
CS640 Submission 2010-01-27

Automatic Functional Testing of GUIs

L.A.Fitzgerald

Functional testing of GUIs can be automated using a test oracle derived from the GUI’s specification and from a restricted set of

randomised test data. As test data, a set of randomly distorted test objects seems to work well, especially starting as we do with a

‘perfect’ object and then distorting this more and more as the test progresses. The number of test cases needed seems to be much

smaller than that reported in other random testing papers. More work is needed to see if the approach is generally applicable: if

so, the test engineer can spend his time writing GUI specifications at a high level of abstraction, rather than hand-generating test

cases.

1. INTRODUCTION

Software testing can be functional, structural, or random (Cai, 2005).

1. Functional software testing uses the functional specification of software to test the specified functions of

software.

2. Structural software testing uses the internal details of software to generate test cases.

3. Random software testing uses a profile of the inputs that the software is expected to encounter in order to

randomly generate test cases, and uses a Test Oracle to assess the correct operation of the software.

This paper discusses the automation of functional GUI testing using a test oracle derived from the GUI’s

specification and from a restricted set of randomised test data. There are three contributions:

• using JML specifications combined with run-time assertion checking to act as a Test Oracle for GUI

programs. Leavens et al (Leavens, 2002), show how to combine formal interface specifications and a

unit testing framework to produce a test oracle for unit testing. Here, the idea is applied to GUI testing.

• as test data, automatically generating a set of randomised Objects, each of which is generated from a

basis object
1
 which has been abstracted from the GUI’s specification.

• demonstrating how runtime assertion checking and coverage analysis can be integrated with automated

testing of GUI code.

These ideas were applied testing a simple GUI application which classifies triangles; its functionality is similar to

that of classification programs which have been used in previous studies. The classifier has several methods that

determine if specific parameters are instances of one of several types of triangles. Other approaches to testing the

triangle classification program need hundreds of test runs to achieve good test coverage (Alzabidi, 2009)

(Michael, McGraw and Schatz, 2001). The approach reported here requires tens of test runs to meet the same

goal. This suggests that the use of randomised test objects as test cases is worthy of further consideration.

Tools used

JML

JML (Java Modeling Language) (Leavens, G.T. and Cheon, Y, 2006) is a formal behavioural interface

specification language for Java, which allows one to specify both the syntactic interface of Java code and its

behaviour. The behaviour of Java code which is what is of interest here, describing what should happen at

runtime when the code is used. The behaviour of a method is specified using pre- and post conditions.

Preconditions are not relevant for testing a GUI, which should be able to respond to any possible input.

1
 A basis object is one which can generate any object described by the GUIs input parameters.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MURAL - Maynooth University Research Archive Library

https://core.ac.uk/display/297017024?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

2010-01-27 L.A.Fitzgerald

jmlc

The JML compiler (jmlc), is an extension of a Java compiler and compiles Java programs annotated with JML

specifications into Java byte-code (Leavens, G.T. and Cheon, Y, 2006). The compiled byte-code includes run-

time assertion checking instructions that check JML specifications such as preconditions, normal and

exceptional postconditions, and invariants

JUnit framework

JUnit is a Java framework that supports testing. JUnit features include:

• Assertions for comparing the outcome of tests with expected results

• Test Cases that exercise the target code

• Test fixtures that provide an appropriate environment for running the test cases

• Test suites which are collections of test cases

• Graphical and textual test runners for running the tests

JMLUnit

The jmlunit tool tool combines the JML compiler with JUnit (Leavens, G.T. and Cheon, Y, 2006). The tool uses

JML specifications, processed by jmlc, to decide whether the code being tested works properly.

2. BACKGROUND

Automated random testing

Myers (Myers, 2004), gives a good, practical introduction to Software Testing, and includes an interesting

discussion on testing the triangle classification program, variants of which are as an example used by several authors

in the field, and also in this paper.

Sun et al (Jones, 2004), discuss the shortcomings of the capture/replay techniques used traditionally for testing GUI-

Based Java Programs: “These techniques are marketed as labor saving tools for regression testing where the focus is

ensuring that a later version exhibits the same behavior as an earlier version under the same set of stimuli. The utility

of capture/replay techniques for testing during software development testing is questionable…” They present the

case for “a specification-driven approach to test automation for GUI-based JAVA programs as an alternative

to the use of capture/replay”.

Hamlet (Hamlet, 1994), gives an erudite background to Random Testing, emphasising the idea that the essence of

Random Test is to be in a position to estimate the reliability of the program being tested over a range of input values.

He makes the case that any attempt at modifying the generation of random data by, for example, taking a model of

the software under test into account, makes the results less useful for estimating reliability. To be statistically

significant, the number of such tests should be large, as a consequence of which, the presence of an automated Test

Oracle is all but essential for Random Testing.

Chan et al (Chan, 2003), introduces the topic of Adaptive Random Testing, which “makes use of knowledge of

general failure pattern types, and information of previously executed test cases, in the selection of new test cases”.

