. (2.5.8)

We will use E(x, y, z) = u(x, y, z)e(−jkz) to describe the distribution of such fields.

Here u(x, y, z) is a complex scalar function that indicates that the amplitude of the

field we are considering differs from that of a plane wave. If we substitute this field into

the Helmholtz equation we obtain a reduced version of the wave equation. As the field

propagates along the optical axis diffraction occurs and the field diverges. To ensure

the conservation of energy the on-axis amplitude must fall as the field expands off-axis.

In the quasi optical (paraxial) region the degree of collimation of the field is greater

than the amount the field spreads off-axis and therefore ∆(∂u/∂z)/∆z � ∂u/∂z.

Under such circumstances the the reduced Helmholtz wave equation simplifies to the

paraxial wave equation

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
− 2jk

∂u

∂z
= 0. (2.5.9)

The most rudimentary solutions to (2.5.9) are Gaussian beam modes. If we wish to

describe the behavior of complex diffracting fields solutions to (2.5.9) in which the

fundamental Gaussian is multiplied by a set of closed form polynomials are readily

derived. In practice the set of polynomials used is dictated by the choice of coordinate

system. In rectangular coordinates the electric field is described by the product of the

fundamental Gaussian beam and Hermite polynomials expanding along the x and y

axes (assuming the optical axis is along the z axis):
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Emn(x, y, z) =

(
1

πwxwy2m+n−1m!n!

)0.5

Hm

(
√

2x
wx

)
Hn

(√
2y
wy

)
·

exp

[
− x2

w2
x
− y2

w2
y
− jkz − jπx2

λRx
− jπy2

λRy
+

j(2m+1)ϕ0x

2
+ j(2n+1)ϕ0y

2

]
.

(2.5.10)

In cylindrical coordinates higher order solutions are obtained by multiplying the fun-

damental Gaussian beam by Laguerre polynomials:

Epm(r, ϕ, z) =

[
2p!

π(p+m)!

]0.5
1

w(z)

[
√

2r
w(z)

]m
Lpm

(
2r2

w2(z)

)
·

exp

[
−r2

w2(z)
− jkz − jπr2

λR(z)
+ j(2p+m+ 1)φ0z

]
·

exp(jmϕ).

(2.5.11)

If the electric field is radially symmetric these polynomials are independent of the

azimuthal angle around the bore sight ϕ. As a Gaussian beam propagates according

to equations (2.5.10) and (2.5.11) the profile describing the beam is maintained but its

height and width are altered. This alteration is dependent on the propagation distance

and is described in equations (2.5.10) and (2.5.11) by parameters known as the beam

radius

w(z) = w0

[
1 +

(
λz

πw2
0

)2]0.5

, (2.5.12)

the phase radius of curvature (ROC)

R(z) = z +
(πw2

0/λ)2

z
(2.5.13)

and the phase slippage

φ0(z) = tan−1

(
λz

πw2
0

)
. (2.5.14)

where the value z indicates the propagation distance. Finally the values m,n and p in

equations (2.5.10) and (2.5.11) indicate the order of polynomial being selected.
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The beam radius (2.5.12) represents the off-axis distance at which the electric field

falls to 1/e of its on-axis value and equals the beam waist (w0) at z = 0. Rather than

perceiving the electric field as propagating from a dimensionless point source the field

emerges from a finite region of space that is multiple wavelengths in diameter. This

is called the waist radius of the beam, w0. The beam waist and radius of curvature

are best understood by considering a Gaussian beam in the context of a diffraction

integral. When a Huygens-Fresnel diffraction integral is manipulated and paraxial

quasi optical conditions are assumed a solution equal to the fundamental Laguerre

Gaussian solution is obtained. The beam waist becomes a finite source of Huygens

wavelets. As the beam propagates the envelope of these wavelets creates a phase

front with a radius of curvature described by (2.5.13). This phase front is a parabolic

approximation to the spherical phase fronts classically associated with a Huygens

treatment of diffraction.

The paraxial ray tracing equations and the ABCD matrix format into which these

equations can be transferred are well documented in all modern optical design text

books. Traditionally the ABCD matrix is a device that allows Snell’s law to be imple-

mented over numerous sequential optical components. Therefore once the focal length

of these components are known the orientations and locations of all rays propagating

through the system can be calculated. A useful aspect of Gaussian beam mode analysis

is that by describing a Gaussian beam by its complex beam parameter qz where

1

qz
=

1

Rz

− jλ

πwz2
, (2.5.15)

ABCD matrices can used to manipulate the beam parameter as follows

qout =
A · qin +B

C · qin +D
, (2.5.16)

and therefore describe the propagation of the electric field through an optical system

in a straight-forward manner. The beam radius and phase radius of curvature can be

recovered from the complex beam parameter using

w =

[
λ

πIm(−1/qout)

]0.5

(2.5.17)
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and

R =

[
Re

(
1

qout

)]−1

. (2.5.18)

Also the phase slippage in an optical system can be calculated by

φ0out − φ0in = tan−1

(
B × ( 1

qin
)

A

)
(2.5.19)

where A and B are of course entries in the ABCD matrix describing the system.

ABCD matrices allow us to model a partially diffracting beam at any location in an op-

tical system. This analysis technique is the simplest method that allows us to account

for the behavior of an electric field without detailed mathematics. The optical system

can be as complicated as one wishes so long as each component can by described by

a ABCD matrix. The process of propagating a beam through such a system is iterat-

ive. The input beam radius and radius of curvature at one component is simply the

output beam radius and radius of curvatures of the previous component. Matters can

be simplified even further if we chose to cascaded the individual components matrices

into one complete expression (M = Mn ·Mn−1 · ...M1 for n optical components).

Two excellent summaries of recent developments in quasi-optical analysis for long

wavelength systems are presented in [83] and [84]. A quasi-optical analysis of the

MBI adding interferometer is presented in [73] while an analysis of the ALMA band 9

front-end is presented in [85].

2.5.5 Fourier optics

As its name suggests Fourier optics employs Fourier transforms to propagate an electric

field through an optical system. Fourier optics emerges from a Huygen’s consideration

of the solutions of the scalar Helmholtz equation (2.5.8) as follows. The spherical

wavelets discussed in Huygen’s principle must obey the Helmholtz equation and can

therefore be described by e±ikr/r [86]. The electric field ψ′(x, y) at any displacement
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from a given distribution ψ(x, y) is the integral sum of spherical wavelets propagating

from the distribution

ψ′(x, y) = K

∫
ψ(ξ, η)

eikr(x,ξ,y,η)

r(x, ξ, y, η)
dξdη. (2.5.20)

We again assume that the field is collimated and thus not diffracting to a significant

extent. This allows a binomial expansion of the phase radius of the spherical wavefront

such that r(x, ξ) ≈ R+ ξ2+η2

2R
− ξx+ηy

R
. If the source and field distributions are separated

by a distance that is much greater than the wave number k the term ξ2+η2

2R
can be

neglected. This is called the far field approximation. The field distribution becomes

the Fourier transform of the source distribution

ψ′(x, y) =
Ke−ikz

z

∫ ∫
ψ(ξ, η)exp

[
− 2πi

λz
(ξx+ ηy)

]
dξdη (2.5.21)

where the terms x and y are the Cartesian coordinates of the source distribution and

ξ and η are the Cartesian coordinates of the field distribution. The bore sight is along

the z axis around which the geometry of the system is orientated. The value z is the

straight line distance between the planes (x, y) and (ξ, η) and R =
√

(x2+y2+z2). The

value K is a constant that reduces the amplitude in order to conserve energy as the

field diffracts. Equation (2.5.21) is the Fraunhofer diffraction integral [87]. Within this

thesis Fourier optical modeling (both near- and far- field) of possible optical combiners

was carried out using the Zemax software package. Zemax’s defines the far field of a

source distribution of Huygens wavelets as < A2/λz where A is the aperture diameter

of the source distribution and z is the propagation distance. The value Fn = A2/λz is

referred to as the Fresnel number. If Fn > 1 we say that the field is within the Rayleigh

range and Zemax calculates the near field diffraction pattern of a source distribution

by

ψ′(x, y) =
Ke−ikz

iλz
e(iπr2)/(λz)

∫ ∫
ψ(ξ, η)e(iπr2)/(λz)exp

[
− 2πi

λz
(ξx+ ηy)

]
dξdη.

(2.5.22)

This is the Fresnel near field diffraction integral where the term e(iπr2)/(λz) is used

to account for the fact that the near field diffraction patterns of an electric field are
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more complex then the far field patterns. It is apparent that as z approaches infinity

this value nears unity and equation (2.5.22) is equal to (2.5.21). Because (2.5.22) is

a Fourier transform, Fourier optical techniques can also be used to describe the near

field diffraction of a electric field.

Zemax examines diffraction within an optical system using a class called the “POP”

operand. Within this operand variations of equations (2.5.20), (2.5.21) and (2.5.22)

are used to propagate the electric field from a focusing device or throughout free space.

There are 4 operations Zemax must perform in order to provide a full analysis of any

possible optical system. The first is propagation within the Rayleigh range dubbed

PTP propagation. Here Zemax multiplies the collection of spherical wavelets shown in

equation (2.5.20) by a phase term eikRz where R indicates the displacements between

the two planes at which the fields are calculated. The second operation is propagation

of a field from inside the Rayleigh range into the far field. Zemax carries out this

propagation using a combination of PTP propagation and both the Fraunhofer and

Fresnel integrals shown in equations (2.5.21) and (2.5.22) respectively. The third type

of propagation from the far field into the Rayleigh range is simply the reverse of this

method. Finally the fourth type of propagation from outside the Rayleigh range to

outside the Rayleigh range is carried out using a combination of equations (2.5.21)

and (2.5.22).

The scalar nature of the POP operand immediately implies that modeled fringes will be

less accurate than fringes produced by GRASP. Although fringe patterns calculated by

the Zemax POP analysis will be presented in the following chapters all final conclusions

concerning an optical combiner will be checked with GRASP simulations.

2.5.6 Modeling lenses

As we shall see in the forthcoming chapters where possible we will attempt to design

a reflector combiner for QUBIC. Although there are many applicable lens systems

for QUBIC there is currently no industrial verified software packages that will accur-

ately model lenses. Physical optics is the most accurate technique available to model

the electric fields generated from currents distributed across a material surface. We

note that equations (2.5.3) and (2.5.4) do not prevent a physical optics analysis of
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a dielectric. As we can see once the value Z =
√

µ
ε

is fully quantified for a surface

a full calculation of the induced currents and the re-emitted electric fields is theor-

etically possible. However in practice numerous problems are encountered when one

tries to perform a physical-optical analysis of dielectric lenses. It has proven difficult

to write accurate algorithms that will calculate the currents and the electric fields on

the dielectric surface and also throughout the material. An in-house optical software

system called MODAL is currently under development at NUIM that can perform

limited physical optics analysis of thick lenses.

MODAL essentially treats a single lens as two separate “sheets” of dielectric. When

an electric field is incident over the first surface MODAL decomposes the field into

its reflected and transmitted components via the Fresnel coefficients. The transmitted

field is then propagated onto the back dielectric sheet using the usual physical optics

approach. At the back surface the reflected and transmitted components of the incident

field are once again calculated. These components are then transmitted out of the lens

or propagated back into the dielectric where a new set of reflected and transmitted

components are calculated. This process is repeated until the power in the electric

field focused by the lens converges on a constant value. A full and elegant introduction

to MODAL and its potential to provide an industry standard software package that

offers optical design and analysis tools that cater for the frequency ranges between

those of GRASP and Zemax is presented in [88].

Fourier and quasi-optics provide some limited options with which we can model on-

axis lens systems. Both these methods allow us to define the initial amplitude and

phase front of an electric field. These fields can then be propagated through an optical

system. In both analysis techniques the curvature of any optical surface is used to

calculate the field amplitude and also the shape of the final wavefront. In Zemax

the electric field distribution is recalculated at every optical surface. We see that the

displacement between the apertures at which fields are calculated will vary from point

to point depending on the curvatures we set for each surface. Meanwhile values of the

ABCD matrices in quasi optics are defined directly from the curvature of an optical

surface. These matrices are then used to recalculate the beam radius and radius of

curvature after propagation through the optical surface.

In Fourier and quasi optics the interaction of the electric field with each optical com-
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ponent is not directly calculated. Such techniques will not provide a full account of

the polarization in an optical system or any edge effects that occur at a low focal ratio

surface. Both Fourier and quasi-optics are paraxial limited and from the authors ex-

perience their results become unreliable when off-axis electric fields are considered. It

is apparent that in order for our instrument to achieve sufficient sensitivity to observe

a tensor-to-scalar ratio of 0.01 our optical system must be completely characterized.

Unfortunately neither Fourier nor quasi-optical analysis will offer an accurate descrip-

tion of errors such as cross polarization, edge effects, spillover or blockage. Since these

methods are the only techniques currently available to us with which the model lenses

we are reluctant to implement lens combiners in QUBIC. Meanwhile research into the

accurate modeling of lenses is on-going.

2.6 Thesis outline

In Chapter 1 we discussed the importance to modern cosmology of detecting CMB B-

mode polarization. This thesis details the authors contribution to the QUBIC CMB

mission, the primary goal of which is to measure the B-mode polarization of the CMB.

In this chapter we have discussed the various components of the QUBIC instrument

and have outlined how an optical combiner will be used to focus beams onto the de-

tector plane. The author has been the one of the principal architects of the QUBIC

optical combiner. The initial considerations for the optical combiner are discussed in

Chapter 3 while in Chapter 4 some refined suggestions for the combiner are presen-

ted. Chapter 5 discusses a possible updated version of the QUBIC mission entitled

QUBIC2.0. Once again an optical combiner is required for this mission and we discuss

several plausible designs. It is currently hoped that the QUBIC instrument will be in

place in Antarctica in late 2012.

2.7 Conclusions

The QUBIC instrument will use bolometer radiometers to measure the visibilities

produced by a Fizeau combiner. This approach to CMB observation is completely

novel and has been dubbed “bolometric interferometry”. As we have discussed there
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is an inverse proportional relationship between the number of baselines with which

QUBIC will observe the sky and the noise in the recovered visibilities. It has been

shown that if the number of horns used to observe the sky is greater than 144 QUBIC’s

sensitivity will be equivalent to that of a CMB imaging telescope. It is expected that

the recovery of the Stokes visibilities with QUBIC will allow us to detect a tensor-to-

scalar ratio ∼ 0.01. As discussed in Chapter 1 quantifying the CMB scalar-to-tensor

ratio is expected to deeply broaden our understanding of the early Universe. This

thesis concerns the design and modeling of a Fizeau combiner applicable to QUBIC

and bolometric interferometry in general. Geometrical, physical, quasi and Fourier

optics have been used to design and model several possible combiners. The details

of these various optical design and modeling techniques have been discussed in this

chapter. Due to the interferometric nature of QUBIC it is vital that we are capable of

simulating any fringe patterns produced by our various designs over various baselines.

Fortunately through the use of PO the GRASP9 software package offers a highly

accurate approach to modeling any fringe patterns produced by a reflector combiner.
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3 Dual reflectors for bolometric

Fizeau interferometers

3.1 The Optical Combiner for QUBIC

In Spring 2009 the first meeting of what now is called the QUBIC collaboration took

place in Paris. At this meeting it was decided that an optical combiner that imposes

geometric phase shifts on multiple Gaussian beams should be implemented in QUBIC.

The persons attending this meeting from NUIM were charged with designing such a

combiner. We initially decided to implement an off-axis dual reflector. In this chapter

we discuss why such a decision was taken.

In the initial stages parameters such as the combiner focal length and bolometer size

were not fully determined for QUBIC. Although topics dealt with in this chapter are

ultimately aimed at the design of the QUBIC optical beam combiner, we first present

a general review of off-axis dual reflectors that could be implemented in a Fizeau

bolometric interferometer.

From the discussions in Chapter 2 it is clear that the optical combiner will have to be

extremely well characterized and transfer as much power as possible to the detector

array in order for QUBIC to achieve the sensitivity level required to observe CMB B-

modes. Therefore our initial intentions for QUBIC involved the designing an off-axis

dual reflector. An off-axis geometry was chosen to prevent the shadowing of the array

of back-to-back horns by the secondary reflector. This will ensure as much power as

possible is collected by the primary mirror. We chose to explore the implementation of
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reflectors first rather than on-axis lenses due to the fact that the behavior of reflectors

can be accurately modeled using physical optics. An off-axis dual reflector consists

of a combination of mirrors whose optical axes are not aligned. These systems are

inherently difficult to design due to the large number of free parameters required for

describing the positioning of the mirrors.

This chapter will then address the off-axis dual reflector designs that were considered

for QUBIC. The optical combiner required for QUBIC is equivalent to a classical

focusing system. As such before proceeding directly to the design of the reflectors we

will briefly model the fringe patterns we expect a classic focal system to produce.

3.1.1 Focal Systems

We define a focal system as any optical device that focuses rays traveling parallel in

the system’s object space onto a single location in the image space. The location to

which the rays converge in the image space is referred to as a focal point. Under such

conditions both a simple convex lens imaging an object at infinity or more complic-

ated instruments such as Newtonian reflectors are classed as focal systems 1. QUBIC

requires a focal device that will combine beams propagating from the back-to-back

horn array. This device will simultaneously focus beams from a patch of sky onto the

detector array while also providing the geometric phase shifts necessary to generate

the visibility patterns. In this section we will assume the optical combiner required

for QUBIC is an ideal on-axis thin lens. This will allow us investigate the anticip-

ated behavior of a perfect optical combiner using quasi optics. A concise introduction

into definition and conventions used to describe optical systems can be found in the

opening three chapters of [89].

Using quasi optics we can model the behavior of the optical combiner. As it is the

simplest focal system applicable to the QUBIC combiner we will consider a paraxial

lens. Such a device is an ideal optical component possessing no thickness and perfect

focusing capabilities. By implementing a paraxial lens we are only considering the

ideal geometric change to the incident phase front.

1Assuming we discard the ocular within a Newtonian of course.
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We let the separation between the paraxial lens and the bolometer array equal the

focal length (f) of the lens. The field at the back focal point of such an arrangement

is a Gaussian beam whose beam radius is readily calculated using ABCD matrices as

wout = λf
πwin

. Here λ, is the wavelength and win is the beam waist at the input horn 2.

If the incident beam is propagating from an off-axis horn the phase front at the focal

plane will be tilted. Such a scenario is shown in Figure 3.1

Figure 3.1: A paraxial lens combining beams from a single baseline. Here b is the

displacement of a single horn from the optical axis and f is the focal length

of the combiner. These values have been denoted as b and f respectively

in the accompanying text.

In order to tilt a beam we multiply the field by the exponential term e(−jkxθ) where

θ is the angle between the incident wavefront and the focal plane [81]. The term

k is of course the wave number. The value of θ can be readily calculated from the

combiner geometry as θ ≈ b
f

where once again b is the displacement of the horn from

the optical axis. The resulting electric field generated by a baseline of length 2b will

be exp(− x2

wout
2 )(exp(−jkxθ) + exp(jkxθ)). Using trigonometry we can reduce this to

2It is this formula we use to calculate the size of the bolometer array in Table 2.1. From the incident

beam size we can compute the beam radius at the focal plane. To ensure at least 95% is integrated

the size of detector array must be at least 2× wout × 1.2 mm2.
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the cosine expression3,

I(x) =

(
exp(− x2

wout2
) cos

(
kbx

f

))2

. (3.1.1)

Therefore the field on the focal plane will have a periodically varying amplitude with

a Gaussian envelope. The field described by equation (3.1.1) is a simplified version

of equation (2.2.2). Hence the generated field will be the type of fringe pattern we

wish to sample. Some examples of fringe patterns calculated using equation (3.1.1)

are shown in Figure 3.2. A 4 mm input waist radius was used to generate the fringes

shown in Figure 3.2. This value is consistent with the waist radius of 14◦ FWHM

Gaussian beams expected to propagate through the QUBIC combiner. Also we set

the wavelength equal to 2 mm and chose a 300 mm focal length for the paraxial lens.

In summary quasi optics confirms that using a classical focal system to combine beams

from off-axis back-to-back horns will produce the fringe patterns we require to sample

the sky visibilities. In reality the above assumptions we made about the nature of

the combiner are not realistic. Currently it is not possible to manufacture an optical

combiner that will focus light as flawlessly as a thin paraxial lens. Because of such lim-

itations to the optical combiner’s design there have been certain specifications placed

on it’s performance. Such performance specifications will be discussed later.

3.1.2 Performance of a Telescopic Combiner

The goal of the optical combiner is to generate equivalent fringe patterns from equival-

ent baselines. We have shown a focal device will generate a fringe pattern whose field

is the additive sum of separate geometrically shifted beams. The question remains to

be answered as to how can we design such a device.

There is a wealth of literature pertaining to the geometric design of telescopes. These

methods are applicable to the design of QUBIC’s optical combiner. Consider the

visibility of an interferometer defined by Michelson V = Imax−Imin

Imax+Imin
. When the incident

signal has a high degree of coherency V is close to unity. The response signal of the

3We remind ourselves that cosx = eix+e−ix

2 . Also by showing the absolute value we are now

describing the intensity of the electric field.
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(a) Fringe pattern generated by a 40 mm baseline.

(b) Fringe pattern generated by a 20 mm baseline.

Figure 3.2: Fringe patterns predicted using Fourier and quasi optics calculations. A

300 mm focal combiner at 150 GHz has been assumed.

interferometer is strongest when this occurs. If we consider this value in the context of

a telescopic optical combiner we can consider V analogous to the contrast/modulation

ratio of an imager. It has been clearly documented that the presence of aberrations in

an optical system will reduce the contrast in the images produced by that system [86].

This conclusion is applicable to QUBIC (we are after all “imaging” the fringe patterns).

Classical phase aberrations present within the combining wavefronts will reduce the

visibility of the fringe patterns, thus reducing their “quality”. Also aberrations will

alter the phase transfer function of an optical system. This means it is possible the
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fringes will undergo a lateral shift along the focal plane. Since the magnitude of

aberrations is dependent on the location of the baselines from the optical axis the

fringes from various equivalent baselines will not focus at the same locations along

the detector array. Therefore bolometers will not see the same regions of each fringe

pattern. Such lateral shifts can cause errors during visibility recovery. Our colleagues

in Milano have investigated figures-of-merit that could be used to describe the QUBIC

optical combiner4. Using the optical transfer function they have derived an efficiency

criterion for the QUBIC optical combiner. This criterion requires the use of Zemax to

calculate the geometric transfer function of a given combiner. Since this does not take

full account of the wave nature of the incident beams a physical optics analysis of any

combiner system is still necessary.

The QUBIC optical combiner will be a classic telescopic device designed to minimize

phase aberrations. The lower the phase aberration the more successful the combiner

will be at producing equivalent fringe patterns from equivalent baselines. The fun-

damentals of geometrical optics concern designing systems that induce little or no

phase aberrations on focusing wavefronts5. We thus proceed to follow the literature

concerning best practices for geometrical optical design to construct QUBIC’s optical

combiner. Such methods have been used to design the optical combiner because due

to the ease and speed of the calculations geometrical optics permits fast and effective

optimizations of any initial system. Also such techniques are well developed in com-

mercial software packages such as Zemax. Later we will analyze the systems using a

full physical optics analysis.

3.1.3 Disadvantages of lenses of QUBIC

In the above examples we used an on-axis single lens to represent the QUBIC beam

combiner. Lens antennas have been used, for example, in the HIFI instrument (Bands

5,6,7) for the Herschel Space Observatory [90] and in the DASI CMB interferometer.

Their primary function was to shape the incident beam in such a manner as to allow

4Universitá di Milano Bicocca, P.za della Scienza 3, 20126 Milan, Italy. Website http://www.

unimib.it
5If phase aberrations are produced it seems unlikely that they would be the same for equivalent

baselines.
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a higher coupling efficiency between the incident electric field and the horn antenna.

A number of different approaches exist that are capable of accurately modeling small

lenses. These include finite-difference and finite-elements techniques. However these

methods are limited to lenses whose diameter is less than 10 wavelengths [91]. The

QUBIC optical system, on the other hand, is a large scale quasi optical combiner.

Therefore the techniques that can be used to model small lens antennas cannot be

used in such a scenario.

Large dielectric lenses have been used in the QUaD and BICEP CMB imaging experi-

ments. Although it is possible to accurately model the bending effects that these lenses

have on incident waves using ray tracing techniques, such an approach does not offer a

complete description of the behavior of the lenses at GHz frequencies. This is because

the wavelength of the incident beams is large enough to allow diffraction to domin-

ate the beams propagation. This diffraction cannot be modeled using ray tracing.

However as discussed in the previous chapter there are currently no methods available

commercially that accurately model the scattering and diffraction behavior of electric

fields incident on dielectric materials whose diameter is 10λ - 100λ. Experiments such

as QUaD and BICEP highlight the unpredictable behavior of the polycarbonate ma-

terials used to create GHz lenses. It is currently suspected that some of the dielectric

focusing elements or optical windows within these experiments were birefringent and

caused beam squint errors to occur. Because the theory of electric fields scattering

from perfect conductors has been vigorously studied and explained such occurrences

are not experienced when we implement reflectors. For these reasons we first concen-

trated on reflector designs for the QUBIC optical beam combiner.

3.1.4 Disadvantages of on-axis reflector designs for QUBIC.

Optical-wavelength Fizeau interferometers that implement on-axis reflectors and are

dedicated to astronomy have been discussed in [92]. Here the instrument discussed is

a typical on-axis telescope with a mask placed in front of its aperture. Pin holes have

been placed in the mask to generate baselines. For an instrument such as QUBIC on-

axis designs are particularly attractive due to low magnitude wave front aberrations.

Several authors have demonstrated how on-axis aplanats can be adjusted to cancel out

a third Seidel aberration [93], [94]. The well known Couder design is a classic on-axis
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Cassegrain with a concave secondary mirror. This arrangement leads to zero spherical

aberration, coma and astigmatism. Construction of flat field aplanats as well as zero

distortion aplanats have also been discussed in these sources. Perhaps the most famous

on-axis dual reflector telescope is the Hubble space observatory. The main design of

the Hubble optics is referred to as a Ritchey-Chrétien Cassegrain variation. Here the

primary mirror in a classical Cassegrain is manufactured to be slightly hyperbolic.

This enables a greater reduction of coma compared to traditional systems 6. ESA’s

recently launched Herschel Space Observatory is also a Ritchey-Chrétien Cassegrain
7.

Another well known on-axis design is the special Schwarzchild aplanat [95]. This

arrangement cancels out spherical aberration, coma, astigmatism and field curvature.

On-axis designs are thus more suitable to systems requiring low aberrations than off-

axis designs. On-axis systems that cancel 3 to 4 Seidel aberrations (coma, astigmatism,

field curvature and distortion) can be implemented using standard conic surfaces. For

off-axis systems however it has only been demonstrated how to minimize at most two

wavefront aberrations whilst using conic sections [96].

Previous CMB interferometry experiments such as MBI have implemented on-axis

designs. Unfortunately on-axis systems are simply not practical for QUBIC. In MBI

the minimum baselines were separated by a distance greater than the diameter of

the secondary reflector. Thus the minimum baselines were not in the shadow of the

secondary reflector. QUBIC will use a 250 mm2 grid of at least 12× 12 back-to-back

horns to re-transmit the signal from the sky. Therefore if an on-axis design were chosen

many of the centre horns of this grid would lie in the shadow of the secondary mirror

regardless of its diameter. It is clear that a high degree of blockage would be present

within our optical system. Therefore neither reflecting or refracting on-axis designs

are applicable to QUBIC. For these reasons the only practical combiner to implement

in QUBIC is an off-axis dual reflector.

We are aware we are limiting our choices to off-axis dual reflectors. Although off-axis

reflector designs consisting of three and four elements can be found within the literature

most of these designs include at least two aligned components [97]. Effectively at least

6More information on the Hubble Space Telescope can be found at http://hubblesite.org/.
7With a 3.5 m primary mirror the Herschel Space Observatory is the largest telescope ever launched

into space. For more information visit http://herschel.esac.esa.int/
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two of the reflectors will shadow one another preventing the maximum power reaching

the focal plane. Also the designs that are completely unblocked are too large for

the QUBIC cryostat or are simply not realistic at the low focal ratios encountered

in QUBIC [98]. As such in the following sections we discuss off-axis dual reflectors

only.

3.1.5 Cassegrain versus Gregorian

Two types of telescopes dominate the field of astronomy. These are the Cassegrain

and Gregorian dual reflectors. Both these systems consist of a parabolic primary

mirror combined with a secondary mirror. In traditional systems the secondary mirror

essentially magnifies the focal length of the primary. The location of the secondary

mirror dictates the title and defines the characteristics of a dual reflector. If a convex

hyperbolic secondary is inserted before the primary’s focal point the system is referred

to as a Cassegrain telescope. If a concave elliptical secondary is inserted after the

primary’s focal point the telescope is a Gregorian. For equal parameters (for example

focal ratio and field of view) the Cassegrain is a better performing system. It will

induce marginally lower phase aberrations on propagating wavefronts and the design

itself is more compact than the Gregorian [77].

3.2 Dual reflectors

The following sections present an analysis of possible dual reflector arrangements to

be considered for the QUBIC experiment. The design of all these reflectors occurred

bearing in mind the parameters of QUBIC that were detailed in Chapter 2. An array

of 144 sky horns laid out in a 12 × 12 grid was considered to be the entrance pupil.

These horns observe the sky using 14◦ FWHM primary beams. The diameter of a

single horn is therefore approximately 11.6 mm (including a 2 mm rim diameter). The

size of the entrance diameter is therefore 140 mm at 150 GHz while at 100 GHz it

increases to 200 mm. Unfortunately the low focal ratios of QUBIC will automatically

exclude some reflectors from consideration. In order to present a fair review of cur-

rently available reflectors we have allowed for future developments in multiplexing and
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detector technologies that will permit a filled focal plane much larger than the one

proposed for QUBIC. We have assumed a 400 mm2 detector plane filled with 6400 5

mm bolometers. This has allowed us to consider up to 800 mm focal length systems.

3.2.1 The geometry off-axis dual reflectors

Figure 3.3 demonstrates the geometry of off-axis Gregorian and Cassegrain reflectors.

In these diagrams we have only shown incoming rays that are aligned with the primary

axis (indicated by the blue lines). These lines emerge parallel from the back-to-back sky

horns8. The labeling convention used in this section will remain constant throughout

the rest of this chapter when we discuss off-axis systems.

In all following diagrams the size of the back-to-back horn array is 140 × 140 mm2.

These are the dimensions required to house a 12 × 12 horn array that generates 14◦

FWHM Gaussian beams. In all dual reflectors we present the chief ray propagates at

an angle normal to the centre of the horn array. The chief ray demonstrates the line-

of-sight of the back-to-back array. The angle θu is the angle of throw of the primary

reflector. The angle β is the tilt between the primary and secondary axes. Finally the

angle α is the tilt between the chief ray and the secondary axis while F1 and F2 are

the combiners foci9.

3.2.2 Designing off-axis dual reflectors

An off-axis dual reflector system is required for the QUBIC optical combiner. In gen-

eral the parameters of these systems lack the versatility of their on-axis counterparts

to remove Seidel aberrations. However in recent years a number of publications have

discussed how these systems can be optimized for low astigmatism, cross polarization

and spillover [96]. Like their on-axis counterparts off-axis systems can also be ma-

nipulated to form Ritchey-Chrétien variations. Such systems will have their primary

mirrors reshaped from a paraboloid into a hyperbolic or elliptical structure. Altering

8In later diagrams these will be accompanied by fans of rays covering the full width of the Gaussian

beams propagating from the back-to-back horns. The approximate edge of the field of view will

be indicated by green and red lines
9This notation also applies to Figure 3.3
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(a) Geometry of off-axis Gregorian reflector.

(b) Geometry of off-axis Cassegrain reflector.

Figure 3.3: Geometrical layout of off-axis dual reflectors.

the primary mirror in such a fashion leads to negligible amounts of spherical aberration

and coma.

There are two conditions that describe how to align the mirrors within an off-axis dual

reflector in order to achieve minimal spherical aberration, astigmatism, spillover and

cross polarization. These are the Rusch condition [99] and the Mizuguchi-Dragone
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criteria [100]. The Rusch condition for dual reflectors is

tan

(
β

2

)
=

(e− 1)2

(e+ 1)2 tan

(
β − θu

2

)
. (3.2.1)

As previously explained the angle β is the tilt between the reflectors’ axes. The value θu

is the angle of throw of the primary parabola and e is the eccentricity of the secondary

reflector. Similar to on-axis systems, off-axis reflectors can be resolved into a single

off-axis equivalent paraboloid. If the system parameters are chosen according to the

Rusch criterion the line-of-sight of the off-axis equivalent paraboloid will align with

the centre of the sub-reflector. This will create minimum spillover10.

The Mizuguchi-Dragone condition :

tan

(
α

2

)
=

(e+ 1)

(e− 1)
tan

(
β

2

)
(3.2.2)

allows one to design a dual reflector in which the offset angle of the equivalent para-

boloid is zero. Here α is the angle between the chief ray and the secondary axis11. In

effect a system that obeys this condition can be resolved into an on-axis paraboloid.

Due to this central symmetry such a system will induce minimal spherical aberra-

tion, astigmatism and geometrical cross polarization. It has been shown that off-axis

Gregorian reflectors designed using the Mizuguchi-Dragone condition possess a higher

diffraction-limited field-of-view than off-axis aplanatic Gregorians [101].

Systems that obey the Rusch and Mizuguch-Dragone conditions are referred to as com-

pensated dual reflectors. Such systems represent the state-of-the-art of off-axis dual

reflector designs. We investigate traditional compensated Cassegrain and Gregorian

reflectors as well as the more exotic side-fed and front-end-fed Cassegrain. We also in-

vestigated a relatively unknown crossed inverse Cassegrain design. Each of the systems

are been optimized using the Rusch and Mizuguchi-Dragone conditions and therefore

should all be suitable for QUBIC. However since both equation (3.2.1) and (3.2.2) are

derived using ray-tracing techniques this assumption is solely based geometrical optics

considerations that do not take account of the finite wavelength of light. As we shall

10All angles are shown in 3.3
11This angle is also shown in 3.3
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show in this chapter at GHz frequencies certain dual reflectors are more applicable to

CMB bolometric interferometry than others. Also the low focal ratios of QUBIC will

automatically exclude some reflectors from implementation.

3.2.3 Beam distortion in dual reflectors

There is an optical aberration separate from the traditional third order Seidel phase

aberrations (spherical aberration, coma, astigmatism, field curvature and distortion)

referred to as amplitude or beam distortion. Unlike the Seidel aberrations that describe

geometric shifts in the wavefront of a propagating field, beam distortion refers to the

amplitude profile of a propagating electromagnetic field.

In this section we describe how an off-axis system causes amplitude distortion of the

beams from the back-to-back horns. When a Gaussian beam spreads over the primary

reflector different regions of the electric field experience a different equivalent focal

length. This introduces an asymmetry into the reflected beam causing power to be

transferred into higher order beam modes. The result of this power spillage is that the

peak of the reflected beam no longer occurs along the propagation axis.

The fraction of incident power that spills into the higher order modes is quantified

by

U =
wm tan(θi)

2
√

2fp
(3.2.3)

where fp is the effective focal length of the paraboloid reflector [102]. This value

depends on the focal length of the paraboloid and the height above the vertex that

an incident beam hits the mirror surface. The value wm is the beam radius at the

mirror surface and θi is the angle of incidence. The fraction U will differ for each

beam striking the paraboloidal mirror at a different height. It has been calculated

that after reflection from a paraboloid mirror a Gaussian beam can be described by

Er = E00 +
1

2
U

(√
3E30 + E12

)
(3.2.4)
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where Er represent the reflected field and E00 is a fundamental Hermite Gaussian

beam. The terms E30 and E12 are the higher order Hermite modes into which the

fraction of power denoted by U becomes transfered. The presence of the terms E30

and E12 signifies that the peak amplitude of the reflected beam, Er, will no longer occur

along the propagation axis. Hence the beam’s amplitude has become distorted. Also

it is apparent when various beams strike the primary mirror at various heights each

beam will encounter a separate value for the equivalent focal length fp. Therefore the

value U for each beam will differ and the various reflected beams will undergo different

levels of distortion. An example of this is shown in Figure 3.4.

Figure 3.4: Beam distortion in the intensity profile of a Gaussian beam reflected from

an off-axis paraboloid at various heights. The focal length of the reflector

is 300 mm. Here the wavelength is 2 mm while the input waist radius of

3 mm. As before these values are consistent with the QUBIC parameters

discussed in the previous chapter.

