
On The Development of a Mobile
Survey Framework

 with Dynamic Code Loading

Nikola Toljić

Dissertation 2014

Erasmus Mundus MSc in Dependable Software Systems

Department of Computer Science

National University of Ireland, Maynooth

Co. Kildare, Ireland

A dissertation submitted in partial fulfilment

of the requirements for the

Erasmus Mundus MSc Dependable Software Systems

Head of Department : Dr Adam Winstanley

Supervisor : Dr Charles Markham

13th of June 2014

ii

Abstract

Conducting research based on surveys and experiment is a laborious task. This report

describes the design and implementation of a system that aims to reduce some of

the workload researchers are facing when gathering data from the general

population. This is achieved by creating a survey framework which allows the

creation and distribution of surveys, as well as the collection of surveys results. In

addition to textual questions, the framework allows the researcher to include coded

experiments which are distributed with the survey and loaded by the framework at

runtime. The survey tool, implemented on the Android™ platform, supports Android-

based code modules but also web content and Unity code modules. Interfaces to

facilitate communication between external code modules and the survey tool are in

place for each of the three supported module types.

The generic nature of the framework coupled with its modularity and the ability to

work without a permanent network connection make is suitable for a vast number

of research scenarios. To show the feasibility of the system, a survey investigating

the correlation between cognitive function and driver behaviour is conducted. It

shows the level of automation that can be achieved and, simultaneously validates

the system. System tests were used to verify the framework.

Category: D.2.13 [Reusable Software]: Reusable libraries

Terms: Management, Design, Reliability

Keywords: Android, Survey Framework, Survey Tool, Code injection, External

modules, Dynamic Code Loading, Cognitive function, Driver behaviour

iii

Acknowledgements

First, I want to thank my supervisor Dr Charles Markham for the continued support

throughout the project. It was a pleasure working with him and I am grateful for his

advice and guidance.

Second, I would like to thank Dr Seán Commins who gave invaluable insights into the

psychological aspects of the research domain.

My Erasmus Mundus MSc in Dependable Software Systems and therefore also this

project were funded in part by the Education, Audiovisual and Culture Executive

Agency.

iv

Declaration

I declare that the material submitted for assessment is my own work except where

credit is explicitly given to others by citation or acknowledgement. This work was

performed during the current academic year except where otherwise stated.

The main text of this project is 21,545 words long, including project specification

and plan.

In submitting this project report to the National University of Ireland, Maynooth, I

give permission for it to be made available for use in accordance with the regulations

of the University Library. I also give permission for the title and abstract to be

published and for copies of the report to be made and supplied at cost to any bona

fide library or research worker, and to be made available on the World Wide Web.

I retain the copyright in this work.

Nikola Toljić

v

Table of Figures

FIGURE 1: SURVEY PROCESS: THESE ARE THE STEPS RESEARCHERS NEED TO PERFORM WHEN CONDUCTING A SURVEY. 11

FIGURE 2: TYPICAL FORMAT OF A SURVEY ON A MOBILE DEVICE. FIRST, THE PARTICIPANT HAS TO GIVE INFORMED CONSENT.