The paper discusses the use of feedback to improve on Random Testing. The approach proposed by Cai et al (Cai,

2005), uses a stochastic process to generate test cases conforming to a targeted usage profile. The approach “treats

software testing as a control problem, where the software under test serves as a controlled object that is modelled as

3 Automatic Random Testing of GUIs

CS640 Submission 2010-01-27

controlled Markov chain, and the software testing strategy serves as the corresponding controller”. Another paper by

Hu et al (Hu, 2008), addresses the topic, stating that Adaptive Test “consumes less test cases than Random Test.”

Michael et al (Michael, McGraw and Schatz, 2001), discuss Genetic Algorithms (GA) in the context of test-data

generation: “...the source code of a program is instrumented to collect information about the program as it executes.

The resulting information, collected during each test execution of the program, is used to heuristically determine

how close the test came to satisfying a specified test requirement. This allows the test generator to modify the

program's input parameters gradually, nudging them ever closer to values that actually do satisfy the requirement. In

essence, the problem of generating test data reduces to the well-understood problem of function minimization.”

They propose Genetic Search as a sophisticated technique for function minimisation. The example used in the paper

uses same triangle classifier example as I use: “ the standard GA has the best performance overall, covering

about 93 percent of the code on average in about 8,000 target-program executions.” Alzabidi et al (Alzabidi,

2009), investigate the performance of a proposed GA for path testing. They use an example triangle classifier

similar to that used in this paper, and seem to generate an enormous amount of test data.

Murphy et al (Murphy Christian, Kaiser Gail, and Arias Marta, 2007), use equivalence classes of random data for

testing: “Our data generation framework allows us to isolate or combine different equivalence classes as desired, and

then randomly generate large data sets using the properties of those equivalence classes as parameters.” This

approach is close to that proposed in this paper, with the exception of not requiring a Test Oracle. The Equivalence

Classes are also at a lower level of abstraction than the Object-based approach presented herein.

Chen et al (Chen, Shen, and Chang, 2008), propose “an ‘object-based’ approach, called component abstraction, to

model the structure of a GUI. A GUI testing modeling language, GTML, is defined and a systematic approach in

applying component abstraction is described.” This Object-based approach is again similar to mine; however, the

GUI testing modeling language approach diverges from the approach I use.

GUI test implementation

There is a large number of papers which deal with implementation issues such as: JUnit, JML, EMMA, Abbot and

Ant. Among some of the more useful papers are: Verzulli (Verzulli, 2003), which introduces JML and some of its

most important declarative constructs and Schneider (Schneider, 2000), which deals with techniques for building

resilient, relocatable, multithreaded JUnit tests.

Wall (Wall, 2008) presents a guide to getting started with the Abbot Java GUI Test Framework, and Roubtsov

(Roubtsov, 2006) gives a Step-by-Step Introduction to the EMMA coverage toolkit. Hatcher and Loughran (Hatcher,

2007), provide all you need to write an Ant script.

Leavens (Leavens, G.T. and Cheon, Y, 2006) gives a good overview of the JML modelling language, while

Breunesse and Poll (Poll, 2003) deal with JML specifications with model fields. This latter subject (model fields) is,

in my view, the key to making JML specifications tractable.

Cheon and Leavens’ paper on JML and JUnit (Leavens, 2002) is of particular importance. They present “a simple

but effective approach to implementing test oracles from formal behavioural interface specifications.” The

specifications are pre- and post-conditions written in JML.

Finally, I would never have gotten off the ground without the help of Mark Sebern’s web-site (Sebern, 2008-2009).

His very clear instructions for tool installation are especially helpful.

4

2010-01-27 L.A.Fitzgerald

AUTOMATIC RANDOM TESTING OF GUIS

Work outline

The work included the following steps:

1. Using the Abbott API to inject random data into a program under test, (Tridentify and Triangle classes)

with JML pre/post conditions added to an action handler.

2. Generation of test data based on Boundary Value and Equivalence Partition tests, using these to validate the

JML pre/post conditions and to measure test coverage.

3. Generation of object-based random test data, using these with the JML postconditions to test the GUI.

4. Comparison of results and generation of documentation

Program under test

The GUI under test is a graphical front end for a triangle classification program.

Figure 1 - GUI under test

5 Automatic Random Testing of GUIs

CS640 Submission 2010-01-27

The specification for the triangle classification program is:

Figure 2 - “More precise version” of specification

This specification in fact defines the behavior of the GUI.

Hand-generated test data

A set of hand-generated test data was used to validate Tridentify.showAnswer's JML Specification. Some of the test

data were derived from the Rules in the “more precise version” of the specification for Tridentify. The remainder

were derived from a document (Brown, 2008) which describes the errors which were inserted into the Triangle class.

Auto-generated test data

It is not feasible to generate a set of integer 3-tuples, apply them to the GUI input fields and expect to achieve 100%

code coverage in a short time, especially when the time delays associated with exercising the actual GUI are taken

into account. The application of floating-point 3-tuples compounds the problem.