In Figure 3.4 we have calculated the amplitude distortion experienced by two 10◦

FWHM Gaussian beams intersecting a 300 mm focal length paraboloid at different

heights above the vertex. The black line indicates a reflected Gaussian beam containing

no amplitude distortion. The red and blue lines indicate the reflected distorted beams.

We can clearly see that the peak intensities of both beams are displaced from the
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propagation axis. However more importantly for QUBIC is that the peak intensities

are also displaced from one another. For QUBIC this means that since each the beam

from the back-to-back horns will strike the primary parabola at different distances

from the axis, each beam will contain a different amount of amplitude distortion. This

distortion will affect the profile of the final fringe patterns.

The total beam distortion generated by a combination of two reflectors can be calcu-

lated by

Er = E00 + (U2 ± U1exp(−j∆12))
1

2

(√
3E30 + E12

)
(3.2.5)

where Er is the profile of the final Gaussian beam and E00 represents an undistorted

fundamental Hermite Gaussian beam. As detailed in equation (3.2.3) the terms U1 and

U2 represent the fraction of power spilled from the fundamental beam into the higher

order E30 and E12 modes after reflection from the primary and secondary reflector

respectively. The term U2 ± U1 indicates that the final fraction of power transfered

into the higher order beams depends on the orientation of the coordinate system of

the primary reflector with respect to that of the secondary reflector.

Equation (3.2.5) reveals that if the correct arrangement of dual reflectors is chosen

the secondary mirror can compensate for the amplitude distortion induced by the

primary [103]. The term ∆12 represents the change of the Gaussian beam phase slip-

page as it travels between the primary and secondary reflectors. It is well documented

that after a propagation distance greater than the confocal distance the phase slip-

page of a Gaussian beam approaches π
2

radians. If the Gaussian beam does not pass

through a waist between the reflectors, the beam will remain in the far field region

after propagation from the feed horn. Therefore the change in phase slippage as the

beam travels between two the reflectors should be negligible. The term exp(−j∆12)

becomes unity and the distortion induced by the primary reflector can be reduced

by inserting a secondary reflector of opposite power to that of the primary. Quite

simply if fp1 = −fp2 where fp1 is the equivalent focal length of the primary mirror and

fp2 is the equivalent focal length of the secondary mirror then U1 = −U2
12. Also if

12We shall explain using 3.3.1 how the definition of equivalent focal length also includes the angle of

throw.
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exp(−j∆12) = 1 then Er in equation (3.2.5) simply reduces to E00. This is of course

an undistorted fundamental Gaussian beam 13. As we shall now discuss some dual

reflectors act to almost cancel out induced amplitude distortion within the generated

fringe patterns. Unfortunately some others increase the distortion. Categorization of

this particular property is crucial for any additive interferometric QUBIC mission.

Amplitude distortion of single Gaussian beams has been well documented in various

combinations of reflectors. For example it has been shown that implementing a pair

of equal yet oppositely orientated ellipsoids will minimize amplitude distortion in a

central Gaussian beam [103]. For QUBIC we are more concerned with the effect of

amplitude distortion on the fringe patterns generated by combining off-axis beams

propagating through an off-axis focal systems. We have used the PO techniques of

GRASP9 to combine beams from several equivalent baselines propagated through the

various dual reflector arrangements we have designed. The layout of these fringe pat-

terns will reveal whether or not the compensated off-axis Cassegrains and Gregorians

we have designed induce amplitude distortion in the propagating beams.

The ability to arrange dual reflectors in order to compensate for beam distortion

is an example of the insights gained from examining long wavelength systems with

more rigorous tools than ray tracing. Although the following systems were designed

using the best practices proposed by geometrical optics (ray tracing) these methods

are not enough to distinguish precisely which system will induce or reduce amplitude

distortion. In order to confirm which systems are better quasi-optical combiners at

least a QO analysis or preferably a PO analysis of the systems are required. We have

elected for a PO analysis of the various systems. Meanwhile the diffraction limited

field of view (DLFOV) given for the various dual reflectors we have investigated will

allow us to distinguish which optical systems are better imagers but not necessarily

which are better quasi-optical combiners.

We note that as well as deriving conditions for eliminating astigmatism within off-axis

dual reflector arrangements Dragone has explained how to significantly reduce coma

over small fields of view without incurring spherical aberrations [104]. In order to

13This assumes that the waist radius of the Gaussian beam is similar at the secondary mirror to

that which occurs at the primary. Once again provided the beam does not travel through a waist

radius and the beam remains well collimated between the reflector this assumption is valid.
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do so we must deform the surface of the mirrors. For the moment we have forgone

this process as well as any attempt to alter the primary mirror in order to create any

Ritchey-Chrétien variations. This is because, to date, no matter how complicated a

final CMB optical system has emerged the design commenced by considering simple

standard second order polynomial reflectors. This includes the off-axis Gregorian con-

structed for the Planck CMB mission [105]. Therefore the consideration of phase and

beam distortion induced by various categories of dual reflectors consisting of stand-

ard conic surfaces is useful for any future bolometric interferometry, ground based or

satellite mission. Once a promising basic design is found, mirror surfaces can then be

deformed to improve phase aberration.

In the PO analysis we have examined the fringe patterns produced by 2 sets of 5

equivalent baselines occurring along orthogonal axes of the sky horn array. The layout

of these baselines is shown in Figure 3.5. Here circles indicate the position of the

back-to-back sky horns. The length of the individual baselines is 40 mm. This value

represents the mid-point between the maximum and minimum baselines over which

QUBIC will observe at 150 GHz. The blue lines indicate the baselines occurring along

what I have called the x-axis of the horn array. Similarly the green lines indicate the

baselines along the y-axis of the array. Therefore each group of blue and green lines

represents two 40 mm equivalent sets of baselines. The 5 baseline pairs have been

designated CEN, UPL, UPR, LOWL and LOWR according to their position in the

back-to-back array.

The size of the horn array is 140 mm2. This is the minimum number of horns QUBIC is

requires in order to detect B-modes. We have chosen to examine the fringes generated

by the outermost horns along this grid. Therefore the coordinates of the corner horn

(X,Y) in Figure 3.5 are (70 mm, 70mm). The remaining corner horns are placed at

(± 70 mm,± 70mm) in accordance with their position relative to the origin.

In the following section we will show the fringe patterns generated by each of the

individual baselines over an area of 225 × 225 mm2. Recall that in order for QUBIC

to successfully recover Stokes visibilities the fringe patterns from equivalent baselines

must be as similar as possible. Part of the work carried out by the author was to

determine how similar the fringe patterns produced by equivalent baselines combined

using various combiners are to one another. It is through the comparison of these
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baselines that the applicability of the various dual reflectors to QUBIC can be assessed.

This work will be discussed in the next chapter.

Figure 3.5: Layout of 40 mm equivalent baselines the beams from which are propagated

through the various optical combiners.

3.3 Compensated dual reflectors

In the past decade a wealth of literature has emerged discussing how to design com-

pensated dual reflectors that obey both the Rusch and Dragone conditions. At least

five of the parameters shown in Figure 3.3 are required to fully design an off-axis com-

pensated dual reflector. The various different ways these characteristics can be related

to one another and the number of 5-parameter combinations possible that will describe

a compensated reflector means that a large collection of approaches are available with

which we can design the QUBIC combiner. For example the most authoritative pa-

per discussing the design techniques for optical combiners lists no fewer than 21 free

parameters and 39 separate formulae that can be used in 12 separate ways to design
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a single compensated system [106]. The majority of the systems below were designed

using some variation of the following technique.

The most comprehensive formula that describes an off-axis dual reflector is shown in

equation (3.3.1)14. Here

The equivalent focal length fe of an off-axis dual reflector is related to the focal length

of the primary paraboloid fp, the eccentricity e of the secondary reflector and the tilt

between the reflector axes β by

fe = fp

(
e+ 1

e− 1

) 1 + tan2

(
β
2

)
1 +

(
e+1
e−1

)2

tan2

(
β
2

) . (3.3.1)

In the systems below we have set the equivalent focal length to 800 mm and rearranged

equation (3.3.1) to write the primary focal length in terms of the eccentricity and the

tilt between the reflectors. From trial and error we then chose a value for the primary

focal length. Then values for the tilt, the angle of throw and the eccentricity were found

by solving equations (3.2.1), (3.2.2) and (3.3.1) simultaneously. Finally the distance

between the two foci were set to create the smallest possible secondary mirror that

will capture all rays reflected from the primary 15.

A difficulty in designing the off-axis systems presented in this chapter concerned the

number of undisclosed free parameters we had to establish in order to fully quantify the

systems. As stated a general rule of thumb is that at least five individual parameters

are required when designing a compensated dual reflector [106]. However in QUBIC

the only definitive information we have concerning the combiner is that its equivalent

focal length should be 200 ∼ 400 mm.

The design procedure for these systems was as follows. As stated above, we begun

by setting the equivalent focal length to 800 mm16. Increasing the focal length has

14Equation 3.3.1 has be taken from the GRASP9 Technical Description Manual. For more information

visit http://www.ticra.com/
15Equation (3.3.1) has be taken from the GRASP9 Technical Description Manual. For more inform-

ation visit http://www.ticra.com/.
16Such short focal lengths of 200 ∼ 400 mm will automatically exclude many dual reflectors from

implementation due to the large entrance aperture needed by an array of 12 × 12 sky horns.
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permitted us to study a variety of designs. We then set other values such as the angle

of throw or the tilt between the reflectors and solved for the remaining variables using

the methods described in the reference literature. The values for all predetermined

parameters were chosen in order to create what we judged to be the most functional

(for example the most compact) that produced the lowest magnitude wavefront aber-

rations. Therefore we are confident that each of the systems described below is the

best performing 800 mm focal length system of its category that can be implemented

to combine 14◦ FWHM beams emerging from a 140 mm2 entrance aperture.

We must now elaborate on some technical terms. In this thesis we use the word

imager to describe any system functioning as as telescope. This is any optical device

that focuses rays traveling parallel from infinity to a single point. All dual reflectors

discussed below were originally studied within the literature solely as imagers. The

QUBIC combiner will function as a telescope however with some distinct differences.

In most telescopes the entrance diameter is placed at the primary mirror. Therefore

the size of the entrance aperture simply equals the size of the primary mirror and

is unblocked. In QUBIC the entrance aperture is at the location and is the size of

the back-to-back horn array. Because this entrance aperture is blocked by the horn

array QUBIC functions as a Fizeau interferometer. In telescopes, the field of view

(FOV) is defined as the maximum angle that light incident on the entrance diameter

can be brought to a focal point. It is apparent that QUBIC’s FOV will equal the

FWHM of the Gaussian beams propagating from the back-to-back horns. Therefore

by investigating whether or not a dual reflector can adequately focus incident rays over

a 14◦ FOV we can find out if the same system can adequately combine 14◦ FWHM

Gaussian beams.

Therefore we have designed dual reflectors with an 800 mm equivalent focal length. This value is

in fact a reasonable upper limit when one considers the uncertainty regarding many of QUBIC’s

initial design specifications. We recall that the size of the focal plane and therefore the focal

length is restricted by the number of bolometers that can be currently multiplexed together.

However considering the constant improvement in modern lithography and edging techniques used

to construct the detectors it is highly likely this number will increase within a matter of years.

Therefore it is prudent that we investigate all possible dual reflectors that many be employed as off-

axis beam combiners. Such an investigation is also extremely important in the context of possible

future satellite CMB missions where it is likely a completely new generation of technologies will

be implemented.
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We have used Zemax to calculate the extent of the DLFOV of the dual reflectors

discussed below. In order to demonstrate the DFLOV Zemax calculates the Strehl

ratio of the systems. The Strehl ratio is defined as the ratio S = Iab
Iunab

where Iab is

the intensity in the aberrated Airy pattern generated by an optical system and Iunab

is the intensity in an unaberrated pattern. The Strehl ratio can be calculated from

the wavefront variance σ by S = exp

[
(−kσ)2

]
where k is the wave number. The

wavefront variance is defined as

σ2 =< W 2 > − < W >2 (3.3.2)

where W is the aberrated wavefront. Zemax uses a ray tracing algorithm to calculate

the magnitude of Seidel aberrations in the focusing wavefronts. Zemax then computes

W = W040 + W131 + W222 + W220 + W311... up to any higher order polynomial terms

required 17.The magnitude of aberrations increases with the field of view therefore

the Strehl ratio will decrease. Plots showing the decrease of the Strehl ratio versus

the FOV for various dual reflectors are shown in the next section. When the ratio

drops below 0.8 the system is said to be no longer considered diffraction limited. This

means that the presence of wavefront aberrations will now affect the performance of

the system.

Except where stated otherwise all optimizations performed in the thesis use the Zemax

default merit function. Zemax defines a general merit function as the sum of a

number of values

MF =
(∑

i

(
Vi − Ti

)
/
∑
i

Wi

) 1
2 (3.3.3)

where MF is the merit function, Wi is the weight placed on a given value, Ti is the

target value and Vi is the current value of the parameter we wish to optimize. When

the Zemax default merit function is selected Zemax traces n number of rays from

each field position through the optical system. The (xi, yi) location where each ray

intersects the focal plane is calculated. Zemax then calculates an appropriate value Wi

17The terms W040, W131, W222, W220 and W311 are the familiar third order spherical aberration,

coma, astigmatism, field curvature and phase distortion.
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for each ray using the RMS spot radius for all the points of intersection of the traced

rays. This is defined as:

RMS =
(∑

i

(
(xi − xc)2 + (yi − yc)2

)
/n
) 1

2 . (3.3.4)

Here value (xc, yc) represents the centre point and can be nominated as either the chief

ray pierce or the centroid value of all intersecting rays. Zemax attempts to improve

the performance of a system by altering certain aspects of the system (set by the user)

such as the radii of curvature or the thickness between surfaces. Upon each alteration

of such values the merit function is recalculated and the optimization proceeds until

the system that produces the lowest obtainable RMS has been found.

By attempting to drive RMS value to zero the system that produces the highest

quality images is found. Essentially the lower the RMS of an optical system the

better that system is at combining parallel rays in the object space to a single point

in the image space. The closer rays from a single field all converge to a single point

the closer the focusing wavefront approximates a prefect spherical wave. Recall that

aberrations such a coma, astigmatism field curvature and distortion quantify how much

a focusing wavefront differs from a perfect spherical reference wavefront. By optimizing

the optical combiners using the default merit function to reduce the above RMS

value the wavefront aberrations will also be minimized.

Compensated Gregorian vs compensated Cassegrain

A geometrical optical analysis of both an 800 mm focal length off-axis compensated

Gregorian and Cassegrain reflector is shown in Figure 3.6 and 3.7 respectively. These

systems have been designed using equations (3.2.1), (3.2.2) and (3.3.1) in accordance

with the methods discussed in [106]. Immediately it can be seen that the compensated

Gregorian offers a larger DLFOV than its counterpart. This is the primary reason the

compensated Gregorian has come to dominate CMB observations. The compensated

Gregorian accommodates the wide field of view necessary to generate full sky maps

but also allows a large entrance diameter to ensure the necessary sensitivity. Also it

was found to be difficult to design an 800 mm Cassegrain that would capture all of the
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power of beams over 14◦ FWHM.18 We therefore expect that the Cassegrain reflector

will truncate the majority of 14◦ FWHM beams propagating from the horn array. The

amount of power loss due to spillover is greater in the compensated Cassegrain than

in the Gregorian reflector. Geometrical optics thus predicts that the compensated

Cassegrain is significantly more restricted by a low focal ratio than the compensated

Gregorian.19

Figures 3.8, 3.9, 3.10 and 3.11 display the fringe patterns generated by the five 40 mm

equivalent baselines combined by the compensated Gregorian and Cassegrain reflect-

ors. The fringe patterns were produced using the software package GRASP and for a

frequency of 150 GHz. The effect of a 25% bandwidth is considered later in Section

6.4.

At this stage fringe patterns were assessed qualitatively only, later in Section 4.3 I de-

scribe how the quality of combiners considered as possibilities for QUBIC were meas-

ured by comparing fringe pattern from equivalent baselines. The distortion present in

the fringes generated by the baselines orientated along the x-axis of the horn array as

shown in Figure 3.5 is clearly visible. We note that the same beam distortion is not

present in the fringe patterns generated by baselines displaced along the y-axis of the

horn array. This is because due to system geometry beams from each of the horns

strike the primary mirror at the same height above the paraboloid vertex. Therefore

the value of fp in equation (3.2.3) is equal for baseline pairs at equal heights along

the primary reflector. As explained above this will minimize beam distortion for these

baselines.

In Figures 3.8 and 3.10 we see that both the compensated Gregorian and Cassegrain

systems will produce beam distortion in the fringe patterns generated by baselines

displaced along the x-axis of the horn array. The curved appearance of the fringe pat-

terns in Figures 3.8 and 3.10 is indicative of two distorted Gaussian beams combining

with one another.

18In all DFLOV plots shown in this chapter the x-axis representing the field of view ranges from 0

to 14◦.
19In all lens diagrams shown we have displayed a slice of the primary parabola. In order to display the

tilted nature of the two mirrors we have displayed a symmetric portion of the secondary reflector.

The axis of symmetry of the secondary reflector is clearly visible as well as its tilt in relation to

the primary mirror.
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Also from the large DLFOV shown in Figure 3.6 it is apparent that the fringes formed

by combining 14◦ FWHM beams using the compensated Gregorian will be less af-

fected by the presence of classical Seidel aberrations than the fringes produced by the

compensated Cassegrain. As shown in Figure 3.7 the presence of aberrations dom-

inate the imaging properties of the 800 mm compensated Cassegrain when the field

of view exceeds 10◦. Therefore we expect that the fringe patterns in Figure 3.10 are

not only deformed by amplitude distortion but also by the effects of truncation by the

secondary reflector and the presence of large magnitude Seidel aberrations.
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(a) Off-axis compensated Gregorian reflector. The tilt between the re-

flector axes is 10◦. The eccentricity of the secondary ellipsoid is 0.3955.

The size of any box containing this system is at least 900×985×700 mm3.

(b) The DLFOV of the compensated Gregorian is greater than 14◦ for a

140 mm entrance aperture.

Figure 3.6: Off-axis compensated Gregorian reflector. The focal length of this system

is 800 mm.
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(a) Off-axis compensated Cassegrain reflector. The tilt between the re-

flector axes is 20◦. The eccentricity of the secondary ellipsoid is 3.47. The

size of any box containing this system is at least 670× 450× 700 mm3.

(b) The DLFOV of the compensated Cassegrain is less than 11◦ for a 140

mm entrance aperture.

Figure 3.7: Off-axis compensated Cassegrain reflector. The focal length of this system

is 800 mm.
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(a) CEN baseline. (b) LOWL baseline.

(c) LOWR baseline. (d) UPL baseline.

(e) UPR baseline.

Figure 3.8: Fringe patterns produced by the compensated Gregorian. These fringe

patters were produced using the GRASP software package for a frequency

of 150 GHz. The baselines generating these fringes occurred horizontally

along the horn array’s x-axis. The fringes have been formed using 14◦

FWHM Gaussian beams and 40 mm baselines.
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(a) CEN baseline. (b) LOWL baseline.

(c) LOWR baseline. (d) UPL baseline.

(e) UPR baseline.

Figure 3.9: Fringe patterns produced by the compensated Gregorian. These fringe

patters were produced using the GRASP software package for a frequency

of 150 GHz. The baselines generating these fringes occurred horizontally

along the horn array’s y-axis. The fringes have been formed using 14◦

FWHM Gaussian beams and 40 mm baselines.
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(a) CEN baseline. (b) LOWL baseline.

(c) LOWR baseline. (d) UPL baseline.

(e) UPR baseline.

Figure 3.10: Fringe patterns produced by the compensated Cassegrain. These fringe

patters were produced using the GRASP software package for a frequency

of 150 GHz. The baselines generating these fringes occurred horizontally

along the horn array’s x-axis. The fringes have been formed using 14◦

FWHM Gaussian beams and 40 mm baselines.
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(a) CEN baseline. (b) LOWL baseline.

(c) LOWR baseline. (d) UPL baseline.

(e) UPR baseline.

Figure 3.11: Fringe patterns produced by the compensated Cassegrain. These fringe

patters were produced using the GRASP software package for a frequency

of 150 GHz. The baselines generating these fringes occurred horizontally

along the horn array’s y-axis. The fringes have been formed using 14◦

FWHM Gaussian beams and 40 mm baselines.
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Compact antenna test range (CATR) vs an inverted-crossed Cassegrain

There are categories of compensated dual reflectors in which the rays reflected from the

secondary mirror cross the rays incident on the primary. Such a reflector is referred

to as a crossed system. The compact antenna test range (CATR) is a special case

of a crossed reflector in which the chief ray reflected from the secondary crosses the

incident chief ray on the primary at a right angle.

A geometrical optics analysis of an 800 mm focal length compact antenna test range

(CATR) and an inverted-crossed Cassegrain is shown in Figures 3.12 and 3.13 respect-

ively 20. These crossed designs are attractive for CMB observations due to the fact that

the incident and reflected chief ray are perpendicular. This means that a required op-

tical window, or as in the case of QUBIC a back-to-back horn array, can can be placed

at right angles to the detector plane. This makes the cryostat construction somewhat

more simple due to the fact that the optical system can essentially be placed within a

box in which the detector array and back-to-back horns can be placed on orthogonal

sides. These systems have been designed by following the methods discussed in [107]

and [108]. Here it has been shown that in order to ensure a crossed reflector the

sum of angles α+ β discussed in Section 3.2.1 must equal 90◦. Once this condition is

established we set the equivalent focal length and the tilt (β) between the reflectors,

we then solve equations (3.2.1), (3.2.2) and (3.3.1) to find the primary focal length,

secondary eccentricity and angle of throw. In these designs the secondary eccentricity

in the CATR and the primary focal length in the inverted-crossed Cassegrain are both

less than zero.

It is apparent from Figure 3.12 that according to geometrical optics the CATR com-

pletely surpasses all the other types of compensated dual reflectors in terms of per-

formance. The DFLOV is significantly greater than that offered by the compensated

Gregorian which is the closest rival in terms of performance. Also a Zemax comparison

of these systems shows that the field curvature of wavefronts focused using the CATR

is less than the curvature of the focusing wavefronts produced by the compensated

Gregorian. This is shown in Figure 3.14. This means that the wavefronts of beams

propagating through the CATR are more planar when compared to the wavefronts of

20Within this thesis we refer to any system that implements a convex primary mirror as inverted.

This is following the standard convention found in the reference literature.
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the beams propagating through the compensated Gregorian. Therefore the addition

of secondary optics such as lenses in order to produce maximum coupling efficiency to

a flat focal plane would be simpler in the CATR. All major CMB experiments such as

WMAP and PLANCK have made use of a compensated Gregorian however recently

for reasons mentioned above the CATR has emerged as a viable option for both CMB

telescopes and interferometers.
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(a) CATR dual reflector. The tilt between the reflector axes is 60◦. The

eccentricity of the secondary ellipsoid is 2.732. The size of any box con-

taining this system is at least 725× 700× 550 mm3.

(b) The DLFOV of the CATR exceeds 14◦ for a 140 mm entrance aperture.

Figure 3.12: CATR dual reflector. The focal length of this system is 800 mm.
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(a) Inverted-crossed Cassegrain dual reflector. The tilt between the

reflector axes is 50◦. The eccentricity of the secondary ellipsoid is

0.71. The size of any box containing this system is at least 1600×
1750× 600 mm3.

(b) The DLFOV of the inverted-crossed Cassegrain just falls short

of 15◦ for a 140 mm entrance aperture.

Figure 3.13: Inverted-crossed Cassegrain dual reflector. The focal length of this system

is 800 mm.
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The inverted-crossed Cassegrain has received much less attention than the CATR. In

fact to the author’s knowledge there is no current sub-mm or mm observing mission

implementing such a reflector. It is mainly due to the usual use of a convex primary

reflector that the design has not become more prevalent. It can be seen that the

DFLOV is comparable with that of the compensated Gregorian. Also although it

is larger than the CATR the geometry of the inverted-crossed Cassegrain allows the

primary reflector to shadow the detector field from the back-to-back horn array.

Figures 3.15, 3.16, 3.17 and 3.18 display the fringe patterns generated by the 5 equi-

valent baselines combined by the CATR and the inverted-crossed Cassegrain. The

immediate significance of Figure 3.15 is that it illustrates that the fringe patterns

generated by the CATR are all very close to straight. This means that the CATR

induces minimal amplitude and phase distortion within the Gaussian beams which it

combines. The reason for this concerns the system geometry and will be discussed

later.

Despite the benefits of its crossed design (and the fact that spillover from the horn

array onto the detector plane can be prevented by the position of the primary mirror)

Figure 3.17 shows that the fringe patterns generated by baselines occurring along the

x-axis of the horn array in the inverted-crossed Cassegrain are curved. Once again this

deformation of the fringes suggests that the beams combining to generate the patterns

contain significant levels of amplitude distortion.
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(a) Wavefront produced the CATR. This wavefront is almost planar at

the focal plane.

(b) Wavefront produced the compensated Gregorian. The dome shape

of this wavefront suggests the this system will induce field curvature into

propagating beams.

Figure 3.14: Wavefronts generated from both the CATR and compensated Gregorian

reflectors using Zemax. These wavefronts were constructed by joining

rays at equal optical path lengths when the chief ray crosses the system’s

focal plane. The rays emerge from a point representing the centre of the

horn array and diverge with a 14◦ FOV. Both images are compiled by

sampling within the radius the systems’ Airy disks at the focal plane.

These radii are 3.9 mm and 5.4 mm at 150 GHz for the CATR and

compensated Gregorian respectively. The difference of these values is due

to the different widths of the primary mirrors as listed in Table 3.1.
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(a) CEN baseline. (b) LOWL baseline.

(c) LOWR baseline. (d) UPL baseline.

(e) UPR baseline.

Figure 3.15: Fringe patterns produced by the CATR. The baselines generating these

fringes occurred horizontally along the horn array’s x-axis. The fringes

have been formed using 14◦ FWHM Gaussian beams and 40 mm baselines.
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(a) CEN baseline. (b) LOWL baseline.

(c) LOWR baseline. (d) UPL baseline.

(e) UPR baseline.

Figure 3.16: Fringe patterns produced by the CATR. The baselines generating these

fringes occurred horizontally along the horn array’s y-axis. The fringes

have been formed using 14◦ FWHM Gaussian beams and 40 mm baselines.
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(a) CEN baseline. (b) LOWL baseline.

(c) LOWR baseline. (d) UPL baseline.

(e) UPR baseline.

Figure 3.17: Fringe patterns produced by the inverted-crossed Cassegrain. The

baselines generating these fringes occurred horizontally along the horn

array’s x-axis. The fringes have been formed using 14◦ FWHM Gaussian

beams and 40 mm baselines.
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(a) CEN baseline. (b) LOWL baseline.

(c) LOWR baseline. (d) UPL baseline.

(e) UPR baseline.

Figure 3.18: Fringe patterns produced by the inverted-crossed Cassegrain. The

baselines generating these fringes occurred horizontally along the horn

array’s y-axis. The fringes have been formed using 14◦ FWHM Gaussian

beams and 40 mm baselines.
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Front-end-fed Compensated Cassegrain vs back-end-fed Gregorian

We now consider two more systems that also allow for simple cryostat construction.

The first is a front-end-fed compensated Cassegrain. Such a system is shown in Figure

3.19. Here the incident chief ray is anti-parallel to the reflected chief ray. This means

that the detector array and the back-to-back sky horns can be placed parallel to one

another. The removal of any tilt between these components is expected to reduce the

complication of any cryostat construction. This system has been designed following

the procedure outlined in [109]. Here it has been shown that in order to ensure a

front-end-fed design the sum of the angles α+ β discussed in Section 3.2.1 must equal

180◦. Once this condition is established we set the equivalent focal length and the tilt

(β) between the reflectors, we then solve equations (3.2.1), (3.2.2) and (3.3.1) to find

the primary focal length, secondary eccentricity and angle of throw. The presence of a

concave secondary hyperbola means that the eccentricity parameter in these equations

must be less than zero. Also in order to achieve the back-fed design the tilt between

the two reflectors must be set greater than 90◦.
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(a) Front-end-fed compensated Cassegrain reflector. The tilt between the

reflector axes is 115◦. The eccentricity of the secondary ellipsoid is 2.366.

The size of any box containing this system is at least 800×730×360 mm3.

(b) The DLFOV of the front-end-fed compensated Cassegrain greatly ex-

ceeds a 14◦ for a 140 mm entrance aperture.

Figure 3.19: Front-end-fed compensated Cassegrain reflector. The focal length of this

system is 800 mm.
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The second system is a back-end-fed Gregorian whose geometry has been suggested

by our colleges in Milano. Here the incident chief is parallel to the reflected ray. It

is not possible to design a compensated system that obeys such geometry. There-

fore this system will provide a good analysis of whether enforcing symmetry via the

Dragone condition onto previous reflectors is necessary when considering systems as

long-wavelength combiners rather than visible imagers. The geometry of the back-fed

Gregorian is shown in Figure 3.20.

Figure 3.20: Layout of a back-fed Gregorian. Most of the parameters in this diagram

have been explained in Figure 3.3. In addition R1 and R2 are the separ-

ation of the of intersection of the chief ray at the secondary and the foci.

Also θi is the angle between the chief ray and the secondary normal.

It has been shown that when R1 equals R2 the Gaussian beam amplitude distortion

after reflection from an ellipsoid reflector is minimized. When this is the case the ec-

centricity of the secondary reflector equals sin(θi) [81]. We imposed the R1 = R2 = R

condition on the ellipsoid reflector. This means that the magnification of the secondary

is unity so essentially the parameters of the system are decided solely by the primary

focus fp and angle of throw θu. These are related by

fe =
fp

cos( θu
2

)
(3.3.5)

where fe is the equivalent focal length of the off-axis paraboloid [81]. It is also apparent

from Figure 3.20 that θu equals 2× θi. Therefore we set fe in equation (3.3.5) equal to
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800 mm and chose an appropriate value for fp. We then solve for θu and calculate the

angle of throw and the eccentricity of the secondary reflector. We then set the value

R to a value large enough to allow the secondary mirror to capture all light reflected

from the primary. From Figure 3.20 it is clear that once both R and θi are calculated

the distance between the foci and therefore the radius of curvature of the secondary

reflector can be found. Using this method we have reduced the number of parameters

required to design this off-axis system when compared to the previous examples. Also

the secondary reflector has been aligned in such a manner as to minimize the Gaussian

beam distortion. It is hoped that this arrangement will compensate somewhat for the

lack of symmetry present within the system.

Figures 3.22, 3.23, 3.24 and 3.25 display the fringe patterns generated by the above

reflectors. We note from Figure 3.22 that the beam distortion induced by the front-

fed compensated Cassegrain is relatively small when compared to the compensated

Gregorian. From Figures 3.19 and 3.21 we also see that the front-fed Cassegrain has a

significantly wider DLFOV then the compensated Gregorian. Hence the degradation

of the recovered visibilities due to wavefront aberrations will be lower. Unfortunately

from Figures 3.24 and 3.25 we see that the lack of symmetry within the back-fed

Gregorian has drastic consequences on the fringe patterns. For the first time fringes

from both orientations have become deformed. As shown in Figure 3.7 the Strehl

ratio of the back-fed Gregorian drops to less than 0.8 when the field of view exceeds

4◦. This means that the presence of wavefront aberrations will severely reduce the

imaging ability of the back-fed Gregorian when the field of view exceeds 4◦. Therefore

we expect that the fringe patterns in Figures 3.24 and 3.25 generated by 14◦ FWHM

Gaussian beams have not only been deformed by amplitude distortion but also by the

presence of large magnitude Seidel aberrations. This example clearly illustrates the

need for careful design of the long-wavelength combiner for QUBIC.
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(a) Back-end-fed Gregorian reflector. The tilt between the reflector axes

is 67.5◦. The eccentricity of the secondary ellipsoid is 0.382. The size of

any box containing this system is at least 1210× 1100× 600 mm3.

(b) The DLFOV of the back-end-fed Gregorian is 4◦ for a 140 mm entrance

aperture.

Figure 3.21: Back-end-fed Gregorian reflector. The focal length of this system is 800

mm.
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(a) CEN baseline. (b) LOWL baseline.

(c) LOWR baseline. (d) UPL baseline.

(e) UPR baseline.

Figure 3.22: Fringe patterns produced by the front-end-fed compensated Cassegrain.

The baselines generating these fringes occurred horizontally along the

horn array’s x-axis. The fringes have been formed using 14◦ FWHM

Gaussian beams and 40 mm baselines.
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(a) CEN baseline. (b) LOWL baseline.

(c) LOWR baseline. (d) UPL baseline.

(e) UPR baseline.

Figure 3.23: Fringe patterns produced by the front-end-fed compensated Cassegrain.

The baselines generating these fringes occurred horizontally along the

horn array’s y-axis. The fringes have been formed using 14◦ FWHM

Gaussian beams and 40 mm baselines.
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(a) CEN baseline. (b) LOWL baseline.

(c) LOWR baseline. (d) UPL baseline.

(e) UPR baseline.

Figure 3.24: Fringe patterns produced by the back-end-fed Gregorian. The baselines

generating these fringes occurred horizontally along the horn array’s x-

axis. The fringes have been formed using 14◦ FWHM Gaussian beams

and 40 mm baselines.
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(a) CEN baseline. (b) LOWL baseline.

(c) LOWR baseline. (d) UPL baseline.

(e) UPR baseline.

Figure 3.25: Fringe patterns produced by the back-end-fed Gregorian. The baselines

generating these fringes occurred horizontally along the horn array’s y-

axis. The fringes have been formed using 14◦ FWHM Gaussian beams

and 40 mm baselines.
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Dragone reflector

The Dragone reflector is a special category of an off-axis Cassegrain. This reflector

obeys three geometrical conditions designed to minimize aberrations [104]. As can be

seen from Figure 3.26 this system also implements a concave secondary reflector. The

geometry of this system is unpractical for QUBIC due to the fact that the detector

chamber may block beams emerging from the secondary horns. However we have

included an analysis of this reflector due to the fact that it represents some of the most

advanced thinking concerning off-axis dual reflector design. Unlike systems designed

using only the Dragone and Rusch conditions the separation of the reflectors within

a Dragone reflector is proportional to the secondary magnification. This allows a

futher reduction in wavefront aberrations. The first condition this system obeys is

the Dragone condition which effectively eliminates astigmatism. In the context of this

reflector the Dragone condition is rewritten as

tan(i2) =
M − 1

M
× tan(i1) (3.3.6)

where M is the secondary magnification, i1 is the chief ray angle of incidence at the

primary and i2 is the chief ray angle of incidence at the secondary. To design the system

shown in Figure 3.26 we scaled down the system presented by Dragone to an equivalent

focal length of 800 mm [104]. Following [104] we set M = 0.75 and i1 = 25◦ where

M = e+1
e−1

and e is the secondary eccentricity. The second condition removes residual

astigmatism by setting the separation of the reflectors to 2 ×M
(

1 + tan(i1)
tan(i2)

)
. The

third conditions removes coma by deforming the mirrors into higher order polynomial

surfaces. The remaining parameters can be calculated from equations (3.2.1), (3.2.2)

and (3.3.1).

It is possible to calculate the coefficients required to deform the mirrors into higher

order polynomials surface using equations listed in [104]. However we have determined

the coefficients of Figure 3.26 using Zemax optimizations. These mirrors have therefore

been deformed in the most optimal manner to reduce third order Seidel aberrations.

As shown in Figure 3.26 the implementation of these conditions leads to a DFLOV

greater than 14◦. As such we expect this reflector to be a high performing telescope.

However as shown in Figures 3.27 and 3.28 a PO analysis of this systems reveals
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that the fringes it produces are unacceptable for QUBIC requirements. Once again

the presence of amplitude distortion in the combining beams has deformed the fringe

patterns generated by baselines orientated along the x-axis of the horn array.
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(a) Compensated Dragone reflector. The tilt between the reflector

axes is 91.86◦. The eccentricity of the secondary ellipsoid is 2.52.

The size of any box containing this system is at least 900×990×400

mm3.

(b) The DLFOV of the Dragone reflector is 14◦ for a 140 mm en-

trance aperture.

Figure 3.26: Compensated Dragone reflector. The focal length of this system is 800

mm.
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(a) CEN baseline. (b) LOWL baseline.

(c) LOWR baseline. (d) UPL baseline.

(e) UPR baseline.

Figure 3.27: Fringe patterns produced by the Dragone reflector. The baselines gen-

erating these fringes occurred horizontally along the horn array’s x-axis.

The fringes have been formed using 14◦ FWHM Gaussian beams and 40

mm baselines.
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(a) CEN baseline. (b) LOWL baseline.

(c) LOWR baseline. (d) UPL baseline.

(e) UPR baseline.