THEY ARE THEN PRESENTED WITH A SET OF QUESTIONS, FOLLOWED BY ANY EXPERIMENTS THE SURVEY MIGHT

CONTAIN. THE ORDER OF QUESTIONS AND EXPERIMENTS DOES NOT HAVE TO FOLLOW THIS PARTICULAR FORMAT. THE

INFORMED CONSENT IS HOWEVER, ALWAYS THE FIRST SCREEN THE PARTICIPANTS ARE SHOWN. 13

FIGURE 3: SYSTEM COMPONENTS: THE MOBILE APPLICATION DISPLAYS SURVEYS STORED IN ITS DATABASE. A SEPARATE

TABLE STORES THE SURVEY RESULTS. THE SERVER USES A WEB INTERFACE FOR SURVEY GENERATION AND STORES

THEM AND SUBSEQUENTLY SUBMITTED SURVEY RESULTS IN A CENTRAL DATABASE 17

FIGURE 4: THE RESEARCHER’S WORKFLOW. FIRSTLY, THE SURVEY IS CREATED. USING VARIOUS CHANNELS THE LINK TO THE

SURVEY CAN BE DISTRIBUTED. FINALLY, THE SURVEY RESULTS CAN BE OBTAINED AS A SPREADSHEET. 18

FIGURE 5: SERVER COMPONENTS REQUIRED TO CREATE A NEW SURVEY. .. 19

FIGURE 6: CLASS DIAGRAM SHOWING THE RELATION BETWEEN THE CORE MODEL CLASSES. A SURVEY OBJECT CONTAINS TWO

DIFFERENT TYPES OF QUESTION GROUPS WHICH IN TURN CAN HAVE THEIR OWN, SUB QUESTION GROUPS AND/OR

QUESTION. .. 26

FIGURE 7: ACTIVITY LIFE-CYCLE DIAGRAM AS USED IN THE OFFICIAL ANDROID DEVELOPER DOCUMENTATION. THE MAIN

METHODS USUALLY OVERRIDDEN IN ACTIVITY SUBCLASSES ARE ONCREATE(), ONRESUME(), ONPAUSE() AND

ONSTOP()... 28

FIGURE 8: THE COMPONENT STRUCTURE WITHIN A QUESTIONGROUPACTIVITY. THE QUESTIONGROUPFRAGMENT ALLOWS

ITS CONTAINING DATA TO BE RETAINED, WHICH IS MUCH EASIER DONE WITH FRAGMENTS COMPARED TO ACTIVITIES.