If the development process which produced the software to be tested has included a requirements engineering phase

then the outputs of the Use-Case Analysis will include a specification of one or more objects which are

parameterised by the fields in the GUI. It makes sense therefore, to generate not a set of random numbers to be

applied on an ad-hoc basis to the fields of the GUI, but a set of randomised Objects, each of which is based on a

basis object which has been abstracted from the GUI’s specification.

It is natural to select an equilateral triangle as the basis object for testing our example GUI, and generate a set of

triangle objects by adding initially, a little noise to the parameters describing the object, and then, as the test

progresses, adding more and more noise. It is useful to anticipate the experimental setup section below, and describe

how this was done:

6

2010-01-27 L.A.Fitzgerald

Two sub-sets of random data are generated: the first being divided by 256 in order to provide double data,

and the second used to provide integer data. In each case the range of the random number generated starts

out small and increases exponentially as the test progresses. Thus the character of the test data depends

heavily on the number of tests used. The numbers generated are used to add 'noise' to the lengths of the

sides of a basis triangle to produce triangle objects. These triangles are input into a queue; the data output

from the queue are normally taken from its head, but may be taken from other elements with a probability

which decreases as element's index in the queue increases. So, if a particular triangle appears in the test

stream, it is likely to be repeated.

Pseudocode for generating the first set of random data is presented in Figure 3 below:

Figure 3 - Pseudocode for generating the first set of random data

Using JML to provide a "test oracle" for GUI programs

Gary Leavens’ JML Implementation Documentation web page states that “The idea behind jmlunit is to use JML's

runtime assertion checker as a test oracle and use JUnit as a testing framework. The generated test classes send

messages to objects of the Java classes under test; they catch assertion violation exceptions from test cases that pass

an initial precondition check. Such assertion violation exceptions are used to decide if the code failed to meet its

7 Automatic Random Testing of GUIs

CS640 Submission 2010-01-27

specification, and hence that the test failed. If the class under test satisfies its interface specification for some

particular input values, no such exceptions will be thrown, and that particular test execution succeeds. So the

automatically generated test code serves as a test oracle whose behaviour is derived from the specified behaviour of

the target class.”

In order to use JML to provide a "test oracle" for GUI programs, all that is necessary is to instrument the objects

which are invoked directly from the GUI code with JML postconditions.

How model variables work

A model field is a specification-only field for holding an abstraction of program data.

A represents clause describes how model fields can be computed from actual fields

An ensures clause specifies a method’s postcondition. It may refer to the method’s parameters and to its result value.

Note that pre-conditions aren’t relevant for a GUI specification, since a GUI should be able to handle any input

value.

As an example, take one of the model fields from Figure 4:

model boolean validParameters;

The represents clause for this is:

 represents validParameters <- !((xParameter == null) || (yParameter == null) || (zParameter == null)

 || (xParameter.isInfinite())|| (yParameter.isInfinite())|| (zParameter.isInfinite())

 || (xParameter.isNaN()) || (yParameter.isNaN()) || (zParameter.isNaN()));

Consider also the model field:

 model String answerString;

and its represents clause:

 represents answerString <- tF_answer.getText();

 Now one can see that the first line of the ensures clause is at quite a high level of abstraction:

ensures (!validParameters) && answerString.equals("Invalid input") ...

At this high level of abstraction, it’s easy to see the correspondence between the specification for showAnswer in

Figure 2 and the ensures clause in Figure 4.

Even for a simple example like this, writing a JML GUI specification would be all but impossible, due to its

complexity, without the use of model variables. These latter allow one to effect a hierarchical decomposition of the

JML specification, which greatly eases the problem of writing a JML GUI specification.

None of this would be possible, if the triangle classifier had not come with a well-written informal specification.

This has important implications for the “design for testability” of GUI applications. One can’t test something which

doesn’t have clear specifications.

8

2010-01-27 L.A.Fitzgerald

Figure 4 - JML Specification

9 Automatic Random Testing of GUIs

CS640 Submission 2010-01-27

Integrating JML and Coverage Analysis with the automated testing of Java programs

JMLc generates runtime assertion enabled JVM bytecode in each class file for each of the Java files. One of the

outputs from this process is a set of JML-annotated source files augmented with runtime assertion checks. Using the

Eclipse IDE, code coverage is performed on the augmented source files, rather than the original source files. Since

the augmented source files can be times larger than the original, this is less than useful.

In order to perform code coverage on the original source files, I used Ant (Hatcher, 2007) to control the build, and

used Eclipse as an intelligent editor. Two compile/build cycles were used:

• Compile all classes with assertion checks disabled, and coverage enabled. This allows one to determine the

number of runs needed to achieve a desired code coverage figure. Further one can use the code coverage

tool to inspect an Emma-highlighted version of the source code in order to decide what to do about any

sections of the source code which are not covered. Often, the easiest thing to do is to add an extra test to the

JUnit test suite. Since the run time of code compiled with javac is shorter than that compiled with jmlc, it’s

feasible to perform this compile/build cycle with differing test data sizes before using jmlc-compiled

classes.

