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Abstract

We study the critical behaviour of matrix models with built-

in SU(2) geometry by using Hybrid Monte Carlo (HMC) tech-

niques.

The first system under study is a matrix regularization of the

φ4 theory defined on the sphere. We develop a HMC algorithm

together with an SU(2) gauge-fixing procedure in order to study

the model. We extract the phase diagram of the model and give

an estimation for the triple point for a system constructed of

matrices of size N = 7. Our numerical results also suggest the

existence of stripe phases- phases in which modes with higher

momentum l have non-negligible contribution.

The second system under study is a matrix model realized via

competing Yang-Mills and Myers terms. In its low-temperature

phase the system has geometrical phase with SO(3) symmetry:

the ground state is represented by the su(2) generators. This

geometry disappears in the high-temperature phase the system.

Our results suggest that there are three main types of fluctua-

tions in the system close to the transition: fluctuations of the

fuzzy sphere, fluctuations which drive the system between the

two phases, and fluctuations of the high-temperature regime.

The fluctuations of the fuzzy sphere show the properties of a

second order phase transition. We establish the validity of the

finite size scaling ansatz in that regime. The fluctuations which

bring the system between the phases show the properties of a

first order transition.

vi



In the Appendix we provide in some detail the idea behind

the HMC approach. We give some practical guidelines if one is to

implement such an algorithm to study matrix models. We com-

ment on the main sources for the phenomenon of autocorrelation

time. As a final topic we present the basics of the OpenCL lan-

guage which we used to port some of our algorithms for parallel

computing architectures such as GPU ’s.
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Chapter 1.

Introduction

Ever since the early days of quantum field theory (QFT) there have been prob-

lems associated with the ultra-violet (or short distance) divergences. Various

strategies to overcome these problems have been devised. The most successful of

which for practical purposes is the renormalization group approach. If a theory

is re-normalizable (for example QED) then the divergences of the integrals can

be absorbed into the parameters of the theory and the amplitude of the fields.

This strategy produces numbers which are in very good agreement with the ex-

periment. A physical picture that motivates the renormalization group approach

by K. Wilson can be found in [83].

Almost parallel with the renormalization procedure approach there have been

attempts to solve the problem of divergences on a fundamental level which in-

volves the properties of the underlying space. There are plausible arguments

that for distances smaller than a characteristic length the notion of point should

not be well defined. This idea is borrowed from the original quantum mechanics

where we have non-vanishing commutation relation between the coordinate and

momentum operators (the usual Heisenberg uncertainty relation)

[xi, pj] = i~δij. (1.1)

The non-vanishing commutator between x and p implies that the phase space

of the system does not have well defined points but rather cells with area ∝ ~.

Snyder [75] proposed that the same relations could be used on the coordinates of
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Introduction

a theory,

[xµ, xν ] = iθµν , (1.2)

where θµν is a real anti-symmetric matrix. That is one step further from the

case of QM. In this setup we can not measure both coordinates of a particle

simultaneously.1 If we represent the coordinates in a theory with non-commuting

objects according to (1.2) the configuration space of the theory does not possess

points anymore, but only cells with area ∝ θij. The spaces constructed that way

are also known as non-commutative Moyal spaces. Another point of view on this

idea is replacing the algebra of functions on the manifold (which is normally a

infinite dimensional commutative) with a non-commutative but still infinite one.

Another class of non-commutative spaces are the fuzzy spaces. They are real-

ized if we replace the infinite algebra on a given manifold by a finite algebra. As

they are of special interest of us, we discuss their construction in more detail in

§1.1.

In the context of this approach the question that naturally arises is what

are the properties of the objects that replace the ones on the usual manifolds.

To answer this an entirely new mathematical discipline, called Non-commutative

geometry, was created as a generalization of differential geometry. Rigorous treat-

ments of this subject is provided by [22, 52, 23]. A central problem in the theory of

non-commutative geometry is the construction of non-commutative counterparts

of already known spaces.

1.1. Fuzzy spaces

Following Connes [22] and Fröhlich and Krzysztof [36] a Riemann manifold M
can be completely specified together with its geometry (or metric) by the so called

1In fact in QM in the presence of a magnetic field the commutator between two components of
the momentum is non-zero which renders simultaneous measurement of its both components
impossible.

2
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spectral triple,

{A,H, D}. (1.3)

In the above H is a Hilbert space of state vectors. A is the commutative algebra

of smooth functions that are defined on M. The algebra A can be used to recover

the points of the manifold. And finally D is a bounded Dirac-type operator which

can be used to determine the metric of M. Instead of the Dirac operator one

can use Laplace operator ∆. The difference is that the Dirac operator carries

additional information about the spinor structure on the manifold.

One can use the above as a starting point for a construction of non-commutative

(or fuzzy) manifold MN . The first step is to approximate the infinite-dimensional

algebra A by some finite algebra AN . In this approximation we can not resolve

each point on the manifold but only finite sets of patches on it, hence we get a

fuzzy space. In order to keep the construction (1.3) consistent with the change of

the algebra we need to find corresponding approximations for H and D as well.

This way we arrive at a whole family of fuzzy approximations of M

{AN ,HN , DN}. (1.4)

This family is parametrized by the dimension of the algebra N and we expect

in the formal limit N → ∞ to be able to recover the initial smooth manifold

M. Very often AN is implemented as a matrix algebra MatN(F) over some field

F. This gives us the possibility to translate many of the problems from non-

commutative geometry to the language of matrix models. In the present work we

would be mostly interested in fuzzy spaces realized via matrix algebras over C.

It is important that the dimension of HN is such that it carries a faithful repre-

sentation of D. If the dim(HN) is too small then the only possible representation

on D on HN is the trivial one. That way the information about the geometry of

the manifold which is encoded in D is lost. A typical example of this situation

is the attempt to represent a manifold with SU(3) isometry using Mat2(C). The

theory behind the construction of representations of matrix Lie algebras and their

dimensions can be found in [38, 37, 40]. Another important and very restrictive

requirement is that the space being approximated is compact.

3
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The above program has been carried out successfully for numerous types of

spaces. Without any claim for completeness here we mention some of the di-

rections of research. The simplest non-trivial example of a fuzzy manifold, and

perhaps one of the most celebrated, is the fuzzy sphere S2
F
2 constructed by Madore

[54]. In the literature also a deformed su(2) fuzzy sphere [42] can be found. A

supersymmetric version is described in [43]. In [30] a fuzzy S1
F has been con-

structed. The construction starts from S2
F . Then the the non-circular modes are

assigned to large eigenvalues. This effectively removes them from the spectrum.

The construction of S1
F further makes it possible to construct fuzzy tori, by taking

the product of different copies of S1
F . General fuzzy SNF and CP

N
F have also been

considered in [44, 1, 10, 59].

1.2. Matrix models and field theory

In parallel to the effort to construct fuzzy counterparts to known geometries,

there has been work on constructing fuzzy versions of the known field theories.

The formalism has been applied to a broad spectrum of physical problems. A

comprehensive review that presents the applications can be found in [34]. In the

literature there are constructions of φ4 theory formulated on the fuzzy 4-sphere

S4
F [84, 59, 58]. The limit R → ∞ where R is the radius of the hyper-sphere

corresponds to a scalar field theory on 4D flat space with Euclidean signature.

Matrix models with Lorentz invariance have been considered in [7, 8]. In [28]

a scalar field on a non-commutative black hole background have been studied.

Every theory on a fuzzy space is inheritably non-local and therefore problems

with causality are also to be expected. Besides scalar field theories, also gauge,

and fermionic fields have been studied within the framework of matrix models

and non-commutative geometry [20, 12, 77, 66, 58, 47].

A slightly different context where non-commutative spaces and matrix models

arise comes from string theory and quantum gravity [27, 55]. As we mentioned

earlier any theory of quantum gravity predicts that at small scales the notion of

points disappears and non-locality is to be expected. This is consistent with the

2We will describe the fuzzy sphere in more detail in the chapters to follow since this fuzzy
space is central to this work.
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the picture in string theory where non-locality appears due to the finite length

of the strings or with certain theories of quantum gravity. Moreover in the lit-

erature there are known examples where string theories can be reformulated in

the language of matrix models as their low energy limits [4]. Perhaps the most

prominent example is the Ishibasi, Kawai, Kitazawa, Tsuchiya (IKKT) Model

[67, 2, 49]. The possibility of a matrix formulation of string theories allows one

to easily apply non-perturbative methods such as Monte Carlo techniques to

study string theory. One area which has more contact with the experiment where

the language of matrix models and non-commutative geometry are used is the

fractional quantum Hall effect [71, 62, 19].

The above applications of matrix models in the studies of field theories makes

the framework an interesting alternative to lattice QFT when it comes to field

theory regularization. The main focus of this work will be on the aspects of

numerical studies of matrix approximations to field theories.

1.3. Lattice vs. matrix regularization

Without any doubt lattice QFT is the most widely used method when it comes

to numerical studies of field theories. As we mentioned before matrix regulariza-

tion can be seen as an alternative approach. Here we note some of the crucial

differences between the two regularization procedures.

1.3.1. Lattice regularization

We start with a few remarks on the lattice approach. In this context the under-

lying manifold of the theory is represented by a set of points Λ, most often a

hypercube of dimension D and size L of the form

Λ = aZD = {x|xµ/a ∈ Z
D}. (1.5)

The number of degrees of freedom of the theory is in the order of Nd ∼ (L/a)D.

Usually the time direction of the theory has been subject to Wick-rotation so the

signature of Λ is Euclidean. One should take care of the boundary conditions

5
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for the field. Possible choices are periodic, anti-periodic and free. Each of them

has its advantage in certain situations. The theory is still divergent at the naive

a→ 0 limit. But some continuum limit properties of the system can be extracted

from a second order phase transition. Continuous symmetries and the topological

features of theory on a lattice are not preserved for a finite a. In particular this

causes the famous fermion doubling problem when one considers theories with

fermions.

1.3.2. Matrix regularization

On the other hand, the regularization via matrix models is done by replacing

the algebra of the functions A with AN according to the scheme described in

§1.1. The number of degrees of freedom of the theory is usually a multiple of the

dimension of AN as a vector space. When we have the matrix algebra MatN(C)

which represents a single complex scalar field it is Nd = 2N2. Of course the

difference in numbers of the degrees of freedom between the lattice and matrix

regularization is deceiving. If we want to describe the field φ in D dimensions on

a lattice and as a matrix model with the same detail, we usually need to provide

the same number of degrees of freedom in both cases, which means that we need

to increase the size of the matrices accordingly.

The notion of non-commutative time is still poorly understood. Non- commu-

tative time leads inevitably to problems related to causality. One way to work

with time-dependent matrix actions is to treat the time direction as in the lattice

case [57]. The issue of the boundary conditions is more complicated in this case.

The boundary of the system is not defined simply as the outermost elements of

the matrices due to the non-local interaction terms.

The naive limit N → ∞ does not always work. The reason is the so called

UV-IR mixing which is a feature specific to non-commutative field theories. The

phenomenon of UV-IR mixing is responsible for low momentum singularities at

high energies. Therefore even in the N → ∞ limit some matrix models show

features that are not present in the original theories. See for example [59, 39]. The

solutions to this problem are non-trivial and model-dependent as demonstrated

in [31, 32]. There the diagrams which are responsible for UV-IR mixing are

6
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identified and removed by hand by the so called normal ordering. Perhaps the

most important advantage of the matrix regularization is that by construction it

preserves the topological features and the symmetries of the initial theory exactly.

As another important result we point out the construction of a Dirac operator

which preserves chiral symmetry while avoiding the fermion doubling [12, 11].

1.4. Outline

The goal of the present work is to study in detail some aspects of numerical

simulations of matrix models and non-commutative geometry. We demonstrate

in detail the explicit implementation of the simulations. The thesis can be used

as a guide for people with interest in writing their first Hybrid Monte Carlo

simulation of matrix models and/or lattice QFT. The structure the present work

is as follows.

In §2 we give the construction of the fuzzy sphere S2
F . We describe the main

properties of derivations on that space and give the properties of the polariza-

tion tensors Tlm and of SU(2) coherent states. Using the coherent states we

discuss how a matrix model with S2
F geometry can be interpreted as a theory on

a spherical lattice.

In §3 we give a formulation of a scalar field theory on the sphere in the language

of matrix models. We develop Hybrid Monte Carlo algorithm which can be used

for numerical studies of the theory. We use our algorithm to study the phase

diagram of the model. At the end of the chapter we demonstrate the existence

of the so called stripe phases of the model for finite sized matrices.

In §4 we describe the properties of a matrix model which has two phases with

different geometry properties in its phase diagram. We develop two numerical

algorithms which are suitable for the study of the transition and also comment

on the difficulties which we encounter when we try to apply our algorithms in the

critical regime.

In §5 we present the results of our studies on the phase transition of matrix

model from the previous chapter. We identify the different types of fluctuations

7
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in the system near the phase transition and study their influence on observables

of the theory. At the end of the chapter we make some final remarks and present

our conclusions.

As most of the results in this thesis are numerical, we give some guidelines

with regard to applying Monte Carlo techniques in the Appendix. In §A we

describe the method in details and in §B we comment on the basics of OpenCL

implementation for GPU.

8



Chapter 2.

Fuzzy Sphere

A big part of this work is based on the concept of the fuzzy sphere S2
F . In this

chapter we will describe at an intuitive level its construction following the work

of Madore [54] in §2.2. Another important question concerning the formulation

of field theories onto S2
F is the definition of derivations on this space. It is covered

in §2.3. We briefly mention the basis of polarization tensors Tlm and their explicit

construction. In the end of the chapter we describe the construction of the SU(2)

coherent states and their symbols. We discuss how the later could be used for

localization on the fuzzy sphere.

2.1. Smooth 2-sphere

The sphere S2 is a compact smooth simply-connected manifold. The symmetry

of the round sphere is described by the group of the rotations in 3 dimensions

SO(3). Here we will rather work with its double- cover SU(2). These properties

make it an ideal candidate for approximation by fuzzy spaces using the scheme

described in §1.1.

Let us consider R3 with Euclidean metric gab = δab and a, b = 1, 2, 3. A round

sphere with radius R is defined by the equation

gabx̃
ax̃b = R2, (2.1)

with x̃a Cartesian coordinates on R
3.

9



Fuzzy Sphere

The algebra of complex-valued functions on the sphere C(S2) plays the role

of A in our description of the manifold. Every sufficiently well-behaved function

f(x̃a) ∈ C(S2) can be expanded in the form

f(xa) = f0 + fax̃
a +

1

2
fabx̃

ax̃b + . . . (2.2)

These functions form an infinite dimensional algebra which can be used to sepa-

rate every two points on the sphere. As basis for C(S2) we can use the spherical

harmonics Ylm. Let us consider the operator ~̂L = −ir̂ × ~∇ 1. In spherical coordi-

nates its components can be written as

Lx = i

(
sinϕ

∂

∂θ
+ cot θ cosϕ

∂

∂ϕ

)

Ly = i

(
− cosϕ

∂

∂θ
+ cot θ sinϕ

∂

∂ϕ

)

Lz = −i ∂
∂ϕ

.

(2.3)

The operator L̂2 is the angular part of the Laplacian in R
3 written in spherical

coordinates. Thus the Laplacian ∆S2 on a sphere with radius R in spherical

coordinates is given by

∆S2 =
1

R2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

]
. (2.4)

The eigenfunctions ∆S2 are the spherical harmonics

∆S2Ylm = l(l + 1)Ylm. (2.5)

More detailed discussion can be found in [50].

1This is the angular momentum operator from quantum mechanics with ~ = 1.
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2.2. Constructing the fuzzy approximations of the

sphere

In order to construct S2
F we need to define the algebra AN as an approximation

to C(S2). The most obvious way to do so is to leave only a finite number of terms

into the series (2.2). We begin with the simplest case where we leave only the

constant term. This gives us the approximation A1 = C. This is the algebra of

the constant complex-valued functions on the sphere. This approximation can

not distinguish any two points on the sphere- it represents the sphere as only one

point. The multiplication of the algebra A1 is given by the usual multiplication

on C and it is closed.

Let us consider now keeping the linear term in (2.2). By counting the degrees

of freedom associated with the coefficients f0 and fa, we see that this is a 4

dimensional complex vector space. Now we need to equip the vector space with

multiplication in order to turn it into an algebra. If we take the usual term-by-

term product of two functions we get

f(x̃a)g(ỹa) = (f0 + fax̃
a)(g0 + gbx̃

b)

= f0g0 + f0gbx̃
b + fax̃

ag0 + fax̃
agbx̃

b

︸ ︷︷ ︸
quadratic term

. (2.6)

From (2.6) we can see that under this multiplication the vector space does not

form an algebra because of the quadratic term that occurs. In order to close the

algebra we need to modify the multiplication in such way that the expansion con-

tains only constant and linear terms in x̃a. One obvious solution is to truncate all

higher order terms. This would lead to a non-associative algebra. The approach

that Madore adopted is to replace the coordinates x̃a with the Pauli matrices

x̃a −→ xa = κσa. (2.7)

In the above κ should be fixed in such a way that

∑

a

(xa)2 = 1R2. (2.8)

11
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This gives 3κ2 = R2. The Pauli matrices together with the identity matrix form

closed algebra under matrix multiplication. This promotes the vector space to

the algebra A2 = Mat2(C). This approximation allows us to distinguish between

the two poles of the sphere and it is the lowest dimensional representation of the

fuzzy sphere.

We can apply the same construction if we wish to keep the quadratic term in

the expansion (2.2). The only difference is that instead of the Pauli matrices we

will need to use the 3 dimensional irreducible representations of su(2)- i.e. the

spin-1 angular momentum operators La. Here we note that in this work unless

specified otherwise we choose the operators La to be the hermitian irreducible

representations of su(2) and satisfy the algebraic relations

[La, Lb] = iǫabcLc. (2.9)

Further we choose a basis in which the operator L3 is diagonal. By the require-

ment that the tensor fab in (2.6) is traceless we get 8κ2 = R2. Thus A3 = Mat3(C)

and we have a 9-dimensional complex vector space. Again this is a finer approxi-

mation of the sphere- now we can distinguish three zones around the south and

north poles together with the equator.

Using the above scheme we can construct a fuzzy S2 using irreducible repre-

sentations of su(2) of arbitrary dimension N . This will lead us to the algebra

MatN(C) which has N2 complex degrees of freedom. With Xa = κLa, the param-

eter κ is fixed by 1
4
(N2 − 1)κ2 = R2. Spaces with larger N describe the sphere

better. The parameter κ is a measure of the non-commutativity of the space

and decreases with N . We recover the commutative space when N → ∞ since

limN→∞ κ = 0. As basis vectors for the algebra AN = MatN(C) we can use the

polarization tensors Tlm
2 with 0 ≤ l < N and −l ≤ m ≤ l.

From the above sequence of algebras {Mat1(C),Mat2(C), . . . ,MatN(C)} we

exclude the first one Mat1(C). The reason is that the matrix space (which is

essentially C) does not carry any non-trivial representations of su(2) so the in-

formation about the geometry of the sphere is not preserved as commented in

§1.1.

2The polarization tensors will be defined in §2.4
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2.3. Derivations and Laplace-Beltrami operator

Now that we have defined the fuzzy sphere space, important question is can we

define differential operators or some kind of analogues to them? A derivation X

over an algebra A is an endomorphism X : A → A which obeys the Leibniz rule

for ∀f, g ∈ A

X(fg) = X(f)g + fX(g). (2.10)

In our case A = MatN(C). A linear map with the above properties is provided

by the adjoint action of MatN(C) on itself. The commutator is a linear map by

construction. The Leibniz rule can be demonstrated easily. For x, f, g ∈ MatN(C)

we have

[x, f ]g + f [x, g] = xfg − fxg + fxg − fgx = [x, fg]. (2.11)

Thus X = ad x is a derivation for arbitrary fixed x. However there are special

elements in the algebra which resemble better the properties of the usual deriva-

tion. We would like analogues of the differential operators (2.3) which are used

in the construction of the Laplacian on the smooth sphere. These are elements of

the form iLa where La are the aforementioned N -dimensional irreducible repre-

sentations of su(2). For f ∈ MatN(C) the commutators −i[La, f ] for a = 1, 2, 3

simultaneously vanish only if f is proportional to the identity element. This

suggests that the identity matrix is the analogue of the constant function in the

framework of MatN(C).

Now the Laplace-Beltrami operator acting on an element f ∈ MatN(C) can

be defined as

∆f =
∑

a

[La, [La, f ]]. (2.12)

Its eigenvectors are the polarization tensors Tlm [46]

∑

a

[La, [La, Tlm]] = l(l + 1)Tlm. (2.13)

13
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We provide more details about the objects Tlm together with their explicit con-

struction in §2.4.

2.4. Polarization tensors. Explicit construction and

properties

The polarization tensors3 mentioned in §2.3 have similar algebraic structure to the

spherical harmonics Ylm— their product is described in terms of Clebsch-Gordan

coefficients. In this section we give the formula for their explicit construction

following [46] and mention some of their properties which are of importance for

us.

We start with the explicit form of the matrix entries of the tensors Tlm. Let us

denote by T
(N)
lm the tensor Tlm in the space MatN(C). We define s = N−1

2
. Then

T
(N)
lm can be expressed in terms of Wigner-3j symbols4 5

(T
(N)
lm )s+1+M2, s+1+M1

= (−1)s−M1

√
2l + 1


 s l s

−M1 m M2


 . (2.14)

The above expression is to be taken for all physical values of M1 and M2 where

−M1 +m −M2 = 0. Otherwise the corresponding matrix element is zero. The

polarization tensors defined this way have only real entries.

In addition to the explicit formula (2.14) one can obtain tensors with higher

m via ladder operators. We need the matrix irreducible representations of the

generators L1, L2, L3 of su(2). If not stated otherwise everywhere in the present

work we will use a basis in which the generator L3 has a diagonal form and L1

has real entries unless specified otherwise. Using L1 and L2 we can define ladder

3In the context of the present work by polarization tensors we understand a certain set of
basis vectors of MatN (C) rather than the polarization tensor which characterizes the electric
properties of matter in condensed matter physics.

4The Wigner-3j symbols and Clebsch-Gordan coefficients arise when one needs to represent
the tensor product of two irreducible representations into a direct sum of irreducible repre-
sentations. More details can be found in [18, 80, 82].

5We denote the Wigner 3j symbols by

(
a b c

d e f

)
, and Wigner 6j symbols by

{
a c e

b d f

}
.
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operators

L+ = L1 + iL2

L− = L1 − iL2.
(2.15)

Using the ladder operators from (2.15), from each diagonal tensor Tl0 we can

obtain 2l off-diagonal tensors Tlm, −l ≤ m ≤ l

[L±, Tlm] = ∓
√
l(l + 1)−m(m± 1)Tl,m±1. (2.16)

And by the use of the above described procedure we can construct N2 polarization

tensors. They form an orthonormal basis for MatN(R) or for MatN(C) with

respect to the inner product

(Tl1,m1
, Tl2,m2

) = Tr(Tl1,m1
T †
l2,m2

) = δl1,l2δm1,m2
. (2.17)

Every vector f ∈ MatN(C) can be expressed in terms of the polarization tensors

Tlm.

f =
N−1∑

l=0

l∑

m=−l
clmTlm where clm = Tr(T †

lmf). (2.18)

The element f can be described either in terms of its matrix entries fij or in terms

of the coefficients clm. The second is analogous to momentum representation of

f . Because the tensors {Tlm} form an orthonormal basis the inner product (2.17)

is extended to all elements of MatN(C) by linearity.

Under hermitian conjugation the polarization tensors transform as

T †
lm = (−1)mTl,−m. (2.19)

The polarization tensors are eigenvectors of the adjoint action of L3 and the

Laplacian defined in (2.12).

[Tlm, L3] = mTlm
∑

a

[La, [La, Tlm]] = l(l + 1)Tlm.
(2.20)
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The property that the polarization tensors Tlm are eigenvectors of L3 determines

their behaviour under rotation around the axis along L3. For elements U(φ) ∈
SU(2) of the form U(φ) = exp(iφL3) we have

U−1(φ)TlmU(φ) = eimφTlm. (2.21)

Thus we can perform rotations around the axis of L3 without even computing

the explicit form of the unitary matrix U(φ). This property is useful when one

wants to change the basis of a matrix. The polarization tensor Tlm has non-zero

entries of the form tiδi,i+m ( no summation over i). In other words the tensors Tl0

have only diagonal entries, Tl1 have only entries next to the main diagonal and

so on. The above formula also shows the reason why the spinors with m = 1/2

need rotation of 4π instead of 2π in order to return to their origin.

Finally the algebra of the polarization tensors is understood in terms of

Wigner-3j and Wigner-6j symbols.

T
(N)
l1,m1

T
(N)
l2,m2

=
√
(2l1 + 1)(2l2 + 1)

∑

l,m

(−1)l×



l1 l2 l

s s s



 (−1)l1−l2+m

√
2l + 1


 l1 l2 l

m1 m2 −m


 .