THE VIEWPAGER HOSTED IN THE QUESTIONGROUPFRAGMENT ITSELF HOSTS THE ACTUAL FRAGMENTS REPRESENTING

SURVEY QUESTIONS. EACH QUESTION IS STORED IN ITS OWN INSTANCE OF CLASS QUESTION AND IS DISPLAYED IN AN

INSTANCE OF CLASS FRAGMENT. ... 31

FIGURE 9: CLASS DIAGRAM SHOWING THE MAPPING BETWEEN QUESTIONFRAGMENTS AND THEIR CORRESPONDING QUESTION

SUBCLASSES. .. 32

FIGURE 10: THE ANDROID APPLICATION RUNS ITS COMPONENTS IN TWO SEPARATE PROCESSES TO PREVENT THE

UNITYPLAYER INSTANCE FROM KILLING THE APPLICATION WHEN IT COMPLETES. 45

FIGURE 11: DEPLOYMENT DIAGRAM FOR THE SURVEY FRAMEWORK. THE ONLY PERMANENT COMPONENT ON THE MOBILE

DEVICE IS THE SURVEY APPLICATION ITSELF. THIRD PARTY MODULES ARE DOWNLOADED AND EXECUTED AS REQUIRED

AND ONLY STORED TEMPORARILY ON THE DEVICE. THE WEBSERVER PROVIDES THE ANDROID APPLICATION WITH THE

NECESSARY THIRD PARTY BYTE CODE AND THE RESEARCHER WITH AN INTERFACE TO CREATE SURVEYS. THE DATABASE

SERVER STORES THE GENERATED SURVEY AND ANY SURVEY RESULTS UPLOADED FROM THE ANDROID DEVICE. 48

FIGURE 12: THE STROOP TASK AS SEEN BY THE PARTICIPANT ON THE MOBILE DEVICE. AN INCONGRUENT STIMULUS IS

SHOWN AND THE PARTICIPANT HAS FOUR POSSIBLE RESPONSES. IN THIS CASE THE CORRECT ANSWER IS “GREEN”. 53

FIGURE 13: THE USER INTERFACE FOR THE DRIVING TASK. THE PARTICIPANT CAN APPLY THE BRAKE USING THE LEFT

BUTTON OR ACCELERATE USING THE RIGHT BUTTON. IF NEITHER OF THE BUTTONS ARE PRESSED THE CAR WILL START

TO DECELERATE. THE TIMER IN THE UPPER RIGHT CORNER SHOWS THE PARTICIPANT WHEN THE EXPERIMENT WILL

FINISH. ... 55

vi

FIGURE 14: SAMPLE DATA FROM A DRIVING TASK. THE BLUE LINE SHOWS THE DISTANCE BETWEEN THE TWO CARS OVER THE

COURSE OF THE EXPERIMENT. ITS VALUES ARE SHOWN ON THE PRIMARY VERTICAL AXIS (LEFT). THE GREEN LINE

SHOWS WHEN THE SURVEY PARTICIPANT WAS BRAKING. THE RED LINE INDICATES BRAKES OF THE LEAD CAR. FOR THE

LEAD CAR FAKE BRAKES ARE ALSO SHOWN. IN THIS EXAMPLE THEY OCCUR IN THE FIRST THIRD OF THE EXPERIMENT

AND HAVE A VALUE OF 1.1 COMPARED TO REAL BRAKES WHICH HAVE THE VALUE 1. 56

FIGURE 15: THE THREE KEY MEASURES FOR THE DRIVING TASK AS BOX PLOTS FOR FEMALES (YELLOW) AND MALES (GREEN).

EACH BOX REPRESENTS FIVE PIECES OF INFORMATION. THE WHISKERS REPRESENT THE LOWEST AND HIGHEST VALUES

WITH EACH GROUP THAT ARE NOT OUTLIERS. THE BOX ITSELF REPRESENTS THE RANGE OF VALUES FROM THE FIRST

TO THE THIRD QUARTILE WITHIN A GROUP. THE BOLD BLACK LINE WITHIN THE BOX INDICATES THE MEDIAN VALUE

WITHIN THE GROUP. OUTLIERS ARE SHOWN AS SMALL CIRCLES. VALUES ARE CONSIDERED OUTLIERS IF THEIR DISTANCE

FROM THE BOX IS GREATER THAN THE BOX HEIGHT. ... 58

FIGURE 16: REACTION TIME MEASURE OF THE STROOP TASK AND THE DRIVING TASK SHOW STRONG CORRELATIONS, WITH

THEIR ABSOLUTE VALUES RANGING FROM 0.73 TO .91. ... 60

FIGURE 17: CHAIN OF DEPENDENCIES. EACH LINK HAS RECEIVES INPUT THAT IT PROCESSES. THE RESULTING OUTPUT IS

RELAYED AS INPUT TO THE NEXT LINK. EACH LINK MUST BE VERIFIED TO ENSURE THAT THE OUTPUT MATCHES THE

EXPECTED INPUT INTO THE NEXT LINK. E.G. IF NOT ALL QUESTIONS THE RESEARCHER ADDS TO A SURVEY ARE

DISPLAYED ON THE PARTICIPANTS SCREEN, ANY FURTHER ACTION WILL INEVITABLY LEAD TO THE WRONG DATA BEING

DELIVERED BACK TO THE RESEARCHER. .. 64

FIGURE 18: TESTING THE DISTANCE BETWEEN THE TWO CARS. INITIALLY, THE USER CAR REMAINS IN ITS STARTING POSITION

AND THE LEAD CAR ACCELERATES UP TO A CONSTANT SPEED. THEN THE USER CAR ACCELERATES TO MAXIMUM SPEED.