• Compile the uut classes with jmlc, i.e. with assertion checks enabled and coverage disabled. Other test

classes will be linked by the JVM. Due to the larger size of the classes, it can take longer to run JML-

compiled code than that compiled with javac.

It’s useful to take a look at the directory structure used in order to see what’s going on:

Figure 5 - Directory structure

10

2010-01-27 L.A.Fitzgerald

3. EXPERIMENTAL SETUP

The jmlunit tool generates JUnit test classes that rely on the JML runtime assertion checker (Leavens, G.T. and

Cheon, Y, 2006). The test classes send messages to objects of the Java classes under test. When the method under

test has an assertion violation, then the implementation failed to meet its specification, and hence the test data

detects a failure. In other words, the generated test code serves as a test oracle whose behaviour is derived from the

specified behaviour of the class being tested.

UUT Classes

The classes which make up the Unit Under Test (UUT) are shown in Figure 6. The ButtonHandler Inner Class was

modified by surrounding the call to showAnswer with a try/catch/finally clause. This latter clears and sets a

JMLReady flag in an instance of the ManageJMLErrors class (see below) in order to inform the Test Fixture that

showAnswer has finished, and that it is safe to look at the results. It also catches exceptions thrown by showAnswer,

and copies them to a JML Error Value variable in the instance of the ManageJMLErrors class. This allows the Test

Fixture to examine any exceptions thrown, and to log any corresponding test failures or errors.

Triangle Class

Categorises the triangle based on the side lengths, returning one of: "Invalid triangle", "Equilateral", "Approximately

Equilateral", "Isosceles", or "Scalene". Also determine whether triangle is right-angled.

Class Variables

x stores the length of one of the triangle’s sides

y stores the length of one of the triangle’s sides

z stores the length of one of the triangle’s sides

right whether it’s a right-angled-triangle

Tridentify Class

Displays a prompt "Enter triangle side lengths and press identify". Displays three text input fields, a button labelled

"Identify" and a blank output text field.

When the user presses the "Identify" button, displays the following output:

• "Invalid input" if any of the inputs are not valid values as per the Java API Specification for a "DoubleValue"

• "Invalid triangle" if the inputs don't form a valid triangle

• "Scalene", "Equaliteral", or "Isosceles" - depending on the triangle

Class Variables

tF_prompt Text field for user prompt

tF_x Editable text field for Length 1

tF_y Editable text field for Length 2

tF_z Editable text field for Length 3

tF_answer Text field for result

b_execute "Identify" command push-button

layout GridLayout manager that lays out a container's components in a rectangular grid

11 Automatic Random Testing of GUIs

CS640 Submission 2010-01-27

Figure 6 - UUT Classes

12

2010-01-27 L.A.Fitzgerald

 Test Classes

The Test Classes comprising the Framework are shown in Figure 7.

Figure 7 - Test Classes

13 Automatic Random Testing of GUIs

CS640 Submission 2010-01-27

TridentifyTest Class.

TridentifyTest extends the ComponentTestFixture class, adding some PropertyChangeListener inner classes which

are registered with ManageJMLErrors, and a test case inner class for testing the GUI.

A ComponentTestFixture is a subclass of TestCase. It's a Fixture for testing AWT and/or JFC/Swing components

under JUnit.

• Ensures proper setup and cleanup for a GUI environment.

• Provides methods for automatically placing a GUI component within a frame and properly handling

Window showing/hiding (including modal dialogs).

• Catches exceptions thrown on the event dispatch thread and rethrows them as test failures.

 A test case defines the fixture for running multiple tests. We define a test case by:

• Implementing a subclass of TestCase

• defining instance variables that store the state of the fixture

• initialising the fixture state by overriding setUp

• cleaning-up after a test by overriding tearDown.

 Each test runs in its own fixture so there can be no side effects among test runs.

Class Variables

m_jmlErrorValue Used to hold a JMLError resulting from a Property change in an instance of the

ManageJMLErrors class

A Property change in an instance of the ManageJMLErrors class causes a JML Error to be

launched by the Event Dispatch Thread which results in a call to

JMLErrorListener.propertyChange(). The New Value of the PropertyChangeEvent

parmeter is copied to m_jmlErrorValue

m_jmlReady producer-consumer flag used to signal that the result of a triangle categorisation is ready.

ManageJMLErrors has a version of this flag. The method

MLReadyListener.stateChanged() is invoked by ManageJMLErrors in order to force an

update of this m_jmlReady, in response to any change in ManageJMLErrors' m_jmlReady

m_jmlLock m_jmlLock is a synchronisation object used to guarantee atomic access to

m_jmlErrorValue and m_jmlReady

m_xParameterString stores the length of one of the triangle’s sides

m_yParameterString stores the length of one of the triangle’s sides

m_zParameterString stores the length of one of the triangle’s sides

m_resultString stores the result of the classification.