Figure 3.28: Fringe patterns produced by the Dragone reflector. The baselines gen-

erating these fringes occurred horizontally along the horn array’s y-axis.

The fringes have been formed using 14◦ FWHM Gaussian beams and 40

mm baselines.
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3.3.1 Summary of off-axis dual reflectors for implementation in a

CMB Fizeau interferometer

The above work reviews the suitability of various dual reflector designs for the use as

Fizeau optical combiners. We have compared several varieties of 800 mm focal length

dual reflectors all with 140 mm entrance pupil diameters. From a visual examination

of the fringe patterns this study concludes that the most suitable dual reflector for

a bolometric interferometric ground based or satellite mission is a CATR. We note

that the front-end-fed Cassegrain could also be used however this system many not

be as suitable if a lot of read-out electronics is required. The fact that the detector

plane and sky horn array are in proximity to one another in this design means there

is the possibility that a large detector unit many obscure the field-of-view of the sky

horns. The above study has allowed us to narrow down the choices of dual reflectors

for QUBIC. We have not concerned ourselves with issues such as spillover and blockage

although later when we discuss specific recommendations for QUBIC we will include

these details.

We conclude this section by presenting the details of the reflectors from which the

above systems are constructed in Table 3.1. The performance of different designs are

quantified later for the particular case of QUBIC, at this stage the relative advantages

and disadvantage of the designs can be seen in Figure 3.29 which summarises the main

features of the compensated dual reflectors studied. The un-compensated back-end-

fed Gregorian is not included as its performance fell below the compensated systems,

as expected. As discussed in the next section, not all these layouts are suitable for

low-F telescopes. Here it is apparent that the cost of the high quality fringes produced

by the CATR and front-fed Cassegrain is the requirement for relatively large mirrors.

However the cryostat volume would be smaller then that required for the compensated

Gregorian.

126



Table 3.1: Details of the geometry of the 800 mm effective focal length dual reflectors

investigated in this chapter. Here CG is the compensated Gregorian, CC

is the compensated Cassegrain, INVC is the inverted-crossed Cassegrain,

FC is the front-fed compensated Cassegrain, BG the back-fed Gregorian

and DR is the Dragone reflector. The term PF is the primary focal length,

k is the secondary conic constant, ROCS is the radius of curvature of the

secondary mirror, βT is the tilt between the reflectors, PD is the diameter

of the primary mirror and SD is the diameter of the secondary mirror.

PF (mm) k ROCS (mm) βT PD (mm) SD (mm)

CG 357.91 -0.15 506.13 10 360 300

CC 472.42 -12.04 497.04 20 320 320

CATR 1385.64 -7.46 1951.97 60 500 600

INVC 953.40 -0.50 1693.16 50 600 1300

FC 800.00 -5.59 1172.14 115 400 600

BG 170.71 -0.14 682.843 67.5 300 800

DR 1074.66 -6.36 1053.8 91.8 500 800
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Figure 3.29: A summary of the main features of the compensated dual reflectors studies

in this section.
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3.3.2 Comparison of crossed reflectors for short focal length

systems

We will consider for a moment short 200 mm focal-length systems. An unavoidable

consequence of bolometric interferometry as intended for QUBIC is that short focal

length systems are necessary if one wishes to avoid complex multiplexing of a large

number of detectors. At such low focal lengths options as to what dual reflector to

implement are very limited. The compensated Gregorian is a general workhorse that

is functional at 200 mm, there are also two crossed reflector options which we discuss

next, however they will not permit a large grid of back-to-back horns such as that

required for QUBIC 21. However these crossed systems would be suitable for use in an

MBI type experiment in which a small number of horns observe the sky. The surface

details of the crossed reflectors are shown in Table 3.2.

Short focal length system with short baselines observing a large field of view

The combination of short baselines with marginally large fields of view can be accom-

modated by implementing a CATR design. A 200 mm focal length CATR is shown in

Figure 3.30. Here the maximum baselines are 40 mm and the largest possible Gaussian

beams are 10◦ FWHM. This entire system is remarkably compact and thus favorable

for cryostat construction. This dual reflector would be suitable for a simple bolometric

interferometry path finder mission, for example. The off-axis design means a greater

amount of power from the sky signal would fall onto the detector plane compared to

the on-axis MBI experiment. If we assume such a 200 mm path finder mission observes

the CMB at ∼ 100 GHz, similar to MBI, a square focal plane of 80 mm2 will integ-

rate 99 % of the received power. If 5 mm bolometers are employed the total number

required is 256. Under such circumstances SQUID amplification and multiplexing of

the detected signal should pose little difficulty.

21From over investigations we have concluded that if the focal length of the optical combiner is

required to be less than 300 mm the compensated Gregorian is the only viable option.
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Short focal length system with long baselines observing a small field of view

The reflector shown in Figure 3.31 is the author’s own design. It is a direct application

of studying the previously discussed inverted-crossed Cassegrain design. Here the axis

of symmetry of both the primary and secondary mirror are aligned. In effect we are

using a portion of an on-axis system. Due to the fact that the primary and secondary

axes are aligned the design of such a system is significantly less complicated than

the designs of the compensated dual reflectors introduced in the above section. Any

on-axis optical system is described by the formula

1

fe
=

1

fp
+

1

fs
− t

fpfs
(3.3.7)

where fe is the equivalent focal length of the system, fp is the primary focal length,

fs is the secondary focal length and t is the separation of the two mirrors [78]. We

let fe equal 200 mm and set values for fp and t in order to find fs. A crossed design

can be creating by ensuring the condition R2 tan(θu) = 2c where 2c is the distance

between the foci. The terms θu and R2 have been explained in Figures 3.3 and 3.20

respectively.

In Figure 3.31 we have implemented a 160 mm baseline consisting of 5◦ FWHM Gaus-

sian beams22. Despite an the small f/# ∼ 1.25 there is little spillover or block-

age occurring between the reflectors. This demonstrates the remarkable ability of an

inverted-crossed Cassegrain to handle low focal ratio optical arrangements. The im-

mediate drawback is that this arrangement is considerably larger than the CATR. The

size of the secondary mirror must be larger than the primary in order to capture the

diverging beams reflected from the primary.

The inverted-crossed Cassegrain suffers from a severe amount of beam distortion as

indicated by the curved profile of the fringe patterns in Figures 3.32(c) and 3.32(d).

However examining Figures 3.32(a) and 3.32(b) we see that the CATR produces re-

markably high quality fringe patterns for short baselines. From the distorted fringes

shown in Figures 3.24, 3.32(c) and 3.32(d) it is reasonable to assume that, despite their

22This system could not be designed for the 14◦ beams required by QUBIC
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ability to operate at low focal ratios, reflectors employing convex primary mirrors are

unsuitable for off-axis Fizeau interferometers.
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(a) CATR reflector. The tilt between the reflector axes is 60◦. The ec-

centricity of the secondary ellipsoid is 2.73. The size of any box containing

this system is at least 160× 170× 120 mm3.

(b) The DLFOV of the CATR greatly exceeds 10◦ for a 40 mm entrance

aperture.

Figure 3.30: CATR reflector. The focal length of this system is 200 mm.
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(a) On-axis inverted-crossed Cassegrain reflector. The tilt between the

reflector axes is 60◦. The eccentricity of the secondary ellipsoid is 0.414.

The size of any box containing this system is at least 860×875×340 mm3.

(b) The DLFOV of the on-axis inverted Cassegrain is less than 5◦ for a

160 mm entrance aperture.

Figure 3.31: Crossed reflector formed from a section of an on-axis inverted Cassegrain.

The focal length of this system is 200 mm.
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(a) A vertical 40 mm baseline about the systems

line-of-sight of the combiner in Figure 3.30 is

implemented. Here two 10◦ FWHM Gaussian

beams are used. These fringes are formed by

the CATR.

(b) A horizontal 40 mm baseline about the sys-

tems line-of-sight of the combiner in Figure 3.30

is implemented. Here two 10◦ FWHM Gaussian

beams are used. These fringes are formed by the

CATR.

(c) A vertical 160 mm baseline about the sys-

tems line-of-sight of the combiner in Figure 3.31

is implemented. Here two 5◦ FWHM Gaussian

beams are used. These fringes are formed by the

on-axis inverted-crossed Cassegrain reflector.

(d) A horizontal 160 mm baseline about the sys-

tems line-of-sight of the combiner in Figure 3.31

is implemented. Here two 5◦ FWHM Gaussian

beams are used. These fringes are formed by the

on-axis inverted-crossed Cassegrain reflector.

Figure 3.32: Fringe patterns produced by 200 mm focal length off-axis combiners. As

previously explained different baselines and beam sizes are used in ac-

cordance to what the individual systems’ geometries will allow.
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Table 3.2: Details of the geometry of the 200 mm effective focal length dual reflectors

investigated in this chapter. Here CATR is the compact antenna test range

and INVC is the on-axis inverted-crossed Cassegrain. The term PF is the

primary focal length, k is the secondary conic constant, ROCS is the radius

of curvature of the secondary mirror, βT is the tilt between the reflectors,

PD is the diameter of the primary mirror and SD is the diameter of the

secondary mirror.

PF (mm) k ROCS (mm) βT PD (mm) SD (mm)

CATR 346.41 -7.46 496.87 60 120 140

INVC 482.92 -0.17 800 0 340 400
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3.4 Alternative geometries for the combiner in a

QUBIC-type experiment

3.4.1 Fold mirror and a crossed Cassegrain dual reflector

In the context of this thesis, the term compact antenna test range (CATR) solely refers

to a Cassegrain system in which the sum of the angles α+β discussed in Section 3.2.1

equals 90◦. We will now begin to discuss Cassegrain systems where the angles α+β = η

where η can vary. We will refer to such systems as general crossed Cassegrains (GCC).

In order to design these types of reflectors we set values for η, as well as values for the

equivalent focal length of the system and the tilt between the reflector axes. Equations

(3.2.1), (3.2.2) and (3.3.1) can then be solved to calculate the remaining parameters

required to completely describe the reflector. We note that because these systems

are designed using equations (3.2.1) and (3.2.2) they are also compensated systems.

We recall that the term compensated refers to any dual reflector that obeys both the

Rusch and Dragone conditions shown in equations (3.2.1) and (3.2.2) respectively. As

such when we refer to a system compensated we simply mean that both equations

(3.2.1) and (3.2.2) were used to design the system.

We have shown that a CATR reflector is the most suitable dual reflector for imple-

mentation in a QUBIC type optical system. However there is a concern that if such

a reflector is used spillover of power from the back-to-back horn array may affect the

sensitivity of the bolometer detectors. As such we have examined different types of

CCGs that could be implemented in order to separate the back-to-back horn array

and the detector plane23

The simplest way we have found to separate the horn array and detector plane is to

include a flat plane mirror in a CCG system. There are two possible positions into

which a flat mirror can be placed in combination with a CCG. The first is in the

vicinity of the back-to-back horns. The second is in the far-field of the back-to-back

horn array.

23In later chapters we will present an analysis of power spillover in a GCC system. Presently we are

only concerned with whether it is possible to design reflector systems in which the horn array and

detector plane are not adjacent and also generate good quality fringes.
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Because of the location of the fold mirror both of these systems require different design

specifications. For example there is a large distance over which the propagating beams

may diverge when the fold mirror is placed in the far-field of the horn array. Therefore

in order to prevent an excessive amount of spillover at the fold mirror it is advisable

that narrow beams are produced by the back-to-back horns. Figure 3.33 displays the

geometry of the two systems we have considered. Here the systems are shown in

telescopic mode. It can be seen that rays propagating from the horn array at equal

angles are combined at the same locations along the focal plane. The characteristics

of these systems relevant to bolometric interferometry are listed in Table 3.3.

We have used GRASP9 to generate the fringe patterns from 70 mm baselines centred

about the line of sight of the horn array24. Simulations were carried out at 150 GHz

(bandwidth effects in general are considered later in Section 6.4). The results of our

analysis are shown in Figure 3.34. These figures indicate that there will be little

difference between the fringes produced whether the fold mirror is placed adjacent to

the horn array or in it’s far-field. We note however that because wider Gaussian beams

propagate through Figure 3.33(a) more power is focused into the higher order fringes.

This requires the detector plane to be larger in Figures 3.34(a) and Figure 3.34(b)

24For the systems below we have varied the length of the baselines in order to keep the separation of

the fringe maxima equal to ∼ 40 mm. Such separations are in accordance with the fringe patterns

produced by the 800 mm focal length systems presented previously in this chapter.
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(a) Crossed Cassegrain reflector with fold mirror adjacent to horn array. The

size of any box containing this system is at least 3300× 3800× 1600 mm3.

(b) Crossed Cassegrain reflector with a fold mirror in the far field of the horn

array. The size of any box containing this system is at least 2250× 2720× 2400

mm3.

Figure 3.33: Crossed Cassegrain reflectors and a fold mirror. The focal length of these

systems is 3500 mm.
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(a) Horizontal 70 mm baseline with fold mirror

adjacent to horn array. The GCC shown in Fig-

ure 3.33(a) was used to generate these fringes.

(b) Vertical 70 mm baseline with fold mirror ad-

jacent to horn array. The GCC shown in Figure

3.33(a) was used to generate these fringes.

(c) Horizontal 70 mm baseline with fold mirror

in the far field of the horn array. The GCC

shown in Figure 3.33(b) was used to generate

these fringes. Note the smaller detector plane

required to integrate most of the power con-

tained in the fringes.

(d) Vertical 70 mm baseline with fold mirror

in the far field of the horn array. The GCC

shown in Figure 3.33(b) was used to generate

these fringes. Note the smaller detector plane

required to integrate most of the power con-

tained in the fringes.

Figure 3.34: Fringes generated by a 3500 mm GCC reflectors combined with a fold

mirror. Simulations were carried out at 150 GHz.
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Table 3.3: Characteristics of two 3500 mm equivalent focal length combiners. Here

CNF indicates the system in which the fold mirror is placed adjacent to

the horn array while CFF indicates the system in which the mirror is placed

in the far field.

Beam FWHM Number of Size of detector 3 mm 5 mm

(degress) horns plane (mm2) bolometers bolometers

CNF 10 400 1320 193600 69696

CFF 3 400 380 16384 5776

3.4.2 Fold mirror and a GCC examined using equivalent

baselines

For a QUBIC type experiment we require the shortest possible focal length in order to

reduce the number of detectors required at the focal plane. Also the entrance aperture

and beam size must be as large as possible in order to permit a sufficient amount of

power from the sky enter the instrument. From our investigations we conclude that in

order to maintain a low focal length, and thus reduce the number of detectors while

focusing large beams, the fold mirror must be placed adjacent to the back-to-back

array.

A 1000 mm focal length GCC is shown in Figure 3.35. Here beams of 10◦ FWHM are

propagating from a 200 by 200 mm back-to-back horn array. These are the largest

beams the 1000 mm focal length system can combine without a large amount of

spillover occurring at the mirror edges. The characteristics of this system are listed in

Table 3.4.

We have generated fringe patterns using 10 baselines from a grid of 12×12 10◦ FWHM

back-to-back horns25. The beams from the various baselines have been combined using

the GCC shown in Figure 3.35. These fringe patterns are shown in Figures 3.36 and

25All fringe patterns were produced by GRASP. Zemax was only used in the design stages and to

show schematic plots of the systems.
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3.37. The baselines were 40 mm in length and organized in a fashion similar to Figure

3.526.

Figure 3.35: A 1000 mm focal length GCC. The size of any box containing this system

is at least 1150× 1150× 1000 mm3..

26In order to accommodate the larger horns, that produce the smaller Gaussian beams, the corners

of Figure 3.5 must be extended to ± 100 mm.
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(a) CEN baseline. (b) UPL baseline.

(c) UPR baseline. (d) LOWL baseline.

(e) LOWR baseline.

Figure 3.36: GRASP fringe patterns produced by the 1000 mm focal length GCC re-

flector. The baselines generating these fringes occurred vertically along

the systems line-of-sight. The fringes have been formed using 10◦ FWHM

Gaussian beams and 40 mm baselines.
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(a) CEN baseline. (b) UPL baseline.

(c) UPR baseline. (d) LOWL baseline.

(e) LOWR baseline.

Figure 3.37: Fringe patterns produced by the 1000 mm focal length GCC reflector. The

baselines generating these fringes occurred horizontally along the systems

line-of-sight. The fringes have been formed using 10◦ FWHM Gaussian

beams and 40 mm baselines.
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Table 3.4: Characteristics of the 1000 mm equivalent focal length GCC reflector. Here

LCC indicates the GCC.

Beam FWHM Number of Size of detector 3 mm 5 mm

(degress) horns plane (mm2) bolometers bolometers

LCC 10 144 380 16384 5776

3.4.3 GCC dual reflector and a concave hyperboloid

There is another option we can avail of in order to separate the detector plane and

the back-to-back horn array. This involves using a concave hyperboloid to refocus

the beams after they pass through a GCC. This method is advantageous due to the

fact the eccentricity a hyperboloid in less than -1. The magnification of a hyperboloid

reflector is defined as

M =
e+ 1

e− 1
(3.4.1)

where M is the magnification and e is the eccentricity. Therefore, as we can see from

Figure 3.38, placing a concave hyperboloid after the dual reflector will demagnify

the beams focused onto the detector plane. This will reduce the size of the detector

plane and the number of bolometers required for implementation. The geometry of

such a system is shown in Figure 3.39 while its details are listed in Table 3.6. The

eccentricity of the concave hyperboloid is -4 and the distance between the foci for

this reflector is 1600 mm. Meanwhile its diameter is 1000 mm. We have calculated

the fringes generated by baselines displaced along the line-of-sight of the horn array.

These are shown in Figure 3.40. Due to restrictions arising from the GCC’s we can

only implement narrow beams. We have propagated 3◦ FWHM beams from 70 mm

baselines. We note the reduction of the size of the focal plane required to capture the

entire fringe patterns compared to Figures 3.34(c) and 3.34(d). This is of course due

to the demagnification of the concave hyperboloid. The characteristics of this system

are listed in Table 3.5. Finally the geometry details of all systems discussed in Section

3.4 are listed in Table 3.6.
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Figure 3.38: Magnification of concave hyperboloid with eccentricity less than -1.

Figure 3.39: GCC reflector with concave hyperboloid. The final focal length is 2020

mm.
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(a) Fringes generated using a 70 mm baseline

occurring vertically along the systems line-of-

sight.

(b) Fringes generated using a 70 mm baseline

occurring horizontally along the systems line-

of-sight.

Figure 3.40: Fringes generated by a 3500 mm GCC reflector combined with a concave

hyperboloid.

Table 3.5: Characteristics of a GCC. Here TMC indicates the 3500 mm focal length

GCC that has been combined with a concave hyperboloid reflector.

Beam FWHM Number of Size of detector 3 mm 5 mm

(degress) horns plane (mm2) bolometers bolometers

TMC 3 400 280 8839 3136

3.5 Conclusions

In recent years CMB telescope design has been dominated by the implementation

of off-axis compensated Gregorian reflectors. For example the two most prominent

milestone experiments in CMB observation WMAP and PLANCK both employed

such reflectors. In this chapter we have presented results that indicate that other

viable options exist for the choice of reflectors in the QUBIC experiment or future

CMB missions. From the perspective of a B-mode telescope both the CATR reflector

and the front-fed Cassegrain offer a wider DLFOV then the compensated Gregorian.

More relevant to our discussion is that from the perspective of a Fizeau combiner both

these systems significantly out-perform the compensated Gregorian. The front-fed
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Table 3.6: Details of the geometry of the 3500 mm effective focal length general crossed

Cassegrains (GCCs). Here CNF indicates the system in which the fold

mirror is placed adjacent to the horn array while CFF indicates the system

in which the mirror is placed in the far field. Also LCC indicates the 1000

mm focal length general crossed Cassegrain and TMC indicates the 3500

mm focal length general crossed Cassegrain that has been combined with

a concave hyperboloid reflector. The term PF is the primary focal length,

k is the primary conic constant, ROCS is the radius of curvature of the

secondary mirror, βT is the tilt between the reflectors, PD is the diameter

of the primary mirror and SD is the diameter of the secondary mirror. Also

the term EQ indicates the final equivalent focal length.

PF (mm) k ROCS (mm) βT PD (mm) SD (mm) EQ (mm)

CNF 8862.3 -3.53 7857.27 60 1600 1640 3500

CFF 5894.15 -5.73 7076.75 75 2400 2300 3500

LCC 1743.445 -3.69 1778.53 90 700 900 1000

TMC 6577.85 -5.01 9056.11 70 1320 1600 2200

Cassegrain induces less amplitude distortion in the fringe patterns then the Gregorian

while the CATR effectively removes any distortion. The compact geometry of these

systems also has significant repercussions when one considers issues such as payload

size for satellite space launch. In the next chapter we will show how complications

with these systems arise when we consider QUBIC’s low 300 mm focal length. However

based on our initial premise of an improvement in detector and read out technologies

we recommend these systems for implementation within any bolometric interferometer

mission.

Figure 3.38 explains why the CATR and GCC reflectors do not produce the same levels

of beam distortion as other dual reflectors. Because their eccentricity is < 1 these are

the only type of dual reflectors that demagnify the image formed by the primary

mirror. Therefore one can implement a large-focal-length primary mirror that reflects

large-size Gaussian beams. These reflected beams remain in their far-field as they

continue to propagate through the rest of the instrument. As such there is no change

in the phase slippage between beams as they propagate and so beam distortion, as
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explained using equation (3.2.5), is minimized. This causes the resulting fringes to

appear straight. We will explore this topic further in the next chapter.

In this chapter we have presented a brief geometrical and physical optics analysis of

various state-of-the-art dual reflectors. We concentrated on long (f >= 800) focal

length systems. All results presented are of use for CMB telescopes in general. How-

ever, for practical reasons, the current design for QUBIC requires a somewhat extreme

short focal length. By convention the above systems can all be classed as high per-

forming imagers. These systems successfully capture an incident wavefront and focus

it onto a detector plane with low aberrations. Such a conventional criterion, that

requires our instrument produces low wavefront aberrations, is of course desirable for

QUBIC. However we must also insist that amplitude distortion, arising due to the long

wavelength of the beams relative to the reflector size, is also kept to a minimum. In

the next chapter we shall discuss a category of optical devices referred to as telecentric

systems. We will show how that systems obey these two criteria can be designed.

Finally the results of this chapter exemplify why geometrical optics alone is insufficient

to model long-wavelength optical systems such as QUBIC. As we have seen although

geometrical optics is a powerful design tool, it does note provide an in-depth analysis

of long-wavelength optical systems in which the diffraction of propagating electric

fields must be considered. The systems presented in this chapter were designed using

geometrical optics and modeled using physical optics. Also the presence of amplitude

distortion some fringe patterns was explained using quasi-optics. The inherent chal-

lenges of designing long-wavelength optical systems such as QUBIC is highlighted by

the fact that three separate techniques were required to fully understand the above

systems. The fact the that the QUBIC combiner is a long wavelength system that

must produce high quality fringe patterns while possessing a low focal ratio has re-

quired some innovative thinking to produce a plausible design. In the next chapters

the basic designs we proposed for QUBIC will be discussed in detail.
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4 Optical Combiners for QUBIC

4.1 Possible optical combiners for QUBIC

4.1.1 Introduction

Possible off-axis dual reflector combiners for QUBIC were investigated at NUIM and

University of Milano-Bicocca1. In the previous chapter I looked at a range of dual

reflector designs with no upper-limit on focal lengths. Designs with focal lengths

down to 800 mm were developed. QUBIC, however requires fast (short focal length)

optics and so not all designs may be achievable. In this chapter I concentrate on short

focal length designs. The QUBIC collaboration originally intended to purchase the

100 GHz band horns implemented by CLOVER [68]. At this frequency, limitations

to the number of 5 mm bolometers that can be multiplexed, placed a 200 mm upper

limit on the combiner’s focal length. As will be explained in the next chapter later

investigations at the APC Paris recommended a 3 mm maximum bolometer size. This

allowed the frequency of the combiner to be increased to 150 GHz which would allow

QUBIC to be more sensitive. It was calculated that at 150 GHz the maximum focal

length of the combiner could be increased to 300 mm. At NUIM we designed 300 mm

focal length systems to combine 150 GHz Gaussian beams propagating from the horn

array. In Milano-Bicocca 200 mm focal length systems were investigated to combine

100 GHz beams. These focal lengths represent the middle ground between the 100 mm

and 400 mm focal length systems listed in Table 2.1. Investigating these focal lengths

1University of Milano-Bicocca - Piazza dell’Ateneo Nuovo, 1 - 20126, Milano. For more information

visit http://www.unimib.it/.
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provides an assessment of whether it would be possible to implement an off-axis dual

reflector system for QUBIC in the near future.

The 14◦ FWHM of the QUBIC re-emitting horns is equivalent to the field-of-view of

a telescope. Therefore it is immediately recognizable that designing any dual reflector

system for QUBIC will be extremely difficult. At 150 GHz QUBIC has an f-number

of 2.14 while at 100 GHz the f-number drops to unity. Considering that the field

of view of QUBIC is 14◦ these f-numbers are extremely small compared to standard

telescopes. The simplest way to minimize the wavefront aberrations that will affect

the fringe patterns from equivalent baselines is to implement a system with a large

focal length, a small entrance diameter and a narrow field of view. These options are

not available to us in QUBIC so it is reasonable to assume that aberrations will be

present within the combining wavefronts. This chapter details our efforts to design

and model a dual reflector that minimizes these aberrations.

We will now present the dual reflectors we have designed for QUBIC. As previously

explained the various types of reflectors that can be employed are extremely restricted

by QUBIC’s low focal ratio. In Chapter 3 we concluded that ideally a CATR similar

to CLOVER should be implemented within a bolometric interferometric CMB mis-

sion. Such a dual reflector ensures low traditional wavefront aberrations as well as

minimal Gaussian beam amplitude distortion. However due to geometric restrictions

the minimum focal length required by such a system to cater for a 12 × 12 array of

150 GHz horns is ∼ 800 mm. This is unsuitable for QUBIC.

If we were to design a long-focal length combiner, with no restrictions on size, then

Section 3.3.1 attests that a CATR design, followed by a front-end-fed Cassegrain and

an inverted crossed Cassegrain should be considered. However, the very low F/# of the

QUBIC combiner essentially rules out crossed designs (due to geometrical shadowing

by relatively large components). Unfortunately even the front-fed Cassegrain cannot

accommodate the large focal plane required. With a focal length of 300 mm there are

two particular off-axis dual reflectors that are suitable for QUBIC. These are:

• a general crossed Cassegrain (GCC) .

• a compensated Gregorian (CG) .
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In this chapter we will discuss why we consider these systems to be the most suitable

for QUBIC. We will discuss the advantages and disadvantages associated with each

reflector. For the purposes of bolometric interferometry the GCC performs better than

the CG. However any GCC will have practically no tolerances to any adjustments to

the original QUBIC design discussed in Chapter 22.

4.1.2 General crossed Cassegrain (GCC)

The unique aspect of a CATR reflector is that the focal and object planes are per-

pendicular. This is obviously a huge benefit for cryostat construction. For QUBIC we

must relax the requirement that these two planes are exactly perpendicular. This has

enabled us to design the dual reflector system shown in Figure 4.1. This is a general

crossed Cassegrain system (GCC) with no restriction on the feed or bending angles.

The fringe patterns produced by this combiner are shown in Figures 4.2 - 4.3. These

fringes have been generated by the 40 mm baselines shown Figure 3.5 3. A lenght 40

mm was chosen as it is approximately in the middle of the range of baselines to be

used. When the performance of specific designs was later modelled (see Section 6.4)

all the baselines to be used, with the correct weighting, were included.

Recall that in order to ensure a CATR the sum of angles α + β shown in Figure 3.3

must equal 90◦ [107]. To design a GCC we set α + β = ζ where ζ is a variable angle.

For the system shown Figure 4.1 ζ = 103◦ and the tilt β = 72◦. From trial and error

we concluded that these values led to the most suitable GCC for implementation in

QUBIC. Choosing these angles allowed us to design a dual reflector with a primary

2Such adjustments include increasing the size of the QUBIC back-to-back horn array or placing a

polarizing grid before the detector array
3As previously explained the patch of sky at which the BB power spectrum is most likely to be

observed is between lmin = 30 and lmax = 200. Assuming a flat sky approximation l = 2π × u
and u = d

λ [71]. Here |d| is the physical separation of the antennas of a given baseline and u is

the spatial frequency of the fringe patterns. The multipoles at which we must observe the sky are

related to the baseline lengths by l = 2π
λ ×d. Therefore at 150 GHz the maximum and minimum

baselines for QUBIC are dmin = 10 mm and dmax = 64 mm. All systems in this chapter were

modeled using 40 mm baselines as they approximate the average range of all QUBIC baselines.

The fringes modeled using these baselines are indicative of the results that would be obtained for

all values of d.
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mirror large enough to accommodate a 12 × 12 array of back-to-back horns. This

primary mirror will be unblocked by the secondary while β = 72◦ will ensure a crossed

reflector whose geometry leads to minimum beam distortion. Once the above paramet-

ers were established we set the equivalent focal length to 300 mm and solved equations

(3.2.1), (3.2.2) and (3.3.1) to find the primary focal length, secondary eccentricity and

angle of throw [108]. The fact that this system obeys the Dragone condition leads

to minimal astigmatism and cross polarization. Also the beams from the secondary

horns remain moderately collimated as they propagate through the combiner. This

ensures low amplitude distortion.

As well as obeying the Dragone condition, the shape of the mirrors of these systems

have been optimized using Zemax in order to produce the smallest possible third order

Seidel aberrations. Using Zemax’s default merit function (spot radius) the primary

and secondary mirrors of the CCG were deformed from their traditional parabolic and

hyperbolic shapes respectively4. The mirrors’ surfaces were reshaped into the higher

order polynomials

z(ρ) = f(ρ) + α1ρ
4 + α2ρ

6 + α3ρ
8 (4.1.1)

where f(ρ) indicates the original quadratic polynomial describing the classic conic

section and ρ2 = x2 + y2. The coefficients α1/2/3 have been calculated by Zemax

optimizations using the default merit function.

As shown in Figure 4.1 the GCC has a DLFOV of greater than 14◦ at 150 GHz. This

essentially implies that wavefront aberrations are so slight, that the performance of the

system is restricted solely by the diffraction properties of light. Thus the performance

of the GCC from a telescope’s perspective is as good as can be produced. Also as

shown in Figures 4.2 - 4.3 this system induces little or no amplitude distortion on

the propagating beams. Therefore the GCC fulfills the two criteria we introduced

in Chapter 3 for the QUBIC combiner. It produces low wavefront aberrations and

induces low levels of amplitude distortion in the combining beams.

The GCC has been designed for a 12 × 12 array of 14◦ FWHM back-to-back horns.

At 150 GHz the waist radius of a 14◦ Gaussian beam is 3.074 mm. Optimum coupling

4The operation of Zemax’s default merit function has been previously explained.
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between a Gaussian beam and a corrugated conical horn occurs when w
a

= 0.64 where

a is the aperture radius and so the diameter of a single horn that produces such a

beam is ≈ 10 mm plus 2 mm for the rim thickness [110]. Therefore the above GCC

must accommodate a back-to-back horn array of 140 × 140 mm2. Due to the geometry

of the GCC these parameters push the limit that the GCC will allow and as we shall

see leakage of power from the horn array onto the detector plane is inevitable. Here

we have taken standard conical corrugated horns (scalar horns) as an example5. This

distance between horn centres could possibly be reduced, though not significantly, if

CLOVER-type horns are used.

There are other possible draw backs to implementing this system. Using GRASP9

we have calculated that only 96% of the power from the edge horns in the array will

reach the bolometer detectors6. This is due to spillover at the primary mirror. This

mirror’s size is restricted in order to prevent it shadowing the detector plane. Therefore

seemingly minor adjustments such as increasing the horn array to 150 × 150 mm2

will generate a large amount of spillover at the primary. These restrictions will be

somewhat relaxed if 10◦ or 12◦ FWHM beams could be used. A significant concern

of the system is the proximity of the back-to-back horn array to the detector plane.

Leakage from the horn array to the detector plane may be high enough to significantly

reduce the sensitivity of the bolometer detectors to the produced fringes.

Another concern is the insertion of any optical window separating the focal plane from

the combiner’s chamber. There is only a 20 mm region into which the window can be

inserted between the primary mirror and the focal plane. Also in order to minimize

spillover the back-to-back horns must be as close to the primary mirror as possible.

This means that if required we will not be able to place a half-wave plate between

back-to-back array and the primary mirror. If dramatic changes are forced on the

QUBIC apparatus the GCC will not posses the versatility we require to enable the

adjustment of the experiment’s components.

5QUBIC will most likely use profiled corrugated horns but at this stage standard conical corrugated

horns were used for the fringe pattern simulations. Later work showed that the exact choice of

beam pattern did not have a noticeable effect on the level of aberrations found.
6This figure is regardless of the size of the detector plane. The power loss is due the restricted size

of the mirrors in order to prevent them overlapping one another.
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(a) General crossed Cassegrain reflector. The tilt between

the reflector axes is 72◦. The eccentricity of the secondary

ellipsoid is -2.23. The dark green dashed box indicates the

area into which any window separating the 4 K pulse tube

cryostat from the lower temperature detector unit must fit.

This area is at most 20 mm wide.

(b) The DLFOV of the general crossed Cassegrain is greater than 14◦ for

a 140 mm entrance aperture.

Figure 4.1: General crossed Cassegrain for QUBIC. The focal length of this system is

300 mm.
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(a) CEN baseline. (b) UPL baseline.

(c) UPR baseline. (d) LOWL baseline.

(e) LOWR baseline.

Figure 4.2: Fringe patterns from 5 equivalent horizontal baselines produced by the

general crossed Cassegrain for QUBIC. Fringes have been formed using

14◦ FWHM Gaussian beams and the five 40 mm baselines shown in Figure

3.5.
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(a) CEN baseline. (b) UPL baseline.

(c) UPR baseline. (d) LOWL baseline.

(e) LOWR baseline.

Figure 4.3: Fringe patterns from 5 equivalent vertical baselines. Fringes have been

formed using 14◦ FWHM Gaussian beams and the five 40 mm baselines

shown in Figure 3.5.
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4.1.3 Compensated Gregorian (CG)

A Compensated Gregorian (CG) suitable for QUBIC is shown in Figure 4.4. The

fringe patterns produced by this combiner are shown in Figures 4.5 - 4.6. These

fringes have been generated by the 40 mm baselines shown Figure 3.5. The values of

the tilt between the reflectors (β) and the angle of throw at primary mirror (θu) were

set along with the equivalent focal length. Equations (3.2.1), (3.2.2) and (3.3.1) were

then solved to find the eccentricity (e) and the feed angle (α) as discussed in [106].

Finally a value for the distance between the secondary foci was chosen to give the

smallest secondary reflector that still captured all rays reflected from the primary

mirror. The DLFOV of this Gregorian is slightly less than the 14◦ required by QUBIC

yet it is still remarkably high. However the performance of this system is not as good

as the GCC. Not only is the DFLOV slightly less than the GCC but the geometry of

the CG ensures that amplitude distortion will be present in the final fringe patterns.

Once again the curved fringe patterns suggest that the Gaussian beams reflected by

this combiner have suffered amplitude and phase distortions.

However there are reasons why this CG may be considered suitable for QUBIC. These

concern the versatility of the combiner to design adjustments. Firstly the size of the

back-to-back horn array is less restricted than that of the GCC. If the horn array needs

to be widened the primary mirror can easily be enlarged to ensure a near zero edge

taper of all beams. Secondly the leakage of power from the back-to-back array onto the

detector plane that occurs in the GCC will not occur in the CG. Also although the CG

is larger than the GCC its size is still within the confines of cryostat limitations7.

7It is expected that the optical combiner will have to fit inside a 900× 900× 600 mm3 “box”.
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(a) Compensated Gregorian reflector.The tilt between the re-

flector axes is 25◦. The eccentricity of the secondary ellipsoid

is 0.359

(b) The DLFOV of the compensated Gregorian is short of 14◦ for a 140

mm entrance aperture.

Figure 4.4: Compensated Gregorian reflector for QUBIC. The focal length of this sys-

tem is 300 mm.
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(a) CEN baseline. (b) UPL baseline.

(c) UPR baseline. (d) LOWL baseline.

(e) LOWR baseline.

Figure 4.5: Fringe patterns from 5 horizontal equivalent baselines produced by the

compensated Gregorian for QUBIC. Fringes have been formed using 14◦

FWHM Gaussian beams and the five 40 mm baselines shown in Figure 3.5.
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(a) CEN baseline. (b) UPL baseline.

(c) UPR baseline. (d) LOWL baseline.

(e) LOWR baseline.