(2.22)

The sum in the above expression extends over values of m for which m1+m2 = m

and all values of l for which |l1 − l2| ≤ l ≤ l1 + l2.

2.5. Coherent states

In §2.2 we argued that the fuzzy sphere provides an alternative approximation to

the lattice approach to S2. However there is one crucial difference between the

two. In the most physically interesting cases the interaction in lattice theory is

local. This means that each lattice point interacts only with its closest neighbors

or the force drops as some power of the distance between them. Each lattice

point describes a lattice site with characteristic size a and can be localized given

its lattice coordinates.
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This is not the case any more if we replace the algebra on the space in question

by a non-commutative algebra such as a matrix algebra. The interaction on

fuzzy spaces and matrix models by construction is non-local. Let us consider two

elements f, g ∈ MatN(C). Their product is given in terms of the usual matrix

multiplication

(f.g)ij =
∑

k

fikgkj. (2.23)

From the above we see for example that the element fik contributes to the values

of every element of the i-th row of the product f.g. This suggests that we can

not directly assign coordinates on the sphere to the entry fij .

In order to map the matrix entries to coordinates on the sphere we use the

apparatus of the SU(2) coherent states (CS). More about construction of coherent

states associated to arbitrary lie groups can be found in [69, 70, 29] etc. Here

following [70] we give a sketch of their construction.

An element g ∈ G = SU(2) is in the form

g =


 α β

−β̄ ᾱ


 where |α|2 + |β|2 = 1, α, β ∈ C. (2.24)

The form of g allows for three independent real parameters which correspond

to the three Euler angles. Let us denote these degrees of freedom as the triple

(ψ, φ, θ). They parametrize points on the three-sphere S3.

The group G is not complex, but it can be embedded in the complex group

Gc = SL(2,C). Every element gc ∈ Gc is in the form

gc =


 α β

γ δ


 where αδ − βγ = 1; α, β, γ, δ ∈ C. (2.25)

The bigger group Gc is interesting to us because it contains the images of the

exponentiated elements of the ladder operators (2.15). The group can be decom-

posed into subgroups in a few different ways. The one that is of interest to us is
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the following decomposition


 α β

γ δ


 =


 1 ξ(gc)

0 1




︸ ︷︷ ︸
z+(gc)


 ǫ−1(gc) 0

0 ǫ(gc)




︸ ︷︷ ︸
h(gc)


 1 0

z(gc) 1




︸ ︷︷ ︸
z
−
(gc)

. (2.26)

For our needs it is convenient to use the so-called z-representation of SU(2).

It acts on the space of the polynomials in the complex variable z of degree up to

2l. The basis vectors of the space are denoted by |l,m〉 where m ∈ −l,−l+1 . . . l.

They can be constructed in the form

〈z|l,m〉 =
√

(2l)!

(l −m)!(l +m)!
zl+m. (2.27)

For a fixed l we can obtain different vectors through the ladder operators L− and

L+. The action of these operators on the space is given by

L− |l,−l〉 = 0 (L+) |l,m〉 =
√

(l −m)!

(l +m)!(2l)!
Ll+m+ |l,−l〉 . (2.28)

Next we need to specify the group action in this space. Let f(z) be a poly-

nomial of degree 2j in z and T j(g) a z-representation, i.e. a representation of gc

and g acting in the space of the polynomials in z. Then the action of T j(g) is

given by [69]

T l(gc)f(z) = (βz + δ)2lf

(
αzz(gc) + γ

βz + δ

)
. (2.29)

For the special case of h =


 eiψ/2 0

0 e−iψ/2


 they have the property

T l(h) |l,m〉 = eimψ |l,m〉 . (2.30)
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In other words rotations around the x3 affect the vector |l,m〉 only with a phase

change. Also

L3 |l,m〉 = m |l,m〉 , (2.31)

where L3 is the infinitesimal operator corresponding to h.

We build the coherent states by applying an element gc on an initial vector

|Ψ0〉 = |l,−l〉. The explicit action of an arbitrary group element onto a vector

can be written in terms of the decomposition (2.26).

T (gc) |Ψ0〉 = T (z+)T (h(g
c))T (z−) |Ψ0〉 = eimψ(1 + |ξ|2)−lT (z+) |Ψ0〉 . (2.32)

Because h ∈ U(1)⊆ SU(2) we can factorize out the ψ dependence thus arriving

to SU(2) / U(1). By assigning the vectors |l,m〉 and eimψ |l,m〉 to the same

equivalence class we effectively remove the degree of freedom associated to ψ and

what is left is S2. A point on the unit sphere can be parametrized by the unit

vector n = (cos(φ) sin(θ), sin(φ) sin(θ), cos(θ)). Let g(n) be a group element which

represents rotation around the unit vector n and T l(g(n)) be its z-representation.

Then we can create a family of vectors which are parametrized by the points of S2.

This is the system of coherent states associated with the factor space SU(2)/U(1).

Now if we represent the operator T (z+) as exponentiation of the generator L+ we

get

|ξ〉 = (1 + |ξ|2)−l exp(ξL+) |l,−l〉 . (2.33)

Now we Taylor- expand the exponential of the operator L+ and use (2.28). This

way we arrive at the explicit form of the vector |ξ〉.

|ξ〉 =
m∑

m=−l

√
(2l)!

(l +m)!(l −m)!
(1 + |ξ|2)−lξl+m |l,m〉 . (2.34)

Through stereographic projection we can parametrize the above states with

complex numbers ξ = cot( θ
2
)ei

φ
2 .
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Let us define the projector ρ(ξ) = |ξ〉 〈ξ| with Trρ(ξ) = 1. Its matrix elements

can be written as

ρ(θ, φ)m1+l+1,m2+l+1 =

√
(2l)!(2l)!

(l +m1)!(l −m1)!(l +m2)!(l −m2)!

ξl+m1(ξ∗)l+m2

(1 + |ξ|2)2l .

(2.35)

We note that ξ(θ = 0, φ) is not well defined because of the divergence of cot(θ) at

θ = 0. However ρ(θ = 0, φ) can be defined as ρ(0, φ) = limθ→0 ρ(θ, φ) <∞. Let

us consider the angular part of matrix elements of (2.35). We also ignore the φ-

dependent part because it is oscillatory and thus finite for every φ. Thus we get

lim
θ→0

cotl+m1( θ
2
) cotl+m2( θ

2
)

(1 + cot2( θ
2
))2l

= lim
θ→0

cotl+m1( θ
2
) cotl+m2( θ

2
)

∑2l
k=0

(
2l
k

)
(cot2( θ

2
))2l−k

.

From comparison of the powers of cot( θ
2
) in the numerator and the denominator

we can see that the above limit is zero except for the case m1 = m2 = l— then

we have ρ(0, φ)l, l = limθ→0 ρ(θ, φ)l, l = 1. The matrix can be written down in

compact form ρ(0, φ)m1+l+1,m2+l+1 = δm1, lδm2, l.

Now we consider f ∈ MatN(C). The object

f̃(θ, φ) = Tr(ρf) = 〈ξ|f |ξ〉 (2.36)

is a complex-valued periodic function of the coordinates θ and φ and it is called

symbol of f . The expression (2.36) provides a linear map between the elements

of MatN(C) and complex-valued functions on the sphere. This technique allows

one to translate problems related to the operators f in the language of functions

f̃(θ, φ) and vice versa. Here we give a list of the images of some important

operators taken from [70]

Tr(ρ(θ, φ)1) = 1

Tr(ρ(θ, φ)L1) = (N − 1) sin θ cosφ

Tr(ρ(θ, φ)L2) = (N − 1) sin θ sinφ

Tr(ρ(θ, φ)L3) = (N − 1) cos θ.

(2.37)
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The images of the group elements g(τ, ν) = exp{iτ(νL)} ∈ SU(2) are given by

the formula

Tr
(
ρ(θ, φ)g(τ, ν)

)
=
(
cos

τ

2
+ i sin

τ

2
cos θ

)2(N−1)
, (2.38)

where ν2 = 1 is a unit vector along the axis of rotation of the element g and τ is

the angle.

This map is consistent with our choice of derivatives in §2.3. From (2.37) we

see that the identity matrix is mapped to a constant function on the sphere and

the three su(2) generators to the coordinate functions x, y, z.

2.6. From matrices to lattice

In this section we comment on a simple application of the coherent states that

we described in §2.5. Let X ∈ MatN(C) be a hermitian matrix. Then the symbol

X̃(θ, φ) = Tr(Xρ) from (2.36) is a real valued function. We can see that if we

take its complex conjugate6 7

(Tr(ρX))∗ ∼
(
(ξ)i(ξ∗)jXij

)∗ ∼
(
(ξ∗)i(ξ)jXji

)
∼ Tr(ρX).

We can now project the matrix elements of X onto a grid on the sphere consisting

of K real points. Let N = 2M . We can define a grid (or lattice) consisting of

points on the sphere with coordinates

Λ =

{
θj =

jπ

N − 1

}
, (2.39)

where

j ∈ {0, . . . , N − 1} and k ∈





{1, . . . , j + 1} if j < M

{1, . . . , 2M − j + 1} if j ≥M.

6We omit the normalization factors and the denominator from (2.35) as they are real by
construction.

7In the above calculations the variables i and j denote the indices of the matrix X but also
denote power of the variable ξ.
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There is a freedom in the definition of the grid. We chose our grid of that form

for two main reasons: First the number of degrees of freedom of the grid agrees

with the number of degrees of freedom of our underlying (matrix) model. And

second reason is that we want more degrees of freedom around the equator of the

sphere.

If we study the fluctuations around the ground state of the degrees of freedom

on the grid and their decay rate, we can define geometrical objects like correlation

angle or correlation length in a way which is consistent with the usual lattice

definition.

Using the above tools, we can project out any matrix model to degrees of

freedom defined on the sphere. Of course such a correspondence makes sense

only if the underlying theory has a notion of S2 geometry built-in it. The matrix

models that we study in the next chapters have S2 geometry therefore are suitable

for representation as degrees of freedom on the sphere.

Important is the question whether or not the same idea can be applied to

manifolds with different geometries? Coherent states can be constructed for the

groups- Heisenberg-Weyl group, SU(2), SU(1, 1), SO(3, 1), SO(n, 1) etc [70].

Complications arise when the groups are non-compact or non-simply connected.

In the case of non-compact groups (like SU(1, 1)) there are no finite- dimensional

unitary representations, which prevents us from construction of the analogue of

the projector from (2.35) as a finite size matrix.
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Chapter 3.

Scalar field theory on the fuzzy

sphere

In this chapter we discuss the fuzzy approximation to φ4 theory. We begin with

an overview of the usual scalar field theory in §3.1. Using the construction of

S2
F from Chapter 2 we give two equivalent formulations of the theory in the

language of the matrix models in §3.2 and §3.3. Next in §3.4 and §3.5 we show

how the Hybrid Monte Carlo method can be applied to the theory and discuss

the properties of our algorithm. Our method is based on Hamiltonian dynamics

and allows us to simulate systems with relatively big size. In §3.6 we make some

remarks on a model with higher order kinetic term. In §3.7 we discuss a gauge—

fixing of the global SO(3) symmetry. In the rest of the chapter we present the

numerical results from our studies and make some comments.

3.1. Scalar field

Because of its relative simplicity in comparison with gauge and fermion fields, the

scalar field theory is one of the most extensively studied. Studies of the phase

diagram can be found in [53, 61, 78, 3]. The action of the theory is given by

S[φ] =

∫
dΩ

(
1

2
φ∆φ+ rφ2 + λφ4

)
, (3.1)
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where dΩ is a measure over the space where the theory is defined. In most cases

it is Rd. The expectation value of a generic observable of the system A which is

a function of φ is computed with the path integral

〈A〉 = Z−1

∫
A[φ]e−S[φ]dµ. (3.2)

The measure dµ is infinite dimensional and Z is the partition function of the

system

Z =

∫
e−S[φ]dµ. (3.3)

For λ > 0 the action is bounded from below and the field-theory is well-defined.

In the limit λ→ 0 and r > 0 it corresponds to pure Gaussian model. In the large

λ limit it resembles the Ising model. And it is in the same universality class —

it has the same static critical exponents. The model has two phases in the (r, λ)

parameter space. For −r large enough the system is in the so called disordered

phase. In this regime the symmetry φ → −φ of the Lagrangian from (3.1) is

manifest and 〈φ〉 = 0. In the ordered phase the field has 〈φ〉 6= 0 which is an

indication of spontaneous symmetry breaking. The two phases are separated by

a critical line [53].

3.2. Matrix regularization

Now as we have the formulation of the fuzzy sphere in §2.2 we can formulate

the matrix regularization of the system (3.1) by formal application of the scheme

described in Chapter 1. This regularization has been studied in [56, 39] etc. We

represent the real scalar field φ by an Hermitian N ×N matrix Φ

φ→ Φ ∈ MatN(C), Φ = Φ†. (3.4)

The inner product of Φ with itself is given by the usual matrix multiplication.

The Hermitian property of the field Φ is important for our formulation because

it makes the action of the theory real-valued. The kinetic term is replaced by the
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adjoint action of the su(2) generators, as discussed in §2.3
∫
φ∆φ→ Tr

∑

a

Φ[La, [La,Φ]]. (3.5)

The kinetic term (3.5) also defines the geometry of the space where Φ is defined—

in our case the fuzzy sphere. If we want to define a scalar model on a different

space, we need to replace it with a suitable generalization of the Laplacian for

the new space. A simple example would be replacing the spherical Laplacian by

a Laplacian on the ellipsoid. This can be achieved if we substitute La → 1
C2

a
La

with Ca three real constants.

We return to our theory on a sphere. We replace the integral over the sphere

with a trace. Thus the matrix regularized version the action 3.1 reads

S[Φ] =
4π

N
Tr(
∑

a

Φ[La, [La,Φ]] + rR2Φ2 + λR2Φ4). (3.6)

While there are three parameters in the above action r, λ and R2 and each of them

has its interpretation, they are not fully independent. We can redefine r̃ = rR2

and λ̃ = λR2 and work with those without any loss of generality. Moreover, all

properties of the system should be expressible solely as functions of r̃ and λ̃.

The potential terms Tr(Φ2) and Tr(Φ4) have full SU(N) symmetry with N

being the size of the matrix Φ. The kinetic term on the other hand is constructed

with the su(2) generators. It breaks the symmetry of the whole action down to

SU(2). This is how the Laplacian defines the geometry of the system in our case.

Before we are able to compute observables in the theory we need to define the

measure dµ. As Φ is a Hermitian matrix, dµ must extend over the space of all

Hermitian matrices. It is given by

dµ =
N∏

i=1

i∏

j=1

dRe(Φij)dIm(Φij). (3.7)

The measure extends over RN2

— this corresponds to the number of independent

degrees of freedom in a Hermitian N by N matrix. As was mentioned in §1.3 the

number of degrees of freedom of the model (and the volume of the measure dµ)
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do not depend on the physical dimensions of the system. By analogy with (3.2)

the observables of the theory are defined to be

〈A〉 = Z−1

∫
A[Φ]e−S[Φ]dµ, (3.8)

and the partition function is

Z =

∫
e−S[Φ]dµ. (3.9)

Now we have a well-defined non-commutative field theory realized as a matrix

model. In the next section we give a formulation of the theory in different basis

and compare the two. In the rest of this chapter we will investigate the phase

diagram of the above system using Hybrid Monte Carlo simulation techniques.

3.3. Matrix regularization II

In §3.2 we regularized the scalar field Φ in terms of a matrix degrees of freedom

Φij. We can rewrite the action (3.6) in momentum representation. In order to do

that we expand the field Φ in the basis of the polarization tensors. It is convenient

to define the spin s = N−1
2

of the field

Φ =
N−1∑

l=0

l∑

m=−l
clmTlm. (3.10)

The coefficients clm are complex. They are determined from the inner product

(2.17)

clm = Tr(Φ.T †
lm). (3.11)

From the hermicity of Φ it follows that

Φ† =
(∑

lm

cl,mTl,m

)†

= (−1)mc∗l,−mTl,−m = Φ.

(3.12)
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This imposes constraints on the coefficients clm = (−1)mc∗l,−m and Im(cl0) =

0 for ∀l. The first few terms of the expansion (3.10) have the form

Φ = Tr(Φ.T †
00)T00 +

1∑

m=−1

Tr(Φ.T1m)T1m + . . .

=
1

N
Tr(Φ.1)1+

4

N2 − 1

3∑

a=1

Tr(Φ.La)La + . . .

(3.13)

Now we can proceed and rewrite (3.6) in momentum representation.

We begin with the mass term

4π

N
Tr(rR2Φ2) =

4πrR2

N
Tr(ΦΦ†)

=
4πrR2

N
Tr
(N−1∑

l=0

l∑

m=−l
clmTlm

N−1∑

l1=0

l1∑

m1=−l1

c∗l1m1
T †
l1m1

)

=
4π

N
rR2

N−1∑

l=0

l∑

m=−l
|clm|2.

(3.14)

In the above we have used the orthogonality relation (2.17) and the hermitian

conjugation (2.19). Next we consider the kinetic term in (3.6)

4π

N
Tr
(∑

a

Φ[La, [La,Φ]]
)
=

4π

N
Tr
(∑

a

Φ[La, [La,Φ
†]]
)

=
4π

N
Tr
(∑

a

(N−1∑

l=0

l∑

m=−l
clmTlm

[
La,
[
La,

N−1∑

l1=0

l1∑

m1=−l1

c∗l1m1
T †
l1m1

]])
.

Now we can use the property that the spherical harmonics Tlm are eigenvectors

of the Laplacian (2.13) with eigenvalues l(l + 1)

4π

N

N−1∑

l=0

l∑

m=−l

N−1∑

l1=0

l1∑

m1=−l1

clmc
∗
l1m1

Tr
(
Tlml1(l1 + 1)T †

l1m1

)

=
4π

N

N−1∑

l=0

l∑

m=−l
l(l + 1)|clm|2.

(3.15)
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A comparison between the expression for the kinetic term (3.15) and the mass

term (3.14) shows that in momentum representation the two terms have similar

structure. The only difference is that in the kinetic term each mode Tlm has

assigned weight l(l + 1).

Next we work on the self-interaction term. In the following calculation we will

replace the double sum
∑N−1

l=0

∑l
m=−l with

∑
l,m if it is possible to do so without

the introduction of ambiguity

4π

N
Tr(λR2Φ4) =

4πλR2

N
Tr(ΦΦΦΦ)

=
4πλR2

N
Tr
(∑

l,m

∑

l1,m1

∑

l2,m2

∑

l3,m3

clmcl1m1
cl2m2

cl3m3
×

TlmTl1m1
Tl2m2

Tl3m3

)
.

(3.16)

We compute Θ = Φ2 =
∑

l,m tl,mTl,m. The matrix multiplication in terms of

polarization tensors has the form

∑

l,m

tl,mTl,m =
∑

l1,m1

∑

l2,m2

cl1,m1
cl2,m2

Tl1,m1
Tl2,m2

. (3.17)

The algebra of polarization tensors is given in terms of Wigner’s 3j and 6j

symbols. A detailed description of the theory of angular momentum and polar-

ization tensors is provided in [15, 82, 18, 46, 80]. With the help of (2.4.16) and

(8.1.13) from [80] for the coefficients tl,m we have

tl,m =
∑

l1,m1

∑

l2,m2

(−1)2s+1+l1+l2−m
√
(2l1 + 1)(2l2 + 1)(2l + 1)×




l1 l2 ll

s s s






 l1 l2 ll

m1 m2 −m


 cl1,m1

cl2,m2
.

Now the quartic term can be computed similarly to (3.14)

4πλR2

N
Tr(Φ4) =

4πλR2

N

∑

l,m

|tl,m|2. (3.18)
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Each of the above terms is invariant under the exchange of l1 ↔ l2. Odd- per-

mutation of columns of the Wigner 3j symbols in the above expression brings a

phase (−1)l+l1+l2 , after we take the square the phase factor always equals 1. Also

the Wigner 6j symbols are invariant under any permutation of its columns. By

using this invariance we can reduce the number of terms by a factor of 2. The

sum over l and m is further restricted by the selection rules of the vector coupling

coefficients {} and (). Wigner 3j symbols are zero unless the following require-

ments are fulfilled m1 +m2 +m = 0 and |l1 − l2| ≤ l ≤ l1 + l2 (triangular rule).

These selection rules are consequences of the angular momentum conservation. It

is easy to see that the expression (3.18) is real-valued as each of the multipliers

in the sum itself is real.

And finally we define the measure for the path integral

dµ =
N−1∏

l=0

l∏

m=−l
dRe(clm)dIm(clm). (3.19)

As required it has the same size as (3.7).

The above expressions (3.14), (3.15) and (3.18) provide an equivalent formu-

lation of the theory (3.6) in momentum representation and give us further insight

into the the structure of the theory. However because the first matrix formulation

has simpler form, we will use it in our numerical studies.

3.4. Hybrid Monte Carlo approach

As we have the matrix action of the theory (3.6) we can apply the recipe described

in §A.2 in order to implement a Hybrid Monte Carlo simulation algorithm.

First we rewrite the kinetic term in a form which is easier to work with

4π

N
Tr
(∑

a

Φ[La, [La,Φ]]
)
=

4π

N
Tr
(
Φ[La, LaΦ− ΦLa]

)

=
8π

N
Tr
(
LaLaΦΦ

)
− 8π

N
Tr
(
LaΦLaΦ

)

=
8πc2
N

Tr
(
ΦΦ
)
− 8π

N
Tr
(
LaΦLaΦ

)
.

(3.20)
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In the above we have used the cyclic property of the trace. The factor c2 =
∑

a LaLa = N2−1
4

is the second order Casimir operator of su(2). We see that

effectively the kinetic term brings a correction to the mass Φ2 term with factor

of 2c2. The contribution specific to the kinetic term comes from LaΦLaΦ. The

simplified form of (3.6) reads

S[Φ, N, r, R, λ] =
4π

N
Tr
(
(2c2 + rR2)Φ2 − 2

∑

a

LaΦLaΦ + λR2Φ4
)
. (3.21)

The first step towards implementation of the HMC algorithm is to define momenta

P which are conjugate to the degrees of freedom of the field Φ. In order to

fulfill the requirement of ergodicity from §A.1 and to have phase volume element

preservation, P must have the same number of degrees of freedom as Φ. Thus

we define P ∈ MatN(C) to be hermitian. Now we define the Hamiltonian of our

extended system

H[Φ, P ] =
1

2
Tr(P 2) + S[Φ]. (3.22)

The above Hamiltonian is also real-valued for every Hermitian Φ and P . In order

to obtain the Hamiltonian equations (A.6) we need to take the derivatives with

respect to the single entries Φij and Pij . We formally define them by

∂

∂Φi1j1

Φi2j2 = δi1i2δj1j2
∂

∂Pi1j1
Pi2j2 = δi1i2δj1j2 . (3.23)

Now compute the derivative of H[Φ, P ] with respect to an arbitrary component

Pij of the momentum. It enters the equations of motion for the Φij

∂

∂Pij

1

2
Tr(Pi1j1Pj1i1)

=
1

2

(
δii1δjj1Pj1i1 + δij1δji1Pi1j1

)
= Pji.

(3.24)

The above derivative is model-independent. If we define the conjugate momenta

P the same way we did, the derivative ∂H
∂P

has always the same form for any

matrix model. An important peculiarity that shows in (3.24) is that it turns out

that the conjugate momentum to Φij is Pji rather than Pij .
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Next we compute the derivatives of the action. The derivative of the Tr(Φ2)

term is the same as the one computed above

∂

∂Φij

4π

N
Tr
(
(2c2 + rR2)Φ2

)
=

8π

N
(2c2 + rR2)Φji. (3.25)

The derivative of the second part of the kinetic term reads

− ∂

∂Φij

4π

N
Tr
(
2
∑

a

LaΦLaΦ
)

= −8π

N

∑

a

(
(La)i1j1δij1δji2(La)i2j3Φj3i1 + (La)i1j1Φj1i2(La)i2j3δij3δji1

)
.

(3.26)

After reordering of the summands and summing over the Kronecker δ-symbols

we get

= −8π

N

∑

a

(
(La)jj3Φj3i1(La)i1i + (La)jj1Φj1i2(La)i2i

)

= −16π

N
(LaΦLa)ji.

(3.27)

The last piece is the derivative of the self-interacting Φ4 term

∂

∂Φij

4π

N
Tr
(
λR2Φ4

)
=

4πλR2

N

∂

∂Φij

Φi1j1Φj1i2Φi2j2Φj2i1

=
16πλR2

N
Φjj1Φj1i2Φi2i =

16πλR2

N

(
Φ3
)
ji
.

(3.28)

Now with the use of (3.25), (3.27) and (3.28) we can write down the explicit form

of the Hamiltonian equations of motion for the extended system

Φ̇ij = Pji

Ṗij =
8π

N

((
rR2Φ + 2c2Φ

)
− 2

∑

a

(LaΦLa) + 2λR2Φ3
)
ji
.