14

2010-01-27 L.A.Fitzgerald

Inner Classes

OneTest A JUnit test object that can run a single test method

The OneTest. runTest() method constructs a tridentify object and runs the test, getting 3-

tuples of data from the dataGen Object (See below), repeatedly calling TestGUI.doCall()

in order to exercise the GUI.

The doCall() invocation is surrounded by a try/catch block which deals with

JMLInternalPreconditionErrors, JMLAssertionErrors and IllegalArgumentExceptions,

logging test failures and errors as appropriate.

TestGUI Test GUI, extends OneTest, adding a Producer/Consumer handshaking protocol. If

TridentifyTest’s copy of the m_jmlErrorValue variable is not empty, its value is thrown as

an exception.

JMLErrorListener Property change listener which is registered with ManageJMLErrors (See below). It

listens for any change in ManageJMLErrors’ copy of m_jmlErrorValue, and updates

TridentifyTest’s m_jmlErrorValue accordingly

JMLReadyListener Property change listener which is registered with ManageJMLErrors (See below). It

listens for any change in ManageJMLErrors’ copy of m_ jmlReady, and updates

TridentifyTest’s m_ jmlReady accordingly

ManageJMLErrors Class

The ManageJMLErrors class manages the transmission of JMLAssertionErrors from Tridentify to TridentifyTest.

JMLAssertionErrors are caught by the try-catch block in Tridentify.showAnswers() and are copied to a bound

property of m_manageJMLErrors, resulting in a propertyChangeEvent being enqueued in the EDT FIFO. An Event

Listener in TridentifyTest will pick up the JMLAssertionError and treat it as either a meaningless test input or else

add a failure to the list of failures, as appropriate.

Class Variables

m_jmlErrorValue Used to hold a JMLError,(e.g. a JMLAssertionError) which is a Throwable type. It’s a

Bound Property of ManageJMLErrors ; whenever m_jmlErrorValue changes, interested

listeners are notified via the Event Dispatch Thread.

m_jmlReady Used to hold a producer-consumer flag used to signal that the result of a triangle

categorisation is ready. It’s a Bound Property of ManageJMLErrors ; whenever m_

jmlReady changes, interested listeners are notified via the Event Dispatch Thread.

Inner Classes

m_listenerList A class that holds a list of EventListeners. A single instance is used to hold all listeners (of

all types) for the instance using the list.

15 Automatic Random Testing of GUIs

CS640 Submission 2010-01-27

DataGen Class

DataGen builds a suite of test data for use by TridentifyTest. Two variants of the set of test data can be generated:

1. A set of hand-generated test data used to validate Tridentify.showAnswer's JML Specification. Some of the

test data are derived from the Rules in theStephen's informal Specs for Tridentify. The remainder were

derived from Stephen's Tridentify Testing Notes, a document which describes the deliberate errors he

inserted into the Triangle class.

2. A set of random test data used to stimulate the Tridentify class. My hope is to find some rules-of thumb (I

was going to say 'heuristic', but that would be far too pompous) for generating a set general-purpose

randomised test data. One can see if these randomised test data can come close to uncovering a set of faults

which is close to the set found by using the hand-generated test data.

Two sub-sets of random data are generated: the first being divided by 256 in order to provide

double data, and the second used to provide integer data. In each case the range of the random

number starts out small and increases exponentially as the test progresses. Thus the character of

the test data depends heavily on the number of tests used. The numbers generated are used to add

'noise' to the lengths of the sides of a basis triangle to produce triangle objects. These triangles are

input into a queue, the data output from the queue are normally taken from it's head, but may be

taken from other elements with a probability which decreases as element's index in the queue

increases. So, if a particular triangle appears in the test stream, it may be repeated.

Class Variables

v an array of test data comprising 3-tuples: (x,y,z) describing lengths of the sides of

triangles.

randomAccessQueue * First-in, random-out (FIRO) queue of Triangles.

Removing an item from the queue removes elements from the queue with decreasing

order of probability:

Queue head (highest probability)

position 1 (lower probability)

...

Queue tail (lowest probability)

The algorithm for generating random test data is described above (see Auto-generated test data).

16

2010-01-27 L.A.Fitzgerald

4. RESULTS

Hardware and Software Configuration

Build/Run Environment

Ant is used to build the versions of the program. Ant target dependencies are shown in Figure 8:

Figure 8 - Ant dependancies

The Eclipse environment is used as an intelligent editor. The following libraries were used:

• C:\junit\junit-4.6-src.jar • C:\JML\bin\jml-release.jar

• C:\abbot\lib\bsh-2.0b4.jar • C:\JML\bin\jmlruntime.jar

• C:\JML\bin\jmljunitruntime.jar • C:\abbot\lib\example.jar

• C:\junit\junit-4.6.jar • C:\abbot\lib\abbot.jar

• C:\abbot\lib\xml-apis.jar • C:\abbot\lib\jdom-1.0.jar

• C:\JML\bin\jmlmodelsnonrac.jar • C:\abbot\lib\junit-3.8.1.jar

• C:\abbot\lib\costello.jar • C:\abbot\lib\gnu-regexp-1.1.0.jar

• C:\JML\bin\jmlmodels.jar • C:\junit\junit-dep-4.6.jar

• C:\Apache\commons-validator-

1.3.1\commons-validator-1.3.1.jar

• C:\abbot\src.jar

• C:\abbot\lib\xercesImpl-2.8.1.jar

17 Automatic Random Testing of GUIs

CS640 Submission 2010-01-27

Experimental Results

Code Coverage

I’m reporting results on a code coverage basis here, in order to compare my results with those reported elsewhere

(Alzabidi, 2009), (Michael, McGraw and Schatz, 2001).

Hand-Generated Test Data

Running the tests using hand-generated test data resulted in an 89% code coverage for Triangle. The lines not

reached were either unreachable or else outside Figure 2’s specification:

Line No Code Comment

97 ans = new String("INTERNAL ERROR: unknown type"); Unreachable

105 right = (x*x)+(y*y)==(z*z); Outside spec

115 return right; Outside spec

124-125 double s=(x+y+z);

return Math.sqrt(s*(s-x)*(s-y)*(s-z));

Outside spec

 28 hand-generated tests were needed to achieve the above coverage.

Randomly-Generated Test Data

Running the tests using randomly-generated test data resulted in an 86% code coverage for Triangle. The lines not

reached were:

Line No Code Comment

63 ans = new String("Invalid triangle"); not feasible to generate a

particular special value.

97 ans = new String("INTERNAL ERROR: unknown type"); Unreachable

105 right = (x*x)+(y*y)==(z*z); Outside spec

115 return right; Outside spec

124-125 double s=(x+y+z);

return Math.sqrt(s*(s-x)*(s-y)*(s-z));

Outside spec

32 randomly-generated test objects (16 integer and 16 floating-point) were needed to achieve the above coverage.

The code coverage is the same as for the hand-generated tests, with the following exception:

We would have to wait a very long time for a pseudo-random sequence to generate a double of value exactly

1234.5678. A quicker option would be to let the tests run for a short time and then inspect of the code coverage

for ‘special values’. This would motivate the addition of a ‘special value’ test to the test suite.

18

2010-01-27 L.A.Fitzgerald

Rule Coverage

I’m reporting results on a ‘Rule-based” coverage basis here, in order to estimate the “specification coverage”

Hand-Generated Test Data

The hand-generated tests were evolved from:

• the specification for the triangle classification program in Figure 2

Figure 2. (Rule 1 through Rule 5)

• ‘Testing Notes’ (Brown, 2008). (BBT 1 through BBT 4 and WBT 5.2)

Since Rules 1 through 5 are exercised by the first 15 test 3-tuples. The remainder of the tests exercise BBT 1

through BBT 4 and WBT 5.2.

Table 1 - Hand-Generated Test Data

TestID Hand-Generated Input

Parameters

What’s being tested

(10, 11, 12) sanity check: Scalene

Rule 1:
(10, 11, Jimmy) any of x,y,z are invalid doubles "Invalid input"

(10, Jimmy, 12)

(Jimmy, 12, 12)

Rule 2:
(10, 11, 22) x,y,z all valid text for doubles, "Invalid triangle" but x,y,z form an invalid

triangle

Rule 3:
(10, 11, 12) x,y,z all valid text for doubles "Scalene" and x,y,z form an valid triangle and

x!=y!=z (11, 12, 10)

19 Automatic Random Testing of GUIs

CS640 Submission 2010-01-27

(12, 10, 11)

Rule 4:
(10, 10, 10) x,y,z all valid text for doubles "Equilateral" and x,y,z form an valid triangle

and x=y=z

Rule 5:
(12, 10, 10) x,y,z all valid text for doubles "Isosceles" and x,y,z form an valid triangle

and any two of the sides are equal (10, 12, 10)

(10, 10, 12)

(2, 10, 10)

(10, 2, 10)

(10, 10, 2)

BBT: 1.
(NaN, NaN, NaN) Try "NaN" and "Infinity" as input values - they work (spec error: should ref

FloatingPointLiteral not FloatValue) (POSITIVE_INFINITY,
POSITIVE_INFINITY,
POSITIVE_INFINITY)

BBT: 2.
(10, 10, NaN) Invalid "z" will raise an unhandled exception - implementation error

BBT: 3.

(-10, -10, -10) negative values of x,y,z are categorised as triangles - error of omission

(-10, 10, 10)

(10, -10, 10)

(10, 10, -10)

BBT: 4.
(12, 10, 11) If x>y for a scalene triangle, returns isosceles

(1234.5678,
1234.5678,
1234.5678)

(1234.5678, 10, 10)

(10, 1234.5678, 10)

(10, 10, 1234.5678)

WBT: 5.2
(10.001, 10, 10) If x, y, and z are approx equal (within 0.1%) get "Approximately Equilateral"

The test results using the above hand-generated test data were correct. This validated the JML specifications that I

wrote.