Figure 4.6: Fringe patterns from 5 vertical equivalent baselines produced by the com-

pensated Gregorian for QUBIC. Fringes have been formed using 14◦

FWHM Gaussian beams and the five 40 mm baselines shown in Figure

3.5.
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The decision of which reflector system to implement becomes a compromise between

the quality of fringe patterns required versus the practicality of system construction.

As demonstrated in Figures 4.2 - 4.3 the GCC design minimizes amplitude distortion

within the fringe patterns. Fringes from equivalent baselines are therefore similar

on the focal plane. If the quality of the required fringes is an absolute requirement

the GCC must be implemented (providing leakage from the horns array does not

overwhelm system sensitivity). However if some distortion of the fringe patterns is

acceptable the CG is the likely candidate for implementation8. Unlike the GCC the

CG also accommodates the placing of a half wave plate between the horn array and

the primary mirror. It is apparent from Figures 4.5 - 4.6 that the beam distortion

induced by the CG is significant. Presently work is on going investigating whether

this distortion will adversely affect the recovery of the Stokes visibilities. We shall

return to this topic in Chapter 6. The details of the GCC and CG dual reflectors are

listed in Table 4.3.

4.1.4 Constraints on the mirror dimension in the GCC and CG

As shown in Figure 4.1(a) the primary and secondary reflectors in the CGG are in close

proximity to one another. Unfortunately this means that the sizes of these mirrors

must be restricted in order to prevent overlapping of the reflectors. Therefore even

if levels of spillover at the primary or secondary mirrors are large the reflector sizes

cannot be increased due to geometrical restrictions.

The size of the mirrors we can use in the CG reflector are dependent on restrictions in

cryostat dimensions. We have momentarily ignored this constraint when considering

the Gregorian reflectors. In this case the mirrors in the CG are separated by a distance

large enough that allows them to be set to a size that permits practically zero edge

taper on all beams. In contrast, even without the cryostat constraints, the mirror sizes

of the GCC system must be restricted in order to prevent overlapping of the reflectors.

Therefore the sizes of the mirrors in the GCC cannot be increased to produce an

extremely low edge taper due to geometrical rather than cryostat restrictions.

8Such matters are currently under investigation at both the APC Paris and NUIM.
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Spillover values for individual Gaussian beams propagating through the GCC and

the CG are shown in Table 4.1 and Table 4.2. The horns from which these beams

propagate form the baselines which are shown in Figure 3.5. Beam spillover is much

larger in the GCC than for the CG. The preliminary cryostat limitations placed on

QUBIC are 600 mm × 900 mm × 900 mm. Both the GCC and the CG fit within

these dimensions. The values shown in Table 4.2 suggest that the size of this cryostat

is generous enough to allow large enough mirrors to effectively remove spillover at the

mirrors in the CG reflector.

Table 4.1: Spillover (calculated as −10 log(Preflected/Pin) at each mirror) at the

primary and secondary reflector in the GCC. X displacement refers to the

horizontal baselines shown in Figure 3.5. Y displacement refers to the ver-

tical baselines shown in Figure 3.5. Beam 1 and Beam 2 refer to the indi-

vidual horns that make up the 40 mm baselines.

4.2 Effect of changes in QUBIC requirements

Further investigation of the QUBIC at the APC Paris led to the stipulation that in

order to achieve the minimum sensitivity required to reach a tensor-to-scalar ratio of

0.01 the size of the back-to-back horn array must be increased to at least 20 × 20

horns elements9. This means at 150 GHz the size of the back-to-back array must be

9As explained the noise (Nij) received by each bolometer, Nij = δij
4(NET 2)Ω2Nh

Nt

1
N2

eq
, is inversely

proportional to the number of equivalent baselines implemented Neq. Here Nh is the number of

horns while Nt is the number of time samples Ω is the beam size of the sky horns and NET is

the noise equivalent temperature of the individual bolometers. The relationship between noise

reduction and the number of equivalent baselines has been fully explained in both Chapter 2 and

162



Table 4.2: Spillover (calculated as −10 log(Preflected/Pin) at each mirror) at the

primary and secondary reflector in the CG. X displacement refers to the ho-

rizontal baselines shown in Figure 3.5. Y displacement refers to the vertical

baselines shown in Figure 3.5. Beam 1 and Beam 2 refer to the individual

horns that make up the 40 mm baselines.

increased to 240 × 240 mm2. We therefore must re-examine the 300 mm dual reflectors

discussed above and asses their ability to handle such a large horn array.

4.2.1 Adjustment to combiners

Increasing the size of the sky horn array means implementation of the GCC system

is not possible. Due to the geometry of the system it is not possible to increase the

diameter of the primary and secondary mirrors to capture the beams from the outer

most horns. Any significant increase to the diameters listed in Table 4.3 will cause the

mirrors to overlap and the primary mirror to shadow the detector plane. Therefore

the only off-axis dual reflector physically applicable to QUBIC is the CG. At this

point all other dual reflector combiners must be ruled out.

We have performed a PO analysis of the CG in which the location of the corner horns

in Figure 3.5 has been changed to ± 120 mm. For this analysis we once again tested

40 mm baselines. The fringe patterns generated by these baselines are shown below

in Figures 4.7 and 4.8. As we can see the effects of amplitude distortion induced by

in [69]. A reassessment of the implications of this relationship has led to the conclusion that when

14◦ FWHM back-to-back horns are implemented at least 400 of these horns will be required to

ensure that the sensitivity of QUBIC is comparable with that of a bolometric imager.
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the CG system become extremely detrimental when we examine baselines from the

extremities of the enlarged horn array. Also we must expect that classical wavefront

aberrations will severely affect the quality of the fringe patterns due to the fact that

the system is no longer diffraction limited for 14◦ FWHM beams propagating from an

array 240× 240 mm2 in size.

In Figures 4.9 and 4.10 we compare the spot diagrams for the CG reflector when

the entrance diameter is 120 × 120 mm2 and 240 × 240 mm2 in size respectively. In

both these figures a ±14◦ FOV is incident over the entrance apertures10. The black

circle in each figure represents the Airy disk for a 150 GHz optical system. That fact

that the rays in Figure 4.10 are incident on the image plane outside this disk means

that wavefront aberrations dominate the imaging qualities of this system. This can

be compared with the equivalent spot diagram for the 120 × 120 mm2 array shown

in Figure 4.9. Here we can see that when the smaller entrance aperture is used the

system is very close to being diffraction limited. Similar Zemax optimizations to those

discussed above failed to produce a diffraction limited CG. When the size of the back-

to-back horn array is increased to 240 mm the focal ratio of the combiner becomes

1.25. From the author’s knowledge it is simply not possible to design a dual reflector of

such a low focal ratio that will produce diffraction limited beams over a ±14◦ FOV.

10In the context of QUBIC a ±7◦ FOV is equivalent to the 14◦ FWHM of the propagating Gaussian

beams. In order to design a system that captures the full power of these Gaussian beams we

analyze the systems using a ±14◦ FOV.
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(a) CEN baseline. (b) UPL baseline.

(c) UPR baseline. (d) LOWL baseline.

(e) LOWR baseline.

Figure 4.7: Fringe patterns from 5 horizontal equivalent baselines produced by the

compensated Gregorian for QUBIC. Fringes have been formed using 14◦

FWHM Gaussian beams and the five 40 mm baselines shown in Figure 3.5.

The position of the horns in the off-axis baselines have been adjusted to

model the outer most beams from a 20× 20 horn array.
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(a) CEN baseline. (b) UPL baseline.

(c) UPR baseline. (d) LOWL baseline.

(e) LOWR baseline.

Figure 4.8: Fringe patterns from 5 vertical equivalent baselines produced by the com-

pensated Gregorian for QUBIC. Fringes have been formed using 14◦

FWHM Gaussian beams and the five 40 mm baselines shown in Figure

3.5. The position of the horns in the off-axis baselines have been adjusted

to model the outer most beams from a 20× 20 horn array.
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Figure 4.9: Spot diagram for a ±14◦ FOV incident over an entrance diameter equi-

valent to a 12 × 12 horn array. The black line shows the Airy’ disk for

each spot diagram. Also shown is the Airy ellipse (the Airy disk radius is

1.22 times the primary wavelength times the F/# of the system. In gen-

eral this depends upon the field position and pupil orientation. In some

cases there is also significant asymmetry giving an elliptical rather than a

circular shape).
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Figure 4.10: Spot diagram for a ±14◦ FOV incident over an entrance diameter equi-

valent to a 20 × 20 horn array. The black line shows the Airy’ disk for

each spot diagram. Also shown is the Airy ellipse (the Airy disk radius

is 1.22 times the primary wavelength times the F/# of the system. In

general this depends upon the field position and pupil orientation. In

some cases there is also significant asymmetry giving an elliptical rather

than a circular shape).
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Although the CG is physically capable of combining the large 14◦ FWHM beams from

the enlarged horn array and producing fringe patterns on the focal plane such a system

is not an ideal candidate for QUBIC. The presence of a large number of back-to-back

horns and the large FWHM Gaussian beams means that any short focal length systems

will induce wavefront aberrations of large magnitude. Also the implementation of a CG

reflector will result in the fringe patterns becoming deformed by amplitude distortion

as well as wavefront aberrations. We have therefore attempted to attempt to design a

novel class of dual reflector more suitable to the QUBIC requirements than the CG.

4.2.2 Zemax optimization to generate Telecentric combiners

As we have shown beam distortion is effectively minimized with a crossed Cassegrain

design. Such a design is applicable to bolometric interferometry due to the fact that it

approximates a telecentric optical system. This is demonstrated in Figure 4.11 where

we have shown the system from the point of view of three separate 14◦ FWHM beams

propagating through the combiner. A telecentric optical system is one in which either

the entrance or exit pupil is placed at infinity [111].

If the hard aperture of an optical systems is placed in front of the focusing device it

becomes the entrance pupil of the system. In QUBIC the hard aperture is the back-

to-back horn array. We therefore require an object-space telecentric system. In Figure

4.12 a 300 mm focal length ideal lens has been used to transfer three pencils of rays

representing beams propagating from horn apertures into the far field. The horns are

located at the front focal point of the ideal lens. Recalling that the exit pupil is simply

the image of the entrance pupil it is apparent when we trace the virtual rays that

the exit pupil of this system will be located at infinity. This system is therefore also

image-space telecentric (doubly telecentric) [112]. From Figure 4.11 we can clearly see

that the 300 mm crossed Cassegrain approaches such behavior.

Implementation of a crossed Cassegrain will provide an off-axis system that is also

very close to becoming doubly telecentric. This behavior is desirable for the optical

combiner and illustrates why a crossed Cassegrain is most suitable for QUBIC. The

well collimated beams in the image space of Figures 4.11 and 4.12 mean that almost

planar wavefronts are combining to form fringes. The fact that the wavefronts are
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planar indicate that the beams are within the far field away from their waist radii.

As discussed in the previous chapter this minimizes possible amplitude distortion due

to the fact the Gaussian beams’ phase slippage is practically constant throughout the

image space. In comparison Figure 4.13 illustrates that rather than being collimated

at the detector plane the interfering beams in the compensated Gregorian are rapidly

diverging. It is this divergence that is responsible for the large amount of amplitude

distortion induced by the CG. This is primary reason why these systems are unsuitable

for QUBIC.

Figure 4.11: General Crossed Casegrain implemented as a object space telecentric

combiner.

We have implemented several Zemax optimizations in order to create a doubly tele-

centric optical system that will accommodate a 20 × 20 back-to-back horn array. For

each optimization we entered a different basic structure for a combiner into Zemax.

The focal length of these designs was 300 mm and the surface shapes consisted of

standard conic sections. The first two optimized systems began as a pair of para-

bolas whose combined focal lengths were 300 mm. They were originally tilted by

angles chosen to allow a crossed and back-fed design. The third system began as a

compensated Gregorian whose secondary mirror was chosen to induce minimum dis-

tortion. As discussed in the previous chapter these three particular conditions, crossed,

back-fed and minimal distortion set specific constraints on the tilts of the reflector axes
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Figure 4.12: An ideal image space telecentric system.

Figure 4.13: The primary focus of a compensated Gregorian prevents it from acting

as a telecentric system

and the tilt of the focal plane11. This restricts the number of variables we have allowed

Zemax to adjust thus preventing the optimizations returning nonsensical systems.

The tilt angles of all systems were kept constant while Zemax was instructed to deform

the mirror surfaces in order to force rays that are parallel in object space to intersect

11As previously discussed these initial angles can be readily calculated using the aforementioned

Rusch and Dragone conditions.
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at the focal plane. In all case the angles of tilt were pre-chosen in order to ensure

the primary and secondary mirrors as well as the detector plane were all unblocked.

Also all rays from a signal point on the object plane were forced to travel parallel

at the focal plane (thus forcing image-space telecentricity). The desired heights and

angles of the points of intersection of the rays were calculated by hand assuming the

geometry of a 300 mm focal length system. For example tan−1(120
300

) = 21.8◦ gives

the angle at which any marginal ray must intersect the focal plane. A Zemax merit

function was written that calculated orientations of 16 ±14◦ FOV rays propagating

from a 240 × 240 mm2 entrance diameter. Upon optimization the surface shapes of

the reflectors were adjusted until these orientations converged on the predetermined

values. The combiners returned from these optimizations are shown in Figure 4.14.

Here the predetermined constant tilts between the reflectors are also listed.
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(a) Optimized back-fed optical combiner. The tilt

between the reflectors is 30◦.

(b) Optimized crossed optical combiner. The tilt

between the reflectors is 72◦.

(c) Optimized compensated Gregorian. The tilt

between the reflectors is 56◦.

Figure 4.14: Optimized optical combiners. Theses systems were constructed by forcing

Zemax to alter the surface shapes until the systems become telecentric.



All optimized systems consisted of biconic mirrors deformed into higher order polyno-

mial surfaces. The general formula for such surfaces is

z =
c2
x + c2

y

1 +
√

1− (1 + kx)c2
xx

2 − (1 + ky)c2
yy

2
+

16∑
i=1

αix
i +

16∑
i=1

βiy
i (4.2.1)

for which Zemax was instructed to optimize the curvatures (cx and cy) as well as the

deformation coefficients (αi and βi)
12. A biconic surface is one which kx 6= ky. In all

three optimizations the minimum size of the focal plane that Zemax could combine the

rays in the required manner corresponded to a focal length of 600 mm. The optimized

surface geometries were entered into GRASP9 in the form of a regular grid. GRASP9

then used a cubic interpolation technique to calculate a surface shape over which a PO

analysis was performed. The fringe patterns of two central 40 mm baselines generated

by each optimized combiner is shown in Figure 4.15. Although these fringes are not

completely straight we can see that enforcing telecentric in the reflectors does remove

the curved profile caused by amplitude distortion (compared with Figure 4.5)13 .

It is extremely unlikely the general optimizations performed in the above manner will

return a suitable system. The role of optimizations in reflector design is to merely

“hammer out” the last trinket of performance of a system designed using well set

parameters and methods. In general optimizations and surface deformations are the

last step in a long design process. However the results of this section are important

to the QUBIC combiner. It is desirable that the optical combiner be a telecentric

system and our colleagues in APC Paris have indicated that for QUBIC to possess

a sensitivity comparable to that of an imager we must observe the sky using a 20 ×
20 horn array. Unfortunately the above Zemax optimizations suggest that it is not

possible to implement a 300 mm telecentric system to cater for such a large entrance

12This formula is taken from the Zemax manual. For more information on the various surface types

available in Zemax visit http://www.zemax.com/.
13This was only an exploratory study to investigate whether Zemax could directly optimize a low-

focal-length-telecentric combiner. As discussed, we discovered that the minimum focal length

required by Zemax to force telecentricity on the initial combiners was 600 mm (twice the focal

length permitted by the QUBIC design specifications). Therefore the author did not see the

necessity to model the two sets of five equivalent baselines used in previous examples.
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diameter and 14◦ FWHM Gaussian beams. Critically these optimizations agree with

systems designed by proven methods within the literature.

It was found that a minimum 600 mm effective focal was required in order to design a

GCC that could accommodate a 20 × 20 back-to-back horn array. The details of this

system are shown in Figure 4.16 while the fringe patterns from equivalent baselines are

shown in Figure 4.17. In order to design the system shown Figure 4.16 we set ζ = 102◦

and the tilt β = 35◦ and proceeded as before following the methods discussed in [107]

and [108].

The fringe patterns generated by the 600 mm effective focal GCC are shown in Figure

4.17. The 600 mm GCC produces better quality fringe patterns then all the above

telecentric optimized systems shown in Figure 4.14. This is a testament to the unique

geometry of the crossed Cassegrain. This standard regular conic reflector arrangement

is a higher performing optical combiner then the systems optimized from more com-

plex surface shapes. At this point we discontinued investigating whether or not brute

force Zemax optimization would return a suitable combiner for QUBIC. Although

the optimizations successfully eliminated significant beam distortion by enforcing tele-

centricity it is clear the fringe patterns generated by an equivalent focal length CCG

are of a higher quality. However it is apparent that spillover and leakage concerns will

also emerge for the 600 mm focal length GCC. Therefore even with an increased focal

length a GCC system will struggle to accommodate a 20 × 20 element aperture.

4.2.3 Off-axis parabolas

The main reason for inclusion of a secondary reflector in dual reflector systems is to

magnify the focal length of the primary mirror and thus increase the effective focal

length of the entire system. A type of reflector we have overlooked up to this point is

a simple off-axis parabola. The fact that QUBIC has such a short focal length begs

the question as to whether or not a secondary reflector is genuinely required. The

geometry of an off-axis paraboloid is less complicated than equivalent off axis systems.

The required cryostat size would be significantly smaller.

A draw back of a single reflector is that the lack of the secondary mirror essentially

halves the system’s capacity to reduce wavefront aberrations. To counteract this we
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performed a Zemax optimization on a conventional paraboloid slice to attempt to

design a single element off-axis telecentric reflector. These optimization followed the

same protocol as before when we attempted to optimize telecentric dual combiners.

The single surface was described in Zemax using equation (4.2.1). As it is the minimum

angle that would produce an unblocked system the angle of throw of the paraboloid

was set to 50◦ and Zemax was instructed to force the system to become telecentric by

adjusting the surface curvatures, conic constants and higher order polynomial coeffi-

cients shown in equation (4.2.1).

This optimization returned an elliptical biconic surface (i.e. with different curvatures

along both axes). As shown in Figure 4.18 the final system approaches a telecentric

design. We entered the geometry of this single surface into GRASP9 in the form of a

regular gird. GRASP9 then used a cubic interpolation technique to calculate a surface

shape over which a PO analysis was performed. We calculated the fringe patterns

generated by this single biconic surface for both the initial baseline structure of Figure

3.5 and the enlarged 20 × 20 array. The results are shown below in Figures 4.19 and

4.22. However as we can clearly see fringe patterns produced by equivalent baselines

are very different.
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(a) Optimized crossed combiner. Baseline along x-axis

of horn array.

(b) Optimized crossed combiner. Baseline along y-axis

of horn array.

(c) Optimized back-fed combiner. Baseline along x-

axis of horn array.

(d) Optimized back-fed combiner. Baseline along y-

axis of horn array.

(e) Optimized CG combiner. Baseline along x-axis of

horn array.

(f) Optimized CG combiner. Baseline along y-axis of

horn array.

Figure 4.15: Fringe patterns generated by optimized telecentric systems. These pat-

terns are produced by beams propagating from the 40 mm CEN baseline

shown in Figure 3.5. All scales are in decibels.



(a) General crossed Cassegrain reflector. The tilt between

the reflector axes is 68◦. The eccentricity of the secondary

ellipsoid is -2.76

(b) The DLFOV of the 600 mm focal length general crossed Cas-

segrain is greater than 14◦ for a 240 mm entrance aperture. This

will accommodate a 20 × 20 back-to-back array of horns.

Figure 4.16: A 600 mm focal length General Crossed Cassegrain.
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Figure 4.17: Fringes produced by GC designed to accommodate a 20 × 20 horn array.

Figure 4.18: Single surface combiner optimized to approach a telecentric system.
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(a) CEN baseline. (b) UPL baseline.

(c) UPR baseline. (d) LOWL baseline.

(e) LOWR baseline.

Figure 4.19: Fringe patterns from 5 horizontal equivalent baselines produced by the

optimized off-axis paraboloid for QUBIC. Fringes have been formed using

14◦ FWHM Gaussian beams and the five 40 mm baselines shown in Figure

3.5. The outer horns correspond to those in the 12 × 12 horn array. All

scales are in decibels.

180



(a) CEN baseline. (b) UPL baseline.

(c) UPR baseline. (d) LOWL baseline.

(e) LOWR baseline.

Figure 4.20: Fringe patterns from 5 vertical equivalent baselines produced by the op-

timized off-axis paraboloid for QUBIC. Fringes have been formed using

14◦ FWHM Gaussian beams and the five 40 mm baselines shown in Fig-

ure 3.5. The outer horns correspond to those in the 12 × 12 horn array.

All scales are in decibels.
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(a) CEN baseline. (b) UPL baseline.

(c) UPR baseline. (d) LOWL baseline.

(e) LOWR baseline.

Figure 4.21: Fringe patterns from 5 horizontal equivalent baselines produced by the

optimized off-axis paraboloid for QUBIC. Fringes have been formed using

14◦ FWHM Gaussian beams and the five 40 mm baselines shown in Figure

3.5. The position of the horns in the off-axis baselines have been adjusted

to model the outer most beams from a 20× 20 horn array. All scales are

in decibels.

182



(a) CEN baseline. (b) UPL baseline.

(c) UPR baseline. (d) LOWL baseline.

(e) LOWR baseline.

Figure 4.22: Fringe patterns from 5 vertical equivalent baselines produced by the op-

timized off-axis paraboloid for QUBIC. Fringes have been formed using

14◦ FWHM Gaussian beams and the five 40 mm baselines shown in Figure

3.5. The position of the horns in the off-axis baselines have been adjusted

to model the outer most beams from a 20× 20 horn array. All scales are

in decibels.
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4.2.4 Details of the geometry of the dual reflectors

The details of the geometry of the 300 mm focal length GCC and CG systems are

listed in Table 4.3. Also shown is the details of the CG when its size is increased

to accommodate a 20 × 20 array of back-to-back horns. It is apparent that the cost

of implementing a 20 × 20 array of back-to-back horns is that in order to achieve a

low edge taper on all beams the size of the mirrors in the CG must be significantly

enlarged.

Table 4.3: Geometry details of the 300 mm focal length CG and GCC systems. Also

GCC20 is the geometry for the 600 mm focal length GCC system. The term

PF is the primary focal length, k is the secondary conic constant, ROCS

is the radius of curvature of the secondary mirror, βT is the tilt between

the reflectors, PD12 is the diameter of the primary mirror and SD12 is the

diameter of the secondary mirror for a 12× 12 array of back-to-back horns.

PD20 is the diameter of the primary mirror and SD20 is the diameter of the

secondary mirror for a 20×20 array of back-to-back horns. The coefficients

α1, α2 and α3 from equation (4.1.1) for the primary mirror of the CG

(PMCG), the secondary mirror of the CG (SMCG), the primary mirror of

the GCC (PMGCC) and the secondary mirror of the CGG (SMGCC) have

also been included.

PF k ROCS βT PD12 SD12 PD20 SD20

(mm) (mm) (Degrees) (mm) (mm) (mm) (mm)

CG 164.48 -0.13 348.23 25 440 440

GCC 553.97 -4.99 692.54 72 300 310

GCC20 969.89 - 7.59 1459.49 68 260 380 600 60

α1 α2 α3

PMGCC -3.31e-013 2.48e-019 0

SMGCC 8.06e-014 1.29e-017 0

PMCG -1.94e-011 3.17e-016 -1.82e-021

SMCG 0 0 0
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4.3 Power coupled to the bolometers

Up until this point we have merely been visually analyzing the fringe patterns from

various combiners. We will now describe a more quantitative means to asses the

applicability of the GCC and the GC to QUBIC. In order to completely quantify which

reflector performs better as an optical combiner we have calculated the power coupled

over each individual 3 mm bolometer in a 50×50 element array for each baseline shown

in Figure 3.5. The coupled power is calculated using the overlap integral of the fringe

pattern and the bolometer field pattern [113], [114]. We then compute the standard

deviation between the power coupled to a single bolometer for 5 equivalent baselines.

This analysis was carried out for fringe patterns generated by baselines distributed

over both a 12× 12 and 20× 20 back-to-back horn array.

The power coupled to each bolometer was calculated as follows. The fringe patterns

from an individual baseline was calculated using GRASP9 over a square grid equal to

the size of the bolometer detector array. The intensity of the fringes was calculated at

the points (xf,i, yf,j), given by

xf,i = xf0 + ∆xf (i− 1) (4.3.1)

and

yf,j = yf0 + ∆yf (j − 1), (4.3.2)

along a square grid. Here i and j run through the values

i = 1, 2..., Nx (4.3.3)

and

j = 1, 2..., Ny (4.3.4)
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where Nx and Nx are the number of samples taken along the x and y axes. The spacing

between each sample point is given by

∆xf = (xfn − xf0)/(Nx − 1) (4.3.5)

and

∆yf = (yfn − yf0)/(Ny − 1) (4.3.6)

where xf0 and yf0 are the start values of the grid coordinates while xfn and yfn are

the end values. These start and end values represent points on the very edge of the

detector plane.

In GRASP9 the values xf0 and yf0 were set to - 75 mm while xfn and yfn equaled 75

mm. The number of points to be sampled was set to Nx = Ny = 151. Therefore the

fields are calculated at every integer point from −75 mm, −74 mm, −73 mm .... 75

mm along the x and y axes.

In the absence of any detailed information we have approximated the bolometers as

single moded square waveguides. More accurate models of the detectors will become

available as work on their development progresses. The aim of this work is compare

different combiner optics designs when including some level of averaging over typical

bolometer sizes. The optimal coupling of a Gaussian beam to a square waveguide

occurs when the waist of the Gaussian beam is 0.43 times the length of the square [115].

Therefore we have coupled the fringe patterns to an array of 1.29 mm Gaussian beams

with a flat phase front.

The power coupled to each bolometer in a 50× 50 grid by a given fringe pattern was

calculated by

cl,m =

(
4∑
i

4∑
j

E∗f,(1+3(l−1)) (1+3(m−1))Eg,ij∆x∆y

)2

(4.3.7)

where the cl,m is the power coupling coefficient at the bolometer located at position

(l,m) on the 50× 50 element detector grid. The term Eg represents the Gaussian field

186



of the bolometer. Essentially Eg is a fundamental Gaussian beam with a 1.29 mm

waist radius and a flat phase front. As can be seen from the summation in equation

(4.3.7) this Gaussian beam is sampled at 4 points, over 3 1 mm intervals, in both the

horizontal and vertical directions. Therefore the power contained in a 3×3 mm2 patch

of a given fringe pattern is coupled to the fundamental Gaussian beam Eg. This allows

us the calculate the power coupled to an individual bolometer.

The term Ef is the electric field of the fringe patterns. This value has been calculated

from the electric field grid files calculated by GRASP9 and is equal to

Ef,lm =
√
Re(Ef,lm)2 + Im(Ef,lm)2 (4.3.8)

where Re(Ef,lm) and Im(Ef,lm) the real and imaginary components of the co-polar

fringe patterns calculated by GRASP9 respectively. We are momentarily not concerned

about the cross polar fringe intensities as at this point we are simply attempting to

find a basic analytical method that will rank possible combiners according to QUBIC

requirements.

As the final bolometer sizes have not yet been fixed, and may be up to 5× 5 mm2, we

also coupled the fringe patterns to an array of 25 mm2 bolometers. The parameters

in the above method were reset accordingly to accommodate a 30 × 30 array of 25

mm2 bolometer detectors. The power coupled to the bolometer is calculated using

equations (4.3.7) and (4.3.8).

The power coupled to the bolometers by the fringe patterns generated by the GCC

combiner for the CEN baseline of Figure 3.5 are shown in Figure 4.23. Similar patterns

to these have been generated for all 40 mm baselines shown in Figure 3.5. Each square

in the below plots represents a 9 mm2 or 25 mm2 squared bolometer. For each square

there is a single data value corresponding to the power coupled between the fringe

patterns generated by a single baseline and the bolometer. Figure 4.24 also shows the

coupled fringe patterns generated by the CG reflector. Unfortunately it is apparent

that integrating over the surface of the bolometer detectors does not “average out”

the amplitude distortion induced in the fringe patterns by the CG.
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(a) Fringes generated by a horizontal baseline

coupled to 9 mm2 bolometers.

(b) Fringes generated by a vertical baseline

coupled to 9 mm2 bolometers.

(c) Fringes generated by a horizontal baseline

coupled to 25 mm2 bolometers.

(d) Fringes generated by a vertical baseline

coupled to 25 mm2 bolometers.

Figure 4.23: Power coupled to bolometer detectors by fringe patterns generated using

the 300 mm focal length GCC. The patterns shown are generated by the

the 40 mm CEN baseline of Figure 3.5. All units are in decibels and

normalized to the max power coupled to the pixels.
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(a) Fringes generated by a horizontal baseline

coupled to 9 mm2 bolometers.

(b) Fringes generated by a vertical baseline

coupled to 9 mm2 bolometers.

(c) Fringes generated by a horizontal baseline

coupled to 25 mm2 bolometers.

(d) Fringes generated by a vertical baseline

coupled to 25 mm2 bolometers.

Figure 4.24: Power coupled to bolometer detectors by fringe patterns generated using

the 300 mm focal length CG. The patterns are displayed over the surface

area of a grid of square bolometers. The patterns shown are generated

by the the 40 mm CEN baseline of Figure 3.5. All units are in decibels

and normalized to the max power coupled to the pixels.
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Using equation (4.3.7) we calculated the power coupling coefficients, cl,m, for each

bolometer (l,m) to the fringe patterns produced by 2 sets of equivalent baselines. We

then calculated the standard deviation of the coupling coefficients by

cσ;l,m = σ

(
cbl;l,m

¯cbl;l,m

)
. (4.3.9)

Here cbl;l,m is an array containing the power coupled to the bolometer (l,m) by all

baselines in the set bl of equivalent baselines. Meanwhile the symbol σ indicates that

the standard deviation of this array is calculated in the usual manner. As shown the

array cbl;l,m is normalized using the mean power coupled to each bolometer from the

entire set of equivalent baselines. The values of cbl;l,m, generated by the various 300

mm focal length combiners we have designed, are shown in Figures 4.25 -4.29. The

deviation of fringe patterns generated by both a 12× 12 and a 20× 20 array of back-

to-back horns is considered. These figures indicate that the variance between fringe

patterns generated by equivalent baselines is highest where the signal is low. High

standard deviations mean that the fringe patterns generated by equivalent baselines

differ significantly (due to aberrations). For QUBIC, as discussed in Chapter 6, this

is equivalent to a loss in sensitivity for the instrument.
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(a) Standard deviation of fringes generated horizontal

baselines. The surface area of each bolometer is

3 mm2.

(b) Standard deviation of fringes generated vertical

baselines. The surface area of each bolometer is

3 mm2.

(c) Standard deviation of fringes generated horizontal

baselines. The surface area of each bolometer is

5 mm2.

(d) Standard deviation of fringes generated vertical

baselines. The surface area of each bolometer is

5 mm2.

Figure 4.25: Standard deviation of the power coupled to bolometer detectors by the

fringe patterns generated by a 300 mm focal length GCC. These values

have been calculated from five 40 mm equivalent baselines in both the

horizontal and vertical directions along the back-to-back horn array. The

baselines are shown in Figure 3.5. The standard deviation is expressed as

a ratio of the average power coupled to each bolometer.
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(a) Standard deviation of fringes generated horizontal

baselines. The surface area of each bolometer is

3 mm2.

(b) Standard deviation of fringes generated vertical

baselines. The surface area of each bolometer is

3 mm2.

(c) Standard deviation of fringes generated horizontal

baselines. The surface area of each bolometer is

5 mm2.

(d) Standard deviation of fringes generated vertical

baselines. The surface area of each bolometer is

5 mm2.

Figure 4.26: Standard deviation of the power coupled to bolometer detectors by the

fringe patterns generated by a 300 mm focal length CG. These values

have been calculated from five 40 mm equivalent baselines in both the

horizontal and vertical directions along the back-to-back horn array. The

baselines are shown in Figure 3.5. The standard deviation is expressed as

a ratio of the average power coupled to each bolometer.
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(a) Standard deviation of fringes generated horizontal

baselines. The surface area of each bolometer is

3 mm2.

(b) Standard deviation of fringes generated vertical

baselines. The surface area of each bolometer is

3 mm2.

(c) Standard deviation of fringes generated horizontal

baselines. The surface area of each bolometer is is

5 mm2.

(d) Standard deviation of fringes generated vertical

baselines. The surface area of each bolometer is

5 mm2.

Figure 4.27: Standard deviation of the power coupled to bolometer detectors by the

fringe patterns generated by a 300 mm focal length CG. These values

have been calculated from five 40 mm equivalent baselines in both the

horizontal and vertical directions along the back-to-back horn array. Here

the position of the baselines have been extended to replicate beams from

a 20 × 20 back-to-back horn array. The baselines are shown in Figure

3.5. The standard deviation is expressed as a ratio of the average power

coupled to each bolometer.
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(a) Standard deviation of fringes generated horizontal

baselines. The surface area of each bolometer is

3 mm2.

(b) Standard deviation of fringes generated vertical

baselines. The surface area of each bolometer is

3 mm2.

(c) Standard deviation of fringes generated horizontal

baselines. The surface area of each bolometer is is

5 mm2.

(d) Standard deviation of fringes generated vertical

baselines. The surface area of each bolometer is

5 mm2.

Figure 4.28: Standard deviation of the power coupled to bolometer detectors by the

fringe patterns generated by a 300 mm focal length optimized off-axis

paraboloid. These values have been calculated from five 40 mm equivalent

baselines in both the horizontal and vertical directions along the back-to-

back horn array. The baselines are shown in Figure 3.5. The standard

deviation is expressed as a ratio of the average power coupled to each

bolometer.
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(a) Standard deviation of fringes generated horizontal

baselines. The surface area of each bolometer is

3 mm2.

(b) Standard deviation of fringes generated vertical

baselines. The surface area of each bolometer is

3 mm2.

(c) Standard deviation of fringes generated horizontal

baselines. The surface area of each bolometer is

5 mm2.

(d) Standard deviation of fringes generated vertical

baselines. The surface area of each bolometer is

5 mm2.

Figure 4.29: Standard deviation of the power coupled to bolometer detectors by the

fringe patterns generated by a 300 mm focal length optimized off-axis

paraboloid. These values have been calculated from five 40 mm equivalent

baselines in both the horizontal and vertical directions along the back-to-

back horn array. Here the position of the baselines have been extended

to replicate beams from a 20× 20 back-to-back horn array. The baselines

are shown in Figure 3.5. The standard deviation is expressed as a ratio

of the average power coupled to each bolometer.
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The initial performance specification placed on the optical combiner is that it must

produce fringe patterns from equivalent baselines whose amplitude and phase profiles

differ by less than 1%. This means we require the average value of the array cσ;l,m to

be less than 0.0114. We calculated the average standard deviation of the power coupled

to all bolometers using equation (4.3.10). Here Nb is the number of bolometers.

∆c =
1

Nb

Nb∑
l,m

cσ;l,m. (4.3.10)

Once again for QUBIC we require ∆c to be less than 0.01. The values of ∆c for the

various optical combiners we have designed are presented in Tables 4.4 and 4.515.

Table 4.4: Mean standard deviation of power coupled to 9 mm2 bolometers for a 12×12

back-to-back horn array.

Reflector system Horizontal baselines Vertical baselines

∆c ∆c

GCC 0.25 0.28

CG 0.37 0.42

OP 0.48 0.47

Table 4.5: Mean standard deviation of power coupled to 25 mm2 bolometers for a

12× 12 back-to-back horn array.

Reflector system Horizontal baselines Vertical baselines

GCC 0.20 0.24

CG 0.32 0.37

OP 0.43 0.42

As we can see none of the above combiners perform as well as required for QUBIC.

The above results led to a rethinking of the operation and the requirements of QUBIC.

For instance it has been suggested that the requirement that the fringe patterns from

14Here we have converted a percentage to a ratio
15The term OP in indicates we have performed these calculations on the optimized off-axis paraboloid

discussed in the preceding section.
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Table 4.6: Mean standard deviation of power coupled to 9 mm2 bolometers for a 20×20

back-to-back horn array.

Reflector system Horizontal baselines Vertical baselines

CG 0.45 0.49

OP 0.52 0.54

Table 4.7: Mean standard deviation of power coupled to 25 mm2 bolometers for a

20× 20 back-to-back horn array.