(3.29)

Every Monte Carlo simulation works by generating different configurations of Φ

and P as function of discretized time t = 0, 1, . . . Ns. In our simulations the time

interval length between two consecutive configurations is ǫ. We will denote by

Φ(t) and P (t) the values of the fields and momenta in a particular time step t.

31



Scalar field theory on the fuzzy sphere

Now we can write a discretized in time first order approximation to (3.29)

Φij(t) = Φij(t− 1) + Pji(t− 1)ǫ

Pij(t) = Pij(t− 1)− 8π

N

((
rR2Φ(t− 1)

+ 2c2Φ(t− 1)
)
− 2

∑

a

(LaΦ(t− 1)La) + 2λR2(Φ(t− 1))3
)
ji
ǫ

(3.30)

The above equations allow us to generate the configuration (Φ(t), P (t)) from the

configuration (Φ(t− 1), P (t− 1)). The momentum P is generated according to a

normal distribution for Monte Carlo every step. The initial value of the field Φ(0)

in principle can be chosen arbitrary. In this work rather than (3.30) the equations

(3.29) are solved with the Omelyan integrator (A.12). It provides analogous but

finer approximation which preserves the Hamiltonian conservation better.

3.5. HMC algorithm properties

In this section we briefly describe the properties of the algorithm and discuss

them with regard of the requirements stated in §A.1.

For small enough values of the parameters and matrix size the algorithm

prescribed in the previous paragraph is ergodic. From every configuration Φ′ the

simulation can bring the system to an arbitrary configuration Φ′′ provided the

algorithm is run long enough. This is fulfilled because the space of hermitian

matrices is connected. In other words there always exists a momentum P =

Φ′′ − Φ′. However the profile of (3.6) has lots of local minima and their number

and height in each phase grows withN and the magnitude of the parameters of the

model. Thus for some values of the parameters the system becomes trapped into

the local minima of the action- this phenomenon is known as ergodicity breaking.

Due to the ergodicity breaking the result of the simulation is not independent of

the initial state of the system and we should take special care in this situation.

The third requirement of detailed balance is automatically fulfilled because

of the definition of the momentum P and the Metropolis accept/reject decision

which is built into the HMC algorithm.
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The system dynamics as described by (3.30) preserve the phase volume ele-

ment as discussed in (A.14). This holds to a high precision in our simulations.

Another check which can be made comes from the Schwinger-Dyson type

analysis of (3.6). Let us consider the integral

∫
dµ(Φ)

d

dΦij

(
Φije

−S[Φ]
)
= 0. (3.31)

The above integral vanishes identically being an integral over a full differential.

After simplifying the above we get

N2 =
4π

N

(
2(2c2 + rR2)

〈
TrΦ2

〉
− 2

∑

a

〈Tr(LaΦLaΦ)〉+ 4λR2
〈
Tr(Φ4)

〉 )
.

(3.32)

Further we make the substitutions
〈
4π
N
(2cc + rR2) TrΦ2

〉
≡ 〈S2〉 and 〈4λR2 TrΦ4〉 ≡

〈S4〉. We get

2 〈S2〉+ 4 〈S4〉 = N2. (3.33)

In the above we have denoted the expectation values of terms quadratic in Φ with

〈S2〉 and the expectation values of terms quartic in Φ with 〈S4〉. We can also use

this identity to check our code.

The last comment in this section is about the complexity of the algorithm.

As we point out in §A.3 as the action (3.21) is expressed in terms of a matrix

polynomial, it leads to equations of motion also expressed in polynomials. Thus

the complexity of generating a new configuration of Φ using (3.30) is ∼ O(N3).

This is a major advantage of this algorithm when compared to the Metropolis

update scheme. In the case of Metropolis the computation of δS for monomial

with power higher than 4 cannot be computed in time ∼ O(N) which makes the

complexity of the whole update algorithm & O(N4) [56]. However the complexity

of the HMC equations of motion derived from the action in §3.3 which is in terms

of the modes clm is higher ∼ O(N6)1. This can be easily seen if we take a closer

look at (3.3) and assign complexity of O(N2) to every loop over l, m indeces on

1Actually the complexity of the algorithm is even higher because of the presence of Wigner
6j symbols in (3.18).
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the left and right side of the equation. The higher complexity is mainly due to

the fact that in contrast to the entries Φij the modes clm are no longer matrix

degrees of freedom but modes with more complicated interactions between them.

This is another reason for us to prefer the first formulation of the theory for our

numerical studies.

3.6. Fourth order derivative

Actions with higher order derivatives are considered in the context of perturbation

theory of gravity. A construction of fourth order derivative model is given in [13]

together with discussion of the problems of higher order kinetic term theory and

ways to treat them. In the context of matrix models, the higher order kinetic

term is of interest because it suppresses the modes with higher momentum l and

is expected to help with the problem of UV-IR mixing.

In this section we present matrix realization of higher order kinetic term on the

fuzzy sphere. Then we derive the equations of motion of such a model and make

some remarks.The action of the theory is completely symmetric with respect to

the coordinate and velocity

S4d[Φ] =
4π

N
Tr(

1∑

a

Φ[La, [La,Φ]] + rR2Φ2+

λR2Φ4 + z
3∑

a,b=1

Φ[La, [La, [Lb, [Lb,Φ]]]]),

(3.34)

where z ∈ R. The Hamiltonian of the extended system is constructed in a similar

way to (3.22). The derivatives with respect to the momentum P are the same.

The only change is the derivative with respect to Φ of the higher order kinetic

term. Before we find it we simplify the z-term. After expanding the commutators
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and some reordering, we can rewrite the higher order term in the form

∑

a,b

TrΦ[La, [La, [Lb, [Lb,Φ]]]] =

4c22 TrΦ
2 − 8c2

3∑

a=1

TrΦLaΦLa + 4
3∑

a,b=1

TrΦLaLbΦLbLa.

(3.35)

We see that terms analogous to the first two terms are already present in the

expansion of the kinetic term and the piece that carries the higher order derivative

specific behaviour is the third part. We note that for matrix size N = 2 the higher

order kinetic term behaves exactly like the kinetic term. The reason is: for that

matrix size the su(2) generators are proportional to the Pauli matrices which form

a closed algebra with respect to matrix multiplication (if we allow for complex

coefficients). In then N = 2 case we have σaσb = δab + iǫabcσc. For N ≥ 3 we

compute the derivative of the last part of the expansion (3.35)

∂

∂Φij

4
3∑

a,b=1

TrΦLaLbΦLbLa = 8
3∑

a,b=1

(LaLbΦLbLa)ji. (3.36)

The derivative of the the higher order kinetic term can be written as

∂

∂Φij

∑

a,b

TrΦ[La, [La, [Lb, [Lb,Φ]]]] =

8c22Φji − 16c2

3∑

a=1

(LaΦLa)ji + 8
3∑

a,b=1

(LaLbΦLbLa)ji.

(3.37)

With the help of (3.34) and (3.37) we can simulate the model with higher order

kinetic term.

As a final remark we would like to comment on the structure of the term in

the basis of polarization tensors Tlm. As we mentioned before the polarization

tensors are eigenvectors of the Laplacian. Thus if we expand our field according
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to (3.10) we get

∑

a,b

Tr
∑

l1m1

cl1m1
Tl1m1

[La, [La, [Lb, [Lb,
∑

lm

clmTlm]]]] =

Tr
∑

l1m1

∑

lm

l2(l + 1)2c∗l1,−m1
clmT

†
l1m1

Tlm =

∑

l1m1

∑

lm

l2(l + 1)2c∗l1,−m1
clmδl,l1δm,m1

=
∑

lm

l2(l + 1)2|clm|2.

(3.38)

In the above we have used the orthogonality relation (2.17). That expression

shows that the higher order derivative term is real-valued and positive definite for

z > 0. Therefore we don’t expect any problems with stability. As we expected,

this kinetic term strongly suppresses terms with higher momentum l. Those

modes have relative contribution ∼ l4.

3.7. Gauge fixing of SO(3) symmetry

We would like to note that the idea for the SO(3) gauge-fixing was provided to

us by Xavier Martin.

3.7.1. SO(3) invariant vs. non-invariant quantities

As we pointed out the matrix action has a full SO(3)×Z2 symmetry. The action

involves only terms which are quadratic and quartic in Φ thus the change Φ → −Φ

leaves it invariant. Also any two configurations Φ and Φ′, where

Φ′ = U−1ΦU (3.39)

and U is a unitary representation of SU(2) produce the same value of the action.

In other words the path integral of the theory (3.8) can be split into angular and

non-angular parts

〈A〉 = Z−1

∫

S2

∫
A[Φ]e−S[Φ]dµ′dΩ. (3.40)

36



Scalar field theory on the fuzzy sphere

From the above integral it is evident that every quantity which is a function of

the field Φ is averaged over the Haar measure of SO(3) × Z2. We note that the

symmetry groups SO(3) and Z2 do not build up to the SU(2) group. The reason

is that the two symmetries are implemented via different actions. The SO(3)

group acts via its adjoint action (3.39). However there is no unitary matrix U

which transforms 1 → −1 via its adjoint action. For invariant quantities the

angular part can be integrated out as an overall factor of the integral

〈A〉 = Z−1

∫

S3

dΩ

∫
A[Φ]e−S[Φ]dµ′. (3.41)

The quantities that have this property are functions of the trace of Φ of the form

Tr(P (Φ)). However there are quantities which are of interest for us and which

are not necessary invariant under the action of SO(3) × Z2. Examples of such

quantities are the expectation values of the entries Φij and the coefficients clm

in the expansion of Φ (3.10). Without gauge fixing the quantities 〈clm〉 or 〈Φij〉
average to zero. But if we fix the gauge degrees of freedom the expectation values

of the modes of Φ can be used as order parameters in order to distinguish between

different phases of the theory.

3.7.2. Gauge fixing

During a simulation the configurations that are generated possess the aforemen-

tioned SO(3)×Z2 freedom. We fix this freedom in steps. First we fix the Z2 part

of the symmetry. To do so we check if Tr(Φ) < 0 and if so we change Φ → −Φ.

This way the Z2 symmetry is fixed and configurations of Φ which differ by sign

would produce the same result. We note that 〈TrΦ〉 can still be used as an order

parameter.

In order to fix the SO(3) symmetry we can rotate the field Φ into a particular

basis before making measurements. The full rotation symmetry in R
3 has three

parameters. Usually they are chosen to be the Euler angles (φ, θ, ψ).2

2In this context the variable φ is a spherical coordinate and should not be mixed with the
scalar field from (3.1)
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First we find the coordinates of Φ in the coordinate system spanned by the

three su(2) generators. We do that by projecting Φ onto La using the inner

product (2.17)

c1a =
4π

N
Tr(LaΦ

†). (3.42)

We form a vector ~r ∈ R
3 out of the coefficients c1a. Now we can switch to spherical

coordinates (ρ1, φ1, θ1) using the standard coordinate transformation. The angles

φ1 and θ1 correspond to φ and θ in our SO(3) symmetry. Our aim is to change

the basis of Φ in such a way that it has only component along the L3 direction.

First we gauge out the φ dependence. This angle corresponds to rotation

around the z-direction which is parallel L3. We can gauge-fix φ = 0 or φ = π
2
by

applying the unitary transformation U(−φ, 0) or U(π
2
− φ, 0) from (2.21). The

first choice eliminates the component along L2 and the second eliminates the

component along L1. We use the second transformation. We obtain

Φ′ = U †(
π

2
− φ, 0)ΦU(

π

2
− φ, 0), (3.43)

which does not have component along the direction of L1.

Now we need to gauge-fix the second degree of freedom to θ = 0. In order

to rotate around L1 we need to perform a unitary transformation V (0,−θ) =

exp(−iL1θ) on Φ′. There is a complication coming from the fact that L1 is not

diagonal in this basis and as a consequence the action of V (0,−θ) is not as simple

as (2.21). We can either compute V (0,−θ) explicitly by exponentiation of L1 or

we can rotate into a basis in which L1 is diagonal. In this basis V (0,−θ) will

have a simple action. We choose the second option. We construct a unitary trans-

formation W †W = 1 such that W †L1W = L3. The generator L1 is irreducible

representation of su(2). Thus it has N non-degenerate eigenvalues and eigenvec-

tors. The transformation matrix W is constructed from the eigenvectors of L1 as

columns but normalized to 1 with respect to the usual complex Euclidean vectors

dot product. Now we can perform the transformation on Φ′ as follows

Φ′′ = W [V †(W †Φ′W )V ]W †. (3.44)
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After we perform the rotation around L3 in the new basis, we return to the initial

one by applying the inverse transformation. That way we produce the field Φ′′

which has component only along L3. For θ = 0 the angle φ is undefined. At

this point we have rotated the system in such way that the vector ~r has only c3a

non-zero component but its length is preserved. This can be used as a consistency

check for the gauge-fixing code.

There is one more gauge degree of freedom left in Φ′′3 that we can fix associated

with the third Euler angle ψ. This phase can be computed in different ways.

Similarly to the first gauge degree of freedom we can compute the coefficient c21

(if we prefer we might work with c2,−1 instead) and we can fix the direction of

Φ′′ in the 2-dimensional space spanned by Re(c21) and Im(c21). The angle φ is

defined to be tanψ = Re(c21)
Im(c21)

. We define ψ to be the phase of the element Φ21.

We set ψ = 0 by applying

Φ′′′ = exp(iψL3)Φ
′′ exp(−iψL3). (3.45)

Finally the field Φ′′′ has no SO(3)-associated freedom left. We can now measure

the expectation values of the form 〈clm〉. We note that the gauge-fixing procedure

is done after the Hybrid Monte Carlo update process thus it does not affect the

equations of motion (3.30). It leaves |TrΦ|, the value of the action S and Cv

invariant.

3.8. Phase diagram

There are three known phases of the model in the parameter space ( rR
2

N
, λR2).

Two of them, disordered and uniform phase, correspond to the disordered and

magnetized phases in the usual φ4 field theory. The last one, which is known

as matrix phase, is specific only to the matrix Φ4 theory. The quantities that

identify those phases and which are of interest to us are the specific heat Cv =
〈S2〉−〈S〉2

N2 , magnetic susceptibility defined as χ = 〈(Tr(φ))2〉 − 〈|Tr(φ)|〉2 4 and

the expectation value of the action S. Other quantities which are evaluated are

3In the case N = 2 the field does not have this degree of freedom.
4The usual definition of susceptibility is χ =

〈
(Tr(φ))2

〉
− 〈Tr(φ)〉2, but for finite size systems

〈Tr(φ)〉 = 0, so we use the version with modulus, which has the desired properties.
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eigenvalue distribution of the field and the modes with the biggest contribution

(relative weight of coefficients clm in (3.11). In this section we describe the basic

properties of Φ in each phase.

3.8.1. Disordered phase

For large enough λR2 the contribution of the kinetic term is negligible in compari-

son to the potential terms of the action. The classical ground state is represented

by Φ = 0. This can be verified by a numerical measurement of the leading order

terms in the expansion of Φ from (3.11). We have 〈c00〉 ∼ 〈c1i〉 ∼ 0. In this

regime the system does not feel the su(2) nature of the Laplacian and can be

approximated by a pure potential model. The pure potential model is studied in

[16]. An explicit form for the eigenvalue distribution of Φ is obtained which is

symmetric around zero. It has the form

p(x) =
1

π
(b0 + b2x

2)
√
a2 − x2, (3.46)

with

a =

√
−πrR2 +

√
π2r2R4 + 3πλR2N2

3πλR2

b0 =
4

3N2

(
2πrR2 +

√
π2r2R4 + 3πλR2N2

)

b2 =
8πλR2

N2
.

(3.47)

The eigenvalue spectrum as obtained from a simulation and plotted along with

the curve (3.46) are presented in Figure 3.1.

We plot the expectation values of the matrix entries 〈Φij〉 for N = 7 matrix

in this phase in Fig. 3.2. We see that the contribution comes mainly from the

diagonal entries which correspond to modes cl, 0 and from modes cl,±1. The rest

of the entries of the matrix are essentially zero.
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Figure 3.1.: Eigenvalue spectrum of N = 11 field obtained from simulation and the
curve (3.46). A least squares fit produces for the parameters of the
distribution a = 0.07± 0.001, b0 = 264± 2 and b2 = 111× 103 ± 1× 103.
These values are in a good agreement with the pure potential model
prediction (a ≈ 0.071, b0 ≈ 263.12, b2 = 104 × 103). This suggests that
the pure potential model is a good approximation in this part of the phase
diagram of the theory. The fluctuations around the theory prediction are
mainly due to finite-size effects.
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Figure 3.2.: Matrix entries of N = 7 matrix in disordered phase. rR2 = −10, λR2 =
545000.

3.8.2. Matrix (ordered non-uniform) phase

As −rR2 grows for a fixed λR2 , the system enters a new phase. The configuration

Φ = 0 is no longer the ground state. The action is minimized for fields of the

form Φ ∼ ±
√

−r
2λ
U †(1N/2 ⊕ −1N/2)U for N = 2s and Φ ∼ ±

√
−r
2λ
U †(1(N−1)/2 ⊕

−1(N+1)/2)U for N = 2s + 1. What is typical for this phase is that 〈c200〉 <
〈
∑

m |c1m|2〉, i.e. the biggest contribution in the expansion of Φ comes from the

higher order terms. Moreover because of the kinetic term, the modes c1m have

the biggest contribution. We have plotted the distributions of |TrΦ| and |TrΦ2|
for a system in the Matrix phase in Fig. 3.3.

The support of eigenvalue distribution consists of two separated domains. It

is given by

p(x) =
1

π
c0|x|

√
(c2 − x2)(x2 − d2), (3.48)
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with

c0 =
8πλR2

N

c =

√√
πNλR2 − πrR2

4πλR2

d =

√
−
√
πNλR2 − πrR2

4πλR2
.

The eigenvalue spectrum as obtained from a simulation is presented in Fig. 3.4.

We can further extend the matrix phase by configurations in which the biggest

contribution comes from 〈∑m |ckm|2〉 with m ≥ 1. For a system with size N the

matrix phase is split in N−1
2

such sub-regions. We expect those configurations

to play a role when the kinetic term is strongly suppressed. In order to detect

those we need to gauge-fix Φ using the method described in §3.7. In Fig. 3.5 we

present the matrix entries of Φ as averaged over a Monte Carlo run in that regime.

The map of the matrix elements looks qualitatively similar to the entries in the
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Figure 3.5.: Matrix entries of N = 7 matrix in ordered non-uniform phase. rR2 =
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disordered phase 3.2. The major difference is that the amplitudes of the main—

diagonal modes are bigger and there is a small contribution of the cl,±3 modes.

3.8.3. Disordered/Matrix phase transition

Deep into the disordered matrix phase the kinetic term is negligible. Therefore a

reasonable approximation to the action is provided by the pure potential model

S[Φ, N, r, R, λ] =
4π

N
Tr
(
rR2Φ2 + λR2Φ4

)
. (3.49)

The critical line between the two phases is defined as (rcR
2, λR2). It is a curve

which consists of the points where distribution (3.46) transforms into (3.48). In

the case of the commutative φ4 theory the phase transition is known to be of

second order [53]. Explicitly the curve in the pure potential approximation is

rcR
2 = −N

√
λR2

π
. (3.50)

In fact the presence of the kinetic term slightly changes the coefficient, but pre-

serves the behavior of (3.50) as it becomes apparent from the numerical studies.

As first order correction for large R in the case with kinetic term, we can try to

replace (3.50) with

rcR
2 = −N

√
λR2

π

(
1 +

B

(λR2)α
+ · · ·

)
(3.51)

where B and α are constants which would be subject of our measurement.

3.8.4. Uniform phase

There exists one more phase of the system— the uniform ordered phase. It

emerges for small R2 > 0 and large enough −r. In this regime the kinetic term

plays an important role. The classical background configuration is characterized

by the property that the biggest contribution in the expansion of (3.10) comes

from the constant term. In this case we can search for the minima of the action
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by minimizing the potential and the kinetic term separately. From (3.15) it is

evident that the kinetic term being positive definite penalizes modes with higher

l. Therefore its minima Tr(Φ[La, [La,Φ]]) = 0 are realized when Φ ∼ T00 or Φ ∼ 0.

Let us parametrize this solution as Φ = x1 and plug it into the pure potential

part of the action (3.49). The classical solution for the action is obtained when

d

dx
S[x1, N, r, R, λ] = 0, (3.52)

which has the form

x(2R2λx2 + rR2) = 0.

There are three solutions for the above equation

Φ± = ±
√

−r
2λ

1N or Φ = 0. (3.53)

The trivial solution corresponds to a local maximum. If we look into the other

two solutions we can see that the eigenvalues of Φ are distributed around ±
√

−r
2λ
.

For the quantity 〈|Tr(Φ)|〉 classically we have

〈
|Tr

(
Φ
)
|
〉
= N

√
−r
2λ
. (3.54)

Numerical measurement of the eigenvalues of Φ and |Tr
(
Φ
)
| is presented in

Fig.3.6 and Fig.3.7. As it is evident from the simulations the peaks in the

eigenvalues and |Tr
(
Φ
)
| depend weakly on R2. This is because R2 essentially

controls the relative importance of the kinetic term with respect to the potential

terms. When R2 grows the contribution of the kinetic term becomes negligible.

In the limit R2 → ∞ the model is expected to behave as the pure potential model.

The action of the classical solution is given by

S[Φ, N, r, R, λ] = −πr
2R2

λ
. (3.55)

The expectation value is thus 〈S〉 = −πr2R2

λ
+ 〈Sfl〉, where 〈Sfl〉 represents the

fluctuations of the system around the classical solution. Note that there are two
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local minima of the action, but they are related to each other by the discrete

symmetry Φ → −Φ. However the SU(2) symmetry of the action is formally

preserved as the identity element is invariant under the action of SU(2). Thus

the two solutions from (3.53) are stationary under the action of the group.

The non-zero modes of the system are suppressed as 1
−r . In Fig. (3.8) we

present the real part of the matrix elements Φij of the field averaged over the

Monte Carlo time. We can clearly see that the biggest contribution comes from

the diagonal elements and moreover from the c00 mode of the matrix. We note

that the action of the theory is invariant under the change Φ → −Φ and thus in

this phase there are two local minima. Also c00 is invariant under the action of

any unitary transformation being an SU(N) scalar.

The transition between matrix and uniform phase is numerically found in [39],

using a different parametrization, to be the straight line for each matrix size N

defined by:

λR2 = krR2N−1/2 +NC, (3.56)

where k and C are constants independent ofN , subject to numerical measurement.

Our simulations of small systems N = 2, 3 suggest that there is a coexistence of

the phases near the transition line which is an indication of a first order phase

transition.
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Figure 3.8.: The real part of 〈Φij〉 of matrix of size N = 7 into the uniform ordered
phase. rR2 = −103 and λR2 = 40.6.

3.8.5. Triple Point

We have defined two critical curves for the different phase namely (3.50) and

(3.56). Naturally comes the question is there a triple point? A place in the

diagram where all the three possible phases coexist. To answer this question we

need to solve a system of 2 equations in the variables λR2 and rR2

∣∣∣∣∣∣
rR2 = −

√
N2λR2

π
−
√

N2λR2

π
B

(λR2)α

rR2 = − (λR2−CN)N1/2

k
.

(3.57)

The above system is a transcendental system of equations with parameters B,

C, k and α. A closed form solution is not possible to obtain for arbitrary α.

However if we simply assume α = 1/2, we can write down an explicit formula for

the coordinates of the triple point in the (rR2, λR2) plane. The simplified system

has the form:

∣∣∣∣∣∣
rR2 = −

√
N2λR2

π
−B

√
N2

π

rR2 = − (λR2−CN)N1/2

k
.

(3.58)
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The solutions of the system in that case are given by

∣∣∣∣∣∣
rR2 = − BN+CN2

kN1/2+π1/2

√
λR2 = −N(Bk−CN1/2π1/2)

kN1/2+π1/2 .
(3.59)

If we know the parameters B, C, and k, the above solutions specify the coordi-

nates of the triple point in the case of α = 1/2 and also give a hint of where to

search for it in case of α ≈ 1/2.

3.9. Eigenvalue separation criterion

The critical line between disordered and matrix phase consists of points rc =

rc(R), where the eigenvalue distribution changes from (3.46) to (3.48). In the

large N limit when the system is at a critical point the eigenvalue distribution of

Φ satisfies

p(x) 6= 0 for x ∈ [−a, a]/{0}

i.e. p(x) is non-zero in some finite interval symmetric around zero and p(0) =

0. When we are dealing with a finite system, this is not the case as there are

fluctuations, which would smooth out the distribution leading to p(0) 6= 0. In fact

for a finite ensemble (number of configurations as produced from our simulation),

the p(0) 6= 0 will appear even when the system is deep into the non-uniform

ordered phase. So in order to use the eigenvalue distribution to pinpoint a phase

transition in a reproducible manner, we need to define an objective algorithmic

criteria which could be described and later reused. There are a few ways we can

proceed.