Randomly-Generated Test Data

The randomly-generated input parameters (recall that these parameters are constrained so that each set describs a

variant of a basis object), exercise Rules 2 through 5 and BBT 3, 4 and WBT 5.2. Rule 1 and BBT 1 and 2 require

inputting parameters that can’t be generated by a random number generator. If needed, these cases can be added to

the set of JUnit cases.

Table 2 shows the set of randomly-generated variants of the basis triangle used to test the classifier, (via its GUI

interface), the resultant category assigned to each object and the corresponding TestID from Table 1.

20

2010-01-27 L.A.Fitzgerald

Table 2 - Randomly-Generated Test Data

Randomly-Generated Input Parameters Category Output TestID

(1.0, 1.0, 1.0) Equilateral Rule 4

(0.998, 0.9985, 0.9972) Approximately Equilateral WBT 5.2

(0.9916, 1.0014, 0.987) Scalene Rule 3

(0.9837, 0.9796, 0.9823) Isosceles BBT 4

(1.019, 0.9836, 1.0323) Isosceles BBT 4

(1.0354, 1.0589, 1.0198) Scalene Rule 3

(0.8859, 0.8983, 0.9186) Scalene Rule 3

(0.8859, 0.8983, 0.9186) Scalene Rule 3

(1.0059, 0.41990000000000005, 1.3087) Isosceles BBT 4

(0.4769, 0.7008, 1.3947) Invalid triangle Rule 2

(0.7625, -1.2172999999999998, -1.7706) Isosceles BBT 3, 4

(2.4377, -2.3895, 2.1061) Invalid triangle BBT 3,

(-4.2989, 6.0142, 9.3727) Invalid triangle BBT 3,

(2.0982000000000003, -6.1007, -2.108) Isosceles BBT 3, 4

(0.7625, -1.2172999999999998, -1.7706) Isosceles BBT 3, 4

(2.4377, -2.3895, 2.1061) Invalid triangle BBT 3, Rule 2

(1.0, 1.0, 2.0) Isosceles Rule 5

(3.0, 4.0, 5.0) Scalene Rule 3

(5.0, 10.0, 7.0) Scalene Rule 3

(2.0, 3.0, 21.0) Invalid triangle Rule 2

(3.0, 4.0, 5.0) Scalene Rule 3

(54.0, 44.0, 24.0) Isosceles BBT 4

(10.0, 121.0, 127.0) Scalene Rule 3

(172.0, 158.0, 27.0) Isosceles BBT 4

(76.0, 327.0, 726.0) Invalid triangle Rule 2

(10.0, 121.0, 127.0) Scalene Rule 3

(10.0, 121.0, 127.0) Scalene Rule 3

(1519.0, 2982.0, 1794.0) Scalene Rule 3

(3378.0, 6892.0, 4070.0) Scalene Rule 3

(3378.0, 6892.0, 4070.0) Scalene Rule 3

(13781.0, 2620.0, 11933.0) Isosceles BBT 4

(18270.0, 14243.0, 992.0) Invalid triangle Rule 2

21 Automatic Random Testing of GUIs

CS640 Submission 2010-01-27

With the exception of Rule 1 and of BBTs 1 and 2, a short sequence of randomly altered basis objects worked

surprisingly well, covering all the JML specifications.

The idea of compiling the uut classes with assertion checks disabled, in order to ascertain the coverage, and

following this by adding extra tests to the JUnit test suite to ensure coverage before compiling the classes with

assertion checks enabled and coverage disabled, seems to be a highly effective technique.

Relative difficulty of using Hand-generated test data vs. using auto-generated test data

Once JML model variables are in place, bridging the gap between low-level details and a high level of abstraction,

it’s not difficult to write a concise JML ensures clause to specify the behaviour of the GUI-based application, given

a half-decent informal specification to begin with.

For the case of the triangle classifier, hand-generating test data to exercise Rules 1 through 5 isn’t difficult, and,

hand-generating test data to exercise the BBTs and WBTs isn’t much harder. However, figuring out what to test in

these cases is a task which needs to be done by a very experienced test engineer.

It is this latter difficulty which makes the use of auto-generated test data so attractive.

5. CONCLUSIONS AND FUTURE WORK

I’ve shown that JML specifications combined with run-time assertion checking can act as a Test Oracle for GUI

programs. I’ve also shown that automatically generating a set of randomised Objects abstracted from the GUI’s

specification makes for a particularly efficient set of test cases, in the case of the triangle classification program. I’ve

demonstrated how runtime assertion checking and coverage analysis can be integrated with automated testing of

GUI code.

The idea of producing as test data, a set of randomly distorted test objects rather than a set of random numbers,

seems to work well, especially starting as we do with a ‘perfect’ object and then distorting this more and more as the

test progresses, and in addition, the idea of generating half the random data as integers, and half as doubles, seems to

have a tendency to hit corner cases.