Reflector system Horizontal baselines Vertical baselines

CG 0.41 0.45

OP 0.48 0.50

equivalent baselines differ by less than 1% is simply too stringent a condition to force

upon the optical combiner. Such a condition may not be necessary to achieve the

science goals of QUBIC. This will be discussed in Chapter 6. It should also be noted

that the values in Tables 4.4 - 4.7 are skewed because the bolometers which experience

the highest variance of power from the various fringes, are also the bolometers that

observe the lowest amount of coupled power.

As explained the GCC has been used in many state-of-the-art telescopes due to the

quality of images it produces. Also the fact that such a system is near telecentric

means that it will produce the most undistorted fringe patterns of all standard dual

reflectors. The fact that such a system cannot perform at the standard initially thought

to be required by QUBIC has led to a re-examination of the QUBIC parameters and

requirements16,17.

16This is of course assuming we require a small equivalent focal length. Increasing the focal length

will significantly reduce the standard deviations listed in Tables 4.4 - 4.7
17As we shall discuss in the next chapter it was not only the difficulties experienced by the optical

combiner work group that led to a re-examination of the QUBIC parameters.
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4.4 Leakage concerns in a general crossed Cassegrain

(GCC).

Finally we must briefly mention that we considered the possibility of leakage of power

from the horn array directly onto the bolometer detectors in the GCC. This is a

consequence of the compactness of the system which requires the horn array to be

practically adjacent to the detector plane. We have used GRASP9 to calculate the

effects of such leakage on the fringe patterns from the familiar baselines shown in

Figure 3.5. The results of accounting for power leakage are shown in Figure 4.30.

Here we have expressed the results as a one dimensional cut through the centre of the

detector plane. These plots also account for spillover from the primary mirror onto

the detector plane.

These plots were calculated as by GRASP9 as follows. The electric field from a fun-

damental Gaussian beam propagating from a point on the back-to-back horn array

directly to the detector plane was calculated. We call this field Es. GRASP9 then

calculated the electric field incident on the detector array that was produced by the

primary surface currents induced by the propagating beams. We call this field Ep.

The resultant electric field at the focal plane is calculated by El = Ef + Ep + Es

where Ef is the “ideal” field calculate by propagating a fundamental Gaussian beam

through the system using physical optics as discussed in Chapter 2. The two extra

fields take account of the fields that propagate from the horn array to the focal plane

directly and the fields that reach the bolometer array after striking the primary mirror

only.

In our GCC the LOWL and LOWR baselines are closer to the detector plane then

the UPL and UPR baselines of Figure 3.5. It is clear that the fringes generated by 40

mm baselines whose horns are furthest from the focal plane are relatively unaffected.

However the fringes generated by the baselines closest to the detector plane have

become slightly obscured. These figures combined with the power loss due to spillover

at the primary and secondary mirror (Table 4.1) fully demonstrate the drawbacks of

implementing the crossed Cassegrain. However as we can see the effects of power

leakage from the horn array and the primary mirror on the final fringes patterns are

not entirely detrimental.
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Figure 4.30: Effect of spillover on fringe patterns generated by the crossed Cassegrain.

The green lines represent the fringe patterns generated when radiation

arriving directly from the horns or primary mirror is included. In com-

parison the brown line shows an “ideal” fringe pattern.



4.5 Conclusions

As we have seen in this chapter the benefits of the unique geometry of the GCC is that

it results in a diffraction limited yet highly compact combiner. However these benefits

emerge at the expense of a slight loss of power from the most extreme horns (due to

the size limitations of the reflectors) and also at the expense of a slight deterioration

of the quality of the fringe patterns due to a leakage of power from the back-to-back

array onto the detector plane. This geometry cannot be extended to the small focal

lengths of QUBIC.

We have shown that a 300 mm focal length CG can be designed with mirrors large

enough to capture and combine the power of all beams propagating from a 20 × 20

back-to-back horn array. However this system is not powerful enough to combine

beams from a 20 × 20 horn array while inducing only minute wavefront aberrations

QUBIC was said to require. We have also shown that while Zemax optimizations

can find suitable telecentric reflector combinations, the minimum focal length of these

systems was 600 mm which, due to the limited number of detectors we can employ, is

too large for QUBIC.

We have shown that the GCC reflector is the only system whose performance is on

par with an ideal telecentric combiner desirable for bolometric interferometry. Unfor-

tunately such a device is unsuitable for QUBIC due to the large array of back-to-back

horns required for optimal sensitivity. Due to geometrical restrictions on the size of

the mirrors the GCC can not be implemented at the low focal lengths required to

maintain a small number of bolometers while capturing the beams from all horns in a

20 × 20 element array.

The results of the analysis of the various optical combiners presented in this chapter

as well as the results from other working groups led to reconsideration of the QUBIC

mission. As we shall discuss in Chapter 6 many of the original performance criteria

have been abandoned and a better understanding of the operation of the instrument

has led to performance specifications that can in fact just be achieved by the 300 mm

focal length CG. In Chapter 6 we will present the details of the “QUBIC2.0” mission

and the optical combiners that have been suggested for implementation.
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5 Lens Design

In Chapters 3-4 we concluded that if it were possible the optimal dual reflector to

implement in QUBIC is the CATR. There were two reasons for this conclusion. The

first is that as well as producing low wavefront aberrations such a reflector approxim-

ates a telecentric optical system and therefore minimizes beam distortion in the final

fringe patterns. The second is that due to the compact size of the reflector system

and its crossed nature cryostat construction is relatively uncomplicated. However, as

we have seen, the small focal lengths at which QUBIC must operate, combined which

a moderate to large number of back-to-back horns, limits the applicability of such a

design. In Chapter 4 we demonstrated that a variation of the CATR we called a GCC

could be used to combine beams from a 12× 12 array of back-to-back horns. However

as we explained such a system cannot accommodate a larger 20 × 20 array. In this

chapter we present the results of an investigation into whether the use of lenses will

allow the beam combiner to meet QUBIC’s design and performance specifications.

5.1 Gaussian beam telescope and CATR combination

We have investigated the possibility of using a device called a Gaussian beam telescope

(GBT) to decrease the size of the beams propagating from the back-to-back array. This

means that a large focal length reflector system can be employed while a small detector

plane is maintained. A Gaussian beam telescope is a refracting device consisting of

two lenses separated by the sum of their focal lengths [116]. If the beam waist of an

input Gaussian win is placed at the front focal point the size of the output beam at

the back focal length wout can be calculated by
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wout =
f2

f1

win (5.1.1)

where f1 is the focal length of the front lens and f2 is the focal length of the back

lens. If f2 > f1 the waist radius of the output beam will be increased. Recalling that

θFWHM = λ
1.18πw0

where θFWHM is the FWHM size of the beam and w0 is the waist

radius we see that increasing the waist of the output beam will reduce the beams

FWHM divergence angle [116].

For QUBIC we can place the back-to-back horn array at the front focal point of the

GBT. The back-to-back array then becomes an object whose image appears at the

back focal point of the GBT. If f2 > f1 then wout > win and the beams in the image

plane appear larger than the beams at the object plane. For QUBIC this means

that placing a Gaussian beam telescope in QUBIC after the back-to-back array will

essentially magnify the size of the array but crucially will reduce the FWHM of the

beams.

The reduction of the FWHM of the beams propagating into the combiner allows us to

implement a larger focal length then previously allowed while maintaining a small size

detector array. A unique aspect of the GBT is that equation (5.1.1) is wavelength in-

dependent. Thus the bandwidth requirements of QUBIC2.0 can be accommodated.

The increased focal length allows us to implement a CATR reflector such as those

shown in Figure 5.1. The size of the detector plane in both these systems is 150× 150

mm2. This is equivalent to the size of the focal plane required for the 300 mm focal

length GCC discussed in Chapter 4. In these systems we will first consider a 12 × 12

horn array whose size is 120× 120 mm2.

In each of the systems shown in Figure 5.1 we have set the focal length of the first lens

to 300 mm. In comparison to the size of the horn array this means the focal ratio of

the first lens is ∼ 1.5. At lower focal ratio’s it becomes extremely difficult to design

any lens system that can effectively focus 14◦ beams [117]. Therefore 300 mm is the

minimum value that f1 can possess in any GBT implemented in QUBIC.

The focal length of the second lens f2 is decided by the factor by which we increase

the equivalent focal length of the dual reflector from the original 300 mm value set
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for QUBIC. For example in Figure 5.1(a) the equivalent focal length of the CATR has

been increased by a factor of three to 900 mm. The size of the Gaussian beam waist

radii produced by the GBT must therefore also be increased by the same factor in

order to keep the size of the detector plane constant. We see from equation (5.1.1)

that the focal length of the second lens must equal 900 mm.

The same reasoning applies to Figure 5.1(b). Here we have increased the equivalent

focal length of the dual reflector by a factor of 4 to 1200 mm. Therefore in order to

keep the size of the focal plane fixed to that of a 300 mm focal length system we must

decrease the beam FWHM sizes by a factor of 4. In order to decrease the FWHM

sizes of the beams propagating into the combiner we must increase their waist radii.

Therefore wout = 4 × win where win is of course the size of the original beam. From

equation 5.1.1 we have that f2 = 4f1 where we have previously set f1 = 300 mm.

Therefore the focal length of the second lens must equal 1200 mm.

Such an approach allows implementation of a telecentric CATR reflector and should

reduce leakage from the horn array onto the detector plane. However we have found

a GBT is unsuitable for implementation with a 20 × 20 horn array. Despite the

reduction of the field-of-view the magnification of such a large object plane by the

GBT generates a secondary image too large to refocus onto the small detector plane.

In the authors judgment the largest array that could be implemented with a GBT is

a 12× 12 array.

We must also address the fact that the above examples have consisted of paraxial

lenses. These are ideal lenses with no thickness in which every parallel ray in object

space is brought to a signal point in the image space. A combiner with thick lenses

is shown in Figure 5.2. This system has been optimized from an original system

consisting of equi-convex 300 mm and 900 mm focal length lenses combined with a

900 mm focal length CATR1.

1This system was optimized using the Zemax default merit function. We have previously explained

how such an optimization functions. In all examples in this section the lenses are constructed

from HDPE whose refractive index is 1.52.
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(a) The focal length of the dual reflector is 900 mm. The front lens

focal length is 300 mm while the back lens focal length is 900 mm.

The overall length of this combiner is over 2170 mm.

(b) The focal length of the dual reflector is 1200 mm. The front

lens focal length is 300 mm while the back lens focal length is 1200

mm. The overall length of this combiner is over 2360 mm.

Figure 5.1: Gaussian beam telescopes in combination with a CATR reflector.
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Figure 5.2: Optimized Gaussian beam telescopes in combination with a CATR re-

flector. The focal length of the dual reflector is 900 mm. The front lens

focal length is ∼ 388 mm while the back lens focal length is ∼ 963 mm.

The overall length of this combiner is over 2920 mm.

5.1.1 Using Zemax to model the fringe patterns generated by a

Gaussian beam telescope and CATR combiner

Zemax provides some basic analysis techniques to model the propagation of a Gaus-

sian field through lenses. These methods are based on Fourier scalar optics in which

Fourier transforms are used to propagate the electric field from one surface to another.

Essentially Zemax treats all surface as phase transforming devices and rather than

compute the refracted electric field scattering through the lens the curvature of each

surface is used to manipulate the shape of the field’s wavefront.

We have used Zemax to preform a Fourier optical analysis of the combiner shown

Figure 5.2. As we have explained in Chapter 2 Zemax uses paraxial scalar optics to

model the propagation of electric fields through dielectric material. The fringe patterns

produced by the above optimized system are shown in Figure 5.3. These fringes

have been generated by 40 mm baselines orientated along the system’s x and y-axes
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(assuming that the z-axis is reserved to represent the direction of beam propagation).

Unfortunately the inclusion of thick lenses increases the size of the the detector plane

from 150 mm to 180 mm. This increases the number of 5 mm bolometer detectors

from 900 to 1296. Zemax optimizations were unable to reduce the size of the detector

plane. Also of concern is that the optimizations were unable to significantly reduce

the length of the entire system.

The fact that the refractors within a GBT must be separated by the sum of their

focal lengths leads to exceedingly long systems. The magnitude of this separation is

problematic whether we implement a folded reflecting or refracting GBT. The length

of the combiner in Figure 5.2 is over 3.2 m and although no restrictions have been

placed on the length of the cryostat such large systems are simply not cost effective

for cooling. We also note that in order to provide a sufficient number of variables

to enable the Zemax to generate effective images the conic constants of the lenses

were allowed to vary. Each optimized refractor contains hyperbolic surfaces of various

eccentricities. Such lenses are more difficult to machine then spherical or parabolic

surfaces. As we will show below this can be avoided by such methods as splitting a

single lens into multiple elements.
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(a) Fringes generated by a 40 mm central baseline orientated along the systems

x axis.

(b) Fringes generated by a 40 mm central baseline orientated along the systems

y axis.

Figure 5.3: Fringe patterns generated by the optimized combiner.



5.2 Fully refractive combiner for QUBIC

5.2.1 Telecentric lens combiners.

In Chapter 4 we suggested the GCC and CG may be candidates from implementa-

tion in QUBIC. An analysis of the power coupled to the bolometers indicated that

these combiners did not possess the performance levels required by QUBIC1.0. In the

Autumn of 2010 work was on-going in the APC in order to ascertain the quality of

the synthesized beams the QUBIC2.0 dirty imager would be required to produce. 2.

While a technique with which to examine and categorize the synthesized beams and

the window functions generated by the GCC and CG was being derived we thought it

prudent to investigate the implementation of lenses within QUBIC2.0.

If the neither the GCC or the CG produce sufficient quality synthesized beams then it is

likely that we have exhausted all the leading contenders for reflector optical combiners

within QUBIC2.0. Another option is to design lens based combiners. Fortunately the

lack of options we have encountered when considering reflector combiners is contrasted

by a large number of possible lens designs. In this section we will present the results

of a general approach to designing symmetric doublet lenses. Later we will present

the results of designing more complicated triplet refractors.

We have approached the design of these lens systems in the following manner. We

began by describing a rudimentary blue print of a system that consisted of thin lenses.

We then instructed Zemax to optimize these first principle designs to produce real-

istic thick lens that produce low wavefront aberration in the combining beams. In

order to do so Zemax was allowed to alter the radii of curvature of all lens surfaces

as well as the thickness of the lenses. The separation between the lenses was also

adjusted as well as if necessary the conic constants of the surfaces. As before the

Zemax default merit function was used to minimize the wavefront aberrations3. Also

if necessary we informed Zemax to minimize particular aberrations such as coma or

2We now know the synthesized beams must be of sufficient quality so that any drop to the sensitivity

of QUBIC2.0 caused by wavefront errors generated by the optical combiner is no greater than 10%.
3The operation of the default merit function has been explained in Chapter 2.
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astigmatism4. Finally a Zemax optimization was performed on these systems to force

them to approximate telecentric combiners. We instructed Zemax to force the angles

and heights at which particular rays intersect the focal plane to equal those of an ideal

300 mm focal length telecentric system. The angles and heights to which these rays

were forced to converge were calculated by hand using the geometry of a 300 mm focal

length telecentric system. In all examples in this section the lenses are constructed

from HDPE whose refractive index is 1.525.

Figure 5.4 is the simplest symmetric lens combiner we have designed for QUBIC2.0.

This system began as two thin lenses with a 300 mm combined focal length. This ideal

setup was optimized using Zemax in order to design realistic thick lenses separated

by a reasonable distance. Zemax was instructed to minimize the magnitude of spher-

ical aberration and coma by adjusting the radius of curvature of the lens surfaces.

Meanwhile the levels of astigmatism and therefore field curvature were controlled by

adjusting the distance between the lenses. Similar to all lens systems presented below

this system is symmetric about an imaginary plane half way between the two centre

lenses. Enforcing such symmetry leads to low values for both coma and distortion

Seidel aberrations [78]. The LHS of Figure 5.4 shows the layout of this system while

the RHS shows the spot diagrams generated by a ±14◦ FOV6. These spot diagrams

indicate that this system is not diffraction limited over the entire extent of a 20 × 20

horn array. In this and following plots an extra surface has been included after the

image surface in all layout diagrams. This is merely an aid to display the degree of

telecentricity of these systems. The detector plane is located where all three beams

intersect. The black circle in the following spot diagrams indicates the size of the Airy

disk. Within these diagrams the number of rays traced has been varied in order to

allow the adequate display of the circumference of the Airy disk.

4Zemax has in-built classes that will directly calculate the contribution of individual wavefront

aberrations to the merit function. Upon optimization Zemax will attempt to find an optical

system that minimizes such contributions.
5Materials with higher refractive indices’s may also be possible, I have taken the most difficult case

here.
6We recall that a ±14◦ FOV allows us to examine the path of an entire 14◦ FWHM Gaussian beam

through the combiner. As previously explained QUBIC will observe the sky using back-to-back

horns that produce 14◦ FWHM Gaussian beams.
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(a) Single symmetric 300 mm focal length lens optical combiner. The centre

thickness of a single element is 100 mm.The distance from the horn array to the

detectors is 600 mm. A height of at least 400 mm is required for a low edge

taper.

(b) Spot diagram for 0 and ± 14◦ fields of view. The circumference of the Airy

disk is shown in black. Because rays intersect the detector plane outside the Airy

ring this system is not diffraction limited.

Figure 5.4: Single symmetric lens system.



In order to produce a diffraction limited lens combiner over the entire horn array

we must reduce wavefront aberrations induced by the lenses. The simplest way to

achieve this is to split the individual lens into multiple elements. This generates more

surfaces that can be reshaped to reduce wavefront aberrations. We instructed Zemax

to optimize a symmetric 300 mm focal length telecentric doublet lens from the above

symmetric single lens system. We ensured telecentricity by enforcing predetermined

orientations on rays incident on the detector plane. As before these orientations were

calculated by hand using the geometry of an ideal 300 mm focal length telecentric

system. Zemax was then allowed to reshape the surface of the individual lenses until

the combining rays possessed orientations as close as possible to those produced by an

ideal telecentric system. The results of these optimizations are shown in Figure 5.5 for

3 ray angles. The spot diagram indicates that this system is very close to diffraction

limited over a 20 × 20 back-to-back horn array for the field of view required (the 0◦

plots shows a spot diagram typical of most angles).
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(a) Double symmetric 300 mm focal length lens optical combiner. The centre

thickness of the double lens is 140 mm including air gaps. The distance from the

horn array to the detectors is 600 mm. A height of at least 400 mm is required

for a low edge taper.

(b) Spot diagram for 0 and ± 14◦ fields of view. The circumference of the Airy

disk is shown in black. The 14◦ FOV represents the maximum angle to which

this system is diffraction limited.

Figure 5.5: Double symmetric lens system.
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Also available for implementation is the corrected symmetric doublet. This is a system

consisting of a symmetric combination of double lenses fully corrected for spherical

aberration and coma. Figure 5.6 below displays such an optimized flint leading doublet.

A flint leading doublet is simply one in which the thinest lens precedes the thickest lens.

The mathematical solution for such a system was first introduced by Fraunhofer. This

system was generated by instructing Zemax to directly reduce classical aberrations

such as spherical aberration, coma and field curvature. Once these aberrations were

reduced as much as possible we then instructed Zemax to optimize the system once

again. Here Zemax was instructed to “hammer out” an approximate telecentric system

using the pre-calculated values for the angles and heights that rays in a telecentric

system would intersect the focal plane of a 300 mm focal length combiner. As shown

in the spot diagrams in Figure 5.6 the corrected symmetric doublet is completely

diffraction limited over the 20 × 20 horn array. However the reduction in aberrations

leading to this result was due to the fact that the conic constant of the lens surfaces in

addition to the radii of curvature of the surfaces were allowed to vary. Although such

measures reduce aberrations the complexity of machining the lenses and applying any

required coatings may be significantly increased.
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(a) Flint leading 300 mm corrected symmetric doublet lens combiner. The centre

thickness of the double lens is 170 mm including air gaps. The distance from the

horn array to the detectors is 620 mm. A height of at least 440 mm is required

for a low edge taper.

(b) Spot diagram for 0 and ± 14◦ fields of view. This system is diffraction

limited.

Figure 5.6: Symmetric Fraunhofer flint leading corrected doublet lens system.
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(a) Higher order 300 mm symmetric double lens combiner. The centre thickness

of the double lens is 140 mm including air gaps. The distance from the horn

array to the detectors is 600 mm. A height of at least 400 mm is required for a

low edge taper.

(b) Spot diagram for 0 and ± 14◦ fields of view. This system is diffraction

limited.

Figure 5.7: Higher order symmetric telecentric doublet lens system.
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Figure 5.7 shows the results of further optimizing the system shown in Figure 5.5.

Here Zemax was allowed to adjust the higher order polynomial terms defining the lens

surfaces. Once again Zemax was instructed to vary the higher order polynomial terms

to produce low aberrations and then “hammer out” a telecentric system while main-

taining low wavefront aberrations. As shown this system is also completely diffraction

limited over the entire horn array.

5.2.2 Gaussian and Cooke Triplet designs

In previous sections we have shown that symmetric doublets can produce diffraction

limited systems over the 20 × 20 horn array if exotic surface shapes are implemented.

Such surfaces introduce complications during the manufacturing and coating processes.

It is possible to generate the required diffraction limited systems consisting of standard

parabolic surfaces if we consider a class of lenses referred to as triplets. The basic

concept of the symmetric triplets is to split the single lenses of Figure 5.4 into 3

separate elements. In general this will create 6 variable surfaces whose shape can be

modified to reduce wavefront aberrations.

We present a capped telecentric symmetric Gaussian and a symmetric Cooke triplet

lens. These systems have be designed by following classical lens designs techniques to

produce high performing imagers by shaping the surfaces in a manner that minimizes

Seidel aberrations. This involved instructing Zemax to directly minimize wavefront

aberrations such as coma and astigmatism. When an appropriate imager was produced

a final optimization was carried out to set predetermined orientations for the refracted

ways and thus creating a telecentric system.

A major target for these designs was the minimization of field curvature to accommod-

ate a flat bolometer detector array. It is well known in optical design that the field

curvature of a lens is independent of the lens shape but rather depends on the overall

lens power. The wavefront curvature (ρ) induced by a lens pair can be expressed by

φa
na

+
φb
nb

= ρ. (5.2.1)
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In all designs below the power (φa/b) and the refractive indices (na/b) of the back

half pairs of the triplet lenses have been preselected to nullify the field curvature. This

provided a blue print from which the final designs were optimized. In all optimizations

the Zemax was instructed to maintain this initial low value of the field curvature.

The lenses are constructed from HDPE with refractive index 1.52 and quartz whose

refractive index is 2.2.

Figure 5.8 displays a capped telecentric symmetric Gaussian lens. Such a system is

referred to as Gaussian because of the presence of a strong meniscus lens. In this

system the central negative lenses are introduced to eliminate the field curvature of

the adjacent double convex lenses. The system is then capped with a meniscus lenses

to further minimize aberrations. As we can see this system is diffraction limited

over the 20 × 20 horn array. Figure 5.9 displays a symmetric Cooke Triplet lens

that is also diffraction limited to QUBIC specifications. This system is designed by

placing negative lenses between two positive power elements7. Once again Zemax

has been used to adjust the surface shapes of the lenses in order to reduce Seidel

aberrations. Finally in both systems a final optimization was implemented to enforce

telecentricity on the diffraction limited systems. As before the parameters used to

enforced telecentricity were calculated by considering an ideal 300 mm telecentric

combiner.

7The idea of placing a thin negative lens in between to positive lenses was introduced by Cooke

in 1893. The lens design company founded by Cooke survives to this day, for information visit

http://www.cookeoptics.com/.
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(a) Capped 300 mm symmetric Gaussian lens combiner. The distance from the

horn array to the detectors is 800 mm. The centre thickness of the double lens

is 280 mm including air gaps. A height of at least 400 mm is required for a low

edge taper.

(b) Spot diagram for 0 and ± 14◦ fields of view. This system is diffraction limited

while consisting of standard parabolic surfaces.

Figure 5.8: Capped symmetric telecentric Gaussian lens system.
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(a) Symmetric 300 mm Cooke Triplet lens combiner. The centre thickness of the

double lens is 181 mm including air gaps. The distance from the horn array to

the detectors is 600 mm. A height of at least 400 mm is required for a low edge

taper.

(b) Spot diagram for 0 and ± 14◦ fields of view. This system is diffraction limited

while consisting of standard parabolic surfaces.

Figure 5.9: A Cooke triplet lens system.
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The presence of enclosed negative lenses in the above triplets coincides with the solu-

tion of equation (5.2.1) that requires a negative element to eliminate field curvature.

Enforcing symmetry during Zemax optimizations has lead to low values of coma and

distortion. For these reasons and because of the use of several optimization steps these

systems are diffraction-limited despite consisting of only simple lens shapes.

5.2.3 Symmetric double lenses that ignore field curvature.

The elimination of field curvature requires at least one lens of negative power. When

this is combined with a positive lens we must reduce the focal length of the positive

lens in order to maintain a given effective focal length. For short focal-length systems

this leads to multiple lens splittings as we must find elements of appropriate focal

lengths that are of a reasonable thickness. This is the primary reason that when we

designed the symmetric Cooke triplet and capped Gaussian the system consisted of

six separate lenses. The more elements in a given system the more costly it will be

to construct. Also the possibility of error is increased with every element we add due

to manufacturing flaws. The final system we present is a symmetric double convex

lens. This system has been designed by instructing Zemax to minimize spherical

aberration and coma whilst ignoring field curvature. For this reason no negative lenses

are produced. Therefore multiple lens splittings are not required to permit elements

of reasonable thickness but are implemented solely to reduce aberrations.
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(a) Symmetric 300 mm double convex lens combiner. The distance from the

horn array to the detectors is 700 mm. The centre thickness of the double lens

is 225 mm including air gaps. A height of at least 400 mm is required for a low

edge taper.

(b) Spot diagram for 0 and ± 14◦ fields of view.

Figure 5.10: Symmetric double convex lens system.
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(a) Flat field symmetric 300 mm double convex lens combiner. The centre thick-

ness of the double lens is 200 mm including air gaps. The distance from the horn

array to the detectors is 700 mm. A height of at least 400 mm is required for a

low edge taper.

(b) Spot diagram for 0 and ± 14◦ fields of view.

Figure 5.11: Symmetric double convex lens adjusted for field curvature.
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From Figure 5.10 we can see that a double lens design is adequate to produce a

system that is nearly diffraction limited. The main aberration in the system is field

curvature. This is apparent when we examine Figure 5.11. Here we have adjusted the

curvature of the detector plane in order to compensate for the field curvature. Figure

5.11 demonstrates the best performance of the symmetric double convex when the field

curvature is removed. For QUBIC2.0 the bending of the filled bolometer detector plane

is not possible. A standard way of compensating for field curvature is to introduce

a field flattener before the detector plane. This will generate a system that is barely

diffraction limited while consisting of 5 lens components. In the above section we

have clearly demonstrated how the addition of one more component will allow us to

design symmetric triplets that perform extremely well. We conclude that implementing

on-axis lenses will indeed generate a higher degree of choice and performance when

compared to off-axis reflectors. However even with lenses the complexities introduced

by QUBIC’s short focal length and large entrance diameter cannot be avoided. In

order to generate high performing systems multiple elements must be implemented.

The above systems are merely a demonstration of the applicability of lens combiners to

QUBIC. Our conclusions are limited as we have, as of yet, no minimum space require-

ment in which to place a RHWP, an optical window or a polarizing grid. However it

is apparent that lens combiners do provide the versatility and compactness we require

from the optical combiner. Also since these systems are symmetric about the propaga-

tion axis higher order bilateral Seidel aberrations that deform the fringe patterns in

off-axis combiners will not be present [118]. We are confident that once a definite tem-

plate is decided upon for QUBIC2.0, for example the position, diameter and thickness

of the RHWP and any polarization grids, a high performing lens combiner can be

designed following the procedures outlined in [78] and [117].
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5.3 Analysis of refracting combiners

5.3.1 Using Zemax to model the fringe patterns generated by a

lens combiner

As previously discussed Zemax provides some basic analysis techniques to model the

propagation of a Gaussian field through lenses. We present the results of examining the

fringe patterns produced by the symmetric Cooke triplet in Figure 5.9. We have chosen

to model the fringe patterns produced by the symmetric Cooke triplet because, as

shown in Figure 5.9(b), geometric optics indicates that this lens is the best performing

system we have designed. We have used Zemax to perform a Fourier optical analysis of

the Cooke triplet in order to investigate whether this system also produces high quality

fringe patterns. Figure 5.12 displays the results of a single 40 mm baseline while Figure

5.13 displays the results of considering a 60 mm baseline. These baselines have been

centred around the optical axis of the lens. Both Figures 5.12 and 5.13 show very low

levels of aberrations.

We note that for this initial investigation fringe quality was compared qualitatively

only as the technology for manufacturing lenses of the required performance level was

not considered sufficiently mature for the first QUBIC module. In the next few years

this technology, as well as the ability of software packages such as GRASP to model

lenses, is expected to improve significantly. Meanwhile Zemax remains and industry

standard for the design of non-standard lenses.
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(a) Intensity of fringe pattern.

(b) One dimensional intensity cut through fringe pat-

tern shown in part (a).

(c) One dimensional cut through the phase-front of

obtained fringe pattern shown in part (a).

Figure 5.12: Fringe and phase patterns generated by 14◦ FWHM beams incident on

the Cooke Triplet from a 40 mm central baseline.
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(a) Intensity of fringe pattern.

(b) One dimensional intensity cut through fringe pat-

tern shown in part (a).

(c) One dimensional cut through the phase-front of

obtained fringe pattern shown in part (a).

Figure 5.13: Fringe and phase patterns generated by 14◦ FWHM beams incident on

the Cooke Triplet from a 60 mm central baseline.
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5.4 Conclusions

We have presented several telecentric lens systems that produce low wavefront aber-

rations. These systems all fit into the QUBIC cryostat and will focus beams from a

20 × 20 array onto a small focal plane. However the primary concern regarding the

implementation of refracting systems is our inability to accurately model the lenses.

In the authors opinion one the most pressing advantages of implementing a lens sys-

tem in QUBIC is the versatility offered by these designs. For example the only initial

restriction placed on the above lens combiners when we started to design them was

that the effective focal length of the entire system must equal 300 mm. We allowed

the distance between the lenses and the distance of the lenses from the horn array

and the bolometer detectors to vary during the optimizations. However if restrictions

are placed on these distances to allow the optical system to accommodate a half wave

plate or a polarizing grid we are confident the number of remaining free variables we

can optimize in systems such as the Cooke triplet will still be large enough enable us

to design a high performing combiner.

However it should also be noted that large lenses, like those required to make a Cooke

Triplet, present manufacturing difficulties (and also operating difficulties at cryogenic

temperatures). This is especially true when anti-reflection coatings are considered. In

this chapter we have presented various designs for possible lens combiners for complete-

ness from an optical point-of-view. However we still expect the main optical elements

in QUBIC to be reflectors.
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6 QUBIC2.0

6.1 Introduction

The QUBIC experiment described in Chapter 2 turned out to be too ambitious for the

current state of the art technology. Severe impasses were encountered by all groups

involved in the collaboration. These ranged from issues regarding the window size to

the performance requirements placed on the optical combiner. The largest stalemate

involved finding methods to individually phase modulate over 100 input channels. For

these reasons the operation of QUBIC was revised in the spring of 2010. In this chapter

we discuss the operation of the updated QUBIC2.0 CMB experiment.

6.2 QUBIC2.0

6.2.1 Problems with the QUBIC design

In Chapter 4 we discussed two reflector combiners applicable to QUBIC. All of these

systems had limitations. For example beam distortion in the compensated Gregorian

(CG) combiner deformed the resulting fringe patterns. Also it was shown that leakage

of power from the secondary horns onto the detector plane will occur in the general

crossed Cassegrain (GCC). This power leakage could adversely affect the instrument’s

sensitivity. Other layouts that looked promising were ruled out by the very low F-

number of the QUBIC combiner.
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A second design has been proposed for QUBIC that results in less serve restrictions on

the optical combiner. In this section I will discuss the reasons for choosing this new

design called QUBIC2.0. We will also present a review the suitability of several lens

combiners as well as the GCC and the CG to QUBIC2.0.

An advantage of bolometric interferometry over heterodyne mixing is that bolometers

are naturally broadband. The bolometer detectors used on QUBIC are likely to have

a bandwidth of 20%. This is in contrast to heterodyne experiments such as DASI

and CBI where due to technological limitations a bandwidth greater than 10% is not

possible. However, the presence of multiple frequencies in QUBIC leads to smearing

of the fringe patterns. A comprehensive study of the effects of fringe smearing on the

sensitivity of QUBIC has being carried out at the APC Paris [70]. All formulas in this

section have been reproduced from [70]. This investigation has shown that any gain

in sensitivity due to the available bandwidth is offset by the degradation of the final

fringe patterns. Assuming we are observing over a range of multipoles (∆l) centered

around l this trade off is summarized by

∆CBI
l =

√
2

2l∆l
×
(
√
κ1Cl +

2NhNET
2
BI,20%Ω

N2
eqt

× 0.20

∆v/v0

Ksp(l)

)
, (6.2.1)

where the noise in the angular power spectrum measured by a broadband bolometer,

∆CBI
l , is expressed in terms of the noise equivalent temperature (NET ) of the bolo-

meter detectors, the beam size on the sky (Ω) and the number of equivalent baselines

(Neq). The term κ1 in equation (6.2.1) is referred to as the smearing factor caused by

QUBIC’s bandwidth:

κ1 =

√
1 + 2πΩ

(
σv
v0

)2

u2
0 (6.2.2)

where the noise in a visibility measured during a time t in Kelvin is σv =
√
Nh

Neq

NETΩ√
t

when v0 is the central frequency. The term u0 indicates a baseline expressed in spatial

coordinates. We can see that the smearing factor equals unity when we consider a

monochromatic instrument.
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The term Ksp in equation (6.2.1) is defined as the smearing penalty factor and can be

written as

Ksp(l) = κ
3/2
1 =

(
1 +

Ω(σv/v0)2l2

2π

)3/4

. (6.2.3)

Equation (6.2.1) indicates that the extra sensitivity gained by the natural bandwidth of

the bolometers competes with the deterioration of the fringe patterns due to smearing

caused by the presence of multiple frequencies. A plot of the smearing penalty on

QUBIC’s sensitivity outlined in equation (6.2.3) as a function of the sky multipoles

is displayed in Figure 6.1. Also shown is a plot of the smearing penalty factor on

sensitivity versus the percentage bandwidth for l = 100. In both plots 15◦ FWHM

Gaussian beams are assumed. The conclusion of the investigation pertaining to QUBIC

is that the total loss on sensitivity approaches a factor of 2 for l = 150 for a 20%

bandwidth.
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(a) The sensitivity degradation due to smearing for multipoles between

50 and 200. The smearing penalty factor is plotted for ∆v/v0 = 10%

(dark blue), 20% (blue) and 30% (light blue) bandwidths. At l ≈ 150 the

penalty on the sensitivity for the bandwidth of TES bolometers, ∼ 20%,

is a factor of 2.

(b) The penalty factor on the sensitivity of QUBIC versus bandwidth for

l = 100. We see that at ∆v/v0 = 20% the penalty factor is less than 2.

Figure 6.1: The effect of bandwidth in QUBIC. These figures are taken from [70]. Here

a thorough discussion of the effect of bandwidth on a CMB bolometer

interferometer is presented in detail.

231



Figure 6.1 indicates that QUBIC’s bandwidth offers no direct sensitivity advantages

over CMB imagers such as QUaD or heterodyne observers such as DASI and CBI.

We note that the above loss of a factor of 2 is not fatal. Monte Carlo simulations

carried out at the APC Paris have shown that a maximum penalty factor of 2 is quite

acceptable while attempting B-mode recovery. The construction of QUBIC2.0 remains

as justified as the construction of any CMB imager or a heterodyne mixer. Especially

as the advantage of QUBIC2.0 is not only its sensitivity but its capability to control

and nullify systematic errors.

However a more troublesome aspect of the frequency bandwidth was discovered when

considering the operation of the phase shifters. From the collaboration’s best know-

ledge only two options exist for QUBIC when considering phase shifting sequences

for equivalent baselines. The first is that the phase shift values are independent of

the frequency. The second is that the phase shifts vary linearly with respect to the

frequency.

Similar to a monochromatic instrument, in a broadband interferometer the signal on

each bolometer Sk is the sum of the auto- and cross- correlation between the beams

from each separate polarization channel (Sk = SautoK + Scrossk ). As we have previously

demonstrated information regarding the sky polarization is contained in the cross

correlation terms. As discussed in Chapter 3 in order to recover the monochromatic

Stokes visibilities of the CMB the received signal undergoes a time domain modulation

performed by controlled phase shifters. These phase shifters are located behind each

separate polarization channel of the sky horns. As explained in equation (2.4.4) the

Stokes visibilities on each bolometer can then be recovered by solving a linear problem

S = A ·X where X is the visibilities vector, S is a vector containing the received signal

on each bolometer and A is the coefficient matrix containing the known phase shifting

sequences.