1. One can try to extract the analytical properties of ∂xp(r, R, x)|r=rc(R),x=0.

We see that one should expect a change in the analytical properties of the

function. However, dealing with numerical derivatives is unstable and leads

to very big errors, not to mention the additional complication coming from

the fluctuations around the ground state, which will render the method

useless.
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2. The approach used in this work is based on a different idea. We count the

number of eigenvalues generated during the simulation which fall into some

finite interval [−q, q] around the origin. Then we compute the ratio of those

situated in the interval with respect to the whole number of all generated

eigenvalues which is given by N × Ns. Here N is the matrix size (which

corresponds to the number of eigenvalues of the matrix Φ per configuration)

and Ns is the number of generated configurations of Φ. This gives us the

probability P (x ∈ [−q, q]). If P (x ∈ [−q, q]) is smaller or greater then a

predefined small number δ, we say that the system is either in the matrix

phase or in the disordered phase. And if δ − η < P (x ∈ [−q, q]) < δ + η,

with η ≪ δ, we say that the system is within the neighborhood of the phase

transition. This means that instead of a critical point we talk about an

interval in which the transition occurs. The parameter 2η then could be

used as error estimation.

The weakest point of the employed method is that one should choose the param-

eters of the algorithm (q, δ, η) by hand. On the other hand once we have fixed

them, the same algorithm/method can be used by others to check if the results

are reproducible. The only argument for choosing the values of the parameters

comes from the fact that the domain where the probability (3.46) is not zero

depends on the parameters (R2r, λR2). Basically the domain of interest is given

by a from (3.47). In this work, we rely on an algorithmic evaluation of the width

of the distribution5. In Fig.3.9 we have shown schematically the non-zero domain

[−a, a] of a distribution of a system deep into the disordered phase. The parame-

ter p of our algorithm is chosen as q = a/10, corresponding to the smaller region.

In this way we always examine a region around the origin, which is 1/10 part of

the domain of interest, irrelevant of matrix size and system parameters. For the

other two parameters of the algorithm δ and η, we don’t have any objective guide,

so we will fix them at some particular values and try to check if the algorithm

shows agreement with the theoretical predictions for the system. In this work we

have chosen δ = 0.003, which corresponds to 3σ, i.e. for a system close to the

5The reason we don’t use the analytic expression is because equations (3.46) and (3.48) strictly
speaking only hold for the pure potential model. And we want to study the full system for
which we don’t have analytical expressions, but which we expect to behave in a similar way
in this region of the phase diagram.
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Figure 3.9.: Eigenvalue spectrum of N = 19 system in Disordered phase.

phase transition eigenvalues in the interval [−q, q] are essentially ”3σ” events.6

The parameter which describes the uncertainty η is set to 0.0005.

3.10. Simulation results and comparison with

theoretical predictions

As we have defined the methods we are using, we can now turn to comparison

with the theory predictions. Before we proceed we switch to the alternative

parametrization of the theory used in [39]

κ =
4π

N
b =

4πrR2

N
c =

4πλR2

N
. (3.60)

Again only two of the three parameters are independent. In the new parametriza-

tion the action has the form

S[Φ] = Tr

(
κ
∑

a

Φ[La, [La,Φ]] + bΦ2 + cΦ4

)
. (3.61)

6By σ we denote standard deviation.
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The reason for the change is that while the parameters from (3.6) have a natural

physical interpretation, the new set of parameters appears to be more convenient

if our goal is to study the phase diagram of the model. In [39] it was found that

the transition curve between disordered and matrix regimes is independent of N

in terms of the scaled variables

b =
b

κN3/2
c =

c

κ2N2
. (3.62)

As the theory predictions are obtained in the N → ∞ limit our numerical results

should converge to the theoretical estimation as the matrix size grows. That is

why we perform our measurements with different matrix sizes.

3.10.1. Simulating the pure potential model

First we start with the pure potential model, (3.49) as we have more analytical

control over it, also we can use it to calibrate the parameters of our eigenvalue

separation criteria from §3.9. In the new parametrization the transition curve

has the form

cdm =
(−b)2
4

. (3.63)

We have identified the critical point between the disordered and ordered phase

for different matrix sizes and superimposed them with the curve from (3.63). The

numerical data are presented in Fig. 3.10. We can see from the data that as

the system size N increases the data converge to the theoretical prediction. This

demonstrates, that we have an algorithmic method to detect the phase transition

which agrees with the known results for the pure potential model, and we can

rely on it for the more complex model (3.6).

3.10.2. Disordered to non-uniform phase transition. Full

system

In the previous section we demonstrated that the transition between the disor-

dered and matrix phases of the pure potential model is described by the analytical
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Figure 3.10.: Pure potential model. The uncertainties are small in comparison to the
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result (3.63). However we expect deviations from the above curve if we include

the kinetic term. In Fig. 3.11 we present transition points for the N = 15 system

with κ = 0 and κ = 4π
N
. From the figure we can see that the kinetic term brings

corrections to the transition curve as expected. The model with the kinetic term

included has not been solved exactly. Therefore we resort to our numerical stud-

ies of the transition. In Fig. 3.12 we present the transition curve as obtained

for different matrix sizes. From the data we can see that the corrections due

to the kinetic term are dependent on N . Our strategy is to use the data from

our biggest matrix size simulation (N = 45) as it is our best estimation of the

transition in the large N limit. Our three parameter fit produces

cdm = (12± 2)− (2± 0.17)(−b) + (0.254± 0.002)(−b)2. (3.64)

3.10.3. Non-uniform to uniform phase transition

We proceed with our study of the transition between the matrix phase and the uni-

form phase. The uniform phase is defined in §3.8.4 to be a phase where the biggest
contribution to Φ comes from the constant term or 〈|TrΦ|〉 ≫

√〈∑N−1
l=1 |clm|2

〉
.
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One way to detect the transition is to compare the relative magnitude of the

different modes of Φ having in mind that they might scale differently with the

matrix size N . Another way, which is less ambiguous is to search for a peak of

the specific heat of the system Cv. The two definitions don’t necessarily agree.

In Fig. 3.13 and 3.14 we present the specific heat and the order parameters |TrΦ|
and TrΦ2 of N = 2, b = −2.5 system.
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Figure 3.13.: Specific heat near the
matrix/uniform phase
transition of N = 2 sys-
tem. For b = −2.5 as
function of c. The un-
certainties are small in
comparison to the sym-
bol size and therefore
omitted.
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Figure 3.14.: Expectation values of
|TrΦ| and TrΦ2 near
the matrix/uniform
phase transition of
N = 2 system. For
b = −2.5 as function
of c. The uncertainties
are small in compari-
son to the symbol size
and therefore omitted.

In the (b, c) parameter space the transition is expected to occur on a straight

line

cmu(N) = K1(N)(−b) +K2(N). (3.65)

As pointed out in [56, 39] this transition is hard to detect because of the big energy

barrier between the local minima which characterize the two regimes. In the

vicinity of a first order transition the phenomenon of phase coexistence occurs—

the system can exist in each of the phases. An efficient Monte Carlo simulation

should be able to drive the system between the two competing regimes. Our

HMC algorithm based on (3.30) can explore the phase transition efficiently only

for systems with size N = 2, 3. As an illustration of the numerical difficulties and
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we present the Monte Carlo history of the action of N = 2 and N = 3 systems

near the Matrix/Uniform phase transition in Fig. 3.15 and 3.16. We can see

that 106 Monte Carlo steps are enough to measure the observables of the N = 2

system with good precision, but for the N = 3 system we need significantly

more steps. For completeness we also include histograms which represent the

probability distribution of the action of the system corresponding to these runs

in Fig. 3.17 and 3.18.
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Figure 3.15.: Monte Carlo his-
tory of the action of
N = 2 system near the
Uniform/Non-Uniform
phase transition.
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phase transition.
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Using the above criterion for the phase transition point we are able to detect

the phase transition for N = 2 and N = 3 systems. The data are presented in
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Figure 3.19.: Numerically obtained transition lines between Uniform and Non-
uniform phase for N = 2 and N = 3 systems. The uncertainties are
small in comparison to the symbol size and therefore omitted for clarity.

Fig. 3.19. Linear fits of those data produce cmu(N = 2) = (0.261± 0.006)(−b) +
(−0.17 ± 0.02) and cmu(N = 3) = (0.227 ± 0.005)(−b) + (−0.06 ± 0.02). Our

algorithm does not allow us to efficiently determine the transition line between

the matrix phase and the uniform phase for models with N ≥ 4. We need an

algorithm which is specially designed bring the system out of the local minima of

the action while preserving the detailed balance condition. Such algorithm has

been proposed in [39].

3.10.4. Non-uniform to uniform phase transition for bigger

systems

As we showed in the previous section, our algorithm cannot determine the tran-

sition between the matrix phase and the uniform phase for matrices with N > 4.

Since the potential wells of the theory grow with the matrix size N , the system

tends to stay trapped when it finds a local minimum of the action. In other words

we expect ergodicity breaking in the large N limit. This means that the result of

our simulations will depend on the initial configurations of Φ. This is illustrated
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Figure 3.20.: The order parameter |TrΦ| for N = 7 system, c = 4.83 as function
of b. The system is simulated from hot start and from uniform initial
configuration. The uncertainties are small in comparison to the symbol
size and therefore omitted for clarity.

in Fig. 3.20. From this data we see that the outcome of the numerical simulation

is dependent on the initial conditions. In order to properly determine the ground

state we also compare the energies of the system in the two local minima. In

Fig. 3.21 we present the action of the same systems. The plot shows that the

action of the uniform phase is lower. Therefore we interpret that phase as the

ground state. This scheme does not allow us to properly determine the transition

point from (3.65) but rather gives us an upper bound for the value of cmu(N).

Proceeding this way we estimate the transition curve between the Matrix

and Uniform phases. The numerical results for a few matrix sizes are shown

in Fig. 3.22. Our data confirm that the transition curve is a straight line of

the form (3.65). However the transition points for different matrix sizes do not

collapse in the (b, c)-phase diagram and the parameters K1(N) and K2(N) are

indeed functions of the matrix size N . This is in contrast with the transition

between disordered and matrix phase. On table 3.1 we present the results from

the fits of our data for K1(N) and K2(N) for different matrix sizes.
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Figure 3.21.: The action per degree of freedom S/N2 for N = 7 system, c = 4.83 as
function of b. The system is simulated from hot start and from uniform
initial configuration. The uncertainties are small in comparison to the
symbol size and therefore omitted for clarity.
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3.10.5. Numerical obtained phase diagram

As we demonstrated in §3.10.3 our estimate of the transition curve between the

non-uniform and uniform phases of the system is dependent on the matrix size

N . Here we present the phase diagram of the theory for a N = 7 system and

give estimation of the coordinates of the triple point. In Fig. 3.23 we present

the phase diagram. Our data points are compatible with the form of (3.63) and

(3.65). For the transition curve between disordered and matrix phase we have

cmd = 0.107± 0.003(−b)2. The transition between matrix and uniform phases is

given by the line cmu = (−1.25±0.22)+(0.61±0.04)(−b). The transition between

the disordered and uniform phase is cdu = (−0.04± 0.01) + (0.251± 0.007)(−b).
We interpret the meeting point of the two curves as the triple point. It has

coordinates (−btr, ctr) = (2.07 ± 0.06, 0.47 ± 0.02). This is close to the value

reported in [39] which is (−btr, ctr) = (2.3, 0.52) but does not fully agree. We

explain this difference with the problems of our algorithm to properly identify

the uniform to non-uniform phase transition.

3.10.6. Stripe phases

As we already saw in the Disordered and Uniform phases the field Φ contains

only modes clm with m = 0 which correspond to diagonal matrices. In the matrix

phase there might exist sub-regions in which the ground state of Φ contains modes

clm with |m| > 0 with non-zero expectation value. We call these regimes of the

theory stripe phases.

Table 3.1.: Fit of the numerical data for the transition between matrix and uniform
phase.

N K1 K2 σest

7 −1.25± 0.22 0.61± 0.04 0.18

15 −0.44± 0.05 0.47± 0.02 0.06

25 −0.74± 0.07 0.65± 0.03 0.03

35 −0.85± 0.05 0.76± 0.02 0.03
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Figure 3.23.: Phase diagram of N = 7 system, together with fits of the transition
curves between the three phases. The uncertainties are small in com-
parison to the symbol size and therefore omitted for clarity.

Before we start to search for such configurations we need to understand the

roles the different modes of the field play in the different terms of the action. It

is convenient to look into the terms in momentum representation. From (3.14)

we can see that all modes contribute on equal footing to mass term. From (3.15)

we can see that the kinetic term penalizes modes with momentum l by factor

of l(l + 1). Thus in the regions of the phase diagram where the kinetic term is

important we expect only modes with low l and correspondingly low m to be

non-zero. For that reason we expect modes with higher l to contribute only when

the kinetic term is negligible. The relative contribution from different modes to

the self-interaction term (3.18) is not as clear as in the case of the other two

terms. For that reason we try to study the relative contribution of the modes

deep into the disordered phase as we vary the parameter c. We have performed

simulations for an N = 7 system with parameters κ = 1, b = −1 and c in the

interval [5, 20000]. According to our numerical results in the disordered phase the

main contribution always comes from modes cl,m=0 and cl,m=±1 thus we conclude

that the quartic term suppresses modes with m ≥ 2. This is demonstrated in

Fig. 3.24 and 3.25. We see that even when c≫ κ and therefore the kinetic term

is small, the modes with higher momentum are suppressed.

61



Scalar field theory on the fuzzy sphere

 1  2  3  4  5  6  7  8

 1

 2

 3

 4

 5

 6

 7

 8 -0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

Figure 3.24.: The real part of the
gauge-fixed entries of
the matrix Φ as av-
eraged over a Monte
Carlo simulation in Dis-
ordered phase, close to
the triple point. b =
−1, c = 5, N = 7.

 1  2  3  4  5  6  7  8

 1

 2

 3

 4

 5

 6

 7

 8 -0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015
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Carlo simulation deep
into the Disordered
phase, b = −1, c =
20000, N = 7.

The above results suggest that the higher momentum modes can have non—

negligible contribution only deep into the matrix phase. In Fig. 3.26 and 3.27

we present the matrix entries of Φ in the matrix phase in a region close to the

triple point and far away from the triple point but deep into matrix phase. From

a comparison of the graphs we can see that indeed far away from the disordered

phase and uniform phase the modes with higher momentum m have higher rela-

tive contribution. In the first case when the system is close to the triple point,

the main contribution comes from modes cl,m=0,±1. On the other hand when

the system is deep into the matrix phase there is a contribution of modes with

momentum up to m = 3.

3.11. Final remarks

In this chapter we presented a matrix regularization of the scalar field theory in

terms of matrix model in two different bases. The two approaches are equivalent

but give different insight into the dynamics and the structure of the theory. We

derived a HMC algorithm based on (3.6). We studied the phase diagram of the

theory and showed the existence of regions in the matrix phase where the different
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normal modes have different contribution to the matrix Φ— the so called stripe

phases. Using our algorithms we were able to observe stripe phases for systems

with size up to N = 25. However the question of their existence in the N → ∞
limit cannot be answered by numerical studies and remains open. There are more

open questions as regard to this model. An interesting numerical task would be

an identification of the critical curves where higher modes of the field are excited.

Yet another direction of research could be a study of the phase diagram of the

model with higher order kinetic term as formulated in 3.6. Our preliminary results

suggest that the higher order derivative term indeed suppresses the stripe phases

and the matrix phase of the model, as we expected. A direct comparison of the

matrix regularization to the lattice approach is possible if one studies numerically

the model quoted in [31] as it should have continuum φ4 theory in its large N

limit.
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Chapter 4.

Simulating the Three Matrix Model

When matrix models are considered as statistical mechanical systems, impor-

tant questions to be addressed are: what phases do they exhibit and are the

usual thermodynamic critical exponent relations valid? In this chapter we try

to demonstrate the finite-size scaling properties of a matrix model which con-

sists of Yang-Mills and Myer’s terms using numerical techniques. The model has

been studied extensively in [66, 25, 26] by numerical techniques. In [5, 6] some

perturbation calculations have been carried out as well.

The structure of this chapter is as follows. In §4.1 we describe the model

along with its main features following [26, 5]. Next in §4.2, §4.3, and §4.4 we

discuss the different phases of the theory. In §4.5 and §4.6 we develop two Hybrid

Monte Carlo algorithms that can be used for numerical studies of the theory. In

§4.7 we discuss the difficulties that arise when one studies critical systems using

numerical techniques.

4.1. Overview of the model

The model under consideration provides an example for a system which radically

changes its geometric properties across a phase transition in its parameter space.

On the low-temperature side the system has the features of the fuzzy sphere S2
F .

This geometry completely disappears across a critical point.
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Let Xa, a = 1, 2, 3, be three traceless N -dimensional hermitian matrices. We

consider the action (really the energy functional divided by temperature, as all

our considerations will be in Euclidean signature)

S[X] = N Tr
(
− 1

4
[Xa, Xb]

2 +
2ig

3
ǫabcXaXbXc

)
, (4.1)

where ǫabc is the totally antisymmetric Levi-Civita symbol, g ∈ R is a parameter

of the model. An important feature of the action (4.1) is that it is real for all

hermitian matrices Xa. The change g → −g is clearly equivalent to Xa → −Xa,

therefore it will be sufficient to restrict our study to the case g ≥ 0, which we shall

assume. This model has a first order phase transition [5, 66]. The expectation

value of a generic observable A of the theory is defined via the path integral

〈A〉 = Z−1

∫
A[X]e−S[X]dX, where Z =

∫
e−S[X]dX (4.2)

and

dX =
3∏

a=1

N∏

i=1

i∏

j=1

dRe((Xa)ij)dIm((Xa)ij)δ(TrXa). (4.3)

In the above measure by δ(TrXa) we denote Dirac δ-function which eliminates

the contribution from the matrices with non-zero trace.

We can write the stationary condition equations of the system based on S.
There is no time dependence and derivatives with respect to time. The equations

are simply δS = 0

N
(
[Xb, [Xa, Xb]]− ǫabcig[Xb, Xc]

)
= 0 (4.4)

and every configuration of matrices Xa that solves (4.4) is a (local) stationary

point of (4.1).

It will sometimes be convenient to scale out a factor of
√
N and work with

the parameter g̃ = g
√
N , as this gives a phase diagram that does not depend on
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N . If we make the substitution Xa → g̃ Da√
N

the action reads

S[D] =
g̃4

N
Tr
(
− 1

4
[Da, Db]

2 +
2i

3
ǫabcDaDbDc

)
. (4.5)

From the above it is clear that the partition function is symmetric under g̃ → −g̃,
or equivalently under g → −g. For g̃ 6= 0 we can interpret T = g̃−4 as a

temperature for the system. 1

The physical properties of the system in its different phases are characterized

by the expectation value of the action 〈S〉 and the eigenvalue distribution of the

matrices Xa. An important characteristic is the specific heat Cv of the system.

It is defined as

Cv =
〈(S − 〈S〉)2〉

N2
=

〈S〉
N2

− g̃4
d

dg̃4

(〈S〉
N2

)
. (4.6)

The specific heat of the system is nothing else than the dispersion of the energy

of the system at a given temperature. As such we can use it to estimate the

magnitude of the fluctuations of the system around a stable configuration with

〈S〉 and specific heat Cv. If we apply Jensen’s inequality2 to the definition of Cv

(4.6) we have

N2Cv =
〈
(S − 〈S〉)2

〉
=
〈
(|S − 〈S〉 |)2

〉
≥ 〈|S − 〈S〉 |〉2

⇒ 〈|S − 〈S〉 |〉 ≤ N
√
Cv.

(4.7)

For convenience we shall define S := 〈S〉. From a thermodynamical point of view

this represents the internal energy divided by the temperature.

If we use the fuzzy sphere coordinates constraint (2.8), we can define

R2 =
〈TrD2

a〉
Nc2

, (4.8)

1Generally we prefer to discuss the physical properties of the system in terms of the tempera-
ture T , though it may be more convenient in some situations to use g̃ or g. Note however
that, as there are no dimensional quantities in the action, T here is dimensionless.

2The inequality states that if f(x) is a convex function and 〈x〉 and 〈f(x)〉 are the mean values
of x and f(x), then f(〈x〉) ≤ 〈f(x)〉
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where c2 is the second order Casimir of su(2), to be an order parameter of the

system. It has a nonzero value only in one of the phases of the system.3 Another

observable of the system that is of interest to us is the dispersion of the R2. This

quantity is the analogue of magnetic susceptibility in a magnetic system

χ =
〈(TrD2

a − 〈TrD2
a〉)2〉

N2c2
. (4.9)

The model has at least two phases, which we call the commuting matrix phase

and the fuzzy sphere phase. All of the above quantities behave quite differently on

different sides of the phase boundary. In the next paragraphs we give some details

about the two phases and their main properties with regard to the observables of

the system.

4.2. The commuting matrix phase

This is the high temperature (disordered) phase of the model with T > Tc. It

is described by fluctuations around a ground state in which the three matrices

are mutually commuting. This ground state can be represented by matrices Xa

which are linear combinations of hHmh
−1, m = 1 . . . N − 1, where Hm are in the

Cartan sub-algebra of su(N) and h ∈ SU(N). Any such linear combination is a

trivial solution to (4.4), so the classical action vanishes on these solutions.

4.2.1. Stability of the matrix phase

The solutions mentioned above can be unstable if any of the eigenvalues get too

close to one another, as we now demonstrate. The matrices close the classical

solution can be expressed as

Xa = X0,a + δXa, (4.10)

with X0,a three mutually commuting hermitian matrices. Since they commute,

we are free to perform an N×N unitary transformation on X0,a to simultaneously

3In fact R tends to zero in the matrix phase only in large N limit
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diagonalize them. In that basis they have the form

(
X0,a

)
ij
= λai δij, (no sum over i). (4.11)

Let us compute the commutator between two matrices4

[
Xa, Xb

]
= [Xa

0 + δXa, Xb
0 + δXb]

= [Xa
0 , X

b
0] + [Xa

0 , δX
b]− [Xb

0, δX
a] + [δXa, δXb].

The first term in the above expression vanishes identically because two diago-

nal matrices always commute. The terms that are linear in the fluctuations can

be written as

[Xa
0 , δX

b]ij = ∆a
ijδX

b
ij ,

where ∆a
ij = λai −λaj . It is to be noted that the above commutator is expressed in

terms of the element-wise multiplication of the two matrices ∆a
ij and δX

b
ij rather

than the usual matrix multiplication.

For the cubic term we have

TrXa
[
Xb, Xc

]
=
(
Xa

0 + δXa
)[
Xb

0 + δXb, Xc
0 + δXc

]

= (Xa
0 )ij ∆

b
ji δX

c
ji − (Xa

0 )ij ∆
c
ji δX

b
ji + (Xa

0 )ij [δX
b, δXc]ji

+ δXa
ij ∆

b
ji δX

c
ji − δXa

ij ∆
c
ji δX

b
ji + δXa

ij [δX
b, δXc]ji.

In the above expansion we keep only terms up to second order in the fluctuations

δXa. The terms that are linear in the variations δXa satisfy the equations of the

motion of the system, thus they are identically zero. Using the cyclic property of

the trace we finally arrive at

2i

3
Tr ǫabcXaXbXc = iǫabc∆

a
ijδX

b
ij δX

c
ji. (4.12)

4For the rest of the section we will adopt notation with upper indeces for the matrices Xa
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Next we compute the quartic term

Tr
[
Xa, Xb

]2
= Tr

(
∆a
ij δX

b
ij −∆b

ij δX
a
ij + [δXa , δXb]

)2

= ∆a
ij δX

b
ij∆

a
ji δX

b
ji −∆a

ij δX
b
ij∆

b
ji δX

a
ji +∆a

ij δX
b
ij [δX

a , δXb]ji

−∆a
ij δX

b
ij∆

b
ji δX

a
ji +∆b

ij δX
a
ij∆

b
ji δX

a
ji −∆b

ij δX
a
ij [δX

a , δXb]ji

+ [δXa , δXb]ij∆
a
ji δX

b
ji − [δXa , δXb]ij∆

b
ji δX

a
ji + Tr[δXa , δXb]2.

As in the previous case we keep only terms up to quadratic order in the variation

δXa. For the Yang-Mills term we have

−1

4
Tr
[
Xa, Xb

]2
=

1

2

((
∆ij.∆ij

)
δab −∆a

ij∆
b
ij

)
δXa,ij δXb,ij. (4.13)

Stability of fluctuations around a classical solution are therefore determined by

the eigenvalues of the operator

1

2

(
∆2
ijδ

ab −∆a
ij∆

b
ij

)
+ ig ǫabc∆

c
ij , (4.14)

where ∆2
ij = ∆a

ij∆
a
ij. The solutions of the characteristic equation are of the form

0, 1
2
∆2
ij ± g

√
∆2
ij. Thus there is a negative eigenvalue, and hence an instability,

if some eigenvalues in the solution are too close together. In particular, if

∆2
ij < 4g2, (4.15)

for any pair i, j, then there is a direction which is unstable. The solution is stable

if all the eigenvalues of X0,a are far enough apart. Note that there are no unstable

directions for g = 0, the instability is induced by the Myers’ term.