In the case of the Tridentify/Triangle classes, good results were found after generating only 32 test objects. It would

be interesting to see how well this model of test object generation works other Classes, and whether or not a set of

heuristics for generating randomly distorted test objects of general applicability can be evolved.

The above approach means that the test engineer can spend his time writing JML GUI specifications at a high level

of abstraction, rather than hand-generating test cases, if the idea of automatically generating sets of randomised test

objects does turn out to be generally applicable.

REFERENCES

Alzabidi Kumar, and Shaligram Automatic Software Structural Testing by Using Evolutionary Algorithms for

Test Data Generations [Article] // International Journal of Computer Science and Network Security. - 2009. - 4 :

Vol. 9.

Brown Stephen Tridentify Testing Notes // Private communication. - Maynooth : National University of Ireland,

Maynooth, 2008.

Cai Li and Ning Optimal software testing in the setting of controlled Markov chains [Article] // European Journal

of Operational Research. - Maryland Heights : Elsevier, 2005. - 2 : Vol. 162. - pp. 522-579.

22

2010-01-27 L.A.Fitzgerald

Chan Towey, Chen, Kuo and Merkel Using the Information: Incorporating Positive Feedback Information into the

Testing Process [Conference] // Proceedings of the Eleventh Annual International Workshop on Software

Technology and Engineering Practice. - Washington : IEEE Computer Society, 2003. - pp. 71 - 76.

Chen, Shen, and Chang GUI Test Script Organization with Component Abstraction [Conference] // Proceedings of

the 2008 Second International Conference on Secure System Integration and Reliability Improvement. -

Washington : IEEE Computer Society, 2008. - pp. 128-134.

Hamlet Richard Random testing [Book Section] // Encyclopedia of Software Engineering / ed. Marciniak J.. - New

York : Wiley, 1994.

Hatcher E. and Loughran, S. Ant in Action [Book]. - Greenwich : Manning, 2007.

Hu Jiang and Cai Adaptive Software Testing in the Context of an Improved Controlled Markov Chain Model

[Conference]. - Washington : IEEE Computer Society, 2008. - pp. 853-858.

Jones Sun and Specification-Driven Automated Testing of GUI-Based Java Programs [Conference] // Proceedings

of the 42nd annual Southeast regional conference. - New York : ACM, 2004. - pp. 140 - 145.

Leavens G. T. and Cheon, Y A Simple and Practical Approach to Unit Testing: The JML and JUnit Way

[Article] // Lecture Notes in Computer Science, Springer-Verlag, 2002, pages 231-255. - Malaga : [s.n.], 2002. -

Vol. 2374.

Leavens, G.T. and Cheon, Y Design by Contract with JML [Online]. - Iowa State University, December 2006. - 26

01 2010. - ftp://ftp.cs.iastate.edu/pub/leavens/JML/jmldbc.pdf.

Michael, McGraw and Schatz Generating Software Test Data by Evolution [Article] // IEEE TRANSACTIONS

ON SOFTWARE ENGINEERING. - Piscataway : IEEE Press, 2001. - 12 : Vol. 27. - pp. 1085 - 1110.

Murphy Christian, Kaiser Gail, and Arias Marta Parameterizing Random Test Data According to Equivalence

Classes [Conference] // Proceedings of the 2nd international workshop on Random testing: co-located with the 22nd

IEEE/ACM International Conference on Automated Software Engineering (ASE 2007). - New York : ACM, 2007. -

pp. 38 - 41.

Myers G.J. The Art of Software Testing [Book]. - New York : John Wiley, 2004.

Poll Breunesse Verifying JML specifications with model fields [Conference] // Formal Techniques for Java-like

Programs. Proceedings of the ECOOP’2003 Workshop,. - Zürich : ETH Zürich, 2003. - pp. 51–60.

Roubtsov V EMMA User Guide [Online]. - sourceforge.net, 2006. - 26 01 2010. -

http://emma.sourceforge.net/userguide_single/userguide.html.

Schneider A. JUnit best practices [Online]. - javaWorld, 2000. - 26 01 2010. - http://www.javaworld.com/jw-12-

2000/jw-1221-junit.html.

Sebern M. SE-3811 Tool Installation [Online] // SE-3811 Formal Methods. - EECS Department, Milwaukee School

of Engineering, 2008-2009. - 26 01 2010. - http://people.msoe.edu/sebern/courses/se3811/tools/index.shtml.

Verzulli J. Getting started with JML: Improve your Java programs with JML annotation [Online]. - IBM

developerWorks, March 2003. - 26 01 2010. - http://www.ibm.com/developerworks/java/library/j-jml.html.

Wall Timothy Getting Started with the Abbot Java GUI Test Framework [Online] // Abbot Java GUI Test

Framework. - sourceforge.net, 2008. - 17 01 2010. - http://abbot.sourceforge.net/doc/overview.shtml.