For the monochromatic case some excellent methods to calculate phase shifting se-

quences have been provided by our colleagues in the APC Paris and University of

Richmond1. However calculating these sequences becomes more complex when we

consider a broadband interferometer. The first approach is the simple scenario where

1University of Richmond, 28 Westhampton Way University of Richmond, VA 23173, U.S.A. For

more information visit http://www.richmond.edu/
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the phase shifting values do not depend on the frequency. Under such conditions

∆Φ2
b,p(v) = ∆Φ2

b,p(v0) where ∆Φb,p = Φb,i − Φb,j. Here Φ indicates the phase of an

input signal while ∆Φ represents the phase shift values and includes the geometrical

phase shift induced by the optical combiner, also i and j indicate the horns that make

the baseline p and b is the bolometer under consideration. As in the monochromatic

case the entire system is reduced to a linear problem that can be inverted to recover

the Stokes visibilities. The linear system produced is

Scrossk =

N6=−1∑
β=0

Γk,β ·V∆v
β (6.2.4)

where Γk,β contains the phase shifting values. Unfortunately as indicated by V∆v
β

the recovered visibilities are broadband visibilities. Therefore such a method will not

enable QUBIC to map the sky at a particular frequency.

The second method is the more complicated scenario in which the modulation of

the phase shifters varies linearly with the frequency. For example if ∆Φ2
b,p(v) =

∆Φ2
b,p(v0) × v

v0
then the phase imposed by the shifters will vary linearly with respect

to frequency. However it has been shown that such an approach would be disastrous

for QUBIC. Under such conditions the relationship between the power received by

the bolometer detectors and the Stoke visibilities is no longer a linear problem. This

means that the value of every visibility will slightly change according to a change in the

phase shifting value. Monte Carlo simulations presented in [70] have suggested that

such an occurrence will lead to a leakage from intensity visibilities into polarization

visibilities.

In order to avoid leakage from the Stokes intensity visibility into the polarization

parameters phase shifting sequences constant with respect to frequency must be im-

plemented. However such an approach places huge constraints on the phase shifters.

It was originally planned that each channel would be phase-modulated with mech-

anical waveguide phase-modulators developed by the Manchester team. These phase

modulators are based on a rotating waveguide operated by cryogenic motors produ-

cing continuous phase-modulation from 0 to 360 degrees2. It is estimated that the

2A summary of waveguides currently under development at Manchester can be found at http://www.

mrao.cam.ac.uk/projects/cmb/workshop_jul09/talks/rtg_development.pdf. The presenta-
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phase shifting sequence must be calculated so that they vary by less than 1 % across

the entire bandwidth. These conclusions heralded the end of implementation of phase

shifters in QUBIC to modulate the sky signal. Following discussions during the July

2009 collaboration meeting it was concluded that the design and construction of fast

and lossless phase shifters that could function as required would be highly unlikely (or

would at least require several years of research and development). It was decided that

the use of phase shifters and therefore the QUBIC1.0 mission should be abandoned.

As of spring 2010 the current design of QUBIC involves using a rotating half wave

plate (RHWP) to modulate the polarization of the sky signal. The elimination of

the controlled phase shifters also removes the necessity for the OMTs and thus the

two separate polarization channels for each sky horn. Therefore accompanying the

RHWP is a simple array of singular back-to-back horn antennas. Polarization sensitive

switches will be inserted into these horns in order to assist calibration. This new design

is the basis of the QUBIC2.0 experiment and is outlined in Figure 6.2. Although the

position of the RHWP is still undecided, QUBIC2.0 has been greeted with optimism

by the entire collaboration. Many design criteria such as the size of the horn array

and the optical window are less restrictive and the entire instrument is more scalable

with the only restriction the size of the cryostat itself.

Figure 6.2: Preliminary design of QUBIC2.0

tion shown here was presented at the RadioNet Engineering Forum Workshop, Bonn, November

2009.
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6.2.2 Modulating the sky polarization using a rotating half wave

plate

The power measured by a single bolometer at location (dp) from two identical horns

separated by a displacement (xi) and affected by the standard 1
λDf

phase shift where

Df is the focal length of the combiner is

Rη(dp) =

∣∣∣∣∫ ∫ ∫ E ′η(n)Bη(n)exp

[
i2π

xi · (d− n)

λDf

]
J(v)H(d−dp)dndvdd

∣∣∣∣2. (6.2.5)

where the vector n indicates the pointing direction of the instrument while d indicates

a position on the focal plane. Here we are considering a broadband spectrum (dv) and

we are integrating over the surface of a bolometer whose reception pattern is given by

the square function H(d−dp). The term J(v) is the Gaussian band pass function of the

instrument. We note that all formulas and conclusions in this section have been taken

from the internal note. “QUBIC 2.0: a new design for bolometric interferometry”.

This was composed by our colleagues in the APC Paris and distributed in February

2010.

The change in coordinate systems of the polarization of the incident signal, E ′η, is a

result of the rotating half wave plate. Here E ′η = E ′x/y indicates the separate polariza-

tion channels of the final beams that will combine at two separate focal planes. These

channels will be split using a polarization grid placed after the optical combiner. We

assume that the half wave plate rotates at an angular velocity ω. Therefore the two

orthogonal polarization states of the sky signal, E ′η = E ′x/y, are modulated by

(
|E ′x|2

|E ′y|2

)
=

1

2

(
1 cos(4ωt) sin(4ωt)

1 − cos(4ωt) − sin(4ωt)

)
SI

SQ

SU

 (6.2.6)

where we can once again use the Stoke parameters to describe the signal polarization.

The power incident on a single bolometer in the detector array that has been polarized

along the system’s x-axis is
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Rx(dp) = SI(dp) + cos(8πωt)SQ(dp) + sin(8πωt)SU(dp) (6.2.7)

while the power incident on a bolometer in the detector array that has been polarized

along the system’s y-axis is

Ry(dp) = SI(dp)− cos(8πωt)SQ(dp)− sin(8πωt)SU(dp) (6.2.8)

where Rx/y pertains to the power in a particular direction. Equations (6.2.7) and

(6.2.8) show that the use of a rotating halfwave plate allows us to separately reconstruct

synthetic images of the I, Q and U Stokes parameters (as they are each modulated in a

different way). The TT, TE, EE and BB power spectra can then be reconstructed from

the Stokes parameters’ using standard techniques. In addition, since for QUBIC the

half-wave plate is located right after the sky horns any cross-polarization induced by

the combiner optics or the polarizing grid will not be modulated in the same way as the

sky signal and will therefore not affect this signal. In accordance with classical radio

astronomy we refer to the term SX where X = {I,Q, U} as a “dirty image”. We can

obtain the broadband Stokes visibilities by performing an inverse Fourier transform of

this dirty image. The pure sky signal X(n) is degraded by the synthesized beam.

SX(dp) =

∫
X(n)B(n)2|As(dp − n)|2dn (6.2.9)

where the term As(dp − n) is the synthesized beam and can be expanded into

As(dp − n) =

∫ ∫
exp

[
i2π

xi · (d− n)

λDf

]
J(v)H(d− dp)dvdd. (6.2.10)

From equation (6.2.9) we see that if the synthesized beam equals unity the sensitivity

of QUBIC is only restricted by the antenna sensitivity B(n). The simplest way of

allowing this is by implementing zero length baselines across QUBIC. This essentially

means removing the horn antennas and allowing a completely transparent entrance

aperture. Therefore QUBIC will be fully optimized by converting the system into an

imager. This can also be viewed as creating an infinite number of baselines and thus

the QUBIC aperture becomes analogous to Huygens principle in which infinitesimally
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small points become a source of propagating spherical wavelets. However as we will

discuss the advantages of filling the entrance aperture of QUBIC with a back-to-back

horn array is that the presence of equivalent baselines allows us to apply unique and

comprehensive calibration techniques to the instrument. But of course the larger the

number of back-to-back horn antennas the higher the sensitivity of QUBIC2.0

The current state of the art for a RHWP is being investigated by our colleagues in

both the University of Manchester and Brown University [119]3,4. As with every optical

device involved with CMB astronomy the requirements placed on the RHWP in order

to allow QUBIC to achieve the necessary sensitivity are demanding. The RHWP

must have a large diameter yet also remain light and robust. It must be a practically

lossless dielectric while all polarization characteristics must be well understood. The

manufacturing and modelling of these waveplates are detailed in references [120] and

[121], we do not include them in the optical models of this thesis. The two possibilities

currently under consideration for the RHWP are listed below.

• Sapphire or Quartz HWP

These plates function on the basis of birefringence. A number of individual plates

are stacked together while their crystal axes undergo a slight rotation relative to one

another. A basic schematic is shown in Figure 6.3. The diameter of these plates are

limited ( Quartz ≈ 110 mm and Sapphire ≈ 280 mm). These plates are expensive to

manufacture and heavy yet they are extremely robust. With cooling a low absorption

level of 2− 4% is possible. If such a HWP is chosen Sapphire is most likely due to the

240 mm diameter of QUBIC2.0 20 × 20 horn array.

• Mesh HWP

These HWPs consist of two separate wire meshes combined to form a single HWP.

The polarization of the incident beam becomes modified due the the conductive and

capacitive qualities of the separate meshes. The mesh can either be air filled (max

diameter ≈ 100 mm) or filled with a dielectric (max diameter ≈ 300 mm). A simple

diagram of such a HWP is shown in Figure 6.4. These HWPs are fragile yet they

3The University of Manchester, Oxford Road, Manchester, M13 9PL, UK. For more information

visit http://www.mdc.manchester.ac.uk/.
4Brown University, Providence, Rhode Island 02912, USA. For more information visit http://www.

brown.edu/.
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(a) The wave plate is constructed of multiple layers of birefringent

materials. The symbols α, β and γ indicate that a symmetry of the

crystal axes of the separate layers is required.

(b) Completed wave birefringent wave plate.

Figure 6.3: Birefringent HWP for QUBIC2.0. Figures taken from [120].

have the advantage that they do not require anti-reflective coatings. Absorption is

approximately 1.5% at room temperature.

Inclusion of a HWP into QUBIC2.0 allows us to instantaneously measure all visibilities.

A very recent concern of the collaboration is that sky apodization by the finite size

of the primary beam (i.e. the sky horns have a beam FWHM of 14 degrees and are

therefore not sensitive to all angles on the sky) will reduce the resolution of the ”dirty

image” produced by QUBIC2.0.. Further analysis in the APC Paris has shown that

if the effects of sky apodisation cannot be nullified by scanning QUBIC2.0 will have a
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(a) The wave plate is constructed of multiple layers of metal wires

and grids. Here C points to the capacitive stacks while L is the

inductive stack. The terms dC/L indicate there separations.

(b) Completed conductive and capacitive stacks. Combining mul-

tiple numbers of these stacks will produce the final wave plate.

Figure 6.4: Birefringent HWP for QUBIC2.0. Images taken from [121].

sensitivity factor of 3 below an imager. However if the dirty image can be successfully

cleaned this may drop to a factor of 1.6 below an imager. The current scanning strategy

for QUBIC2.0 is to scan ∼ 10◦ in the azimuth with a slowly varying elevation from

45◦ − 60◦. The fraction of the sky covered is ∼ 2%. A comparison of the sensitivity

of QUBIC2.0 to that of a CMB imager is shown in Figure 6.5. Here the effects of

sky apodization have been fully calculated. The red lines in Figure 6.5 show the most

realistic scenario of an imager with a sky apodization of ηIm = 1.4 similar to QUaD

and QUBIC2.0 possessing an apodization of ηBL = 1.6. As shown QUBIC2.0 will be

slightly less sensitive than the imager but the difference is only marginal. Therefore

construction of the QUBIC2.0 CMB polarimeter that implements the novel observing
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technique of bolometric interferometry remains justified. Figure 6.5 is formed assuming

an array of 400 back-to-back horns and an ideal optical combiner. A full discussion of

the calculation of QUBIC2.0’s sensitivity and the effects of sky apodization is found

in [122]. Here a discussion of QUBIC2.0’s scanning strategy is also presented.

Figure 6.5: Sensitivity of QUBIC2.0 to the CMB power spectrum versus that of an

imagers. Here the solid lines pertain to QUBIC while the dashed lines

indicate an imager. The different colours indicate the achievable sens-

itivity due to various values of sky apodization due to various scanning

techniques. These include a simple Gaussian beam sky coverage with no

scanning ηIm/BL = 2.

6.2.3 QUBIC2.0 as a dirty imager

QUBIC2.0 will implement a RHWP in order to separate the polarization of the sky

signal into it’s Stokes parameters. The power measured by each bolometer is a linear

combination of a dirty image of the I, Q and U sky signals. If one follows the premise

of classical interferometry the visibilities can be reconstructed through a fast Fourier
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transform of the dirty images. The power spectrum of the CMB polarization can then

be extracted by calculating the covariance of the visibilities.

A novel technique is proposed for QUBIC2.0 that will allow us to obtain the CMB

polarization power spectrum directly from the synthesized image without having to

reconstruct the Stokes visibilities. In fact we can generate the CMB power spectrum

from the dirty image following the methods used to calculate the density power spec-

trum from the signal received by a radiometer. For QUBIC2.0 the dirty image S

generated from the unpolarized sky signal X is

S(dp) =

∫
X(n)B(n)2|As(dp − n)|2dn (6.2.11)

here again n indicates direction of the incident signal while dp is the location of the

bolometer of the focal plane. The term As(dp−n) is the synthesized beam as explained

in equation (6.2.10). If the sky signal is expanded in terms of spherical harmonics

and the instrument points in the direction n0 we can fully describe the dirty image

generated by all baselines as

SI(dp) =

∫ ∑
lm

almYlm(n)β(d,n,n0)dn (6.2.12)

where

β(d,n,n0) = B2(n− n0)|As(d− (n− n0))|2 (6.2.13)

is an amalgamation of the synthesized beam and the antenna response. Finally we set∫
Ylm(n)β(d,n,n0)dn = βlm(d,n0) in equation (6.2.12). The dirty image can now be

written in the compact form

SI(dp) =
∑
lm

almβlm(d,n0). (6.2.14)

The covariance of this synthesized image
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〈
SI(d,nk, θi) · S?I (d,nk, θj)

〉
=
∑
l

ClWl(d,d
′,nk,n

′
l, θi, θj) (6.2.15)

is directly related to the power spectrum of the sky signal and the so-called window

function derived from the synthesized beam. This window function

∑
l

ClWl(d,d
′,nk,n

′
l, θi, θj) =

∑
m

βlm(d,nk, θi)βlm(d′,nl, θj) (6.2.16)

can be calculated directly from the synthetic beam. Therefore we have a direct re-

lationship between the data covariance matrix of the signal received by QUBIC and

power of the sky signal. By considering the angular modulation of the RHWP the

Stokes polarization parameters of the sky signal can then be recovered. In essence the

synthesized beam/image is the point spread function of the QUBIC2.0 optical system.

Any sky signal entering QUBIC2.0’s aperture will be convolved by this function and

imaged on the focal plane as the final dirty image. As can plainly be seen the nature

of the window function is decided solely by the geometry of the optical combiner and

the baselines.

From Fourier optics we expect a square grid of horns to produce regular square pattern

of diminishing bright spots from a central maximum. Such synthesized beams are

precisely what has been modeled by our colleagues in the APC Paris. In Figures 6.6 and

6.7 we present the modeled ideal synthesized beams generated when 3 mm bolometers

and a 25% bandwidth are considered. All patterns were generated assuming an array

of 144 identical horns. The plots on the left of these figures are shown on a linear

scale, on the right hand side the same beam is shown on a log plot.

These figures illustrate the effect of both finite bolometer size and finite bandwidth

(finite bandwidth was not considered in my earlier analysis of fringe patterns). These

synthesised beams are used to sample model CMB skies before subjecting the resulting

data to the QUBIC analysis procedure in order to produce a quantitative measure of

the beam combiner performance (e.g. Figure 6.17 ).
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(a) The monochromatic synthesized beam obtained from 144 horns arranged in a square grid.

Here a normalized power scale is shown. The single detector beam indicates that this is the

synthesized beam “seen” by a single central pixel only.

(b) The monochromatic synthesized beam integrated over 3 mm bolometers. Here the a

logarithmic scale is shown. The single detector beam indicates that this is the synthesized

beam “seen” by a single central pixel only.

Figure 6.6: Monochromatic synthesized beams. These are essentially the point spread

function of a prefect monochromatic optical combiner. These figures have

been provided by J. Ch. Hamilton from the APC Paris.
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(a) The synthesized beam obtained from 144 horns arranged in a square grid when a 25 %

bandwidth is considered. The smearing effects of the bandwidth are clearly visible. Here we

show a normalized power scale. The single detector beam indicates that this is the synthesized

beam “seen” by a single central pixel only.

(b) The board band synthesized beam integrated over 3 mm bolometers. Here we shown a

logarithmic scale. The single detector beam indicates that this is the synthesized beam “seen”

by a single central pixel only.

Figure 6.7: Broadband synthesized beams. These are essentially the point spread func-

tion of an unaberrated optical combiner taking a 25 % bandwidth into

account. These figures have been provided by J. Ch. Hamilton from the

APC Paris.



There are several advantages of this revamped approach to QUBIC. The most glaring

is that the concept of Stokes visibilities can be completely abandoned. QUBIC2.0 is

simply a synthetic imager producing dirty sky maps. Such an approach makes the data

analysis involved in QUBIC2.0 vastly simpler than QUBIC. It is of course apparent

that the initial goal to somehow manufacture an additive CMB interferometer with a

greater sensitivity than a bolometric imager is not possible in QUBIC2.0. The filled

horn entrance aperture essentially prohibits such sensitivity. Although QUBIC2.0 is

effectively an imager the essence of interferometry still dominates the reasoning behind

such an experiment. Again as we will show in the next section it is believed that

calibration techniques and error control afforded to us by combining several antennas

will allow QUBIC2.0 to sample the CMB at “resolutions” not yet achievable with

conventional imagers and heterodyne mixers. In Figure 6.8 below we have shown the

sky image recreated from a modeled CMB spectrum and imaged through the above

window functions. Here a bandwidth of 25% is assumed. The rotating half-wave plate

allows reconstruction of synthetic images of the I, Q and U Stokes parameters.

Figure 6.8: Synthetic CMB images created by considering the above window functions

as QUBIC2.0’s point spread function. These figures have been provided

by J. Ch. Hamilton from the APC Paris.
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6.2.4 Calibration techniques

An extremely powerful calibration technique based on the redundancy of equivalent

baselines can be implemented in QUBIC2.0. The basic calibration technique is as

follows. In an instrument consisting of prefect and identical back-to-back horns and a

flawless combiner all redundant baselines will generate equivalent ideal fringes.

V12 = g1g2V

V34 = g3g4V
, (6.2.17)

Firstly the value V , represents the ideal visibility and is related to the measured vis-

ibilities, V12 and V34, by the gain matrices, g{1,2,3,4}, associated with each horn and

the optical combiner. A complete diagnostic of the gain matrices will allow us com-

pletely calibrate every single input channel of QUBIC2.0. The general self calibration

procedure for a polarization sensitive instrument is

Ṽ X
ij = Mij · V X

β + ηij (6.2.18)

where the term Ṽ X
ij contains N(N − 1)/2 measured visibilities from N back-to-back

horns. The matrix V X
β contains the ideal visibilities. The term Mij is a 4× 4 matrix

that describes the tilt, gain and beam mismatch due to the QUBIC2.0 instrument.

Secondly the characteristics of the back-to-back horns can be calibrated by considering

the relationship E ′i = JiEi where E ′i is an output horn signal and Ei is an input signal.

The term Ji ,

Ji =

(
1 + gx,i εx,i

εy,i 1 + gy,i

)
, (6.2.19)

is a Jones polarization matrix. The values within the Jones matrix represent the gain

(g{x,y},i) and error (ε{x,y},i) induced on the emerging beams by imperfections in the

horn antenna.

Therefore quantifying both the Mij and Ji matrices will allow us to diagnose all the

errors in QUBIC and completely calibrate the instrument. In order to quantify these
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matrices we will use the fact that in the absence of aberrations in equivalent baselines

should generate equivalent fringe patterns. Using switches located in the back-to-back

horns every single baseline pair can be modulated on/off in order to access the visib-

ilities measured by this baseline alone. Using all baseline pairs a system of equations

whose unknowns are the systematic errors contained in the Mij and Ji matrices can be

formed. If an array of 400 back-to-back horns is implemented this system of equations

is over constrained and we can solve to completely quantify the Mij and Ji matrices.

Similar to the approach of data recovery explained in Chapter 2 for QUBIC the notion

of equivalent baselines can be used to reduce the complexity of solving the generated

system of equations. A full discussion regarding the calibration of an interferometer

in which redundant baselines are present can be found in [123]. Also a host of pos-

sible errors that may occur in QUBIC2.0 from beam mismatch to tilt have been fully

discussed by [124].

A tentative procedure for the calibration of QUBIC2.0 is to measure the N primary

beams by scanning a source. This is effectively equal to calibrating N imagers. This

should provide the N Jones matrices required to profile the horn antennas. When

these matrices have been calculated we will then calibrate QUBIC by generating the

ideal visibilities and measuring the N(N − 1)/2 corrupted visibilities. We then solve

the non-linear system of (6.2.18) with a standard least squares method such as a

Levenberg - Marquardt based algorithm. The time required to fully calibrate QUBIC

is uncertain although initial estimates suggest approximately 9 hours to measure the

N(N − 1)/2 corrupted visibilities while 30 minutes may be required to characterize

the Jones matrices for a 20× 20 array5.

The above calibration techniques require the implementation of switches that essen-

tially allow us to turn on and off the horns. Various methods of implementing such

switches are being investigated by our colleagues in Manchester University. There are

currently 2 different switching methods being considered. We very briefly mention

these below. These switches must be able to allow us to examine every single back-

to-back pair whilst open and closed and also transmitting two orthogonal polarization

5With the QUBIC observing and using auto-calibration techniques the effect of an aberrated com-

biner is a reduction in efficiency. Since efficiency is a crucial consideration for such sensitive

observations my earlier work on combiner designs is necessary for both the QUBIC 1.0 and 2.0

scenarios.
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states.

• Polarized needle switches.

These switches are cylindrical waveguides filled with strips of conducting material.

The operation of these switches is shown in Figure 6.9. These images have been

provided by G. Pisano of the Radioastronomy Technology Group, Jodrell Bank Centre

for Astrophysics, University of Manchester, UK6. Depending on the orientation of the

needle strips parts of the polarized beam will be reflected or transmitted. If the two

switches shown in Figure 6.9 are cascaded it is obvious the entire signal will be blocked.

These needles are placed within rotating blocks inserted in between the flange of the

back-to-back horns. Although readily available technologies an immediate drawback

to these switches is that they are very expensive to purchase.

(a) The needle or blade polarization

switches suggested for the QUBIC2.0

horn array.

(b) Rotating blade switches inserted

between the flange of two back-to-back

horns.

Figure 6.9: Possible polarization needle switches that can be implemented for the cal-

ibration of QUBIC2.0.

• Arrays of rotating polarized switches.

6For more information visit http://www.jodrellbank.manchester.ac.uk/
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Another more cost-effective approach is to use a rotating array of polarization switches

shared between several waveguides. These switches are placed between the flanges of

the sky and re-emitting horns. Variations of such a system are shown in Figure 6.10.

Consideration of the type of polarization switches to implement is currently in the

preliminary stages.

(a) Polarizing switches placed on a rotat-

ing plate that can cover multiple chan-

nels.

(b) An alternative configuration of polar-

izing switches placed on a rotating plate

that can cover multiple channels.

Figure 6.10: Possible configurations of rotating polarization switches that can be im-

plemented for the calibration of QUBIC2.0. Once again these images have

been provided by G. Pisano of the Radioastronomy Technology Group,

Jodrell Bank Centre for Astrophysics, University of Manchester, UK.

6.2.5 Cyrostat upgrades

The cryostat design for QUBIC2.0 is largely unchanged from QUBIC. However further

testing of various systems in Università di Roma has allowed the maximum dimensions

of the QUBIC2.0 cryostat to be clearly defined. The cryostat will be have a cylindrical

shape whose maximum diameter can be 900 mm. The three proposed reflector com-

biners for QUBIC are consistent with these limitations. The length of the cryostat

is variable yet is preferred to be under 1 meter. The cryostat design for QUBIC and

the likely design for QUBIC2.0 is shown in Figure 6.11. These images have been
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provided by Silva Masi of Università di Roma − La Sapienza7. As we can see the

usual restrictions on the window size and therefore the back-to-back horn array are

still applicable. Materials currently available from which to construct the window are

mylar or polypropylene. Both of these materials will require anti-reflective coatings.

The window may also be constructed of propozote foam however the thickness of such

a window would be large.

7Università degli Studi di Roma La Sapienza − Piazzale Aldo Moro 5, 00185 Roma. For more

information visit http://www.uniroma1.it/
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(a) Side view of QUBIC2.0 cryostat. The restrictions of the size of the optical window are

clearly visible. The topics listed under Tension simply refer to the main issues that must be

compromised for during the cryostat design.

(b) An example of a cyrostat unit under testing.

Figure 6.11: Cryostat design for the QUBIC and QUBIC2.0 experiments.
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6.2.6 Remaining issues

Finally we will address the remaining characteristics of QUBIC2.0. In this section

we will briefly discuss the implementation of the incoherent detector arrays and the

back-to-back horn antennas. These topics have not deviated from the original QUBIC

design. As such the reader is referred to Chapter 2 for a full discussion of these issues.

Here we will merely provide information of any updates due to on-going research.

• Incoherent detector array.

The detector array will be composed of either incoherent bolometer detectors or the

new kinetic inductance detectors (KIDS) devices. The fundamental principle of all

bolometer devices is that their resistance changes upon contact with incident radiation.

By monitoring the change of resistance we can fully quantify the flux of the received

signal. There are two choices of bolometer detectors for QUBIC2.0. These are are

either hot electron bolometers (HEB) or transition edge sensors (TES). These topics

are discussed in [65]. Apart from the bolometers we can also chose to implement KID

detector devices. These may be more attractive due to simpler multiplexing methods.

They are also robust with no fragile components and only one single layer of material

is required in their manufacture. In comparison, the TES detectors are manufactured

from 5 layers of various materials. Unfortunately broken membranes are common

during the manufacturing stage of the TES bolometers due to the silicone nitride

edging process. A full discussion of the development of TES detectors for sub-mm

telescopes is presented in [125]. The development of KIDs for mm-wave astronomy is

discussed in [126].

• Back-to-back horn array.

The most important development as regards the back-to-back horn array is the con-

struction of a corrugated horn using a method called stereolithography. This process

is carried out by a company called Tera-X 8. The technique involves building a layered

polymer model of a horn antenna by using a laser to carve the individual corrugations.

The completed plastic model is then coated with a conductive metal layer. Using this

method construction of 8 CLOVER type horns cost $400. These horns also have a low

8Tera-X, 8551 Research Way, Suite 175 Middleton, WI 53562, USA. For more information visit

http://www.tera-x.com/index.html.
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mass density of 1.2 g/cm3 compared to 8.2 g/cm3 for horns consisting of pure copper.

Another consideration for the horn array is to use a platelet construction technique.

In this technique the profiles of a single corrugation of 4 horn antennas are machined

or chemically edged into a thin metallic sheet. Multiple sheets each representing an

individual corrugation are then stacked on top of one another to form the final 4× 4

horn array. The initial costs for chemical etching the platelets are $100 per horn. Work

is currently on-going in the APC Paris to expand this technique in order to create an

array of 20 × 20 horns. One of the earliest discussions regarding the use of platelet

technology to fabricate horn arrays is presented in [127]. A number of traditional ma-

chining technique used to manufacture corrugated horns are discussed in [128]. Here

the benefits and difficulties of the techniques are also discussed.

6.3 QUBIC2.0 optical combiner

A revision of QUBIC has led to the fundamental conclusion that the greater the

number of horn antennas the greater the sensitivity of the instrument due to the

increased intensity of the point spread function. However as discussed the maximum

number of horns implemented will be restricted by window size as well as the number of

QUBIC modules we wish to construct. The possible configurations for QUBIC2.0 that

will allow us to detect a tensor-to-scalar ratio of 0.01 within 1 ∼ 2 years of operation

are shown in Figure 6.12. These parameters have been calculated for 90 and 150 GHz.

The most likely choice for QUBIC2.0 is to implement of gird of 20 × 20 back-to-back

horns. This is the reason fringe patterns generated from baselines extending a 20 × 20

array were presented in Chapter 3. From Figure 6.12(b) we can see that implementing

3 QUBIC modules of 20 × 20 back-to-back horns observing at a centre frequency of

150 GHz will allow us to detect a tensor-to-scalar ratio of 0.01. The beams from the

back-to-back horns will have a FWHM of 14◦. These are the instrument parameters

agreed upon by the QUBIC collaboration as of July 2010.
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(a) Minimal tensor-to-scalar attainable at 90 GHz.

(b) Minimal tensor-to-scalar attainable at 150 GHz.

Figure 6.12: Minimal tensor-to-scalar attainable given a variable number of back-to-

back horns, variable beam sizes, the size of the optical window and a

variable number of modules. The choice of these parameters will dic-

tate the minimum tensor-to-scalar ratio detectable by QUBIC2.0. These

figures have been provided by J. Ch. Hamilton from the APC Paris.
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6.3.1 Analysis of optical combiners

We have previously presented a review of various 300 mm reflector combiners for

QUBIC. This review consisted of plots of fringe patterns produced by multiple equi-

valent baselines accompanied by a variance analysis of the power coupled to each

bolometer. Considering QUBIC2.0 as a dirty imager provides us with another way

to compare the performance of various optical systems. To do this we will generate

the point spread function (PSF) of QUBIC2.0. The PSF of the combiner is the in-

terference pattern formed by ideal Gaussian beams propagating from the horn array.

We remind ourselves that the PSF is similar to the synthesized beams from which the

window function can be recovered.

6.3.2 PSF of reflector combiners

In Figures 6.13 and 6.14 we have displayed the synthesized beams/PSFs of the reflector

optical combiners discussed in previous chapters. We have used GRASP9 to model

these PSFs. Using GRASP9 batch files we propagated a 14◦ FWHM Gaussian beam

from the location of every back-to-back horn, through the optical combiner and onto

the detector plane. GRASP9 then summed all the resultant fields to calculate the PSF

of the combiner9. This analysis was performed for both a 12× 12 and 20× 20 array of

back-to-back sky horns. The results are in accordance with what we expect from the

fringes generated by the various baselines displayed in previous chapters. We can see

that the PSF of the GCC is almost identical to the PSF shown in Figure 6.6 in which

an ideal optical combiner was assumed. The presence of beam distortion is once again

evident in the PSF formed by the compensated CG reflector. We note an additional

problem with beam distortion is that the focal plane had to be enlarged to in order

the capture all the power of the asymmetric fringe patterns formed by the CG. Also

shown is the window function generated by the optimized off-axis paraboloid (OP).

Figures 6.15 to 6.14 highlight the differences between our current abilities to model the

behavior of lens and reflector systems. The fringe patterns in Figure 6.13 and 6.14 are

9In our analysis we refer to the final image of the beams from every sky horn combined at the

detector plane as the systems PSF.
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shown in remarkable detail. Understanding the behavior of the optical components

with such accuracy is critical when we wish to search for CMB B-modes.
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(a) Co-polar intensity of the synthesized beam

generated by the GCC.

(b) Cross-polar intensity of the synthesized

beam generated by the GCC.

(c) Co-polar intensity of the synthesized beam

generated by the CG.

(d) Cross-polar intensity of the synthesized

beam generated by the CG.

(e) Co-polar intensity of the synthesized beam

generated by the OP.

(f) Cross-polar intensity of the synthesized

beam generated by the OP.

Figure 6.13: The synthesized beam/PSF generated by 144 14◦ Gaussian beams

propagating through reflector combiners.

257



(a) Co-polar intensity of the synthesized beam

generated by the CG.

(b) Cross-polar intensity of the synthesized

beam generated by the CG.

(c) Co-polar intensity of the synthesized beam

generated by the OP.

(d) Cross-polar intensity of the synthesized

beam generated by the OP.

Figure 6.14: The synthesized beam/PSF generated by 400 14◦ Gaussian beams

propagating through reflector combiners.
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6.3.3 PSF of lens combiners

We have used Zemax to compute the PSF of the symmetric Cooke Triplet lens and

the symmetric dual convex lens. The PSFs below have been calculated from 14◦

FWHM Gaussian beams propagating from 9 field locations. The reason we choose

only to calculate the PSF from 9 field locations is for convenience because we are

unable to dynamically change field position of the propagating Gaussians using the

Zemax programming language. The field position had to be altered manually. We

felt that beams from a 3 × 3 horn array were sufficient to demonstrate the PSFs of

the lens combiners. The PSFs of the symmetric Cooke triplet lens and the symmetric

dual convex lens are shown in Figures 6.15 and 6.16. The locations from which the

Gaussian beams were propagated in order to form these PSFs are listed in 6.1.

Table 6.1: Coordinates (xi, yi) of back-to-back horns used to form Figures 6.15 and

6.16.

(-20,20) (0,20) (20,20)

(-20,0) (-20,0) (20,0)

(-20,-20) (0,-20) (20,-20)

Unfortunately Zemax will not allow us to carry out a conclusive analysis of the lens

combiners we have presented. This is because analysis techniques implemented by

Zemax become completely inaccurate when the incident wavefronts propagate from

off-axis locations. The Zemax manual states that prorogation algorithms implemented

in Zemax will not accurately predict the diffraction of the wavefronts for a fast optical

system. This is because these algorithms assume that the medium through which a

wavefront is propagating is constant. As such the Zemax algorithms break down and

become completely inaccurate once the wavefront being sampled encounters any edge

effects.

When we examine layouts of the above lens combiners it is apparent that in order

to achieve any accurate modeling of the beams propagated from the most extreme

back-to-back horns the surface of the lens must be sampled over an area whose size

will undoubtedly include edge effects. Therefore any precise analysis of these systems

will be confined to a small area around the optical axis. For QUBIC this is especially
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problematic as conventional geometrical optics tells us that the beams propagating

from the most extreme horns on the back-to-back array will be the most aberrated.

We expect all the above systems will produce high quality synthesized beams when

we only consider beams propagating from short off-axis locations.

In order to select the best lens combiner for QUBIC2.0 we are interested in the com-

plete synthesized beams formed by all horns in the back-to-back array. Unfortunately

Zemax will not allows us to fully distinguish which lens combiner is most suitable

for QUBIC2.0. Trial and error has led us to conclude that a Zemax Fourier optical

analysis of the lens combiners will only produce trustworthy results within a radius

of 30 mm around the optical axis. Hence the displacement values used to obtain the

above fringe patterns and point spread functions. Although due to its wider DLFOV

the symmetric Cooke triplet is a higher performing system then the symmetric double

convex system, as we can see from Figures 6.15 and 6.16, it is difficult to distinguish

from our limited Zemax analysis whether the Cooke triplet will produce higher quality

synthesized beams than the dual convex system.
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Figure 6.15: The PSF generated by 9 Gaussian beams propagating through the Cooke

triplet lens combiner shown in Figure 5.9.
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Figure 6.16: The PSF generated by 9 Gaussian beams propagating through the sym-

metric double convex lens combiner shown in Figure 5.10.
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GRASP9 has no faculty for modeling lens combiners. Currently work is on-going in

NUIM to attempt to model the fringe patterns produced by the above lens combiners

using an in-house optical software package called MODAL. This package will attempt

to calculate the window function produced by the lenses using a variation of physical

optics. The operation of MODAL has been briefly explained in Chapter 2 10.

6.4 Loss of sensitivity caused by optical combiners

We will now revisit the 300 mm focal length compensated Gregorian (CG) shown in

Figure 4.4. The geometric details of this reflector are listed in Table 4.3. We have

previously demonstrated that this system can image all beams from a 20×20 back-to-

back horn array onto the bolometer detectors. Also we have shown that the behavior

of a reflector combiner can be more accurately modeled using physical optics than

that of a lens combiner. Finally the manufacturing of a reflector combiner that will

be placed in an extremely low temperature cryostat is somewhat less difficult than a

refractive combiner such as a Cooke Triplet that uses large lenses11. For these reasons

we conclude that the CG discussed in Chapter 4 is the most suitable optical combiner

for QUBIC2.0.

In Figure 6.5 it was shown that QUBIC2.0 could achieve a level of sensitivity com-

parable with a CMB imager. Here we assumed an ideal window function generated

by an ideal optical combiner. We must now take account of the loss of sensitivity in

QUBIC2.0 due to the implementation of a realistic combiner that will generate wave-

front aberrations in the combining beams. This is in fact the best way to judge the

proposed design for the combiner (rather than the variance in power coupled to the

bolometers by sets of equivalent baselines as discussed in Chapter 4).