4.2.2. Fluctuations of the matrix phase

Fluctuations can of course modify the above analysis. It is possible that they

stabilize the unstable solutions. An analytic approach to this question is difficult

and will not be attempted here, but it is certainly the case that they modify the

expectation value of the action and shift it away from S = 0. To study this effect
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consider a Schwinger-Dyson type analysis,

0 =

∫
[DX] Tr

∂

∂Xa

(
Xae

−S)

⇒ 0 = 3(N2 − 1)− Tr

〈
Xa

∂S
∂Xa

〉
(4.16)

⇒ 3(N2 − 1) = −N Tr
〈
[Xa, Xb]

2
〉
+ 2igNǫabcTr 〈XaXbXc〉

= 4 〈S〉 − i2gN

3
ǫabcTr 〈XaXbXc〉 ,

where 3(N2 − 1) is the number of degrees of freedom in the three hermitian

matrices Xa. Thus we expect

〈S〉
N2

=
3
(
N2 − 1

)

4N2
+

ig

6N
ǫabcTr 〈XaXbXc〉 . (4.17)

It is shown numerically in [24] that Tr 〈XaXbXc〉 ≈ 1
N1/2

(
1

T 1/4 + O
(

1
T 1/2

))
at

large T and large N also, in this limit,

Sm(T )

N2
=

3

4
> 0. (4.18)

The specific heat does not depend on T ,

Cv =
3

4
, (4.19)

each degree of freedom contributes a value of 1
4
to the specific heat. The model

behaves like pure Yang-Mills model in the large N limit.

For large N , the eigenvalue distribution in this phase is compatible with a

parabolic distribution [14, 24, 65]. In a gauge in which X3 is diagonal (which can

always be achieved by a SU(N) transformation) the diagonal entries of 〈X3〉 can
be arranged in descending order and give a parabolic distribution with normalized

density

ρ(λ) =
3(Q2 − λ2)

4Q3
, (4.20)

with Q determined numerically to be 2.0.
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The eigenvalue distribution (4.20) gives us a way to estimate the value of the

observable R. Let us consider the eigenvalues of the matrix X1. We can relate

the expectation value of TrX2
1 to an integral of the eigenvalue x over the above

distribution

1

N

〈
TrX2

1

〉
=

∫ Q

−Q
x2ρ(x)dx =

Q2

5
.

Now if we plug-in the numerical value for Q for the radius we get

R2 =
12

5g̃2c2
=

12T 1/2

5c2
. (4.21)

The above relation confirms that in largeN limit for fixed temperatureR vanishes

in this phase as stated before.

4.3. The fuzzy sphere phase

The fuzzy sphere phase is a cold (ordered) phase and is radically different to the

commuting matrix phase. The background matrices in this phase are represented

by a solution to (4.4) in which Xa are proportional the generators of su(2), Xa =

gLa with [La, Lb] = iǫabcLc, up to U(N) transformation hLah
−1 with h ∈ SU(N).

For the classical solution we have
∑

aX
2
a = g2c21, with c2 the second order

Casimir for the N -dimensional representation of su(2). This implies
〈TrX2

a〉
g2Nc2

= 1.

The value of the action at the ground state in this phase is approximated by

calculating the value of the action for the classical solution Xa = gLa. This gives

Sf(T ) = −c2c
adj
2

12T
+ 〈fluctuations〉 , (4.22)

where cadj2 = 2 is the adjoint Casimir operators of su(2). In [5] one-loop corrections

to the classical solution from (4.22) have been computed in large N limit. Since

the matrices Xa are proportional to the su(2) generators they have a discrete
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eigenvalue spectrum with N distinct eigenvalues of the form

λ =
{
−gN − 1

2
,−gN − 3

2
, . . . g

N − 1

2

}
. (4.23)

An approximate analytic expression for the critical behaviour in the N → ∞
limit on the fuzzy sphere side was given in [26]. If we make the ansatz Xa = φ g La

in the fuzzy sphere phase and write an effective potential for the theory in terms

of φ, then the classical solutions are given by

φ(g̃) =
1

4

(
1 +

√
1 + δ(g̃) +

√
2− δ(g̃) +

2√
1 + δ(g̃)

)
, (4.24)

δ(g̃) =
4

g̃4/3

((
1 +

√

1− g̃e
g̃

) 1

3

+
(
1−

√

1− g̃e
g̃

) 1

3

)
. (4.25)

The expectation value of the action can be written in terms of φ

〈S〉′f (g̃)
N2

=
3

4
− g̃4φ3(g̃)

24
. (4.26)

In a large N semi-classical approximation, equations (3.25) and (3.26) of ref-

erence [26] with m = 0, give, in the large g̃ limit for the specific heat

Cv =
3

4
+
g̃5φ2

32

dφ

d g̃
, with φ = 1− 2

g̃4
− 12

g̃8
+O

(
1

g̃12

)
. (4.27)

Thus

Cv = 1 +
2

g̃4
+O

(
1

g̃8

)
(4.28)

and

Cv −→
T→0

1 . (4.29)

The magnetic susceptibility χ is dependent on the temperature, and it diverges

at Tc. Here it is worth to comment on the normalization factor in (4.9). As we can

see on the side of the fuzzy sphere, the susceptibility is defined as the dispersion
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Figure 4.1.: Numerical measurement of the magnetic susceptibility χ for systems with
size N = 30, 40, 50. The plots for χ of systems with different matrix size
N are normalized by factor ∼ N4. This produces a single curve, which
is independent of N . The uncertainties are small in comparison to the
symbol size and therefore omitted for clarity.

of the fluctuations of R2 from (4.8) around its classical value. Numerically we

find that for fixed temperature the quantity 〈(TrD2
a − 〈TrD2

a〉)2〉 behaves like N4.

We use this observation to fix the normalization factor of (4.9). We require that

χ agrees for different system sizes at the same temperature. Values for χ which

are obtained from simulations are plotted on Fig. 4.1 in these two phases.

As we can see the properties of the matrices are quite different on the two sides

of the phase transition. In Fig. 4.2 and 4.3 we present the eigenvalue distributions

of Xa for systems deep into the matrix phase and fuzzy sphere phase. They are

in a good agreement with (4.20) and (4.23). In Fig. 4.4 we also present the

numerical measurement of the action as function of the coupling g̃ together with

plots of (4.18) and the background of (4.22).
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4.4. Excited fuzzy sphere states

A closer examination of the equations of motion (4.4) shows that they have more

solutions. They come in the form of reducible fuzzy sphere solutions, with Xa

proportional to su(2) generators in a reducible representation of the form

R1(M1)⊕R2(M2) . . .⊕RK(Mk), (4.30)

where Ri(Mi) is an su(2) irreducible representation of dimensionMi and
∑K

i=1Mi

= N . The matrices Xa for this solution can always be chosen to have block-

diagonal form and we will assume is for the rest of our discussion. All of the

metastable configurations are represented by the n-tuple (M1,M2, . . . ,MK). They

can be listed and indeed all the solutions described so far — even the commuting

matrix phase and the irreducible fuzzy sphere phase — can be classified this way.

The special case M1 = M2 = . . . = MN = 1 corresponds to the commuting

matrices phase and the ground state in this case can be viewed as arising from N

one-dimensional (or trivial) representations of su(2). The other extreme, when

K = 1 and the representation is irreducible, we shall refer to as “the” fuzzy sphere
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Figure 4.4.: Simulation of N = 20 system as function of the coupling g̃. On the
matrix phase the numerically obtained values are in good agreement with
(4.18). We also plot the classical value of the ground state (4.22) and
the semi-classical approximation (4.26). As we can see the semi-classical
approximation is indeed in a very good agreement with the numerical
results. The uncertainties are small in comparison to the symbol size
and therefore omitted for clarity.
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state. Nevertheless the commuting matrix solution is genuinely different to all

the others, the configuration represented by diagonal matrices is a state built

from the one-dimensional representations so the ǫ term in (4.4) plays no rôle and

the system has no memory of su(2). There are one dimensional representations

of an arbitrary algebra.

For a fixed N , the degeneracy of excited states with 1 ≤ K ≤ N grows like

the number of partitions p(N) of N . The asymptotic behaviour for large N is

given by [45]

p(N) ∼ eπ
√

2N/3

4
√
3N

, (4.31)

which grows very rapidly with N . We can use some of the observables defined in

§4.1 to distinguish between the fuzzy sphere from the section §4.3 and these ex-

cited configurations with K > 1. First we can use the eigenvalues of the matrices:

since any irreducible representation R(M) of su(2) has M distinct eigenvalues,

configurations of the form (4.30) have max{Mi} < N distinct eigenvalues in

their spectra. Another observable that is sensitive to the excited states is the

expectation value of the action. We have

Sef(T, (M1,M2, . . . ,MK)) = −
K∑

i=1

Mic2(Mi)c
adj
2

12T
+ 〈fluctuations〉 . (4.32)

In the above equation by c2(Mi) we denote the second order Casimir of su(2) of

the reducible representation of dimension Mi. Thus Sf(T ) < Sef(T,K) < Sm(T )

for ∀K : 1 < K < N . The radius of the sphere (4.8) changes as well

Ref(T, (M1,M2, . . . ,MK)) =
k∑

i=1

Mic2(Mi)

Nc2(N)
< 1. (4.33)

However neither of these observables can be used to distinguish between ex-

cited states composed by the same number of smaller representations but per-

muted. For example the states R1(M1) ⊕ R2(M2) and R2(M2) ⊕ R1(M1) are

indistinguishable because according to (4.32) Sef(T, (M1,M2)) = Sef(T, (M2,M1))

and Ref(T, (M1,M2)) = Ref(T, (M2,M1)). Also these configurations have the
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same number of distinct eigenvalues. The Monte Carlo histories of the action

and the radius of N = 20 system which visits excited states are plotted on Fig.

4.5 and 4.6.
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Figure 4.5.: Monte Carlo history of
the action of N = 20 sys-
tem at coupling g̃ = 10.
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Far from the phase transition these states do not play an important role in the

thermodynamics of the system. Our numerical results in Fig. 4.7 indicate that

they behave very much like true fuzzy sphere states. Near the phase transition

however they get closer energetically. In the following, if the system is found in

a state with 1 < K < N we can for all practical purposes regard it as if it is in

the fuzzy sphere phase.

4.5. Hybrid Monte Carlo approach

In this section we apply the Hybrid Monte Carlo algorithm described in A.2.

The matrices of the theory Xa are N × N hermitian traceless matrices. They

represent 3(N2 − 1) degrees of freedom. We extend the system by introducing

conjugate momenta Pa. In order to preserve ergodicity and phase volume element

conservation the momenta are defined to be again N × N hermitian traceless

matrices. This way we can define a Hamiltonian for the extended system

H(X,P ) =
1

2
TrP 2

a + S(X). (4.34)
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The system defined above has 6(N2 − 1) degrees of freedom. We generate con-

figurations for the matrices Xa based on its Hamiltonian dynamics. Similarly to

§3.4 for the derivatives with respect to the matrix elements we have

∂(Xa)i2j2
∂(Xb)i1j1

= δi1i2δj1j2δab
∂(Pa)i2j2
∂(Pb)i1j1

= δi1i2δj1j2δab. (4.35)

Now we derive the equations of the motion for the system based on (A.6).

For the derivative of (4.34) with respect to the momenta we have

∂

∂(Pa)ij

∑

b

1

2
TrP 2

b = (Pa)ji. (4.36)

After we carry out the summation and using the cyclic properties of the trace for

the derivative of the Myer’s term we get

∂

∂(Xa)ij

(1
3

∑

bcd

Tr ǫbcdXb[Xc , Xd]
)
= ǫabc([Xb , Xc])ji (4.37)

Next we compute the derivative of the Yang-Mills term

∂

∂(Xa)ij

∑

b, c

Tr[Xb , Xc]
2

=
∂

∂(Xa)ij

∑

b, c

Tr ((Xb)kl (Xc)lm (Xb)mn (Xc)nk − (Xb)kl (Xc)lm (Xc)mn (Xb)nk)

=
∑

b, c

(
δabδikδjl (Xb)lm (Xa)mn (Xb)nk + (Xb)klδacδilδjm (Xc)mn (Xb)nk

+ (Xa)kl (Xb)lm δabδimδjn (Xb)nk + (Xa)kl (Xb)lm (Xc)mn δacδinδjk

− δabδikδjl (Xc)lm (Xc)mn (Xb)nk − (Xb)kl δacδilδjm (Xc)mn (Xb)nk

− (Xb)kl (Xc)lm δacδimδjn (Xb)no − (Xb)kl (Xc)lm (Xc)mn δabδinδjk
)
.

After some reordering of the terms and replacement of the dummy indices we get

∂

∂(Xa)ij

∑

b, c

Tr[Xb , Xc]
2 = 2

∑

b

[Xb, [Xa, Xb]]ji. (4.38)
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Now using (4.37) and (4.38) we can write down the equations of motion of

our extended system. They have the form

(Ẋa)ij = (Pa)ji

(Ṗa)ij = N
∑

b 6=a

(
[Xb, [Xa, Xb]]− ǫabcig[Xb, Xc]

)
ji
. (4.39)

The above equations are numerically integrated using the scheme described

in §A.2.2 with Omelyan integrator with variable time step ǫ.

As consistency checks we have observed the phase volume conservation (A.14)

and also the identity

4

〈
−N 1

4
Tr[Xa, Xb]

2

〉
+ 3

〈
N
2ig

3
ǫabcTrXaXbXc

〉
= 3(N2 − 1), (4.40)

which follows from (4.17). They hold within good precision in our simulations.

The algorithm fulfills all the requirements from A.1. It has complexity ∼
O(N3) because of the matrix multiplication.

4.6. Hybrid Monte Carlo approach II

The system under study has a gauge symmetry: the action is invariant under

the transformation Xa → U †XaU . The algorithm we presented in the previous

section does not fix that symmetry. By gauge-fixing this symmetry of the matrices

we can gain some insight into the dynamics of the system and it also provides

some speed up. In what follows we will provide an alternative Hybrid Monte

Carlo algorithm for simulation of the system (4.1) in which the gauge is fixed

in such a way that the matrix X3 is always diagonal. We do so by applying an

SU(N) transformation to the three matrices Xa. In general we can diagonalize

only one of them. As we noted earlier the action of the system is invariant under
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SU(N) transformations. After the transformation we have

X1 → U−1X1U,

X2 → U−1X2U,

X3 → U−1Λ3U,

(4.41)

where Λ3 = diag{λ1, λ2, . . . , λN},
∑N

i=1 λi = 0 is a real diagonal N -dimensional

matrix. Unlike the gauge-fixing procedure described in 3.7 the transformations

(4.41) are applied not only for the measurement. Therefore they affect the form

of the action of the system. Now we write down the action in the terms of the

new matrices.

4.6.1. Gauge-fixed action and path integral redefinition

First we re-arrange the Myers term

ǫabcTrXaXbXc = 3TrX3[X1, X2].

Then we expand the trace in terms of the transformed matrices

TrΛ3[X1, X2] =
∑

i

λi
∑

j

(X1)ij (X2)ji −
∑

i

λi
∑

j

(X2)ij (X1)ji

=
∑

i,j

λi(X1)ij (X2)ji −
∑

i,j

λj
∑

j

(X1)ij (X2)ji

=
∑

i,j

∆ij(X1)ij (X2)ji.

(4.42)

The Yang-Mills term between X1 and X2 remains unchanged. For the cross

terms between Λ3 and a fixed matrix Xa we have

Tr[Λ3, Xa]
2 =

∑

i,j

(Xa)ijλjλi(Xa)ji −
∑

i,j

λ2i (Xa)ij(Xa)ji

=
∑

i,j

(Xa)ijλi(Xa)ji∆ji.
(4.43)
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The action now has the form

Sgf[X1, X2,Λ3] = N
(
− 1

2
Tr[X1, X2]

2 −
2∑

a=1

∑

i,j

(Xa)ijλi(Xa)ji∆ji

+ 2ig
∑

i,j

∆ij(X1)ij (X2)ji

)
.

(4.44)

The action (4.44) is equivalent to (4.1). They have the same value when X3 is

diagonal. However we can not use the above action with the path integral from

(4.2). The reason is that now the system has fewer degrees of freedom. In the

new action there are 2(N2− 1)+ (N − 1) instead of 3(N2− 1). Thus the measure

(4.3) needs to be modified accordingly. The measure of the configuration spaces

of X1 and X2 stays the same. For the the measure dX3 we have

dX3 → dΛ3 =
N∏

i=2

i−1∏

j=1

(λi − λj)
2dλi. (4.45)

The factor which involves the differences between eigenvalues in the measure is the

Vandermonde determinant. It arises because of the variable substitution (4.41).

More details about its derivation can be found in [27]. We see that configurations

with two or more eigenvalues close to each other are suppressed as they have

measure tending to zero. This gives rise to the so called eigenvalue repulsion.

This repulsion force makes the excited states from §4.4 unstable because two

copies of lower dimensional representations of the su(2) would have the same

eigenvalues. In order to take this force into account in our evaluation of the path

integral of the system we can define effective action that corresponds to it

Srep[Λ3] = −
N∑

i=2

i−1∑

j=1

log(λi − λj)
2. (4.46)

Thus in order to evaluate (4.2) we need to use the effective action constructed by

the sum of (4.45) and (4.46).

Seff[X1, X2,Λ3] = Sgf + Srep. (4.47)
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It is important to stress that while the action (4.47) gives us the right partition

of the system, it is not the physical action of the system. It is rather a mixture

of action of the system together with part which takes into account the entropy

of the configuration presented in the form of an entropic force. Therefore the

measurements of observables of the system which depend on the action such as S

and Cv should be defined as functions of (4.45). That way we get results which

are consistent with the formulation in §4.5.

4.6.2. Extended system. Hamiltonian equations of motion

First we need to define the conjugate momenta. ToX1 andX2 we assign conjugate

momenta P1 and P2 as in §4.5. The matrix Λ3 has N − 1 degrees of freedom. We

define its conjugate momenta to be P3 = diag{π1, π2, . . . , πN}, with the constraint

for the elements of Λ3,
∑N

i=1 πi = 0. Now our extended system has 4(N2 − 1) +

2(N − 1) degrees of freedom. The Hamiltonian of the system reads

H(X,P ) =
1

2

2∑

a=1

TrP 2
a +

1

2

∑

i

π2
i + Seff(X). (4.48)

In addition to the derivatives from (4.35) we have

∂λi
∂λj

= δij
∂πi
∂πj

= δij

∂∆ij

∂λk
= δik − δjk.

(4.49)

All other derivatives are zero. The derivative with respect to the momentum π is

∂πk
(
1
2

∑
i π

2
i

)
= πk.

Now we compute the derivatives of the Myers term

∂

∂λk

(∑

ij

∆ij(X1)ij (X2)ji

)
=
∑

ij

(
δik − δjk

)
(X1)ij (X2)ji

= [X1, X2]kk

(4.50)
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and

∂

∂(Xa)kl

(∑

ij

∆ij(Xb)ij (Xc)ji

)

=
∑

ij

∆ij

(
δabδikδjl (Xc)ji + δacδilδjk (Xb)ij

)
= ǫ3ab∆lk(Xb)lk.

(4.51)

For the Yang-Mills derivatives we have

∂

∂λk

(∑

i,j

(Xa)ijλi(Xa)ji∆ji

)

=
∑

i,j

(Xa)ijδik(Xa)ji∆ji +
∑

i,j

(Xa)ijλi(Xa)ji(δjk − δik)

= 2
∑

i

(Xa)ki∆ik(Xa)ik

(4.52)

and

∂

∂(Xa)kl

(∑

i,j

(Xb)ijλi(Xb)ji∆ji

)

=
∑

i,j

δikδljλi(Xa)ji∆ji +
∑

i,j

(Xa)ijλiδjkδil∆ji

= −(Xa)lk(∆lk)
2.

(4.53)

For the derivative of the term involving X1 and X2 we use the expression (4.38).

Next we compute the entropic force which comes from the eigenvalue repulsion

(4.46)

∂

∂λk

( N∑

i=1

i−1∑

j=1

log(λi − λj)
2
)
=

N∑

i=1

i−1∑

j=1

δik − δjk
∆ij

=
N∑

i=1 i 6=k

2

∆ki

. (4.54)
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Finally we write down the equations of motion

(Ẋa)ij = (Pa)ji

λ̇i = πi

(Ṗa)ij = N
(
[Xb, [Xa, Xb]]ji − igǫ3ab∆ji(Xb)ji)

π̇i = N
(∑

j

(Xa)ij∆ji(Xa)ji − ig[X1, X2]ii
)
+

N∑

j=1 j 6=i

2

∆ij

.

(4.55)

The dynamics of (4.55) keep both λi and πi diagonal during the simulation by

construction. They can be used as an alternative to (4.39) to generate configu-

rations for the matrices. We use again the Omelyan type integration scheme to

solve them. There are a few differences. First as we stated before, the basis of

the system has been chosen in such a way that X3 is always diagonal, hence we

replace the whole matrix by its eigenvalues. This allows us to extract certain

observables such as the polarization tensor coefficients clm which would otherwise

be averaged to zero because of the random unitary rotations during a simulation.

From a computational point of view, the equations (4.55) are more efficient than

the first version. This is because they involve a smaller number of full matrix mul-

tiplications. However the complexity of the algorithm is still ∼ O(N3) because

of the remaining commutator between X1 and X2. The algorithm is ergodic with

the exception of the states which involve two or more very close eigenvalues of

Λ3. Those configurations become inaccessible because of the eigenvalues repulsion

term (4.46). However the integrals over those configurations have zero measure

and therefore those configurations are not important. The eigenvalues repulsion

term has also an impact on the algorithm’s stability. Because of that term one

should be careful not to start the algorithm in a state in which Λ3 contains two

or more eigenvalues that are very close to each other, as the logarithm and its

derivative are divergent at zero. This leads to problems with generating of new

configurations. As for the dynamics of the matrix evolution, the eigenvalue re-

pulsion term forces the system to avoid excited fuzzy sphere solutions.

From practical point of view, the two algorithms have their relative advantages

and disadvantages. If there is no coexistence the two algorithms produce the same

results. In that regime the algorithm of choice is the one with the gauge-fixing

as it is more efficient in terms of computer resources and it allows us to generate
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more data points. However the gauge-fixed algorithm seems to perform worse in

the situations where we expect coexistence of the phases- in those cases we use

the first algorithm.

4.7. Near-critical simulation difficulties

The emphasis of our studies of the model will be on the properties of the system

near the phase transition between the two phases. A numerical analysis of the

properties of a generic system very close to a phase transition is usually compli-

cated due to some phenomena which occurs in critical systems. In this section we

discuss the features of the system that hinder our numerical methods and their

impact on our work. We also describe how we handle them.

4.7.1. Critical slowdown

As we pointed out, in every near-critical physical system there are fluctuations

which extend over regions of size comparable to the size of the whole system.

This purely physical phenomenon has its manifestation in the simulations of near

critical systems. It is described by the theory of dynamical critical phenomena.

Detailed treatment of the subject can be found in e.g. [41, 61]. When T → Tc the

time τ needed for a non-equilibrium system to reach equilibrium grows.5 More

details on the impact of critical slowdown on our numerics is discussed in the

Appendix and here we merely observe that, for the systems studied in this work,

the critical slowdown has significant impact on the accuracy only for systems with

N ≥ 100.6

5We consider a system sufficiently close to equilibrium that it does not need to cross over any
energy barriers in order to reach equilibrium.

6It is evident from Fig. 5.23 that the relative error in the measurement of the near-critical
specific heat grows with the system size as consequence of the autocorrelation time.
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4.7.2. Excited states

Another property to be taken into consideration is the presence of the excited

fuzzy sphere configurations given by (4.30). As mentioned earlier, those config-

urations possess energies which are intermediate between the commuting matrix

phase and the fuzzy sphere phase. This means that, in the region where the

two phases coexist, we would expect to see jumps between excited states and

the commuting matrix phase rather than the transition between the commuting

matrix phase and the fuzzy sphere. As the Monte Carlo evolution of the system

is based on stochastic dynamics we do not have control over which configurations

are sampled, nevertheless we do not consider this to be a problem for extracting

critical exponents since we expect all these excited states to to be in the same

universality class and therefore to have the same critical exponents. This expecta-

tion is supported by our simulations. We are able to measure the values of Cv for

different excited states and the fuzzy sphere and they agree up to the numerical

uncertainties, as illustrated in Fig. 4.7.
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4.7.3. Energy separation between different phases

Ideally in the vicinity of the phase transition the system will jump between the

two phases and if we can get enough Monte Carlo steps, we will have enough

statistics to properly determine the ground state, or the relative weight of the

local minima of the action, and extract the relevant quantities. A Monte Carlo

history of a system in that regime is depicted in Fig. 5.5. We can see that the

system spends roughly the same amount of MC time in both phases, an indication

that the system is close to the transition point. However for large N the jump

between the two phases becomes a rare event, and indeed our numerical studies

indicate that this is already the case for N ≃ 14. This, in combination with the

asymmetry of the phase transition, makes it very hard to simulate the system

efficiently in the regime where the two phases coexist. For systems with size

N ≥ 15 we cannot achieve a regime of coexistence using our methods in order to

explore the full configuration space of the systems.

On the other hand if we restrict ourselves to the fuzzy sphere side we can

perform a cold start on the Monte Carlo runs, so that the phase transition is

always approached from the low temperature side. This biases the system toward

the fuzzy sphere phase, but has the advantage of giving reproducible results. An

example is shown in Fig. 4.8, with N = 50 at T = 0.0514 < Tc. The system is

below the critical temperature but, while the value of the action is compatible

with a fuzzy sphere configuration for quite some Monte Carlo time, it suddenly

jumps to a commuting matrix configuration. We can obtain information about

the fuzzy sphere phase by restricting our measurements to this domain.
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Chapter 5.

Numerical results for the critical

Three matrix model

In the previous chapter we discussed the main properties of the Matrix model

which consists of Yang-Mills and Myer’s interaction terms and developed Monte

Carlo algorithms which allow us to simulate it. In this chapter we apply our

numerical methods and report the results.

The structure of the chapter is as follows. In §5.1 and §5.2 we present back-

ground field method based analysis of the fluctuations of on the fuzzy sphere

phase side. In §5.3 following C. Domb and J.L. Lebowitz [33] we describe finite-

size scaling in terms of system characteristic size such as length L and then we

give a formulation in terms of the matrix size N which is more natural in the

context of matrix models. In §5.4 we present the main features of the phase tran-

sition of the full system and in §5.5 we present our numerical results for small

matrix size. In §5.6 we present our numerical results for the critical behaviour

of the fluctuations in the fuzzy sphere phase regime. We measure the critical

exponents of the specific heat and the magnetic susceptibility and establish finite

size scaling. We have published part of the results related to scaling from this

chapter in [64]. At the end in §5.7 we make some final comments.
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5.1. Critical behaviour of the fuzzy sphere

As we will see in later sections, the studying of the phase transition of matrices

with N ≥ 15 is problematic with our algorithms. However if we restrict ourselves

to the fuzzy sphere side of the transition, we can study the fluctuations of the

fuzzy sphere for bigger systems.

In [26] based on the background field method an estimation of the coupling g̃c

(or equivalently of Tc ) where the fuzzy sphere is not stable has been given. In a

semi-classical approximation the fuzzy sphere phase does not exist for tempera-

ture T bigger than Tc . Here we would like to make a remark that the transition

temperature T ′
c that we study in §5.5.1 is not to be confused with the critical tem-

perature Tc . The transition temperature T ′
c is the temperature at which occurs

coexistence of the two phases of the system. The critical temperature Tc presents

the temperature at which the fuzzy sphere becomes unstable when the transition

is studied in the framework of the background field method on the fuzzy sphere

phase side. There is no reason to assume that Tc and T ′
c are equal a priori. In

[26] g̃c (or Tc ) has been estimated:

g̃c =
(8
3

) 3

4 ⇔ Tc =
(3
8

)3
≈ 0.05273. (5.1)

Expansion of the specific heat around g̃c gives

Cv(g̃) =





29
36

+ 1
4
√
6

√
g̃c
g̃−g̃c +O((g̃ − g̃c)

1

2 ) , for g̃ > g̃c ;

3
4
, for g̃ < g̃c .

(5.2)

Thus the specific heat diverges on the low temperature side of the transition,

which is the characteristic behaviour of second order phase transition critical

point. This suggests that the critical behaviour of the fuzzy sphere shows features

of a second order transition.

The general theory of continuous phase transitions and critical phenomena

suggests that, near the phase transition, the specific heat Cv and the magnetic
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susceptibility on either side should behave as

Cv(T ) ∼ A0± + A± × |T − Tc |−α, (5.3)

χ(T ) ∼ C0± + C± × |T − Tc |−γ. (5.4)

In the semi-classical approximation the three matrix model under considera-

tion here seems to have a rather unusual phase transition in that the exponent

α has a different value depending on which direction the phase transition is ap-

proached from

α =
1

2
for T − Tc → 0− .

Of course this is not the full picture of the transition as we have ignored the large

fluctuations that bring the system between different phases.

5.2. Internal and free energy

The internal energy per degree of freedom, U = T <S>
N2 , arising from the semi-

classical approximation of [26], is plotted in Fig. 5.1 and the slope of this curve

near Tc , when expressed in terms of g̃, results in the form (5.2) for the specific

heat. The semi-classical approximation on the low-temperature side is given by

S

N2
=

3

4
− φ3(T )

24T
. (5.5)

On the high temperature side the internal energy is

U =
3

4
T (5.6)

from (4.18), and so approaches the phase transition with a finite slope, giving

constant specific heat (4.19).

On the low temperature side the internal energy has a jump proportional

to the black vertical dotted line, which is the typical behaviour of a first order

phase transition. This jump corresponds to the latent heat of the transition. This
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implies that a small correction to T near Te can give a very large correction to the

latent heat, ∆U(Te). Thus the transition has properties which are characteristic

of both first and second order phase transitions.

The free energy per degree of freedom was also derived, in the same approx-

imation as the internal energy above, in [26]. On the low temperature side it

is1

F

N2
= T

[
ln

(
φ

T

)
− 1

3

]
− φ4

24
. (5.7)

Conversely, on the high temperature side, integrating

U(T ) = −T 2 d

dT

(
F

T

)
=

3

4
T, (5.8)

leads to

F

N2
= C1T − 3

4
T lnT, (5.9)

with C1 an integration constant. Adjusting C1 so that F (Te) matches on the

high and low side gives C1 = ln 6
4

− 7
12

≈ −0.1354 and results in the free energy

per degree of freedom shown in Fig. 5.2. There is a jump in the specific entropy,

s = − 1
N2

dF
dT

as we go through the phase transition, ∆s = 1
3
.

Of course this classical and semi-classical analysis is not the whole story and

indeed the purpose of the present work is to study the characteristics of this phase

transition numerically.

5.3. Finite size critical systems

Phase transitions with divergent observables are possible only in the thermody-

namic limit, which in our case would correspond to taking N → ∞. We can

of course only perform numerical studies of systems consisting of finite size ma-

1One must be careful in specifying the measure when determining the free energy, and the
measure for the matrices Xa differs from that for the Da by a temperature dependent factor
[26]. The from of the free energy quoted here is that associated with the Da.
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trices. Thus the systems we simulate will only undergo pseudo phase transition

with peaks of the observables near the critical point instead of singularities as

we can see from Fig. 5.10 and 5.11. Increasing N brings the system closer to

the thermodynamic limit but also increases the computer resources required for

the numerical study. Truly N → ∞ systems can only be approximated by fi-

nite N systems and the results must be extrapolated. The finite-size effects are

described in the framework of the so called finite size scaling. The reviews in

[33, 68, 81, 76, 41] provide very detailed treatment of the subject. The important

point is that the finite size effects tend to scale with the number of degrees of

freedom. Using this scaling we can make predictions for large size systems. In

Fig. 5.3 we plot the specific heat Cv as a function of the temperature for sys-

tems with N = 40 and 100 in an interval of temperatures around the transition.

The deviation of some of the largest values of Cv in the numerical data from the

theoretical curve shows the finite size shift that we wish to analyze. We can see

that the bigger system with N = 100 provides a better approximation to the

theoretical curve. This can be seen more clearly in Fig. 5.4 which is focused on

the area around the critical point for different values of N .

In the next section we present the main ideas of finite size scaling by following

[33] and adopting the notations for our needs. We also comment on the specifics

of scaling related to the matrix nature of our systems.

5.3.1. Thermodynamic limit away from the critical point

Let F (T, V,Nd) be the free energy for a system with Nd degrees of freedom con-

fined in a domain with volume V at temperature T . In the thermodynamic limit

the free energy per degree of freedom is usually taken to be

f∞(T, ρ0) = lim
Nd→∞V→∞

( 1

Nd

F (T, V,Nd)
)
, (5.10)

with ρ0 = V/Nd finite. In our case we effectively have only one parameter which

describes the size of the system, Nd = 3(N2 − 1) ∼ N2. The thermodynamic
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limit then reads

f∞(T ) = lim
N→∞

( 1

Nd
F (T,N)

)
. (5.11)

Far away from a critical point we expect this limit to exist and to be independent

of the geometry. For finite systems, with free surface boundary conditions, the

free energy is usually split into bulk and surface free energy fs(T ), which in our

case would be expressed as

F (T,N) = N2f∞(T ) +Nfs(T ) +O(N). (5.12)

When the volume is finite there is a characteristic system size L ∼ V
1

d , where d

is the dimension, and

V ∼ Ld ∼ Ndϑ, (5.13)
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where the linear size of the system to grows like2

L ∼ Nϑ. (5.14)

If we assume that our system has physical volume, for the thermodynamic limit to

be well defined we would need Nd/V to be a finite constant in the limit N → ∞.

This implies

dϑ = 2. (5.15)

Finally relation (5.14) then gives

L ∼ N2/d. (5.16)

5.3.2. Finite size effects and correlation length

Let us consider a finite-size system of characteristic size L as an approximation to

a system in the thermodynamic limit which has a critical temperature Tc. When

the finite-size system approaches the critical temperature Tc there are a number of

important effects that must be taken into account. First there is a temperature,

called the rounding temperature T ∗(L), at which N2f∞(T ) ≫ Nfs(T ) is not

fulfilled and the finite system starts to behave differently to the infinite system.

One expects that limL→∞ T ∗(L) → Tc, as bigger systems should provide a better

approximation to the thermodynamic limit. We assign an exponent θ to the

rounding temperature in terms of the system size

|T ∗(L)− Tc|/Tc ∼ Aθ × L−θ (5.17)

(note the distinction between ϑ in (5.14)and θ in (5.17)). We also note that

in general the rounding temperatures as extracted from measurements of two

different observables— in our case these are the specific heat and the magnetic

susceptibility- need not agree a priori. Thus they might have two different expo-

nents θCv and θχ. Our numerical results indicate that the two rounding temper-

2The case ϑ = 1 corresponds to the case of a lattice theory where the linear size of the system
is proportional to the number of lattice sites.
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atures are very close to each other and should produce the same exponent. This

can be seen from the comparison of the critical behaviour of Cv and χ for the

N = 12 system which is plotted on Fig. 5.10 and 5.11. Indeed the two observables

have peak at approximately the same temperature. This is the reason we work

with θ := θCv .

Another finite size effect, which is directly visible in Fig. 5.4, is that the thermo-

dynamic quantities which are expected to diverge at the critical point merely have

extremal values in finite systems, at some temperature Tm(N) 6= Tc. Such tem-

peratures are called pseudo-critical. Again we expect that limN→∞ Tm(N) → Tc,

so we define the shift exponent λ, again in terms of L, by

|Tm(L)− Tc|/Tc ∼ Aλ × L−λ. (5.18)

Again as in the case of the rounding temperatures the pseudo-critical tempera-

tures as obtained from Cv and χ are in good agreement. That is why we define

only one shift exponent.

Thus at finite size, the divergent quantities have maxima Cvm(L) = Cv
(
Tm(L)

)

and χm(L) = χ
(
Tm(L)

)
. We expect Cvm(L) → ∞ as L → ∞ and χm(L) → ∞

as L→ ∞. A system with size L should diverge to infinity by some power law

Cvm(L) ≡ Cv(Tm(L)) ∼ AωCv
× LωCv , (5.19)

χm(L) ≡ χv(Tm(L)) ∼ Cωχ × Lωχ . (5.20)

The exponents θ, λ, ωCv
and ωχ describe the critical behaviour of our finite system.

ωCv
and ωχ are in general different as they are related to the critical exponents α

and γ. If we assume that the only relevant quantity in an expansion around Tc

is the correlation length, then the exponents λ and θ should be the same, though

the amplitudes Aθ and Aλ may differ.

Usually the correlation length ξ(T ) of a system plays a crucial role in the

explanation of finite size critical systems such as the Ising model or gas systems.3

It can be defined as the rate of the asymptotically exponential decay of the two-

3In the case of matrix models, due to the non-local type of interaction between the entries and
the absence of notion of distance between elements, we can only speculate on the existence
of correlation length.
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point function of the non-critical system

Γ(r, T ) ∼ exp(−r/ξ(T )) r → ∞ , (5.21)

from which the ξ(T ) can be computed as

ξ−1(T ) = − lim
r→∞

(ln(Γ(r, T )/r)). (5.22)

The expression (5.22) is hard to apply on numerical data because one needs to take

the r → ∞ limit in finite size system. Ways around this problem are proposed in

[33]. In particular one might consider higher moments of the correlation length.

At a critical point the correlation length diverges and, in many systems, the

critical behaviour of ξ(T ) can be expressed as4

ξ(T ) ∼ ξ0t
−ν , (5.23)

where t ≡ |T−Tc|
Tc

is the reduced temperature, the exponent ν therefore dictates

how fast the correlation length diverges when t→ 0 in an infinite system.

In a finite size system ξ is constrained by the size of the system and

ξ(T ∗(L)) ∼ L . (5.24)

We can classify the regimes in the system in terms of the scaled variable y =

L/ξ(T ). If y ≫ 1, the system is below the rounding temperature and the the

system behaves like a system in the bulk. As we approach get closer to the critical

point eventually ξ → L, y → 1 and the finite size effects become important. The

system no longer resembles the behaviour of the infinite system in thermodynamic

limit that we try to approximate. For y ≪ 1 the critical behaviour of the system

is determined entirely from its finite size.

4In fact there are systems where the correlation length diverges faster then any polynomial.
Famous example is Kosterlitz-Thouless Phase Transition where ξ(T ) diverges exponentially
[51].
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5.3.3. Scaling in terms of N

In our matrix model we do not have the concept of a volume, or an associated

finite size, so we cannot use (5.17), (5.18), (5.20) or (5.24) directly. Instead we

define

|T ∗(N)− Tc|/Tc ∼ Aθ ×N−θ , (5.25)

|Tm(N)− Tc|/Tc ∼ Aλ ×N−λ , (5.26)

and

Cvm(N) := Cv(Tm(N)) ∼ Aω ×NωCv , (5.27)

χm(N) := χ(Tm(N)) ∼ Cω ×Nωχ . (5.28)

Combining (5.26) and (5.28) the divergence in any thermodynamic quantity

Pm can be expressed in terms of the reduced pseudo-critical temperature tm(N) ≡
|Tm(N)−Tc|

Tc
as

Cvm(N) ∼ NωCv ∼ tm(N)−ωCv/λ,

χm(N) ∼ Nωχ ∼ tm(N)−ωχ/λ.

We define another exponent Cvm ∼ t−ρ, and finite-size scaling implies

ωCv
= ρ λ. (5.29)

In the large N limit we expect tm → t and so

α = ρ =
ωCv

λ
. (5.30)

Thus, at finite N , the specific heat has a maximum Cvm(N) = Cv

(
Tm(N)

)
, with

Cvm(N) → ∞ as N → ∞.

The relation (5.29) is derived without any reference to the correlation length

of the system or any other notion of distance. Thus it cannot be used to measure

100



Numerical results for the critical Three matrix model

the dimensionality or any characteristic size of the system. It is important to

us because it contains only exponents that are directly accessible to our numeric

measurements and can be used to test the finite-size scaling hypothesis in the

context of matrix models.

If we assume the existence of a correlation length ξ(T ), and a characteristic

size for the system L, we can make a connection between the scaling exponents θ,

λ and ωCv
, which describe the scaling behaviour of the system in terms in N , and

their counterparts θ, λ and ωCv
which have the analogous meaning but described

in terms of L. By definition T ∗(N) is the temperature where (5.12) ceases to be

valid and there is no obvious connection between T ∗(N) and N .

By combining (5.17), (5.23) and (5.24), and assuming tm → t for large N , we

obtain

θ = 1/ν. (5.31)

This relation was obtained in [17] for the special case of an anisotropic slab of

material, but it is probably more generally true.

Then using (5.15) we can express θ as

θ =
2

dν
. (5.32)

We have not accessed a physical correlation length in our matrix model therefore

we do not have any obvious definition of ν. We can use (5.32) to define ν, at

least on the fuzzy sphere side of the transition where it is reasonable to define

the dimension of the system to be d = 2.

If we assume scaling and assert that the only characteristic of the system that

determines the finite size scaling is the correlation length, then there is no other

choice but to assume the same of the shift exponent

λ = θ =
2

dν
. (5.33)

Again this relation is supported by renormalization group calculations ([33], p.168).
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Although for many systems λ = θ, in general for critical exponent α > 0 we

expect |T ∗(N)− Tc| ≥ |Tm(N) − Tc| because it is not possible to achieve Tm(N)

before T ∗(N). In order to see a maximum in some observable it must have already

started to deviate from the theoretical prediction since the latter, being divergent,

does not have a maximum. Thus in general T ∗(N) 6= Tm(N) and the amplitudes

in (5.25) and (5.26) may be different. Nevertheless the exponents λ and θ have

a similar physical interpretation — they both characterize the ability of finite

system to approximate the critical behavior of an infinite one. In this work we

will measure only λ, for purely technical reasons.

If the concept of a dimension d exists we can, using (5.16), derive similar

relation between ω and ω;

θ = θ
2

d
, λ = λ

2

d
, ω = ω

2

d
, (5.34)

and of course equation (5.29) can also be written in terms of the system size L,

ω = ρλ , (5.35)

which follows from (5.29) and the relations (5.34).

However we stress that we cannot draw any immediate conclusions about the

correlation length or dimensionality in the matrix model discussed here, because

we have not measured d or ν directly but only the product dν via measurement

of λ and ω and equation (5.33).

Finally we write some of the most important relations which arise from the

scaling hypothesis as taken from [41]. In the thermodynamic limit there are many

relations between the critical exponents α, β, γ, δ, ν, and η. The exponents α,

β, and γ describe the behaviour of the specific heat Cv, the magnetization M ,

and of the magnetic susceptibility ξ of a system as a function of the temperature.

The exponent δ defines the form of the critical isotherm in the M −H plane of

a magnetic system. The exponent η describes the power-law behaviour of the

two-point correlation function close to the critical temperature.
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α + 2β + γ = 2, (5.36)

βδ = β + γ, (5.37)

γ = ν(2− η), (5.38)

2− α = dν. (5.39)

From the above relations we can see that the critical exponents of a system

are not independent and from two of them we can recover the rest. The scaling

relations are supported by the experiment for various systems. The relation (5.39)

(known as Josephson scaling law) is special in a sense as it explicitly includes the

dimensionality d of the system. It is an example of a hyperscaling relation.

For convenience we present a table with all exponents we use through this

chapter in table 5.1.

5.4. Phase transition

It is clear from the previous sections that the commuting matrix and the fuzzy

sphere phases are quite different. The background values of the solutions of equa-

tions (4.18) and (4.22) give Sm(T ) 6= Sf(T ) for ∀T > 0. Thus this might naively

be classified as a first order phase transition — with latent heat. An important

characteristic of critical systems near first order transition is the coexistence of

the phases— the system can exist in both phases at a given temperature. Such

behaviour is reported by Murty et al in [21]. They encounter coexistence of the

phases at the transition temperature in the 10-state Potts Model.

The Monte Carlo history of the action and the radius of a system which

undergoes coexistence is shown on Fig. 5.5 and 5.6. Both graphs can be used to

distinguish the time spent of in the matrix phase and in the fuzzy sphere phase

by the system. We can see that when the system has energy which corresponds

to the matrix phase, the radius of the system fluctuates close to zero. The energy

of the system in the fuzzy sphere phase agrees with (4.26) and the radius R < 1.
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exponent description

α Critical exponent of Cv

αf α on the fuzzy sphere phase side

β Critical exponent of M

γ Critical exponent of χ

γf γ on the fuzzy sphere phase side

δ Defines the isotherm M −H

η Critical behaviour of the 2-point correlation function

θ Rounding temp. exponent w.r.t. the number of lattice sites

θCv
θ as defined for the case of Cv

θχ θ as defined for the case of χ

θ̄ Rounding temperature exponent w.r.t. the matrix size

θ̄Cv
θ̄ as defined for the case of Cv

θ̄χ θ̄ as defined for the case of χ

λ Shift exponent w.r.t. the number of lattice sites

λ̄ Shift exponent w.r.t. the matrix size

λ̄f λ̄ on fuzzy sphere phase side

ν Correlation length exponent w.r.t. the number of lattice sites

ρ Critical exponent of a generic observable

ω Rate of diverge in the limit a→ 0

ωCv
ω as defined for the case of Cv

ωχ ω as defined for the case of χ

ω̄ Rate of diverge in the limit N → ∞
ω̄Cv

ω̄ as defined for the case of Cv

ω̄χ ω̄ as defined for the case of χ

ω̄Cv,f ω̄Cv
on the fuzzy sphere phase side

ω̄χ,f ω̄χ on the fuzzy sphere phase side

Table 5.1.: Table with all occurring exponents.
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We will give more details on this in the next section. We also plot the probability

distributions of those observables in Fig. 5.7 and 5.8.

The theory of first order phase transitions suggests that at the transition

point the free energy of the system is continuous but non-differentiable. This

leads to a finite jump in its first derivative— the internal energy (or equivalently

in our case the action) and δ-function divergences in secondary quantities like the

specific heat Cc and the susceptibility χ. Having in mind that a system near a

first order phase transition spends roughly equal Monte Carlo time in both phases
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we can formally rewrite (4.2) in the form

〈A〉 ≈Z−1

∫
A[h−1(La + δXa)h]e

−S[h−1(La+δXa)h]dhd(δXa)+

Z−1

∫
A[h−1(Ha + δXa)h]e

−S[h−1(Ha+δXa)h]dhd(δXa).

(5.40)

In the above the measure dh corresponds to the Haar measure of the U(N) sym-

metry and d(δXa) is integration over the fluctuations around the corresponding

background configuration Ha in the case of the matrix stationary point and La

in the case of the fuzzy sphere stationary point. Analytical evaluation of the

above integrals is difficult and we will resort to numerical techniques in order to

determine the properties of the system in the vicinity of the transition. We can

also write the probability distribution of the action S of the system in terms of

double Gaussian distributions centered around Sf(T ) and Sm(T ). In other words

all the properties of the system which can be expressed as first moments of such

distributions will behave like a mixture of the two phases. These include the order

parameter R, the expectation value of S, and the eigenvalues of the matrices. In

Fig. 5.9 we present the eigenvalue spectrum of N = 12 system in the fuzzy sphere

phase, in the matrix phase, and near the transition. We can see that the critical

spectrum exhibits properties from both fuzzy sphere and matrix phases.

In Fig. 5.10 and 5.11 we plot Cv and χ of the N = 12 system in the vicinity

of the transition temperature. As the plots indicate, the critical behaviour of the

two observables of the system is identical. Both observables have their maximum

at transition temperature T ≈ 0.044.

5.5. Numerical studies of the critical behaviour of

the full system

Now we proceed with numerical studies of the phase transition between the two

phases. The critical properties of the system are extracted in the regime of

coexistence in the system. As noted earlier that makes the probing of big systems

challenging. The problem is analogous to the one we encountered in the detection

of the uniform/non-uniform phase transition of the scalar field theory in §3.10.3.
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This is the reason why we have simulated systems in a relatively small size range.

We have data for systems of size N = 6, 7, . . . , 14. In this regime we don’t have

any theoretical estimation for the transition temperature T ′
c in the large N limit

and we can only rely on our numerical data.
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5.5.1. Critical temperature and shift exponent

The observables which can be used to determine the point of the phase transition

include the expectation value of the action S, (or equivalently the internal energy

U), the specific heat Cv, the order parameterR, the magnetic susceptibility χ and

others. All of the observables produce results which agree within the numerical

uncertainties for the value of the pseudo-critical temperature with the exception

of the smallest systems that we simulated N = 6, 7. In Fig. 5.10 and 5.11 we can

see that the peak in the specific heat and the susceptibility of an N = 12 system

is located at the at the same temperature T ′
m , and they show consistency with

the critical behaviour of U and R2 presented in Fig. 5.12 and 5.13.
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The graph of the internal energy looks qualitatively consistent with Fig. 5.1.

Of course our system is of finite size and we don’t see a jump in U . Strictly

speaking we cannot rely on numerical data to determine if the transition is a first

order (with finite jump in U) or the energy is continuous. Both U and R vary

significantly in a small temperature interval around the critical temperature. We

can read off the pseudo-critical temperature T ′
m (12) as the middle point in that

steep region. For that particular system we have T ′
m (N = 12) = 0.0436± 0.0006.

In order to get some estimation of the transition temperature T ′
c we try to de-

tect T ′
m (N) for each simulated matrix size and then we extrapolate to N → ∞.