Donnacha Gayer of NUIM along with our colleagues in the APC Paris have examined

the loss in sensitivity due to aberrations in the 300 mm focal length CG combiner

presented in Chapter 4. A fundamental 14◦ Gaussian beam was propagated from

10For more information on MODAL visit http://physicsresearch.nuim.ie/modal/modal.html.

Also an article detailing the use of MODAL for the optical analysis of CMB telescopes can be

found in the SPIE newsroom at http://spie.org/x14026.xml?ArticleID=x14026
11The Cooke Triplet to which we refer is shown in Figure 5.9.
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every horn in a 20 × 20 array. A 13.7 mm diameter, consistent with the expected

values for the QUBIC2.0, was assumed for each horn. We have assumed that all

beams are propagating from “ultra-Gaussian” horns in which 99.9% of the beam power

is coupled into a fundamental Gaussian beam. Such horns were designed for the

CLOVER mission [129]. Also we assume that the phase radius at the mouth of these

horns is flat. We have therefore propagated a fundamental Gaussian beam through the

combiner whose waist radius is located at the mouth of the re-emitting back-to-back

horn.

The positions from which each Gaussian beam was propagated in the object plane

were calculated using a simple sweep algorithm12. Using GRASP9 the amplitude and

phase of each Gaussian beam was calculated at the focal plane.

These files were then sent to our colleagues in the APC Paris. From these files our col-

leagues calculated the window function in terms of multipoles on the sky. The window

function was then compared with that of a perfect combiners. The results are shown

in Figure 6.17. Here both bandwidth BW and the size of the bolometer detector

have been taken into account. The peaks are readily explained by the interferometric

nature of QUBIC2.0. Essentially the Airy pattern generated by the QUBIC2.0 com-

biner consisting of an unblocked entrance aperture is convolved with the fringe pattern

generated by the presence of the back-to-back array. The peaks clearly shown that

the CG will allow us access to a discrete number of multipoles over the sky. Each

of these multipoles will be sampled with a resolution ∼ 1
σprimary

where σprimary is the

FWHM of back-to-back horns with which we view the sky. Figure 6.17 shows that

the loss of sensitivity caused by the CG combiners is ∼ 10%. This is shown by the

difference between the solid and dashed red lines. Within the overall error budget of

the project (bearing in mind that QUBIC must compete with imaging experiments

in terms of efficiency) such a loss has been deemed quite satisfactory. Therefore we

have conclusively shown that the CG introduced on Chapter 4 will allow QUBIC2.0

to sample the CMB with sensitivity comparable with that of an imager.

12We have previously discussed this algorithm. For example see equations (4.3.1) - (4.3.6) where the

appropriate terms have been altered to accommodate a 14◦ FWHM beam that must be swept

12× 12 times at 12 mm intervals.
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Figure 6.17: The window function of the 300 mm focal length CG designed for

QUBIC2.0. The dashed lines show the window function of the CG. The

full lines indicate the window function obtained from an aberration free

ideal combiner. We note that the units on the y-axis are arbitrary. Both

bandwidth BW and the 3 mm2 size of the detectors have been taken into

account. This image has been provided by Marie-Anne Bigot-Sazy of the

APC Paris.
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6.5 Conclusions

In this chapter we have presented the revamped QUBIC experiment entitled QUBIC2.0.

The QUBIC2.0 will attempt to recover the CMB polarization from a “dirty image”

formed on an array of bolometer detectors. This “dirty image” is a convolution of

the synthesized beam generated by the QUBIC2.0 optical system and the incident sky

signal. Essentially the synthesized beam is the point spread function formed by the

back-to-back horns array and the optical combiner. As such it has been our task to

design an optical combiner that produces a high quality synthesized beam over the

smallest possible detector array. As we established in Chapter 4 the criterion that

an optical combiner for QUBIC must obey is that it must be a good imager form-

ing wavefronts with low aberrations at the focal plane. We have concluded that the

best candidate design for the QUBIC2.0 is the CG we presented in Chapter 4. In

this chapter we have shown the PSF of this system calculated using a physical optics

analysis of the beams propagating from each horn in a 20× 20 array.

In the authors opinion the most important conclusion of this chapter concerns Fig-

ure 6.17. This plot indicates that the drop in sensitivity of QUBIC2.0 due to wave-

front aberrations and beam distortion in the synthesized beams generated by the CG

is on average ∼ 8 − 10%. Such a loss has been deemed within tolerable levels for

QUBIC2.0.

We have previously shown that this combiner induces a greater amount of amplitude

distortion in the synthesized beam than the GCC. However the fact that the CG allows

a larger amount of back-to-back horns to be implemented means the overall drop of

sensitivity caused by the CG is less than the GCC. Therefore the CG we introduced in

Chapter 4 fulfills all requirements for the QUBIC combiner. The wavefront aberrations

generated by this combiner do not adversely affect the instruments sensitivity, the

system can accommodate a large array of 20 × 20 back-to-back horns and finally

the system will fit inside a cryostat of realistic dimensions. Provided we are able to

include both the RHWP and the polarizing grid along with the CG inside the cryostat

it is quite probable we have found a fixed design for the QUBIC2.0 combiner. Such

technical issues are currently been investigated by Donnacha Gayer at NUIM.
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7 Birefringence in CMB Polarimeters

7.1 Introduction

It was mentioned in Chapter 5 that, despite there being several promising optical

designs, lenses were not a favored option for the QUBIC telescope. In addition to

mechanical and modeling issues, the possibility of birefringence in lenses is a potential

difficulty for QUBIC. In this chapter I review some data from a CMB imager called

QUaD and investigate whether birefringence in one or more lenses could be the cause

of some possible problems encountered.

The QUaD experiment concluded after a third winter of observation in the South Pole.

We can now review the experiment with the benefit of hindsight and analyze the optical

system implemented in the telescope. Such a review will lead to the improvement of

the next generation of CMB polarimeters.

7.2 A brief summary of QUaD

7.2.1 The QUaD polarimeter

QUaD was a ground based high-resolution CMB polarimeter. The optical design of

QUaD consisted of bolometric receivers, two re-imaging lenses and a 2.6 m Cassegrain

telescope. The large diameter of the primary mirror allowed QUaD to observe the

CMB at multipoles up to l ≈ 2500. QUaD’s focal plane consisted of 31 polarization
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sensitive bolometers (PSB). Of these PSB 12 operated at 100 GHz while the remain-

ing 19 operated at 150 GHz. The telescope was located in the MAPO observatory

approximately 1 km from the South Pole. First light was achieved in February 2005.

Observations of the CMB were carried out over 3 seasons beginning in May 2005.

The experiment was completed in 2008 and the results were published in November

2009. These are shown in Figure 7.1. Here the results are compared to those from

the WMAP, ACBAR, BICEP, Boomerang, CBI, CAPMAP, MAXIPOL, and DASI

CMB experiments. The results and their impact on modern cosmology has been fully

discussed in [130]. A full account of the operation of the QUaD polarimeter can be

found in [131] while a detailed description and analysis of the full optical system is

provided by [132]. An excellent summary of the various technical aspects of QUaD is

also presented in [133]. The layout of QUaD is shown in Figure 7.2. The position of

the 31 fields and the orientation of the PSBs at these locations are shown in Figures

7.3 and Table 7.1.

During operation it was discovered that orthogonally polarized beams from the same

pixel in the focal plane (even the on-axis one) had slightly different locations on the sky.

The displacements of orthogonally polarized beams led to the suspicion that one of

the HDPE elements in the focusing system was birefringent. This chapter is concerned

with assessing whether or not the displacements between orthogonally polarized beams

that occurred at QUaD’s focal plane can be accounted for by birefringence in either

the lenses or the optical window of the cryostat.
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Figure 7.1: QUaD measurements of the (a) TT, (b) TE, (c) EE, and (d) BB CMB

power spectra. The black lines are the power spectra expected from the

best-fit ΛCDM model to the WMAP 5-year data. These figure have been

taken from [130].
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(a) The QUaD cryostat contained two cold lenses that coupled the radiation from the

telescope onto the focal plane.

(b) QUaD’s focal plane consisted of 31 corrugated feed horns each feeding a

polarization-sensitive bolometer (PSB).

Figure 7.2: Schematic diagram of the components in the QUaD CMB telescope. These

images have been taken from http://www.stanford.edu/~schurch/

quad_results.html.

270

http://www.stanford.edu/~schurch/quad_results.html
http://www.stanford.edu/~schurch/quad_results.html


(a) The position of QUaD’s 100 and 150

GHz detector horns on the instruments

focal plane. The detector numbers cor-

respond to those listed in Table 7.1.

(b) Polarization orientation of QUAD’s

100 GHz and 150 GHz fields.

Figure 7.3: The position of the 31 detector horns over QUaD’s focal plane.

7.2.2 QUaD model in Zemax

When analyzing QUaD using Zemax we fix the entrance aperture of the optical system

at the Lyot stop 168 mm in front of the horn detectors. The horn detectors then

represent the system’s object plane from which we use Zemax to trace rays from each

field position through the telescope. An ideal paraxial lens is placed in the Zemax

model file after the full optical system. This lens focuses rays propagating from the

horn detectors onto an image plane. This image plane is implemented to allow us to

examine where the rays traced from the horn detectors end up on the sky. The focal

length of the paraxial lens was set to 3437.74 mm and due to QUaD’s geometry this

forces one millimeter on the image plane to equal one arc minute on the sky. We will

examine the behavior of a number of rays propagated from QUaD’s 31 field positions

at the object plane shown in Figure 7.4.

7.2.3 Introduction to birefringence.

Birefringence is the result of electrical anisotropies that may occur within dielectric

optical components. These can be introduced in the manufacturing process (alignment
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Table 7.1: The coordinate locations of QUaD’s focal plane pixels for horns number 1-6

in Figure 7.3. All horns are placed on a circular curved plane whose radius

is 168 mm. The coordinates below have been projected onto a flat surface

behind this curved surface.

150 GHz 100 GHz

X (mm) Y (mm) X (mm) Y (mm)

1 0 0 65.56 0

2 33.39 0 50.04 28.89

3 16.7 28.92 32.78 56.77

4 81.12 27.55 0.00 57.78

5 64.42 56.47

6 16.7 84.0

Figure 7.4: The QUaD telescope.

of long-chain polymers) or caused by stress (for example on a cryostat window, for

example). As a result, when a wavefront propagates through a birefringent material

the displacement electric field vector D is no longer aligned with the electric field vector

E. Usually any electrical anisotropies encountered by an incident wave depend on its

polarization. Therefore if partially polarized light is incident on a birefringent material
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the light will become split into two separate fields S and Se. Here S is the Poynting

vector of the ordinary refracted light whose direction is altered in accordance with

Snell’s law. The term Se represents the so-called extraordinary refracted Poynting

vector whose direction is dependent on the extraordinary refractive index and the

crystal axis of the material. The crystal axis is the surface normal around which the

polarized wave appears to have been bent by an angle dependent on the extraordinary

refractive index. A simple diagram of such a scenario is shown in Figure 7.5. A succinct

discussion of birefringence in optical crystals including a full explanation of the origins

of both the extraordinary index and crystal axis is presented in [134]. Two excellent

techniques for ray-tracing through dielectric slabs are presented in [135] and [136].

Meanwhile a comprehensive technique to ray-trace through paraxial birefringent lenses

is presented in [137]. These techniques are applicable, provided that both the crystal

axis and the extraordinary refractive index can be predetermined.

Figure 7.5: Polarized light incident on a piece of dielectric material. The Poynting

vector S is bent towards the surface normal in accordance with Snell’s law.

The direction of the extraordinary refracted Poynting vector Se is altered

by the crystal axis and the extraordinary refractive index of the medium.

The displacements of orthogonally polarized beams propagating through QUaD have

been measured and made available to the author for analysis. We will now attempt to

confirm whether birefringence in QUaD’s HDPE elements could produce such offsets.

If we can show that birefringence is a possible cause of such beam displacements we
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will attempt to uncover exactly which part of the QUaD system is responsible and

estimate the optical axis and the extraordinary refractive index of that element. In

order to accomplish these tasks we have traced rays from QUaD’s detector horns

through the telescope onto the sky. We have re-defined QUaD’s dielectric lenses as

birefringent elements whose properties are similar to uniaxial crystals. Using estimates

of the extraordinary refractive index and/or the crystal axis obtained from the relevant

literature we have modeled several birefringent QUaD designs in Zemax and analyzed

the outputs.

The QUAD telescope provides a unique opportunity to investigate birefringence within

CMB polarimeters. Such work is now of critical importance because several separate

CMB experiments have all experienced optical problems that may be attributed to

birefringent materials. The QUAD telescope contains an optical window and two

refocusing lenses. Of these lenses one acts as a focusing device while the other serves

as a collimating device. We can therefore investigate the effects birefringence occurring

in three various dielectric components that one would find in a CMB experiment. The

displacement of orthogonally polarized beams propagating through QUaD have been

measured and are shown in Figures 7.6c and 7.6d. Here we see the displacement

between the orthogonal beams increases roughly with the distance of the QUaD fields

from the bore sight.

7.3 Investigation of possible birefringence in QUaD

7.3.1 Using Zemax to investigate birefringence in QUaD

A diagram of the optical arrangement of the QUaD telescope is shown in Figure

7.7. QUaD is a symmetric system therefore the optical axes/bore sight is parallel to

the z-axis and runs along the centre of the telescope. This chapter is dedicated to

investigating whether birefringence in the first lens (L1), the second lens (L2) or the

window (WD) can account for displacements similar to those shown in Figure 7.6.

The most difficult aspect of modeling a suspected birefringent material is the num-

ber of possible free variables for which to account. There are two primary defining

characteristics of any birefringent material. The first is the extraordinary refractive
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Figure 7.6: Measured displacements between polarized beams within QUaD. The end

of each line shows the location of a beam centre. The yellow, purple and

red locations indicate the 150 GHz detectors. The blue locations shown the

100 GHz detectors. (a) The orientation of the polarized 100 & 150 GHz

detectors. (b) Detector locations in the focal plane. (c) Displacements

between orthogonally polarized beams on the sky (i.e. the lines join the

location on the sky whereof orthogonally polarised beams from the same

horn. If there were no birefringence then the lines would all be of zero

length). Here the units of both axes are arc minutes on the sky (×50).

(d) Here the displacements shown in part (c) have been folded about the

x-axis. Once again the units of both axes are arc minutes on the sky (×50).
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Figure 7.7: The optical layout of the QUaD telescope. The diameter of the primary

mirror is 2600 mm. Here we have shown rays propagating from QUaD’s

150 GHz detector horns.

index that defines how much a polarized ray is bent as it is incident on the mater-

ial. The second is the crystal axis which defines the orientation of the surface normal

around which the incident ray is bent1. There is an inherent difficulty trying to ex-

actly diagnose birefringence in QUaD because neither of these quantities are known.

Also Zemax will not allow a dynamical variation of the extraordinary refractive index.

Therefore simply writing an optimization program to vary the birefringent proprieties

of the dielectrics until displacements similar to those seen in QUaD is produced is not

likely to be possible.

1The lenses are not made of crystal but of plastic, long-chain polymers may produce a varying

birefringence effect depending on the details of the manufacturing process.
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The purpose of this section is to examine whether or not birefringence in any of QUaD’s

dielectric elements can produce patterns of displacements of beams on the sky similar

to those observed. As a starting point for this investigation we have assumed very

simplex birefringent conditions in QUaD’s dielectric elements. We have assumed that

all beams are normally incident on the HDPE elements and that the crystal axis of the

birefringent material is co-planar with the propagation axis of an incident Gaussian

beam and QUaD’s x-axis. A simple diagram of these two assumptions is shown in

Figure 7.8.

Figure 7.8: A Gaussian beam normally incident on a slab of birefringent HDPE. Here

A1 is the angle between the propagation axis and the crystal axis. Also

A2 is the angle between the two refracted rays. These angles are denoted

as φCA and θe respectively in the accompanying text.

Finally we assume that the maximum possible angle θe occurs between the two refrac-

ted rays. When this occurs both the wave vector ke and the Poynting vector Se for the

extraordinary ray align with one other. It has been shown under such circumstances

that

φCA =
1

2
arccos

no
2 − ne2

no2 + ne2
, (7.3.1)

where no is the normal refractive index and ne is the extraordinary index. Also the

components of the crystal axis are (sinφCA, 0, cosφCA) [137]. A peak birefringence,

βmax, of 0.021 at 0.3 THz has been observed during the investigation of plastic photonic
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crystal fibers fabricated from HDPE tubes. Here βmax = nx − ny where nx/y are the

different refractive indexes seen by orthogonally polarized waves [138]. The refractive

index (no) of the HDPE lens in QUaD is 1.5833. Therefore using the value of βmax

we can calculate a lower limit of the extraordinary index (ne) of the HPDE lenses

of 1.56 and an upper limit of 1.61. In order to account for the fact that QUaD

functioned at lower frequency values than 0.3 THz we have decided to carry out our

analysis over a range of extraordinary indexes from 1.53 to 1.62 for the lenses. Using

these values for no and ne we can calculate appropriate values for φCA using equation

(7.3.1). The components of the crystal axis are then (sinφCA, 0, cosφCA) where we

have assumed that the crystal axis has no component along QUaD’s y-axis and the

z-axis is parallel to QUaD’s propagation axis. Similar arrangements have been made

for the optical window. The values we have chosen for the extraordinary indexes and

the corresponding crystal axes are shown in Tables 7.2 and 7.32.

Table 7.2: Birefringent characteristics for QUaD lenses.

Ordinary index Extraordinary index φCA (radians) Crystal axis

1.5833 1.53 0.77 (0.69, 0, 0.72)

1.5833 1.56 0.78 (0.7, 0, 0.71)

1.5833 1.59 0.79 (0.71, 0, 0.70)

1.5833 1.62 0.8 (0.72, 0, 0.69)

Table 7.3: Birefringent characteristics for QUaD window.

Ordinary index Extraordinary index φCA (radians) Crystal axis

1.52 1.50 0.77 (0.71, 0, 0.70)

1.52 1.51 0.78 (0.70, 0, 0.70)

1.52 1.53 0.79 (0.70, 0, 0.71)

1.52 1.55 0.8 (0.70, 0, 0.71)

We have used the characteristics of Tables 7.2 and 7.3 to examine birefringence in

QUaD. Using Zemax we have ray-traced both ordinary and extraordinary refracted

2We note that birefringence in polarization maintaining terahertz optical fibers has been investig-

ated in [139]. Here it is shown that HDPE is more birefringent then both polypropylene and

polytetrafluoroethylene (teflon). Such issues should receive some attention if lens combiners are

chosen for QUBIC.
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rays through QUaD. Using the paraxial lens we then calculated the position at which

these rays end up on the sky. If birefringence is responsible for the displacements

encountered in QUaD we except our analysis to return results similar to Figure 7.6c.

We note that Zemax does not consider the polarization of the incident electric field

when calculating the orientation of rays refracted about the crystal axis. The user

simply tells Zemax which surface is birefringent, the crystal axis of that surface and

the extraordinary refractive index. At this surface Zemax ray-traces using equations

specifically derived for uniaxial crystals [136]. As such all incident fields were arbit-

rarily polarized along the x-axis.

The depth of our analysis is therefore restricted by the limitations of Zemax. Zemax

was not designed to extrapolation any information about a possible birefringent mater-

ial. The software requires the user to input the crystal axis of a birefringent material

and its extraordinary index. Both these values of course depend on the orientation

of the incident polarization and such characteristics are again excepted to be known

by the user. Zemax then uses the ray-tracing equations (7.3.2) - (7.3.4) to calculate

the path of the extraordinary ray. These equations are taken from [136] and like all

ray-tracing equation are solely based on geometrical considerations and do not take

account of the wave nature of the incident field or its polarization. Therefore using

Zemax we are limited to investigating the displacements on the sky between ordinary

and extraordinary rays propagating through QUaD. Although since birefringence is

dependent on the polarization of the incident fields we can draw some tentative con-

clusions regarding birefringence in the QUaD polarimeter. However we have no direct

way of modeling or extrapolating information regarding how the orientation of the

PSBs alter the displacements observed on the sky.

The birefringent characteristics we consider in this initial analysis are extremely simple.

We have assumed the conditions that would be encountered by an on-axis beam in-

cident on a piece of material whose crystal axis is orientated co-planar to the surface

normal. This has allowed us to calculate the initial estimates for the crystal axes and

corresponding extraordinary indexes listed in Tables 7.2 and 7.3.

In general a much more complex scenario is envisioned within QUaD however the above

assumptions are valid for two reasons. The first reason is due to an analysis of narrow

on-axis beams propagating through QUAD. Here it was revealed that the magnitude
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of the displacements of these beams occurred mostly along the x-axis of the focal plane
3. This means that comparatively little or no deflection occurs along QUaD’s y-axis.

Therefore there is no great loss of generality if we momentarily consider the crystal

axes to exhibit an orientation in just two planes so we momentarily assume that the

component of the crystal axis along the y-axis is zero. The second reason is due to the

paraxial nature of QUaD. The orientation of the extraordinarily refracted Poynting

vector Se can be comprehensively calculated by

Se,x = cosα cos θe + sin θe sinα(x0 sin θe−y0 cos θe)√
z2
0+(x0 sin θe−y0 cos θe)2

Se,y = cosα sin θe + cos θe sinα(x0 sin θe−y0 cos θe)√
z2
0+(x0 sin θe−y0 cos θe)2

Se,z = z0 sinα√
z2
0+(x0 sin θe−y0 cos θe)2

(7.3.2)

where (x0, y0, z0) is the crystal axis, n0 is the ordinary refractive index and ne is the

extraordinary refractive index. The angle α is

tanα =
(n2

e − n2
0) tan θ

n2
e − n2

0 tan2 θ
(7.3.3)

while the angle θe can be found by solving

(
n2

0 + x2
0(n2

e − n2
0)
)

cot2 θe + 2x0y0(n2
e − n2

0) cot θe −
n2

0n
2
e

sin2 θ
(7.3.4)

where θ is the angle of incidence [136]. In Table 7.4 we have listed the components

of the Se vector from a piece of quartz whose birefringent properties have been well

categorized as n0 = 1.54, ne = 1.55 and the crystal axis is (0.75,0.5,0.433) [136]. We

have calculated Se using angles of incidence up to 30◦.

3The results of this analysis were obtained through a personal communiqué between NUIM and

Ken Ganga of the APC Paris. We note that if one closely examines the very centre displacement

in Figure 7.6c we see confirmation of this analysis. We can see that the “yellow” displacement

occurs along the x-axis of the focal plane.
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Table 7.4: Values of Se for a piece of Quartz for various angles of incidence.

θ◦) Se,x Se,y Se,z

5 0.99 0.05 0.00

10 0.99 0.11 0.00

15 0.98 0.17 0.00

30 0.95 0.32 0.01

Strictly speaking the crystal axes we have calculated in Tables 7.2 and 7.3 for various

extraordinary indexes will only produce an accurate value for the vector Se if the

incident rays are normal to the HDPE elements. However as we have shown in Table

7.4 the difference between the values for Se once the angles of incidence are less than

30◦ are marginal. Due to the paraxial nature of the system, the chief rays propagating

from the various field positions in QUaD have angles of incidence on each of the

refractive elements of at most ∼ 26◦. Therefore although the crystal axes in Tables

7.2 and 7.3 are unlikely to be the exact crystal axes for any birefringent element

in QUaD the results they provide will allow us to make some informed conclusions

regarding possible birefringence in the QUaD CMB telescope.

The Zemax programing language (ZPL) is a C based language that enables the user to

write short programs called macros that instruct Zemax to perform specific calculations

on an optical system. In order to investigate the effects of birefringence in QUaD we

have written a Zemax macro that functions according to the following algorithm:

• Begin macro.

• Set birefringent element. Here either one of the two lenses or the cryostat window

is selected for investigation.

• Set the extraordinary index and the crystal axis to a value shown in either Table

7.2 or Table 7.3.

• Trace a single chief ray from each field position through the centre of the Lyot

stop. We have traced the chief rays as they represent the propagation axes of the

Gaussian beams from each detector horn. Therefore these rays trace the route

of each PSB beam through the telescope.
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• Calculate the position, (xi,o, yi,o), on the sky of the ordinary refracted chief ray

propagating from every field position.

• Calculate the position, (xi,e, yi,e), on the sky of the extraordinary refracted chief

ray propagating from every field position.

• Export all values (xi,o, yi,o) and (xi,e, yi,e).

• Repeat as necessary. The macro continues until rays from all fields have been

traced onto the sky when each dielectric element in QUaD has a birefringent

surface.

For every set of values (xi,o, yi,o) and (xi,e, yi,e) we formed a parametric line
(
xi, yi

)
=(

xi,o + (xi,e− xi,o)ti, yi,o + (yi,e− yi,o)ti
)

between the points. Plots of these parametric

lines represent the displacements on the sky between the ordinary and extraordinary

refracted rays passing through QUaD. Such displacements have been calculated for

each of the 100 and 150 GHz pixels in QUaD. The results are shown in Figures 7.10 -

7.12. The chief rays propagating from the 100 GHz detector horns are shown in Figure

7.9. Tracing these rays through QUaD should provide an example of how the peak

intensities of orthogonally polarized Gaussian beams on the sky may become displaced

by a birefringent element.

We note that for presentation purpose the values ti in the above parametric plots

have be set to different values. This has been done merely to allow us to display the

displacements in an appropriate manner so that we can investigate their orientations.

For every optical component the values of ti are shown in Table 7.5.

Table 7.5: Values of ti for Figures 7.10 - 7.12.

ti

First lens 0.5

Second lens 4

Window 30

When we compare the displacements due to the lenses to those of the window shown

in Figures 7.10 - 7.12 it is apparent that the most important determinant that decides

the orientation of the displacements are the dielectric surface shapes. The details of
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Figure 7.9: Chief rays from 100 GHz detector horns.

the dielectric elements in QUaD are listed in Table 7.6. The first lens within QUaD is

fully convex whereas the second lens is plano-convex.

In Figures 7.10 - 7.12 we have clearly shown that a simple ray-trace analysis of QUaD

indicates that when an electric field is incident over a curved lens surface the further

off-axis the beam the greater the displacements of the differently refracted beams will

be on the sky. These results concur with what is expected when we study equations

(7.3.2). Here we see that the greater the incident angle θ the greater the magnitude

of the off-axis Se,x and Se,y components of the Poynting vector. Using Zemax we have

traced chief rays through the centre of QUaD’s aperture stop onto the sky. As shown in

Figure 7.9 the further off-axis QUaD’s fields are placed the greater the incident angle

of the chief ray from each of these fields at the first and second lens. Obviously the

greater the curvature of the lens surfaces the greater the angle of incidence between

the off-axis chief rays and the surface normal. Also if we examine Figure 7.8 we

see that the thicker a piece of birefringent material the greater the separation of the

ordinary and extraordinary refracted rays. Therefore due to the fact that it is the

thickest element with the greatest curvature we expect the first lens to cause the

greatest displacements. We then expect the slightly curved secondary lens to produce
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(a) 1.53 extraordinary index. The aver-

age value of the displacements is 3.73 mm

( ≡ 3.37 arcmin on the sky).

(b) 1.56 extraordinary index. The aver-

age value of the displacements is 3.77 mm

(≡ 3.77 arcmin on the sky).

(c) 1.59 extraordinary index. The aver-

age value of the displacements is 3.73 mm

(≡ 3.73 arcmin on the sky).

(d) 1.62 extraordinary index. The aver-

age value of the displacements is 3.82 mm

(≡ 3.82 arcmin on the sky).

Figure 7.10: Birefringent first lens using x-polarized rays.

the second greatest displacements. Finally due to the fact that the beams intersect

the window almost perpendicularly we expect this element should cause the smallest

displacements. We also expect the displacement caused by the birefringent lens to

increase as we consider the off-axis pixels.

These expectations exactly match the results shown Figures 7.10 - 7.12. Here we have

listed the average displacements caused by each optical element. The average values off

all displacements caused over the various extraordinary indexes have been listed along

with the details of the optical components in Table 7.6. These results suggest that in

order to avoid complications due to birefringence in further CMB polarimeters thin

dielectric elements with small curvatures should be implemented. The large value of ti

required to display the displacements by the window and the small values required to

display the displacements due to the first lens also concur with the above expectations.

These results have some important consequences for QUBIC2.0 that we will discuss in
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(a) 1.53 extraordinary index. The aver-

age value of the displacements is 1.197

mm (≡ 1.197 arcmin on the sky).

(b) 1.56 extraordinary index. The aver-

age value of the displacements is 1.195

mm (≡ 1.195 arcmin on the sky).

(c) 1.59 extraordinary index. The aver-

age value of the displacements is 1.2 mm

(≡ 1.2 arcmin on the sky).

(d) 1.62 extraordinary index. The aver-

age value of the displacements is 1.2 mm

(≡ 1.2 arcmin on the sky).

Figure 7.11: Birefringent second lens investigated using x-polarized rays.

the next section. Our results indicate that the magnitude of the displacements seen

in QUaD could indeed be caused by levels of birefringence that have been measured

elsewhere in the lens material.

In the author’s opinion the most interesting result in this section is the uniformity of the

displacements caused by the completely flat optical window. The displacements caused

by the lenses show a radial pattern pointing towards the lenses’ axes of symmetry.

However the orientations of displacements caused by a birefringent window are parallel

and aligned with the orientation of the crystal axis. Also the length of the displacement

is almost constant over all pixels. In order to confirm this result we examined the

orientations caused by various crystal axes in a birefringent window. These crystal

axes and the displacements caused are shown in Figure 7.13. Once again we seen that

due to the dual plane surfaces of the optical window the displacements are aligned with

the crystal axes and not the propagation axis. The crystal axes were chosen so that
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(a) 1.50 extraordinary index. The aver-

age value of the displacements is 1.009

mm (= 1.009 arcmin on the sky).

(b) 1.51 extraordinary index. The aver-

age value of the displacements is 1.008

mm (= 1.008 arcmin on the sky).

(c) 1.53 extraordinary index. The aver-

age value of the displacements is 1.01 mm

(= 1.01 arcmin on the sky).

(d) 1.55 extraordinary index. The aver-

age value of the displacements is 0.99 mm

(= 0.99 arcmin on the sky).

Figure 7.12: Birefringent window investigated using x-polarized rays.

each axis is a unit vector with equal length components in all directions. As clearly

shown in Figure 7.13 the orientation of the displacements form lines whose slopes are

45◦. Therefore if a flat optical component is implemented the displacements caused by

birefringence will align with the crystal axis. Also the length of the displacements on

the sky should be almost constant for each pixel. This behavior completely contrasting

to birefringent lenses and also different to the behavior seen in QUaD. Therefore based

on these results we must exclude a birefringent window with a uniform crystal axis

causing the displacements in QUaD.

We have also calculated the displacements on the sky caused by the crystal axis

(0.75,0.5,0.433) for quartz given in [136]. These displacements are shown in 7.14.

We note that Figure 7.14(a) is beginning to show broadly the features seen in the

real data (resemble displacements shown in Figure 7.6 ). Once again we see that

the flat surface of the window combined with its narrowness results in the smallest

286



Table 7.6: The curvature (curv) and thickness of dielectric elements in QUaD.

curv (mm) curv (mm) Thickness (mm) Displacements (mm)

Front surface Back surface

First lens 0.002 0.012 65 3.76

Second lens 0 0.005 32 1.2

Window 0 0 8 1.0

(a) 1.55 extraordinary index with a

( 0.58 , 0.58 , 0.58 ) crystal axis.

(b) 1.55 extraordinary index with a ( -

0.58 , 0.58 , 0.58 ) crystal axis.

(c) 1.55 extraordinary index with a ( -

0.58 , -0.58 , 0.58 ) crystal axis.

(d) 1.55 extraordinary index with a ( –

0.58 , -0.58 , 0.58 ) crystal axis.

Figure 7.13: Birefringent window investigated at 150 GHz using x-polarized rays.

displacements. Finally we have plotted the displacements of 30 rays, launched from

each position, on a patch of sky seen by 12 of QUaD’s 150 GHz pixels . The bi-

refringent conditions are equal to those used to calculate the displacements shown in

Figure 7.14. The displacements on the sky are shown in Figures 7.15 - 7.17. Here all

normally refracted rays are shown in blue while the extraordinary refracted rays are

shown in green. As we can see the effects of birefringence in the second lens and the

optical window are only slightly noticeable. However the displacements of the beams

of rays due to birefringence in the first lens is apparent. We conclude from this work
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that levels of birefringence measured in the HDPE and Quartz at GHz frequencies

could cause effects at the levels seen by QUaD. This simple analysis predicts that the

first lens is the dominant cause in QUaD. The displacement of orthogonally polarized

beams due to birefringence means that an instrument will effectively see orthogonal

E and B-modes coming from two different areas of the sky. Such issues are of course

extremely troublesome if one wishes to form maps of the CMB polarization. Here I

have shown that differences in the ordinary and extraordinary refractive index HDPE,

of a level typically reported in the literature, can cause the effects (displacement of

orthogonally polarised beams on the sky) seen in QUaD. The exact pattern of the dis-

placements depends on the ”crystal” axis direction as well as on which component is

the dominant cause. In the next section I see whether it is possible to recover a single

axis direction or dominant refractive component (the QUaD lenses were not available

to us for testing).
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(a) Birefringent first lens with extraordinary index

1.56. The average value of the displacements is 0.48

mm.

(b) Birefringent second lens with extraordinary index

1.56. The average value of the displacements is 0.20

mm.

(c) Birefringent window with extraordinary index 1.53.

The average value of the displacements is 0.03 mm

Figure 7.14: Birefringent elements investigated at 150 and 100 GHz using x-polarized

rays.
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Figure 7.15: Displacement of 100 GHz beams on sky caused by birefringence in the

first lens. Here all normally refracted rays are shown in blue while the

extraordinary refracted rays are shown in green.
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Figure 7.16: Displacement of 100 GHz beams on sky caused by birefringence in the

second lens. Here all normally refracted rays are shown in blue while the

extraordinary refracted rays are shown in green.
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Figure 7.17: Displacement of 100 GHz beams on sky caused by birefringence in the

cryostat window. Here all normally refracted rays are shown in blue

while the extraordinary refracted rays are shown in green.
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7.4 Optimizations to identify QUaD crystal axes

7.5 Zemax optimizations

We have established that birefringence in QUaD’s HDPE elements can lead to dis-

placements between orthogonally polarized beams on the sky. We will now attempt

to recreate the exact displacements observed in QUaD. A previous analysis of QUaD

showed that various orthogonally polarized on-axis beams propagating through QUaD

experienced an average displacement of ∆arc = 0.05345 arc minutes on the sky.

We have used the above values to write a Zemax optimization with which we optimized

a value for the crystal axis of a birefringent element. In order to carry out these

optimizations we used QUaD’s geometry shown in Figure 7.4. As before due to the

focal length of the paraxial lens a displacement on the sky of ∆arc = 0.05345 arc

minutes will equal ∆dist = 0.05345 mm in the image plane indicated in Figure 7.4.

We have also attempted to optimize a value for the crystal axis causing the displace-

ments observed by the 150 GHz pixels located at coordinates (64.42,56.47) and (-

64.42,-56.47) on the focal plane only. These pixels were chosen due to the fact the

orientation of the PSBs at these points is similar to the centre pixel. We refer to them

as pixel 1 and pixel 2 respectively. The displacements and slopes for these pixels were

calculated from Figure 7.6. The length and slope of the displacement for pixel 1 are

0.015 mm and 0.14. Also the length and slope of the displacement for pixel 2 are

0.012 mm and 0.19. Due to the fact that the frequencies of these pixels are equal we

expect the optimizations to return a similar crystal axis if the birefringence in QUaD

is similar to that of uniaxial crystals.

7.5.1 Displacements due to optimized crystal axes.

We implemented a ZPL macro that attempted to find an accurate value for any crystal

axis occurring in QUaD. This macro functioned as follows:

• Begin macro.
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• Set the birefringent element.

• Set the value of the extraordinary index.

• Trace a cone 600 rays from the centre of the detector horn onto “the sky”. This

means we trace the cone of rays onto the image plane formed by the paraxial

lens. The cone of rays represents an on-axis Gaussian beam propagating through

QUaD.

• Calculate the position, (xi,o, yi,o), on the sky of the ordinary refracted rays.

• Calculate the position, (xi,e, yi,e), on the sky of the extraordinary refracted rays.

• Calculate the separation of each corresponding pair of points ∆i.

• Calculate the slope of the line joining of each corresponding pair of points ∆s.

• Calculate the average displacement ∆i.