In Fig. 5.14 we present the specific heat of systems of different sizes. From this
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N T ′
mCv

(N) ∆T ′
mCv

(N) T ′
mχ(N) ∆T ′

mχ(N)

6 0.048 0.004 0.052 0.004

7 0.048 0.002 0.051 0.002

8 0.050 0.002 0.051 0.002

9 0.049 0.002 0.049 0.002

10 0.047 0.002 0.047 0.002

11 0.045 0.002 0.045 0.002

12 0.0436 0.0006 0.0436 0.0006

13 0.0422 0.0006 0.0422 0.0006

14 0.0408 0.0006 0.0408 0.0006

Table 5.2.: Pseudo-critical temperatures as extracted from Cv and χ for different ma-
trix sizes. The uncertainties denoted by ∆T ′

mCv
(N) and ∆T ′

mχ(N) de-
crease for bigger matrices because the peaks in the critical quantities get
higher and narrower.
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data we extract the pseudo-critical temperatures. They are presented in Table

5.2. We can see that the values of the pseudo-critical temperature agree within

the numerical uncertainties if extracted from different observables— in that case

Cv and χ. Another thing to note is that the systems with N = 6, 7, 8 behave qual-

itatively differently from the rest of the set. For these systems the temperature

T ′
m (N) increases with the system size which is opposite to the behaviour of the

rest of the matrices. The reason for that discrepancy is that for the small matrix

sizes effectively there is no energy barrier between the two phases. The thermal

fluctuations are bigger than the energy barrier between the two regimes. For

those system sizes the transition is essentially continuous and we omit them. We

have demonstrated the difference of the energetic profiles of N = 6 and N = 10

system at transition temperature on Fig. 5.15 and 5.16. We see that in the case

of the smaller systems the energy values of the two phases overlap. A clearer

view of the situation is provided by the probability distribution of the action of

the two systems in Fig. 5.17 and 5.18. We can see that the distribution changes

from one modal in the N = 6 case to two modal for N = 10.
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An alternative but consistent view is provided by the order parameter R. We

present the critical behaviour of R for different matrix sizes on Fig. 5.19.

Now that we have the pseudo-critical temperatures for different matrix sizes

the question that rises is how do we extrapolate the results to the large N limit?

Unfortunately we cannot give definitive answer to that question relying only on

numerical results. If we assume scaling and that the simulated systems are big
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enough to undergo the true N → ∞ scaling, the behaviour of the critical point

is described by T ′
m (N) = T ′

c + CN−λ. The data we have does not allow us to

fit such a curve. The reason is that we have only a few points and there is a big

range of the three parameters that produce a curve relatively close to them. In

other words we encounter the problem of over-fitting. What we can do is to set
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upper limit for the critical temperature at the large N limit. It is T ′
c ≤ 0.0408.

Now if we further assume T ′
c ≥ 0 we can set lower limit for the shift exponent. If

we set T ′
c = 0, we are left with two parameters and we can extract an exponent

from a double logarithmic plot. This fit is presented in Fig. 5.20.

The estimate that we get for the shift exponent assuming T ′
c = 0 is λ ≥

0.41 ± 0.02. The above estimate gives only a lower bound for the value λ. In

order to improve it we need additional knowledge of the transition temperature

T ′
c either from theoretical considerations or from independent measurements.

5.5.2. Critical exponent and scaling

Also directly accessible from our simulations are the scaling exponents ωCv
and

ωχ. We use the dataset that we used in the previous paragraph. The fits to data

are shown in Fig. 5.21 and 5.22.

The obtained values are ωCv
= 4.33 ± 0.02 and ωχ = 4.24 ± 0.16. There are

no theoretical considerations which suggest that the two exponents should agree.
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Thus we assume it is a coincidence. As we have estimates for λ, ωCv
and ωχ we

can use relation (5.29) to give some estimation of the critical exponents α and γ.

We get α ≤ 120.27 and γ ≤ 117.8. The reason for those poor estimates is that we

use a very low estimate for λ from the previous paragraph. However this analysis

is relevant only if the transition is continuous (second order). In case that the

transition is first order the peaks from 5.14 are expected to converge to a Dirac

delta- function in large N limit and the exponents α and γ are not well defined.

5.6. Numerical studies of the critical behaviour of

the fuzzy sphere

Now we study the critical behaviour of the system on the side of the fuzzy sphere.

As we noted earlier, the phase transition on the fuzzy sphere side has some of the

characteristics of a second order phase transition. That means that we can define

finite size scaling exponents similar to the ones considered in 5.3. We denote with

ω̄Cv,f, ω̄χ,f and λ̄f the finite size scaling exponents and αf and γf for the critical

exponents for Cv and χ.
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5.6.1. Critical temperature and shift exponent

Before we can measure the critical exponents of the fuzzy sphere we need to

check if our numerical results are compatible with the predicted value for critical

temperature Tc . We have done simulations for system sizes N = 30, 40, 50, 60,

75, 85, 100, 110. In Fig. 5.23 we have plotted our numerical results for |Tm (N)−
Tc | as a function of N in double-logarithmic scale. The data is compatible with

straight line which is an indication that (5.1) gives a good estimation for the

critical temperature at the N → ∞ limit. This fit directly produces the value of

the shift exponent as well. We get λ̄f = 1.36± 0.10.

There is one important difference between the shift of the critical point stud-

ied here and the shift in the pseudo-critical temperature of the whole system from

§5.5.1 . While the temperatures Tm (N) grow with the system size, the temper-

atures T ′
m (N) decrease. This is a clear indication that critical behaviour of the

fuzzy sphere alone is not enough to explain the criticality of the whole system.
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One needs to know also the critical behaviour of the matrix phase together with

the physics of the jumps between the two phases.

5.6.2. Measurement of the critical exponents

Scaling suggests that, for a fixed value of the temperature lower than T ∗(N), the

values of the specific heat should be consistent for different N , provided N is large

enough, and our measurements verify this expectation. We treat such values as

independent measurements of Cv(T ) and then take the weighted average over

such values. If we have a number of independent measurements of Cv, labeled by

a discrete index i for different values of matrix size Ni, then the weighted average,

Cv(T ), is defined to be

Cv(T ) =

∑
i

1
σ2
Ni

Cv(T,Ni)
∑

i
1
σ2
Ni

, (5.41)

where σi is the uncertainty in measurement i. Fig. 5.24 plots a weighted average

Cv using data corresponding to values of N ranging from 30 to 110.

We can now approximate the near-critical behavior of the specific heat as

Cv ∼ Af0-+Af-|Tc −T |−αf and a least squares fit produces the results in table 5.3.

These values are in a good agreement with the approximate theoretical curve

(5.2) and now we also have a numerical estimate the amplitude Af- = 0.15± 0.03

for the ordered phase.

On the high temperature side of the transition our numerical measurements

also show good agreement with the value Cv = 3
4
= const and there are two

alternatives: either A+ = 0 or α = 0 for T > Tc . If we assume the critical

exponent is equal on the two sides of the transition we are led to the conclusion

that A+ = 0. Then we have the universal ratio U0 = A+/A− = 0, the amplitudes

A+ and A− are system and/or interaction dependent, but U0 is universal.

We have measured the values of Cv at the points Tm (N) which gives us

Cvm(Tm (N)). The results are plotted in Fig. 5.25. The slope of the linear

fit produces the scaling exponent ω̄f . We expect the specific heat to scale like
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Table 5.3.: Critical behaviour parameters.

quantity numerical uncertainty prediction

Af0- 0.81 0.09 0.806

Af- 0.15 0.03 0.147

αf 0.51 0.04 0.5
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Cv(Tm (N)) = Cω̄f
N ω̄f . Our data produces values Cω̄f

= 0.31+0.09
−0.07 and ω̄f =

0.55 ± 0.07. As we have the critical exponent αf together with λ̄f and ω̄f we

can verify the scaling relation (5.30). For the right-hand side of the relation we

get αf λ̄f = 0.69 ± 0.11 which agrees with the reported value for ω̄f within 21%

accuracy.

5.6.3. Scaled critical temperature and specific heat

The idea of scaling is based on certain assumptions about the thermodynamical

properties of the systems. From a practical point of view it is helpful to us

because we can use scaling to predict the properties of large N systems from the

properties of smaller systems. Let’s say we know the scaling exponents λ̄f and ω̄f

of our system together with Tm (N1) and Cv(Tm (N1)) for some fixed system size

N1. We can apply the scaling ansatz to obtain the critical temperature and the

corresponding value of the specific heat for a system of arbitrary size N using the
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critical values for some fixed size system. Define

C̃v(Tm (N)) := (Cv(Tm (N1))− A0f)
( N
N1

)ωf

+ A0f, (5.42)

and

T̃m(N) := (Tm (N1)− Tc )
( N
N1

)−λf + Tc . (5.43)
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Figures 5.26 and 5.27 show C̃v(Tm(N)) and T̃m(N), obtained from (5.42) and

(5.43), for a system with size N1 = 75, together with the numerical values of

Cv(Tm (N)) and Tm (N) respectively. Those graphs can be used as a guideline if

one wants to perform simulations for larger size systems.

5.7. Final remarks

In the last two chapters we studied the critical behaviour of the Three Matrix

Model using two different Hybrid Monte Carlo algorithms. Both algorithms have

their advantages in certain situations. The first algorithm from §4.5 shows more

jumps between the phases in the coexistence temperature regions. The algorithm
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with gauge-fixed diagonal matrix X3 from §4.6 is more efficient in terms of com-

puter resources, but has problems in the regions with expected coexistence of the

phases.

The behaviour of the theory in the vicinity of the phase transition is due

to three main types of fluctuations: (critical) matrix phase fluctuations, critical

fuzzy sphere fluctuations, and strong fluctuations which drive the system between

the two different phases. Our data suggests that the fluctuations of the matrix

phase are independent of the temperature even close to the phase transition.

The critical behaviour of the fuzzy sphere shows the features of a second-order

transition. It has well-defined critical exponents αf and γf together with finite

size exponents λf, ωCv f etc. The nature of the criticality is also supported by

analytical arguments. This suggests also that it is driven by quantity which is

analogous to correlation length. On the other hand the fluctuations which bring

the system between the different phases show characteristics of a first order phase

transition. Our numerics show clearly a jump in the internal energy. However

the numerical results can not give reliable answer to the question of the nature of

the transition due to rounding effects. Better analytical control over the theory

is needed to answer the question of the nature of the phase transition and the

critical temperature Tc . For further numerical studies of the model we need an

algorithm which is able to effectively access the coexistence regime for systems

with N ≥ 15.
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Chapter 6.

Final remarks and outlook

As we stated earlier, matrix models can be used both as a regulator of a QFT and

as a useful formulation of problems related to non-commutative geometry, string

theory, and quantum gravity. In both cases relying purely on analytic methods

is not enough and the only way to study the theory in a non-perturbative way is

by using (Hybrid) Monte Carlo methods. This brings the question can we expect

the properties of the usual Monte Carlo simulations to be valid in the domain

of matrix models? At first glance matrix theories in general are very different

from the usual lattice field theories as the matrix interaction terms are non-local

by construction. This is a strong argument against the assumption that the

Monte Carlo of matrix models hold properties that are similar to the ones which

characterize the usual lattice theories. In this work we try to make connection

between Monte Carlo simulations of ordinary lattice theories and Monte Carlo

simulations of matrix models. Although the algorithm of choice is Hybrid Monte

Carlo, we expect our reults to be valid for a broad class of Monte Carlo integration

schemes. In §3 we propose a way to define local coordinates for the matrix Φ4

field theory defined in the fuzzy sphere with the help of the SU(2) coherent states.

The construction can be extended to many matrix theories which are defined on

a compact manifold. In §4 and §5 we have presented numerical results which

support the validity of the finite size scaling for the case of the matrix theory

which contains competing Yang-Mills and Myers terms. Our results are obtained

for a particular model, but give hints that scaling could be valid for matrix models

in general. In the Appendix §A we go into more technical details and present some
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comments on the reasons for the critical slowdown in a generic HMC simulation

which can be made using our data.

6.1. Scalar field. Conclusions and outlook

In §3 we studied the matrix realization of φ4 theory defined on the fuzzy sphere.

The geometry of the model is determined by its kinetic term which is implemented

via the adjoint action of the su(2) generators. We also implement a method

for gauge-fixing of this SU(2) symmetry. The phase diagram of the model has

three main regions where the scalar field exhibits different properties: disordered,

matrix and uniform. Our algorithms are able to properly track the one cut/two

cut phase transition between the disordered and matrix phases of the model even

for relatively big systems N ∼ 50. The phase transition between the uniform

and matrix phases is more difficult to detect and our methods are efficient only

for systems with N = 2, 3. For bigger systems we have provided only a crude

estimation of the transition coordinates in the (c, b) plane. Based on our data

for the transition curves, we have provided the full phase diagram of the model

for N = 7 system. We have also studied the relative contribution of the different

normal modes of the gauge-fixed field in the different phases. Our results indicate

that in the disordered and uniform regimes, the main contribution to the field

comes from the modes cl,m=0,±1. By probing different points of the phase diagram

deep into the matrix phase, we were able to find parameters of the theory for

which higher momentum modes are also relevant. The excitation of these modes

if it persists in the large N limit would imply that there are striped phases in

these regions of the parameter space. As a direction of future research it would

be interesting to carefully map these regions of the parameters space to get a

complete phase diagram of the model.

6.2. Three matrix model. Conclusions and outlook

In §4 and §5 we studied a matrix model which consists of Yang-Mills and My-

ers term between three hermitian matrices Xa ∈ MatN(C). The system can be
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found in two regimes: disordered phase, and fuzzy sphere phase. In the disor-

dered phase, the ground state is represented by mutually commuting matrices.

In the fuzzy sphere phase the ground state is represented by the N -dimensional

representations of su(2) onMatN(C). Therefore in that second phase the system

has a notion of su(2) geometry. There are indications that the phase transition

between the two phases is first order, but when we approach the transition from

the low temperature side, the fluctuations of the fuzzy sphere phase show the

properties of second order phase transition.

We have developed two Hybrid Monte Carlo algorithms in order to study the

fluctuations of the system near the transition: the first algorithm treats the three

matrices in a uniform manner, and the second algorithm works in a specific basis

in which the matrixX3 is always diagonal. Both algorithms have their advantages.

The first algorithm performs better in the temperature regions where we expect

coexistence of the phases of the system. The algorithm with the diagonalized

matrix X3 is more efficient in terms of computer resources, this is why it is

preferred when we study the fluctuations of the fuzzy sphere phase.

We have successfully performed simulations near the first order transition for

systems with size N ≤ 14— we have identified the transition temperature T ′
c

and the behaviour of the observables S, R, Cv, χ, etc in a region around T ′
c .

Our numerical data don’t allow us to make the extrapolation to N → ∞ of T ′
c .

In order to answer that question about the large N asymptotics we need more

analytical control over the theory in the coexistence regime. Also if we want to

efficiently access the coexistence regime for bigger systems, we need an algorithm

which can drive the system out of the local minima of the action without violating

the detailed balance requirement from §A.1.

On the fuzzy sphere phase, we have identified the critical exponents of the

observables that we expect to diverge. We have also demonstrated that their

finite N behaviour can be described by finite-size scaling— we also measure shift

and scaling exponents associated with those observables. Our results are con-

sistent with the one-loop calculations of [25] and the predictions for the critical

temperature Tc . The systems that we have simulated in that regime have size

N in the range between 30 and 110. For the biggest systems we encounter severe
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autocorrelation times. If we want to simulate bigger systems we would need an

algorithm which minimizes the autocorrelation of the data.

6.3. First order phase transition

As final remarks we would like to note that our Hybrid Monte Carlo methods

fail to simulate a system in the coexistence regime for the two models we have

studied. This becomes a major problem even for relatively small system sizes:

we can access coexistence for N = 14 in the three matrix model, but N = 5 is

already impossible in the case of the scalar field model. The problems near a

first order phase transition seem to be common for all Monte Carlo simulations

based on importance sampling. If we have knowledge in advance of the local

minima of the energy, a possible solution of the problem might be an algorithm

which introduces global changes into the system that bring the system between

the different potential wells. Such changes should not necessarily be based on the

Hamiltonian dynamics from A.2. The requirement on such an update scheme is

to preserve the condition of detailed balance.
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Appendix A.

Monte Carlo: main idea

Monte Carlo is a main tool for nonperturbative studies of strongly-coupled field

theories. Here we briefly mention the main idea and properties of the Monte

Carlo techniques. A rigorous and consistent description of the method can be

found in [61]. The goal of numerical simulations of field theories is to estimate

the expectation values of observables of the system, which are functions of field

configurations. By definition the expectation value of an operator A in statistical

mechanics is given by an integral of the form

〈A〉 = Z−1

∫
dXe−S(X)A(X), Z =

∫
dXe−S(X). (A.1)

In the above Z is the partition function of the theory and the fields are denoted

as X. They may posses an arbitrary number of degrees of freedom d and the

measure of the of integral is

dX =
d∏

µ=1

dXµ.

In general one needs to evaluate the integral over R
d, so the space to be inte-

grated over becomes very large as d increases.1 This makes the straightforward

evaluation of the integrals impossible.

1The measure in a generic quantum field theory is infinite dimensional. In order to study such
a system by numerical means one needs to make the number of degrees of freedom finite-
usually by introducing a lattice.
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A.1. Importance Sampling and Metropolis updating

One way to overcome the problem with the size of the configuration space is

the so called importance sampling. The contribution to the integrals of the form

(A.1) drops exponentially when the value of the action S increases. Therefore

a good approximation can be obtained if we evaluate the integrand only in the

domains where it has maximum contribution. In order to probe the configuration

space only in the parts which contribute most, we can generate random field

configurations Xi, n ∈ {1, . . . , Ns}. For a system in equilibrium the density of

the states Wc(Xi) is given by the Boltzmann factors

Wc(Xi) ∝ exp(−S(Xi)). (A.2)

An infinite set of configurations with the above density is called equilibrium (or

canonical) ensemble. We can only estimate the canonical ensemble by a set with

finite number of configurations. After a significant number of configurations Ns

has been generated, we can compute the estimate the observable A by

〈A〉M ≡ 1

N

Ns∑

i=1

A(Xi). (A.3)

The ergodic hypothesis implies that

lim
Ns→∞

〈A〉M = 〈A〉 . (A.4)

A discussion on the ergodic hypothesis can be found in [41], page 56.

Now we turn to the generation of the previously mentioned approximation

of the canonical ensemble {Xi}. We start with a random field configuration

X and evaluate the action S(X). Then we introduce a random change to the

field arriving at X ′. We compute the difference ∆S = S(X ′) − S(X). The new

configuration is accepted with probability

P = min{1, e−∆S}. (A.5)
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The set of configurations generated this way is calledMarkov chain. The efficiency

of the algorithm depends strongly on the way we introduce the random changes

to the system. Usually a global change to the system would lead to a very

large difference in the action and it will be accepted with very low probability

according to (A.5). This is the reason why usually one resorts to changes which

involve only a few degrees of freedom between the accept/reject decision. This

recipe for generation of the Markov chain can be classified as a case of Metropolis

algorithm. It should have the following properties

1. Ergodicity. From every configuration X, there is nonzero probability during

the update process of arriving at any other configuration X ′.

2. In the case with multiple local minima of the action, the algorithm should

be able to drive the system between those configurations. This guarantees

that the calculated observables during the simulations don’t depend on the

initial conditions. This property is related to the ergodicity.

3. Detailed balance. Detailed balance is a sufficient but not necessary condition

which if fulfilled guaranties that the density of the configurations tends to

Wc when the number of generated configurations is large.

A.2. Hybrid Monte Carlo (HMC)

Hybrid Monte Carlo is the most popular algorithm for QCD simulations. It

originates in the work of S. Duane et al [35]. A very descriptive and easy to

follow presentation of it is given in the tutorial of Stefan Schaefer [73]. And

an overview of the recent developments with regard to simulations of dynamical

fermions can be found in [74].

A.2.1. Basic idea

As we pointed out in the previous section during a Metropolis update scheme we

usually introduce only local changes of the system. This means that the system

is led to the minimum of the free energy for each degree of freedom and not as a
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whole. The HMC algorithm is a modification of the Metropolis which allows for

global changes to the system to be accepted. The main idea of the method is to

introduce the conjugate momenta Pµ to our fields Xµ and treat the system as a

Hamiltonian one. In this way we can let the system of interest evolve according

to the Hamiltonian equations2

Ẋµ =
∂H(X,P )

∂Pµ

Ṗµ = −∂H(X,P )

∂Xµ

. (A.6)

The Hamiltonian is defined as

H(X,P ) =
1

2
P 2 + S(X). (A.7)

The expectation values of the system are extracted in the same way as in the case

of Metropolis

〈A〉HMC ≡ 1

N

Ns∑

n=1

A(Xn). (A.8)

A.2.2. Algorithm

The simulation works as follows. We start with a random configuration (X,P ).

We are free to choose any configuration for X as it is only an initial value and

the outcome of the simulation should not depend on it, but we should be more

careful with P , it will be discussed shortly. We compute the value of H(X,P ).

Now we approximate the system (A.6) by

(X((n+ 1)ǫ))µ ≈ ∂

∂Pµ
H(X(nǫ), P (nǫ))ǫ+ (X(nǫ))µ,

(P ((n+ 1)ǫ))µ ≈ − ∂

∂Xµ

H(X(nǫ), P (nǫ))ǫ+ (P (nǫ))µ.

(A.9)

The derivative with respect to P in (A.9) is independent of the model and al-

ways evaluates to ∂Pµ

1
2
P 2
µ = Pµ. What depends on the model is the other part

2These equations don’t represent the real dynamics of the system.
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∂XµH(X,P ) = ∂XµS(X). Following the notation in [73] we denote the steps we

use in the integration of the system by

I1(ǫ) : (Xµ, Pµ) → (Xµ +
∂

∂Pµ
Hǫ, Pµ),

I2(ǫ) : (Xµ, Pµ) → (Xµ, Pµ −
∂

∂Xµ

Hǫ).

(A.10)

Usually the integration during one Hybrid Monte Carlo step is done by con-

secutively applying the transformations (A.10). Two schemes are widely used:

1. Leapfrog integration

[I1(
ǫ

2
)I2(ǫ)I1(

ǫ

2
)]NI . (A.11)

2. Omelyan

[I1(ξǫ)I2(
ǫ

2
)I1((1− 2ξ)ǫ).I2(

ǫ

2
)I1(ξǫ)]

NI . (A.12)

The parameter ξ is tunable and its optimal value depends on the system

under study. In this work we have used the value ξ ≈ 0.1931833 as recom-

mended in [73].

The Omelyan integrator is about twice as expensive in terms of computer time

compared to Leapfrog, but also reduces the violation of energy conservation

roughly by the factor of 2. The parameter NI specifies how many times we

apply the sequence of the transformations between two accept/reject decisions in

either integration scheme. Thus l = NIǫ could be interpreted as the “trajectory

length” in the phase space. Bigger values of l lead to uncorrelated data, but

decreases the acceptance rate. In order to keep the acceptance rate higher with

a big value for l, we need to decrease ǫ and increase NI . However, increasing NI

means more time spent on integration. The best values of the parameters depend

on the particular simulation. Usually for a Hybrid Monte Carlo simulation, the
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target acceptance rates are in the range 60%−80% and ǫ is changed dynamically

during the simulation.3

After applying the transformations (A.11) or (A.12) to the system it has

evolved from configuration (X,P ) to a new configuration (X ′, P ′). The new

configuration is accepted with probability

P = min{1, e−∆H}, (A.13)

where ∆H = H(X ′, P ′)−H(X,P ).

A.2.3. Properties of the algorithm

As the above equations are approximation of the system of first order, in the

case of the Leapfrog and Omelyan integrators, the Hamiltonian of the system is

conserved along a phase space trajectory (X,P ) → (X ′, P ′) up to O(ǫ2). Similar

to Metropolis we accept the new proposed state of the system with probability

min{1, e−∆H}. This means that we can control the acceptance rate during the

simulation by tuning the parameter ǫ. Also the relation ∆H ∝ ǫ2 can be used

while testing the code. In case the new state is not accepted, we need to restore

X to its old state. At the beginning of each step, we generate values for the

momentum according to the normal distribution e−
P2
µ
2 . In general we are free to

choose any distribution for generation of P as long as all the degrees of freedom

have the same relative weight. However a normal distribution is preferred over

a uniform one in order to avoid problems related to the sharp cut-off to the

random momenta. We use the standard Box-Muller method to generate normally

distributed numbers. More details on it can be found in [72].

Although we have a discrete version of the Hamiltonian equations, some of

the properties of the system (A.6) are preserved. As is obvious from (A.10), the

transformations are time-reversal invariant. This means that if we evolve the

state (X,P ) by applying I1(ǫ) and I2(ǫ) and this leads us to (X ′, P ′), then flip

3Once the system has reached equilibrium, it is not recommended for the parameter ǫ to be
changed. In the present work we change the parameter during the simulation but those
changes are rare and don’t affect the results of the computed observables.
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the momentum P ′ → −P ′ and again apply I1(ǫ) and I2(ǫ), we should end up in

(X,−P ).4 Again this can be used as a consistency check for a simulation.

Another feature of the Hamiltonian equations which is preserved is the phase

element conservation. From this follows

〈
e−∆H

〉
= 1, (A.14)

which provides yet another consistency check.

The expectation values of the observables are computed as in the case of

Metropolis (A.3).

A.3. Algorithm complexity

There is a difference in the efficiency between the Metropolis and Hybrid Monte

Carlo algorithms which is possibly specific to the context of the matrix models.

For a broad class of matrix models the action of the theory is given as a trace

over some matrix polynomial of the form

P (X) = anX
n + an−1X

n−1 . . .+ a1X
1 + C. (A.15)

The most expensive operation in (A.15) in terms of computational resources is

the matrix multiplication. In general the complexity of matrix multiplication is

∼ O(N3). The equations of motion (A.6) contain the derivative of the action

functional and can also be expressed in terms of matrix polynomials. Thus if

the observables that are measured during the simulation do not require higher

than ∼ O(N3) complexity we can keep the whole HMC algorithm complexity

∼ O(N3). Important example of algorithms that do not fall into this class are

models which include dynamical fermionic terms.

In the case of Metropolis, in order to change every degree of freedom indepen-

dently, one already has an algorithm whose time grows like ∼ O(N2). Then in

order to keep the algorithm’s complexity to be . N3, one needs to perform only

4Of course this is true up to rounding errors in the floating point arithmetic on the computer.
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operations which require time ∼ O(N) while computing ∆S. That doesn’t seem

to be always possible.

A.4. HMC vs. Metropolis sampling

In A.2 and A.1 we presented two algorithms which rely on importance sampling

in order to generate approximations to the equilibrium ensemble. As the two

schemes obey the requirements from A.1 the expectation values 〈A〉HMC and

〈A〉M should converge to the same value. However this is the case only when the

simulated system has reached the equilibrium. The energy(or in the case of field

theory the action) profile of a system may in principle have lots of local minima.

In such situation the system can get trapped near a local minimum and as a result

the configurational space that is sampled is far away from the true ground state

of the system and the observables are miscalculated. On Fig. A.1 we present the

Monte Carlo history of the Three Matrix Model realized with N = 20 matrices

in the fuzzy sphere phase together with classical ground state of the system as

computed from (4.22). As we can see the system visits several excited states but

fails to reach the ground state. Thus measurement of 〈S〉 using the presented

data would yield wrong value. This illustrates the problem with thermalization

of systems with complex energy profile and makes relevant the question how fast

the algorithms find the true ground state of a system. To that end here we briefly

compare Metropolis and Hybrid Monte Carlo updating schemes.

In order avoid dependence of the initial condition of the system we perform all

the simulations starting from the trivial configurations in which all the elements

of the matrices Xa are zeroes. Our goal is to compare the computational time

required from systems being simulated with one method or the other to reach

the true ground state. Let us denote by τM the time required by a Metropolis

simulation to generate a configuration of the fields Xa and make the accept/reject

decision based on (A.5). Also τ ′HMC is the computer time required for generating

a new configuration for Xa using the Hamiltonian dynamics (A.10) with NI = 1.

For simplicity we assume τ ′HMC ≃ τM. The time required for generating of an

HMC configuration is proportional to NIτ
′
HMC, thus we compare the performance

of the algorithms based on τM and τHMC ≡ NIτ
′
HMC. We perform simulations
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Figure A.1.: Monte Carlo history of N = 20 system deep into fuzzy sphere phase.
Even for significant number of steps, the system cannot thermalize to
its real ground state indicated by the green line.
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Figure A.2.: Monte Carlo histories of N = 25 system deep into fuzzy sphere phase
simulated with Metropolis algorithm, and an HMC algorithm with dif-
ferent values of NI.

of the Three Matrix Model with N = 25 and g = 1.2 using Metropolis and

Hybrid Monte Carlo methods. The Monte Carlo histories of a system with that

parameters are plotted in Fig. A.2. From the graph we can see that both the

Metropolis algorithm and HMC with NI = 1 can’t reach the ground state of the
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system in 106 Monte Carlo steps. There is a slight improvement for HMC with

NI = 4— it gets closer to the ground state for 25 × 104 steps. And the HMC

simulation with NI = 8 is able to reach the ground state of the systems without

problems within 125 × 103 steps. The integration step ǫ is changed dynamically

during the simulations in order to achieve a target acceptance rate of about 70%.

For the simulations with different NI ǫ stabilizes at different values. In the above

simulations with NI = 1, 2, 4, 8 the integration parameter ǫ settles around values

0.018, 0.018, 0.017, 0.015. This analysis tells us that we can improve the ability

of an HMC algorithm to escape local minima of the action by increasing the

parameter NI. This helps when we simulate systems close to a first order phase

transition.

A.5. Critical slowdown

In numerical calculations critical slowdown manifests itself as a correlation be-

tween consecutive measurements of given observable P , with an auto-correlation

time τP . Consider a simulation consisting of NMC Monte Carlo steps produc-

ing a set of measurements {P1, . . . PNMC
}. If τP ≤ 1 an expectation value 〈P 〉

can be computed and assigned an uncertainty σ ∼ 1/
√
NMC. When τP > 1

this error estimation is too optimistic, because the measurements are not fully

independent, and a better estimation is given by στP ∼ 1/
√
NMC/(2τP ). The

correlated dataset is effectively equivalent to an uncorrelated dataset consisting

of NMC/(2τP ) measurements.

The critical slowdown becomes a major problem with the size of a simulated

system. There are different algorithms which are designed in a way that reduces

the autocorrelation time. Interesting alternatives that we have come across and

which seem to be applicable to matrix models are the Generalized Hybrid Monte

Carlo from [79] and Targeted Shadowing Hybrid Monte Carlo from [48]. The

first one utilizes different Hamiltonian dynamics and the second one introduces

changes to the extended Hamiltonian of the system.
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The autocorrelation time associated with an observable P is expected to be

governed by the correlation length and near a critical point should behave as

τP ∼ ξ(T )d+z(P ), (A.16)

with dynamical scaling exponent z(P ), which is algorithm and observable depen-

dent. One aim in designing an efficient algorithm is to reduce z(P ).

For a critical matrix model with size N we would expect, assuming (5.23),

(5.25), (5.26) and (5.33),

τP & N2+z(P ) 2
d . (A.17)

In principle the autocorrelation time for an infinite dataset is computed using

the series

τP =
1

2

∞∑

n=−∞

∞∑

τ=−∞

〈(Pn − 〈P 〉)(Pn+τ − 〈P 〉)〉
〈(Pn − 〈P 〉)2〉 , (A.18)

but in practice the sum
∑∞

τ=−∞ must obviously be truncated to
∑τ0

τ=−τ0 with

τ0 finite. Clearly the truncated version of (A.18) can only be sensitive to auto-

correlation times . τ0 so, if τ0 ≪ NMC, τp might be underestimated for systems

with severe autocorrelation. On the other hand, if τ0 ∼ NMC, the convergence of

(A.18) becomes very poor.

In our analysis we allow for autocorrelations using the jackknife procedure, see

e.g. [61], which computes the uncertainty taking into account the autocorrelation

of the data. As a consistency check we compute the autocorrelation by hand,

by adjusting τ0 manually to determine τP and comparing the result with τP as

determined by the jackknife procedure.

A.5.1. Autocorrelation time of the specific heat

In this subsection we make some comments about the behaviour of the autocor-

relation time of Cv of the theory defined by (4.1). We try to identify the con-

tributions to the exponent z(Cv) of the autocorrelation time (A.16). Although
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we work with the specific heat of concrete system, our argument holds for any

system near a second order phase transitions which is simulated with Metropolis

or Hybrid Monte Carlo techniques. We repeat the inequality 4.7

〈|S − 〈S〉 |〉 ≤ N
√
Cv (A.19)

The expression 〈|S − 〈S〉 |〉 can be interpreted as the average of the absolute de-

viation of the action of the system from the expectation value 〈S〉. In other

words this is a measure of the volume of the configurational space that the

system visits during the evaluation of the path integral (A.1) in units of the

action S. The system visits mainly states with action in the interval S ∈
[〈S〉− 〈|S − 〈S〉 |〉 , 〈S〉+ 〈|S − 〈S〉 |〉]. We can see that a system with bigger size

has to explore configurational space with bigger volume because the right side of

(A.19) grows like ∼ N . Now we look at the Monte Carlo accept/reject probability

defined by (A.5). We see that the probability of acceptance of new configuration

with higher action is proportional to e−∆S and we can relate |∆S| ∼ 2 〈|S − 〈S〉 |〉.
So the average ∆S grows with N . This means that if we keep increasing N we

will reach some system size N1 for which the probability e−2〈|S−〈S〉|〉 is arbitrary

small. In this case the event that the system jumps from a configuration with

action S = 〈S〉−〈|S − 〈S〉 |〉 to a configuration with S = 〈S〉+〈|S − 〈S〉 |〉 is very
rare. In order to evolve between those two configurations, the system will need

to so in a couple of smaller steps— this is precisely the reason for autocorrelation

in the data.

On Fig. A.3 and A.4 we demonstrate this with an example. If we consider two

systems with N1 < N2 at near critical temperature T < T ∗(N1) < T ∗(N2) < Tc.

Finite size scaling predicts Cv(T,N1) = Cv(T,N2). From (A.19) we get

〈|SN1
− 〈SN1

〉 |〉 < 〈|SN2
− 〈SN2

〉 |〉 (A.20)

In the above inequality we have defined SN1
to be the action of the system with

size N1 and SN2
to be the action of the system with size N2 and their expectation

values accordingly.

We present the simulation of two systems with N1 = 40 and N2 = 100 at

temperature T = 0.047. The graphs show that the system with N1 = 40 explores
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interval of energies S ∈ (250, 450) and the system with N2 = 100 explores interval

of energies S ∈ (1900, 2600). As a result the bigger system needs more Monte

Carlo time to explore the whole energy interval and this produces bigger autocor-

relation in the data. As a consequence the cost of obtaining Ns uncorrelated data

points for two systems with different sizes grows more rapidly than the algorithm

complexity. This gives us hint that if we want to take a precise measure of Cv of a

system at a given temperature T , we should choose the smallest possible system

size N such that T ∗(N) > T .

Now let us consider the system with N = 100 in two different temperatures

T1 < T2 < T ∗. From the critical behaviour of Cv we have Cv ∼ |T − Tc|−α near

the critical point. Thus the right side of (A.19) grows like |T − Tc|−α/2 when the

system approaches criticality. Thus for a fixed system size the autocorrelation

time near a phase transition depends on the critical exponent of the observable—

in this case α. In Fig. A.5 we present also the Monte Carlo history of the

action of N = 100 system at temperature even closer to the transition. The data

clearly shows an increase in the autocorrelation time as we approach the critical

temperature.

A.5.2. Autocorrelation across different observables

In the previous section we argued that the autocorrelation time of a generic

observable of the system Cv near a second order phase transition depends on the

system size N and on the critical exponent of the observable. The autocorrelation

time of the data of some observable has another dependency on the type of the

observable which is not due to the critical exponent. In Fig. A.6 and A.7 we

present Monte Carlo history of the action S and the square of the radius R2 of

N = 50 matrix model at temperature T = 0.0505 produced from the same run.

As we can see from the plots the action dataset has significantly lower au-

tocorrelation than the radius dataset— our autocorrelation time routine reports

respectively τS = 275 and τR2 = 452. The bigger autocorrelation of R2 leads to

bigger relative error in the evaluation of the secondary quantity χ in comparison

with Cv— 3.7% vs. 2%. This difference into the autocorrelation times can be

explained with the different role that the two quantities S and R2 play during our
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Figure A.3.: Monte Carlo history of
the action of N = 40
system at temperature
T = 0.0470 in the fuzzy
sphere phase. From 5×
105 data points we get
Cv = 1.42 ± 0.01 and
τS = 20.
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Figure A.4.: Monte Carlo history of
the action of N = 100
system at temperature
T = 0.0470 in the fuzzy
sphere phase. From 5×
105 data points we get
Cv = 1.42 ± 0.02 and
τS = 90.
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Figure A.5.: Monte Carlo history of
the action of N = 100
system at temperature
T = 0.0520 in the fuzzy
sphere phase. From 5×
105 data points we get
Cv = 2.45 ± 0.1 and
τS = 800.

simulation. If we look into the Monte Carlo algorithm we can see that the evolu-

tion of the system is driven by the action S, and the changes in the system are

proposed in such way as to maximize the acceptance rate during the simulation

while keeping the autocorrelation to minimum. In other words the Hybrid Monte

Carlo and Metropolis algorithms are optimized for minimum autocorrelation time
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Figure A.6.: Monte Carlo history of
the action of N = 50
system at temperature
T = 0.0505 in the fuzzy
sphere phase. From 3×
105 data points we get
Cv = 1.94 ± 0.05(2.7%)
and τS = 275.
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Figure A.7.: Monte Carlo history of
the squared radius R2

of N = 50 system at
temperature T = 0.0505
in the fuzzy sphere
phase. From 3 × 105

data points we get χ =
0.095±0.004(4.5%) and
τR2 = 452.

of the observable S. It is natural to assume that the action (and the observables

which can be expressed as linear function of it) should have the smallest autocor-

relation time. Any observable that can be expressed as a non-linear function of

S is to be expected to have higher autocorrelation time than S. Let us consider

the two observables S and R2 on the fuzzy sphere phase side. From (4.8) and

(5.5) we have can write R2 ∼ S2/3. This can be seen as the reason for the higher

autocorrelation times of R2.
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GPU implementation

During our studies we ported some of the algorithms for graphical processing

unit (GPU) computation. In particular the algorithm from §4.5 was rewritten

using the OpenCL language. In this chapter we briefly describe the main steps

of the implementation of OpenCL simulation in C++ environment. A detailed

description of the language together with its host-side API can be found at [63]. A

good reference with wide range purpose algorithms adapted for GPU computation

can be found in [60]. An example of Lattice QCD algorithm implementation for

GPU can be found in [9].

B.1. OpenCL basics

OpenCL (Open computing language) is a standard which provides access to par-

allel computing devices in an uniform manner. There are two types of processing

units in an OpenCL program. There is a host which executes the main program

and one or more computing devices which carry out the parallel operations as

requested by the host. The host device usually is the CPU of the system. The

computing devices can be of type CPU, GPU, or dedicated accelerators. Conse-

quently the architecture consists of two major components

1. Host-side application programming interface (API )

2. Device-side language, the OpenCL language

139



GPU implementation

In this section we briefly describe the two parts of OpenCL and mention some

important aspects from the user’s point of view. At the time of the writing of

this thesis, the current OpenCL version is 1.2.

B.1.1. OpenCL host- side API

From the user’s point of view the host–side API of OpenCL is the connecting

point between the host and the computing devices. Currently there are OpenCL

API bindings for C, C++, Python, FORTRAN, Java, C# etc. We use the C++

bindings for the OpenCL API provided by the standard cl.hpp header file. The

host–side API fulfills the following tasks

1. Detect and enumerate all OpenCL platforms

2. Detect and enumerate all OpenCL capable devices associated with each

platform. Retrieve computing capabilities.

3. Select devices belonging to one or more platforms. The host process obtains

context objects for each device.

4. Create one or more command queue(s) associated to each context of device

5. Invoke the OpenCL compiler for each device.

6. Memory management on the computing devices. Allocate and release mem-

ory blocks used for data storage.

7. Request computational operations. Synchronize the execution and data ac-

cess between different command queues.

The initialization is done in steps 1—5. A code snippet that performs these

tasks is present below.

1 // initialize OpenCL

2

3 // types platformVector and deviceVector are previously

defined to be

4 // typedef std::vector <cl::Platform > platformVector ;

5 // typedef std::vector <cl::Device > deviceVector;

6
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7 // the m_platformsVect object is defined as

8 // platformVector m_platformsVect;

9

10 // generate a vector that contains all available OpenCL

platforms

11 cl:: Platform ::get(& m_platformsVect);

12

13 // use platform 0

14 m_platform = m_platformsVect [0];

15

16 try{

17 deviceVector deviceVect;

18 // enumerate all devices associated to the selected

platform

19 m_platform.getDevices(m_nDeviceType , &deviceVect);

20 // select device with ID m_nDeviceId (m_nDeviceId has

been assigned earlier to be 0)

21 m_deviceVect.push_back(deviceVect[m_nDeviceId ]);

22

23 // obtain context which contains the selected devics

24 m_context = cl:: Context(m_deviceVect);

25

26 // create command queue associated with the context

27 m_queue = cl:: CommandQueue(m_context , m_deviceVect[

m_nDeviceId], 0);

28

29 // read the OpenCL source file "kernels.cl"

30 std:: ifstream file("kernels.cl" , std:: ifstream ::in);

31 std:: string prog(std:: istreambuf_iterator <
har >(file),

32 (std:: istreambuf_iterator <
har >()));

33 cl:: Program :: Sources source(1, std:: make_pair(prog.

c_str(), prog.length ()+1));

34

35 // create cl:: Program object

36 m_program = cl:: Program(m_context , source);

37

38 // compile the program for the selected devices

39 m_program.build(m_deviceVect , sBuildOptions);

40 }

41 
at
h(cl:: Error &e)

42 {
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43 // error handling

44 
har sBuildError [16384];

45 fprintf(stderr , "Exception thrown (%d): %s\n", e.err(),

e.what());

46 if(e.err() == -11)

47 {

48 // build error

49 clGetProgramBuildInfo(m_program (),

m_deviceVect [0](), CL_PROGRAM_BUILD_LOG ,

16384, sBuildError , NULL);

50 // output OpenCL compile -time error

51 fprintf(stderr , "Build error: %s\n",

sBuildError);

52 }

53 }

Step 1 corresponds to finding of all OpenCL SDK’s installed on the computer

system. The situation where there are more than one OpenCL platforms installed

is not uncommon. This usually happens when there are more than one OpenCL

capable device on the system and they are provided from different manufacturers.

One of the main requirements for an OpenCL implementation is that it should

be able to find any additional implementations on the computer at runtime. It

is implemented in lines 11—14. This sample code always chooses the first found

platform on the system.

In step 2 we detect all the computing devices associated to the same platform.

Example of such situation might be a computer system with two different graphic

cards from the same vendor. We might also need the computing capabilities of

each device. This is useful if we intend to use OpenCL features which are not

part of the core implementation but are rather provided as extensions. It is done

by the getDevices() method on line 19.

In step 3 we select the devices we intend to use for our computations and

create a context object which will later be used for communication between the

host and this group of devices. This step is implemented on lines 20—24. In

this particular example we assume that the first device has the computational

capabilities that we want.
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Step 4 is creating the so called command queue associated with the previously

created context. All the requests to the devices are done through command

queues. Command queues also provide the basic synchronization mechanisms.

Commands issued through one queue are guarantied to execute in the same order

as requested. In our example we create only one queue. This is done by the

CommandQueue() call.

Step 5 is the last step before we start the computation is the actual OpenCL

code compilation. The build of the source code is done for each selected device

by call to the build() method. This way the binaries are optimized for each of

the devices by their own compiler. It is possible that the build is successful for

some of the devices but not for all of them.

The memory management on the host’s side in C++ environment is done

with the help of the cl::Buffer objects. They allow us to create memory buffers

on the computing devices side, to specify their size and properties together with

the type of memory they represent. Also the API allows us to move data between

the host and the computing devices.

After successful initialization and memory allocation we are ready to request

computation operations via the command queues. This is achieved by using the

enqueueNDRangeKernel() function.

B.1.2. OpenCL language

The OpenCL language allows us to write code which to be executed by a comput-

ing device side. The code is organized in OpenCL programs. Each program con-

sists of one or more functions contained in one or more source files. The functions

that are directly callable from the host side via the enqueueNDRangeKernel() are

called kernels. Every program needs to have at least one kernel. This is done via

the modifier kernel in front of the function definition. The language is based on

the C99 standard with some limitations and additions. Some of the most notable

differences are listed below

− Recursion is not allowed
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− No pointers to functions

− No dynamic memory allocation

+ Vectorized versions of the primitive data types— int2, float2, etc

+ New primitive data types— half, etc

+ Explicit distinction between memory regions via the use of the keywords

global, local, constant, and private.

+ Additional keywords

IO operations are not necessarily available on all accelerators. That is why

for error-checking and debugging of OpenCL code, the language relies on vendor–

supplied IO functions and debugging. The standard printf() function is available

via cl amd printf extension on AMD supplied devices.

B.2. OpenCL code example

As we mentioned in §4.5 most of the expensive operations in our studies are

based on matrix multiplication. Here we demonstrate OpenCL source file which

contains two approaches to matrix multiplication. Those matrix multiplication

algorithms are described in great detail in [63]. We make some brief comments

on the source code

1 // kernels.cl

2

3 #ifdef cl_khr_fp64

4 #pragma OPENCL EXTENSION cl_khr_fp64 : enable

5 #else

6 #error "double -precision floating point arithmetic is not

available on the selected device"

7 #endif

8

9 #if !defined(nDim)

10 #error "undefined symbol nDim. Must be specified as compiler

option -D nDim=<integer > "

11 #endif

12
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13 // Naive implementation of matrix multiplication

14 // Each element of the result is computed in separate thread

15 __kernel void MatrixMult_naive (__global double2 *A, __global

double2 *B,

16 __global double2 *C)

17 {

18 int nCol = get_global_id (0);

19 int nRow = get_global_id (1);

20 double2 z = (double2)(0,0);

21

22 for(int k = 0; k < nDim; k++)

23 {

24 z.x += A[nRow + nDim * k].x * B[k + nDim * nCol].x -

25 A[nRow + nDim * k].y * B[k + nDim * nCol].y;

26 z.y += A[nRow + nDim * k].x * B[k + nDim * nCol].y +

27 A[nRow + nDim * k].y * B[k + nDim * nCol].x;

28 }

29 C[nRow + nDim * nCol] = z;

30

31 }

32

33 // Matrix multiplication implementation which takes advantage

of the use of local memory buffers

34 // Each thread computes one column of the result

35 __kernel void MatrixMult_local_mem(__global 
onst double2 *A,

__global 
onst double2 *B, __global double2 *C,

36 __local double2 *Awrk)

37 {

38 int nLocSize = get_local_size (0);

39 int nLocID = get_local_id (0);

40 int nCol = get_global_id (0);

41 double2 Bwrk[nDim];

42 int k, nRow;

43 double2 z;

44

45 for(k = 0; k < nDim; k++)

46 {

47 Bwrk[k] = B[k + nDim * nCol];

48 }

49 for(nRow = 0; nRow < nDim; nRow ++)

50 {
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51 z = (double2)(0, 0);

52 for(k = nLocID; k < nDim; k = k + nLocSize)

53 {

54 Awrk[k] = A[nRow + nDim * k];

55 }

56 barrier(CLK_LOCAL_MEM_FENCE );

57 for(k = 0; k < nDim; k++)

58 {

59 z.x += Awrk[nRow + nDim * k].x * Bwrk[k].x - Awrk[

nRow + nDim * k].y * Bwrk[k].y;

60 z.y += Awrk[nRow + nDim * k].x * Bwrk[k].y + Awrk[

nRow + nDim * k].y * Bwrk[k].x;

61 }

62 C[nRow + nDim * nCol] = z;

63 }

64 }

OpenCL supports a wide range of devices with different hardware specifica-

tions and thus different computation capabilities. This is the reason why some

of the features are not part of the core OpenCL implementation but are rather

implemented as extensions. Both the OpenCL host–side API and the language

provide mechanisms for detection of the available extensions on a device. On the

host–side the list of available extensions could be queried by clGetDeviceInfo()

call. On the device side each extension adds its name to the list of the known pre-

processor macros of the compiler. As double-precision floating point arithmetic is

not supported on all OpenCL devices, its support is provided by the cl khr fp64

extension. Without this extension we cannot define variables of type double. The

preprocessor code in lines 3—8 checks if the extension is available and enables it.

Otherwise it causes compile time error via the #error macro.

As OpenCL does not support dynamic arrays sometimes we need to know the

size of some memory blocks in compile-time of the OpenCL code but in runtime

of the of the host application. Such situation occurs with regard to the symbol

nDim. We want our OpenCL code to be able to handle matrices of arbitrary size

thus we need nDim to be parameter. On the other hand on line 45 we define an

array of size nDim. The solution is to specify the value of nDim as option to the

OpenCL compiler. In lines 13—15 we check if nDim has been defined as compiler

option and return error if it hasn’t.
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The rest of the file contains two methods for computing the matrix multi-

plication C = A.B. The first (naive) method computes only one value of the

matrix C per thread. Thus we need N2 calls to the kernel MatrixMult naive()

in order to compute the result. The second method which is implemented in

MatrixMult local mem() uses local memory to store the data it needs for its com-

putations and computes a whole column of C. We need to execute N instances

of this kernel. The local memory is faster and usually all of the data is cashed so

we expect the second algorithm to be faster. However we note that for the matrix

sizes we were interested in (N ∼ 100) the naive matrix multiplication performed

as well as the more complicated algorithm.
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