• Calculate the average slope ∆s.

• Let Xopt = ∆i

∆dist
.

• Let Yopt = ∆s

∆sl
.

• Return Xopt and Yopt.

• Optimize.

• Repeat as necessary.

When this macro is implemented Zemax will use a damped least squares optimization

to alter the (x, y, z) components of the crystal axes of a selected birefringent surface.

This optimization will continue until the values Xopt and Yopt converge as close as to

possible to unity. These optimizations take place over a range of extraordinary indexes

from 1.5 to 1.635 incrementing in values of 0.015.

This macro ran until the crystal axis that produced the lowest merit function at a

given extraordinary refractive index was found. A plot of the final merit functions

versus the extraordinary indexes are shown in Figure 7.19. The macro ran separately

and calculated a crystal axis for each of the mentioned pixels and then finally for all
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the pixels considered at once. In these plots the merit function is a measure of how

far both the returned values of Xopt and Yopt are from unity.
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Table 7.7: The optimized crystal axes for QUaD’s refractive elements.

First lens

Centre pixel (-0.004, 0.005, 0.98)

Pixel 1 (0.78, 0.72, 0.0)

Pixel 2 (0.0,0.0,1.0)

All pixels (0.0,0.0,0.99)

Second lens

Centre pixel (0.001,0.0,0.98)

Pixel 1 (0.004,0.0,0.99)

Pixel 2 (0.001,0.0004,0.98)

All pixels (0.0027,0.,0.987)

Window

Centre pixel (0.001,0.001,0.99)

Pixel 1 (0.0003, 0.0002,1.00)

Pixel 2 (0.0,0.01,0.92)

All pixels (0.0,0.0,0.99)

We can see from Figure 7.19 that the Zemax optimizations could not distinguish

which of the elements is most likely to be birefringent nor converge on an equal value

for the extraordinary index4. The analysis of the central pixel produced the lowest

merit functions for each optical element. Table 7.7 lists the optimized crystal axis

that Zemax calculated as causing the observed displacements. Although not identical

these results agree with our initial assumption that the majority of the crystal axes’

magnitudes aligned with QUaD’s prorogation axis. Slight variations of the axis x

and y components across a birefringent material may account for the variation of the

orientations of the displacements shown in Figure 7.6. It is also likely that the real

crystal axis varies across the optical element, giving us too many degrees of freedom

for the optimization.

The modeled displacements caused by these crystal axes optimized for all pixels are

shown in Figures 7.19. When we compare Figure 7.19 to Figure 7.6 we see that the

4As stated Zemax was simply not designed to treat optical devices as a black boxes and extrapolate

information about the device from user defined optimizations.
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optimized crystal axes do not exactly reproduce displacements observed in QUaD. The

extraordinary refractive index and the crystal axis for each component was set to the

values that gave the lowest merit function for the purple lines in Figure 7.19
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(a) First lens merit function.

(b) Second lens merit function.

(c) Window merit function.

Figure 7.18: Zemax merit function for optimized crystal axes.
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(a) First lens with 1.515 extraordinary refractive index.

(b) Second lens with 1.605 extraordinary refractive index.

(c) Window with 1.635 extraordinary refractive index.

Figure 7.19: Orthogonal beam displacements for optimized crystal axes.
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7.5.2 Results obtained by randomizing the crystal axis

The optimizations in the previous section showed that although mostly uniform the

crystal axis in a dielectric component is likely to have varied across the material. The

occurrence of non-uniformities in dielectric material that may cause various degrees

of birefringence throughout the material is consistent with any stresses or strains the

material may have undergone [134]. For a final analysis we have used Zemax to

generate displacements due to random crystal axes the optical window and the first

lens.

A final Zemax macro was written that ray-traced a chief ray from each pixel in QUaD’s

focal plane onto the sky. This macro generated a random crystal axis for every ray

traced through the telescope. The results are shown in Figure 7.20. Here we see that

despite the presence of a random crystal axis due to the fact that lens is a converging

optical device the displacements still maintain a profile that also converges towards the

propagation axis of QUaD. Meanwhile we can also see that due to the flatness of the

device the length of the displacements caused by the optical window remain relatively

constant over all pixels. Most importantly Figure 7.20 shows once again that if the

crystal axis varies across the material the length of the displacements generated by a

lens will increase as the incident rays move off-axis.

To summarize we have shown using Zemax optimizations that any crystal axis within

QUaD will most likely vary across the dielectric material. Also Figure 7.20 shows that

even if the crystal axis various throughout one of QUaD’s lenses the length of the

displacements of beams on the sky will increase as the beams move off-axis. Therefore

a varying crystal axis throughout one of QUaD’s lenses will lead to the displacements of

polarized beams shown in Figure 7.6. A varying crystal axis will account for the various

orientations of each of displacement while the curved surface of the lens will account

for the increase in displacements as the pixels move off-axis. We therefore conclude

that at least one of QUaD’s lenses was birefringent during operation. Such results

are somewhat unexpected as it was originally suspected by the QUaD collaboration

that the optical window was the most likely candidate for the cause of birefringence.

This was because in order to create polymer material robust enough to withstand

the differences in temperature between the cryostat and the external environment the
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(a) Birefringence in QUaD’s first lens. The extraordinary

index is 1.56.

(b) Birefringence in QUaD’s window. The extraordinary in-

dex is 1.53.

Figure 7.20: Displacements of rays due to birefringence in the optical window and

first lens. The crystal axis for rays from each separate pixel have been

randomized.

window underwent a number of compressions during construction, and would likely be

under strain.

7.6 Birefringence in QUBIC lens combiners.

As discussed in Chapter 4 it we are now considering lens combiners for QUBIC2.0. An

investigation of the QUaD system has suggested that birefringent lenses with greater
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radii of curvatures will induce smaller displacements5. Also it has been shown that

the narrower the birefringent surfaces the smaller displacements between ordinary and

extraordinary rays. If we wish to reduce any errors due to birefringence we should

attempt to avoid the implementation of thick lenses with small radii of curvature in

QUBIC2.0. As such we will conclude this chapter by representing the results of a very

basic tolerance analysis of birefringence occurring in one of the elements in three of

the lens combiners discussed in Chapter 4. We will use these lenses to investigate two

basic assumptions regarding possible birefringence in QUBIC.

We have investigated the displacement on the sky of 600 rays propagating from the

centre of the bolometer detector array. Like QUaD we have implemented a 3437.75

mm focal length paraxial lens to simulate the location of these rays on the sky. Using

Zemax we ray-traced a cone of 600 ordinary and extraordinary rays through three of

the lens systems discussed in Chapter 4. The rays were arranged to simulate a 14◦

fwhm Gaussian beam and the analysis was carried out at 150 GHz.

We have assumed that the HDPE lens nearest the back-to-back array in the symmetric

Cooke triplet lens and the symmetric single lens systems are birefringent. We set

components of the crystal axis to (0.75,0.5,0.433) in all systems in accordance with

[136]. The extraordinary index was set to 1.53 while the normal index of all HDPE

elements was 1.52. The average displacement between the ordinary and extraordinary

rays are shown in Table 7.8 along with the radius of curvature of the birefringent lens

surface and the thickness of the birefringent lens.

Table 7.8: Displacements caused by birefringence in telecentric lens combiners.

Lens Displacement Radius of Thickness

(mm) curvature (mm) (mm)

Symmetric Cooke triplet 1.25 1319.28 20

Symmetric capped double Gauss 6.9 240 100

Symmetric single lens 5.15 1838.46 100

The results of Table 7.8 agree with the assumptions we arrived at from examining

possible birefringence in QUaD. The symmetric Cooke triplet lens is least susceptible

to large displacements caused by birefringence due to the narrowness of the lenses

5We remind ourselves that the radius of curvature is the reciprocal of the curvature.
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and the large radii of curvature. This is highly advantageous because in Chapter 4

we showed that this system is also the best telecentric combiner and therefore should

produce the best quality window function for QUBIC2.0 As we can see when examining

the symmetric capped double Gauss lens the combination of a small radius of curvature

combined with a thick lens leads to large displacements. This is precisely the behaviour

we predicted upon the examination of the QUaD optical system.

Finally we have plotted the displacements of 30 rays on the patch of sky seen by various

pixels. These rays have been displaced due to birefringence in one of the elements in

the above QUBIC lens combiners. The birefringent conditions are equal to those used

to calculate the values in Table 7.8. The nine pixels were located at the coordinates

on the QUBIC detector plane shown in Table 7.9. The displacements on the sky are

shown in Figures 7.21 - 7.23. Here all normally refracted rays are shown in blue while

the extraordinary refracted rays are shown in green. As can be seen the displacements

caused by the Cooke triplet are marginal while those caused by the double Gauss lens

are almost as large as the beam itself.

Table 7.9: Coordinates of pixels in QUBIC detector plane.

(5,-5) (5,0) (5,5)

(-5,0) (0,0) (0,0)

(-5,-5) (0,-5) (5,-5)

7.7 Conclusions

We have arrived at a rather important conclusion at the end of this thesis. In several

CMB polarimeters displacements between polarized beams have been recorded on the

instruments focal plane6. It has been suggested that birefringence is a probable cause

of these errors.

In the above chapter we used Zemax to model the displacement of rays on the sky

due to birefringence in QUaD’s dielectric components. We were able to create results

that although not identical to those seen in QUaD do suggest that birefringence was

6Very recently the BICEP family of experiments has also reported such errors [140].
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Figure 7.21: Displacement of rays on the sky from QUBIC caused by birefringence in

the symmetric Cooke triplet lens.

a likely cause of the recorded displacements. We have used ordinary and extraordin-

ary indexes from the literature, together with reasonable crystal axes directions to

show that birefringence in one of QUaD’s lenses was a likely cause of the recorded

displacements.

Also we have performed a brief birefringent tolerance analysis of the lens systems

designed for QUBIC2.0. We confirmed that the use of narrow lenses with large radii of

curvatures will assist in reducing any possible birefringence in the lenses themselves.

We recall that limitations in our current abilities to multiplex bolometer detectors is

severely reducing the size of any filled focal plane for CMB experiments. This in turn

restricts the focal length of any implemented focusing system. Due to the limitations

of reflecting systems at low focal lengths it is increasingly likely that more and more

future CMB missions will implement lenses to focus an incident signal directly onto a

detector array or at least help reduce the size of incident beams. Already a number

of missions are reporting beam squint errors in currently implemented lens systems.

As we have shown in the context of QUaD birefringence is a probable cause of these
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Figure 7.22: Displacement of rays on the sky from QUBIC caused by birefringence in

the symmetric capped double Gauss lens.

errors. Fortunately our analysis of QUaD has enabled us to present ways of reducing

such errors in future CMB missions by implementing thin lenses with large radii of

curvatures.
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Figure 7.23: Displacement of rays on the sky from QUBIC caused by birefringence in

the symmetric single lens.
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8 Conclusions

In this thesis we have discussed the theory of the origins of the CMB, its temperature

anisotropies and its polarization anisotropy modes. We have explained how observation

of CMB B-mode polarization will help verify our current models of inflation and we

have introduced QUBIC, a CMB telescope currently in design that will use a novel

technique called bolometric interferometry to measure B-modes. We then discussed

the evolution of QUBIC, an instrument that was originally intended to measure the

visibilities of the Q and U components of CMB polarization, to QUBIC2.0 which will

observe the Q and U power spectrum directly at discrete multipole intervals.

We presented in detail the author’s direct contribution to both the QUBIC and

QUBIC2.0 experiments: the design of a Fizeau quasi-optical combiner. The per-

formance criteria of QUBIC and QUBIC2.0 placed extreme design specifications on

the optical combiners for both instruments. Essentially, we need to design a CMB

telescope for a 20× 20 array of horns that is diffraction limited up to a 14◦ FOV with

a focal length of 300 mm.

Of the dual reflector designs investigated the CATR was found to be the best per-

forming, however geometrical restrictions meant that we cannot design one suitable for

QUBIC. Of the possibilities for a short focal length design, a compensated Gregorian

(CG) design was found which did fit the geometrical requirements of QUBIC and al-

though it did produce aberrated fringes, these were found to reduce the sensitivity of

the instrument by less than 10%; a performance considered acceptable by the collabor-

ation. Fully refracting designs were also investigated but manufacturing and modeling

considerations mean that as yet they are not favored for QUBIC. One particular draw-

back of lenses, the possibility of birefringence, was investigated using data from the

QUaD experiment and it was found that birefringence was a candidate for the cause

of the beam squint seen in the experiment.
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In October 2010 a technical description of QUBIC was published in the ESO journal of

Astronomy and Astrophysics [122]1 Based on this initial whitepaper the QUBIC col-

laboration received funding and support from the French National Research Agency

(ANR) in 20112. In the whitepaper the collaboration demonstrated that the CMB

power spectrum could be observed by a bolometric interferometer with sufficient sens-

itivity to detect B-modes. The optical combiner used in the whitepaper simulations

was the 300 mm focal length compensated Gregorian designed by the author3.

Since the completion of this thesis there has been additional specifications placed on the

QUBIC2.0 beam combiner. In particular the possibility of using bare bolometers (i.e

bolometers not fed by directional horn antennas) has raised concerns about stray light

entering the instrument. This has led to the collaboration considering the placement of

a spatial filter (Lyot stop) in between the back-to-back horn array and the bolometer

detectors. The most suitable position for such an aperture is the focal plane of the

dual reflector combiner. As such QUBIC2.0 may now also require re-imaging optics

to focus the beams traversing the Lyot stop onto the detector plane. The design and

modeling of these re-imaging optics is currently underway at NUI Maynooth.

The first module of QUBIC2.0 is expected to undergo construction at the Franco-

Italian Dome C Antarctic station in early 2014. The module will most likely use

400 back-to-back horns to observe the CMB at 150 GHz. Also a two-stage optical

combiner, consisting of an off-axis dual reflector followed by re-imaging optics, will

focus the sky signal from the back-to-back horn array onto the bolometer detectors.

If successful the QUBIC team is hoping to report the definitive acquisition of CMB

B-mode polarization within the first three season of observations.

1ESO, the European Southern Observatory, is an intergovernmental astronomy organization in

Europe. It builds and operates some of the world’s most advanced ground-based astronomical

telescopes. For more information visit http://www.eso.org/public/.
2The French National Research Agency (ANR) is a research funding organization estab-

lished by the French government in 2005. For more information visit http://www.

agence-nationale-recherche.fr/Intl.
3This optical combiner was discussed in detail in chapter 4.
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Zemax prescription data for the optimized telecentric

dual reflectors

SYSTEM OPTIMIZED FROM COMPENSATED GREGORIAN (CG) COMBINER.

SURFACE DATA SUMMARY:

Surf Type Radius Thickness Glass Diameter Conic

OBJ STANDARD Infinity 350 300 0

STO BICONICZ -2289.206 0 MIRROR 600 -1

2 COORDBRK - 0 - -

3 STANDARD Infinity -700 20 0

4 STANDARD Infinity 0 20 0

5 COORDBRK - 0 - -

6 BICONICZ 2002.531 543.0049 MIRROR 600 -1

7 COORDBRK - 0 - -

IMA STANDARD Infinity 240 0

SURFACE DATA DETAIL:

Surface OBJ : STANDARD

Surface STO : BICONICZ

Mirror Substrate : Curved, Thickness = 1.20000E+001

Tilt/Decenter : Decenter X Decenter Y Tilt X Tilt Y

Before surface : 0 0 36 0

Extrapolate? : 0

X Radius : -1595.5646

X Conic : -1

Max Zern Terms : 0

Norm Radius : 1

Term on X to 1: 0

Term on X to 2: 0.0002451155

Term on X to 3: 0

Term on X to 4: 8.35895e-012

Term on X to 5: 0

Term on X to 6: 2.409054e-016

Term on Y to 1: 0

Term on Y to 2: 0.0001831607

Term on Y to 3: 0

Term on Y to 4: -2.571919e-010

Term on Y to 5: 0

Term on Y to 6: -5.553662e-016

Aperture : Floating Aperture

Maximum Radius : 300

Surface 2 : COORDBRK
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Coordinate Return Solve: To Surface -1

Decenter X : 0

Decenter Y : 0

Tilt About X : 36

Tilt About Y : 0

Tilt About Z : 0

Order : Decenter then tilt

Surface 3 : STANDARD

Surface 4 : STANDARD

Surface 5 : COORDBRK

Decenter X : 0

Decenter Y : 0

Tilt About X : -20

Tilt About Y : 0

Tilt About Z : 0

Order : Decenter then tilt

Surface 6 : BICONICZ

Mirror Substrate : Curved, Thickness = 1.20000E+001

Extrapolate? : 0

X Radius : 1769.8581

X Conic : -1

Max Zern Terms : 0

Norm Radius : 1

Term on X to 1: 0

Term on X to 2: 0.0001053299

Term on X to 3: 0

Term on X to 4: 7.767219e-011

Term on X to 5: 0

Term on X to 6: 4.723829e-017

Term on X to 7: 0

Term on Y to 1: 0

Term on Y to 2: 8.706052e-005

Term on Y to 3: 0

Term on Y to 4: -3.751024e-011

Term on Y to 5: 0

Term on Y to 6: -7.555746e-016

Aperture : Floating Aperture

Maximum Radius : 300

Surface 7 : COORDBRK

Decenter X : 0

Decenter Y : 197.63762

Tilt About X : -20

Tilt About Y : 0

Tilt About Z : 0

Order : Decenter then tilt

Surface IMA : STANDARD

SYSTEM OPTIMIZED FROM A BACK-FED COMBINER.
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SURFACE DATA SUMMARY:

Surf Type Radius Thickness Glass Diameter Conic

OBJ STANDARD Infinity 350 300 0

STO BICONICZ -2376.513 0 MIRROR 600 -1

2 COORDBRK - 0 - -

3 STANDARD Infinity -450 20 0

4 STANDARD Infinity 0 20 0

5 COORDBRK - 0 - -

6 BICONICZ 2631.134 386.5111 MIRROR 600 -1

7 COORDBRK - 0 - -

IMA STANDARD Infinity 240 0

SURFACE DATA DETAIL:

Surface OBJ : STANDARD

Surface STO : BICONICZ

Mirror Substrate : Curved, Thickness = 1.20000E+001

Tilt/Decenter : Decenter X Decenter Y Tilt X Tilt Y

Before surface : 0 0 30 0

Extrapolate? : 0

X Radius : -1831.9728

X Conic : -1

Max Zern Terms : 0

Norm Radius : 1

Term on X to 1: 0

Term on X to 2: 5.5110845e-005

Term on X to 3: 0

Term on X to 4: -1.8999799e-010

Term on X to 5: 0

Term on X to 6: 5.3131916e-016

Term on X to 7: 0

Term on X to 8: 1.216302e-019

Term on X to 9: 0

Term on X to 10: -1.5095156e-024

Term on X to 11: 0

Term on X to 12: -1.4558443e-030

Term on X to 13: 0

Term on X to 14: 0

Term on X to 15: 0

Term on X to 16: 0

Term on Y to 1: 0

Term on Y to 2: 5.7387984e-005

Term on Y to 3: 0

Term on Y to 4: -1.6669951e-010

Term on Y to 5: 0

Term on Y to 6: -2.058256e-015

Term on Y to 7: 0

Term on Y to 8: 1.2290404e-019
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Term on Y to 9: 0

Term on Y to 10: -1.3400029e-024

Term on Y to 11: 0

Term on Y to 12: -1.3136369e-033

Term on Y to 13: 0

Term on Y to 14: 0

Term on Y to 15: 0

Term on Y to 16: 0

Aperture : Floating Aperture

Maximum Radius : 300

Surface 2 : COORDBRK

Coordinate Return Solve: To Surface -1

Decenter X : 0

Decenter Y : 0

Tilt About X : 30

Tilt About Y : 0

Tilt About Z : 0

Order : Decenter then tilt

Surface 3 : STANDARD

Surface 4 : STANDARD

Surface 5 : COORDBRK

Decenter X : 0

Decenter Y : 0

Tilt About X : -30

Tilt About Y : 0

Tilt About Z : 0

Order : Decenter then tilt

Surface 6 : BICONICZ

Mirror Substrate : Curved, Thickness = 1.20000E+001

Extrapolate? : 0

X Radius : 1987.5233

X Conic : -1

Max Zern Terms : 0

Norm Radius : 1

Term on X to 1: 0

Term on X to 2: 5.3667053e-005

Term on X to 3: 0

Term on X to 4: -8.978933e-011

Term on X to 5: 0

Term on X to 6: -6.578054e-016

Term on X to 7: 0

Term on X to 8: 1.6716386e-020

Term on X to 9: 0

Term on X to 10: 4.1273453e-025

Term on X to 11: 0

Term on X to 12: -1.440774e-030

Term on X to 13: 0

Term on X to 14: 0

Term on X to 15: 0

Term on X to 16: 0

Term on Y to 1: 0
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Term on Y to 2: 2.44153e-005

Term on Y to 3: 0

Term on Y to 4: 8.9199333e-010

Term on Y to 5: 0

Term on Y to 6: -1.2910979e-014

Term on Y to 7: 0

Term on Y to 8: 4.1750774e-020

Term on Y to 9: 0

Term on Y to 10: -7.1821325e-026

Term on Y to 11: 0

Term on Y to 12: 2.049629e-033

Term on Y to 13: 0

Term on Y to 14: 0

Term on Y to 15: 0

Term on Y to 16: 0

Aperture : Floating Aperture

Maximum Radius : 300

Surface 7 : COORDBRK

Decenter X : 0

Decenter Y : 223.15231

Tilt About X : -30

Tilt About Y : 0

Tilt About Z : 0

Order : Decenter then tilt

Surface IMA : STANDARD

OPTIMIZED CROSSED COMBINER

SURFACE DATA SUMMARY:

Surf Type Radius Thickness Glass Diameter Conic

OBJ STANDARD Infinity 500 300 0

STO BICONICZ -3297.543 0 MIRROR 800 -1

2 COORDBRK - 0 - -

3 STANDARD Infinity -350 20 0

4 STANDARD Infinity 0 20 0

5 COORDBRK - 0 - -

6 BICONICZ 2192.367 550 MIRROR 800 -1

7 COORDBRK - 0 - -

IMA STANDARD Infinity 240 0

SURFACE DATA DETAIL:

Surface OBJ : STANDARD

Surface STO : BICONICZ

Mirror Substrate : Curved, Thickness = 1.60000E+001

Tilt/Decenter : Decenter X Decenter Y Tilt X Tilt Y
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Before surface : 0 0 30 0

Extrapolate? : 0

X Radius : -2393.7191

X Conic : -1

Max Zern Terms : 0

Norm Radius : 1

Term on X to 1: 0

Term on X to 2: 9.8169307e-005

Term on X to 3: 0

Term on X to 4: -2.6859738e-011

Term on X to 5: 0

Term on X to 6: 1.9932569e-015

Term on Y to 1: 0

Term on Y to 2: 8.5093836e-005

Term on Y to 3: 0

Term on Y to 4: -2.1178692e-010

Term on Y to 5: 0

Term on Y to 6: 5.8547372e-015

Aperture : Floating Aperture

Maximum Radius : 400

Surface 2 : COORDBRK

Coordinate Return Solve: To Surface -1

Decenter X : 0

Decenter Y : 0

Tilt About X : 30

Tilt About Y : 0

Tilt About Z : 0

Order : Decenter then tilt

Surface 3 : STANDARD

Surface 4 : STANDARD

Surface 5 : COORDBRK

Decenter X : 0

Decenter Y : 0

Tilt About X : 21

Tilt About Y : 0

Tilt About Z : 0

Order : Decenter then tilt

Surface 6 : BICONICZ

Mirror Substrate : Curved, Thickness = 1.60000E+001

Extrapolate? : 0

X Radius : 1932.8741

X Conic : -1

Max Zern Terms : 0

Norm Radius : 1

Term on X to 1: 0

Term on X to 2: 0.00010882281

Term on X to 3: 0

Term on X to 4: -1.2010784e-009

Term on X to 5: 0

Term on X to 6: 1.0445126e-014
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Term on Y to 1: 0

Term on Y to 2: 8.0796807e-005

Term on Y to 3: 0

Term on Y to 4: -1.8052189e-010

Term on Y to 5: 0

Term on Y to 6: 4.7998009e-015

Aperture : Floating Aperture

Maximum Radius : 400

Surface 7 : COORDBRK

Decenter X : 0

Decenter Y : -211.12522

Tilt About X : 21

Tilt About Y : 0

Tilt About Z : 0

Order : Decenter then tilt

Surface IMA : STANDARD

OPTIMIZED OFF-AXIS PARABOLOID (OP)

SURFACE DATA SUMMARY:

Surf Type Radius Thickness Glass Diameter Conic

OBJ STANDARD Infinity 375 240 0

STO BICONICZ -530.8796 -265.4398 MIRROR 1000 -0.133496

2 COORDBRK - 53.74271 - -

IMA STANDARD Infinity 150 0

SURFACE DATA DETAIL:

Surface OBJ : STANDARD

Surface STO : BICONICZ

Mirror Substrate : Curved, Thickness = 2.00000E+001

Tilt/Decenter : Decenter X Decenter Y Tilt X Tilt Y

Before surface : 0 260 0 0

Extrapolate? : 0

X Radius : -523.88252

X Conic : -0.65752244

Max Zern Terms : 0

Norm Radius : 1

Term on X to 1: 0

Term on X to 2: 5.5531721e-005

Term on X to 3: 0

Term on X to 4: -7.5994153e-009

Term on X to 5: 0

Term on X to 6: 2.7045578e-013

Term on X to 7: 0

Term on X to 8: -3.4910281e-018

Term on X to 1: 0
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Term on Y to 2: -1.7758143e-005

Term on Y to 3: 0

Term on Y to 4: -2.7772954e-010

Term on Y to 5: 0

Term on Y to 6: 8.791501e-015

Term on Y to 7: 0

Term on Y to 8: -1.8758259e-020

Aperture : Floating Aperture

Maximum Radius : 500

Surface 2 : COORDBRK

Decenter X : 0

Decenter Y : 30.188475

Tilt About X : 55.704183

Tilt About Y : 0

Tilt About Z : 0

Order : Decenter then tilt

Surface IMA : STANDARD

COATING DEFINITIONS:

Zemax prescription data for the optimized telecentric

lens combiners

SINGLE SYMMETRIC LENS SYSTEM.

SURFACE DATA SUMMARY:

Surf Type Radius Thickness Glass Diameter Conic

OBJ STANDARD Infinity 135.8488 240 0

STO STANDARD 596.8197 100 UHMW_HDPE 400 -1

2 STANDARD -389.4433 164.1425 400 -1

3 STANDARD 389.4433 100 UHMW_HDPE 400 -1

4 STANDARD -596.8197 100.173 400 -1

IMA STANDARD Infinity 154.4689 0

DOUBLE SYMMETRIC LENS SYSTEM.

SURFACE DATA SUMMARY:
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Surf Type Radius Thickness Glass Diameter Conic

OBJ STANDARD Infinity 102.8481 240 0

STO STANDARD -2848.622 60 UHMW_HDPE 400 -1

2 STANDARD -455.6367 20 400 -1

3 STANDARD 362.8368 60 UHMW_HDPE 400 -1

4 STANDARD 2216.36 120.939 400 -1

5 STANDARD -2216.36 60 UHMW_HDPE 400 -1

6 STANDARD -362.8368 20 400 -1

7 STANDARD 455.6367 60 UHMW_HDPE 400 -1

8 STANDARD 2848.622 97.02038 400 -1

IMA STANDARD Infinity 156.1977 0

SYMMETRIC FRAUNHOFER FLINT LEADING CORRECTED DOUBLET LENS SYSTEM.

SURFACE DATA SUMMARY:

Surf Type Radius Thickness Glass Diameter Conic

OBJ STANDARD Infinity Infinity 0 0

STO STANDARD Infinity 108.3046 240 0

2 STANDARD 362.1936 50 UHMW_HDPE 440 -5.251243

3 STANDARD 801.2649 20 440 -1

4 STANDARD 801.2649 100 UHMW_HDPE 440 -1

5 STANDARD -687.4229 33.65379 440 1.983749

6 STANDARD 687.4229 100 UHMW_HDPE 440 1.983749

7 STANDARD -801.2649 20 440 -1

8 STANDARD -801.2649 50 UHMW_HDPE 440 -1

9 STANDARD -362.1936 134.1285 440 -5.251243

10 STANDARD Infinity -1.312901 151.8245 0

IMA STANDARD Infinity 150.67 0

HIGHER ORDER SYMMETRIC TELECENTRIC DOUBLET LENS SYSTEM.

SURFACE DATA SUMMARY:

Surf Type Radius Thickness Glass Diameter Conic Comment

OBJ STANDARD Infinity 102.8481 240 0

STO EVENASPH -2848.622 60 UHMW_HDPE 400 -1

2 EVENASPH -455.6367 20 400 -1

3 EVENASPH 362.8368 60 UHMW_HDPE 400 -1

4 EVENASPH 2216.36 120.939 400 -1

5 EVENASPH -2216.36 60 UHMW_HDPE 400 -1

6 EVENASPH -362.8368 20 400 -1
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7 EVENASPH 455.6367 60 UHMW_HDPE 400 -1

8 EVENASPH 2848.622 97.02038 400 -1

9 STANDARD Infinity 500 152.2321 0

IMA STANDARD Infinity 546.9272 0

SURFACE DATA DETAIL:

Surface OBJ : STANDARD

Surface STO : EVENASPH

Coeff on r 2 : 0.00036499645

Coeff on r 4 : -1.0874996e-008

Coeff on r 6 : -1.1633584e-013

Coeff on r 8 : 0

Coeff on r 10 : 0

Coeff on r 12 : 0

Coeff on r 14 : 0

Coeff on r 16 : 0

Aperture : Floating Aperture

Maximum Radius : 200

Surface 2 : EVENASPH

Coeff on r 2 : 0.00030182625

Coeff on r 4 : -6.4506699e-009

Coeff on r 6 : -2.6600076e-013

Coeff on r 8 : 0

Coeff on r 10 : 0

Coeff on r 12 : 0

Coeff on r 14 : 0

Coeff on r 16 : 0

Aperture : Floating Aperture

Maximum Radius : 200

Surface 3 : EVENASPH

Coeff on r 2 : 9.3148438e-005

Coeff on r 4 : -1.0409049e-008

Coeff on r 6 : 3.0169982e-014

Coeff on r 8 : 0

Coeff on r 10 : 0

Coeff on r 12 : 0

Coeff on r 14 : 0

Coeff on r 16 : 0

Aperture : Floating Aperture

Maximum Radius : 200

Surface 4 : EVENASPH

Coeff on r 2 : 5.107153e-005

Coeff on r 4 : -8.1248847e-009

Coeff on r 6 : 7.48733e-014

Coeff on r 8 : 0

Coeff on r 10 : 0

Coeff on r 12 : 0

Coeff on r 14 : 0

Coeff on r 16 : 0

Aperture : Floating Aperture
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Maximum Radius : 200

Surface 5 : EVENASPH

Coeff on r 2 : -5.107153e-005

Coeff on r 4 : 8.1248847e-009

Coeff on r 6 : -7.48733e-014

Coeff on r 8 : 0

Coeff on r 10 : 0

Coeff on r 12 : 0

Coeff on r 14 : 0

Coeff on r 16 : 0

Aperture : Floating Aperture

Maximum Radius : 200

Surface 6 : EVENASPH

Coeff on r 2 : -9.3148438e-005

Coeff on r 4 : 1.0409049e-008

Coeff on r 6 : -3.0169982e-014

Coeff on r 8 : 0

Coeff on r 10 : 0

Coeff on r 12 : 0

Coeff on r 14 : 0

Coeff on r 16 : 0

Aperture : Floating Aperture

Maximum Radius : 200

Surface 7 : EVENASPH

Coeff on r 2 : -0.00030182625

Coeff on r 4 : 6.4506699e-009

Coeff on r 6 : 2.6600076e-013

Coeff on r 8 : 0

Coeff on r 10 : 0

Coeff on r 12 : 0

Coeff on r 14 : 0

Coeff on r 16 : 0

Aperture : Floating Aperture

Maximum Radius : 200

Surface 8 : EVENASPH

Coeff on r 2 : -0.00036499645

Coeff on r 4 : 1.0874996e-008

Coeff on r 6 : 1.1633584e-013

Coeff on r 8 : 0

Coeff on r 10 : 0

Coeff on r 12 : 0

Coeff on r 14 : 0

Coeff on r 16 : 0

Aperture : Floating Aperture

Maximum Radius : 200

Surface 9 : STANDARD

Surface IMA : STANDARD
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CAPPED SYMMETRIC TELECENTRIC GAUSSIAN LENS SYSTEM.

SURFACE DATA SUMMARY:

Surf Type Radius Thickness Glass Diameter Conic Comment

OBJ STANDARD Infinity 95.24772 240 0

STO STANDARD -240.214 100 UHMW_HDPE 320 -1

2 STANDARD -297.949 20 360 -1

3 STANDARD 682.9649 60 QUARTZS 440 -1

4 STANDARD -987.42 60 440 -1

5 STANDARD -283.4811 40 UHMW_HDPE 440 -1

6 STANDARD -1019.574 20 440 -1

7 STANDARD 1019.574 40 UHMW_HDPE 440 -1

8 STANDARD 283.4811 60 440 -1

9 STANDARD 987.42 60 QUARTZS 440 -1

10 STANDARD -682.9649 20 440 -1

11 STANDARD 297.949 100 UHMW_HDPE 320 -1

12 STANDARD 240.214 100.0643 280 -1

13 STANDARD Infinity -4.193809 155.9642 0

14 STANDARD Infinity 500 152.3626 0

IMA STANDARD Infinity 581.7496 0

A COOKE TRIPLET LENS SYSTEM.

SURFACE DATA SUMMARY:

Surf Type Radius Thickness Glass Diameter Conic Comment

OBJ STANDARD Infinity 100.5509 240 0

STO STANDARD 342.9055 40 QUARTZS 340 -1

2 STANDARD 574.8623 40.55782 320 -1

3 STANDARD -1319.28 20 UHMW_HDPE 320 -1

4 STANDARD 1319.28 40.55782 340 -1

5 STANDARD -574.8623 40 QUARTZS 340 -1

6 STANDARD -342.9055 37.62469 340 -1

7 STANDARD 342.9055 40 QUARTZS 320 -1

8 STANDARD 574.8623 40.55782 320 -1

9 STANDARD -1319.28 20 UHMW_HDPE 320 -1

10 STANDARD 1319.28 40.55782 320 -1

11 STANDARD -574.8623 40 QUARTZS 320 -1

12 STANDARD -342.9055 102.4751 320 -1

13 STANDARD Infinity -2.215253 156.4355 0

IMA STANDARD Infinity 154.5926 0
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SYMMETRIC DOUBLE CONVEX LENS ADJUSTED FOR FIELD CURVATURE.

SURFACE DATA SUMMARY:

Surf Type Radius Thickness Glass Diameter Conic Comment

OBJ STANDARD Infinity Infinity 0 0

STO STANDARD Infinity 96.87538 240 0

2 STANDARD 1838.459 100 UHMW_HDPE 400 -1

3 STANDARD -1742.845 24.3122 400 -1

4 STANDARD 1838.459 100 UHMW_HDPE 400 -1

5 STANDARD -450.993 37.89073 400 -1

6 STANDARD 450.993 100 UHMW_HDPE 400 -1

7 STANDARD -1838.459 24.3122 400 -1

8 STANDARD 1742.845 100 UHMW_HDPE 400 -1

9 STANDARD -1838.459 90.42844 400 -1

IMA STANDARD 470.6007 200 0

A COOKE TRIPLET OPTIMIZED TO PRODUCE IMAGES SUFFERING FROM LOW LEVELS OF ABERRATIONS.

SURFACE DATA SUMMARY:

Surf Type Radius Thickness Glass Diameter Conic Comment

OBJ STANDARD Infinity 150 240 0

STO STANDARD 319.154 40 QUARTZS 360 -1

2 STANDARD 504.2509 49.85229 360 -1

3 STANDARD -2350.241 20 UHMW_HDPE 360 -1

4 STANDARD 2350.241 49.85229 360 -1

5 STANDARD -504.2509 40 QUARTZS 360 -1

6 STANDARD -319.154 55.29865 360 -1

7 STANDARD 319.154 40 QUARTZS 300 -1

8 STANDARD 504.2509 49.85229 300 -1

9 STANDARD -2350.241 20 UHMW_HDPE 300 -1

10 STANDARD 2350.241 49.85229 300 -1

11 STANDARD -504.2509 40 QUARTZS 300 -1

12 STANDARD -319.154 45.44747 300 -1

13 STANDARD Infinity -1.705322 150.9823 0

14 STANDARD Infinity 500 149.8883 0

IMA STANDARD Infinity 470.6653 0
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