THIS IS REPEATED TWICE. ... 67

FIGURE 19: SAMPLE QUESTION GROUP STRUCTURE. ... 71

FIGURE 20: SNIPPET OF THE ECL EMMA COVERAGE REPORT FOR THE CLASS RECURRINGQUESTIONGROUP................ 72

vii

Table of Contents

1 Introduction ... 1

1.1 Problem & Motivation ... 2

2 Related Work .. 4

2.1 Survey tools and services ... 4

2.1.1 Online survey frameworks ... 4

2.1.2 Offline survey frameworks ... 5

2.1.3 Comparison to the new framework... 5

2.2 Code injection .. 6

2.3 Android applications ... 6

3 Development approach .. 8

3.1 Project scope ... 10

4 System overview .. 11

4.1 System model ... 14

4.2 System components ... 17

4.2.1 Server ... 18

4.2.2 Mobile App ... 20

4.2.3 Limitations ... 24

5 Android survey framework application .. 25

5.1 Model .. 25

5.2 Activity .. 27

5.3 Fragment .. 29

5.4 One Fragment per Question .. 30

5.5 Application structure .. 30

5.5.1 ViewPager & FragmentModule .. 33

5.5.2 Experiments & Third party modules.. 35

viii

5.6 Deployment strategy .. 47

5.7 Summary .. 49

6 Example survey and System validation .. 50

6.1 Participants ... 51

6.2 Stroop task .. 52

6.3 Driving task ... 54

6.4 Analysis .. 57

6.4.1 General observations ... 57

6.4.2 Experiment correlation .. 59

6.5 Summary .. 61

6.6 Threats to validity ... 62

7 System verification ... 63

7.1 System testing .. 63

7.1.1 Survey generation ... 64

7.1.2 Data collection .. 65

7.1.3 Data processing & Analysis .. 67

7.2 Unit testing ... 68

7.2.1 RecurringQuestionGroup testing .. 68

7.3 Limitations .. 72

8 Future work .. 73

9 Conclusion ... 75

10 References ... 76

11 Appendices ... 80

11.1 A. Complete UML diagram of the data model 80

11.2 A. Complete table of correlations between numeric responses, Stroop and

driving measures .. 1

1 Introduction

- 1 -

1 Introduction

How does a person’s reaction time influence their behaviour as a driver? Is there a

link between a driver’s cognitive abilities and their behaviour on the road, like their

perception of risk? Do mentally capable people react differently to challenging

traffic situations, compared to people whose mental capabilities are impaired?

Answers to those and many more questions is what SimRG, a research group at the

National University of Ireland, Maynooth are trying to find. The main tool for their

research are driving simulators, the kind of simulator that does not take up an entire

building, but a corner in a room within the department nonetheless. This requires

research subjects to come into the lab to partake in one or more of the experiments.

Across departments and organisations, as well as research areas this is still the

prevalent modus operandi when it comes to research conducted where people are

the main subject. The approach of bringing people to the researchers, when not

necessary, severely limits the potential meaningfulness of the research results.

Having research subjects come to the laboratory where the experiments are

conducted sometimes cannot be avoided. After all, it would be logistically

impractical to move bulky medical equipment such as MRI (magnetic resonance

imaging) machines. In many other cases however, this restriction does not apply.

Rather, the technology used by the researchers ties them to a specific location which

is not necessarily dictated by the nature of the experiment.

The benefit of being able to acquire data from a bigger set of research subjects is

manifold. Apart from a higher statistical relevance, more people generally also leads

to a wider demographic, which could lead to a more granular answer to the posed

research question.

The challenge however, is to increasing the research’s reach without compromising

its quality. After all, for many researchers the laboratory is an environment they

control, allowing them to prepare it for their experiment and to be sure that there

is no external factors influencing the results.

1 Introduction

- 2 -

1.1 Problem & Motivation

This project attempts to solve the problem of increasing the number of participants

in research surveys without a negative impact on experiment procedure.

In particular we focus on cases where the research subject simply answers a pen and

paper based survey or participates in computer aided experiments that do not

require specialised hardware; since these are the examples where there is no benefit

to restricting the research to a particular location. Our proposed solution focuses on

a combination of mobile and web technologies, which when brought together,

provided an end-to-end tool chain for researchers to create their survey, deliver it

to participants and collect the results. The minimum requirement for a researcher

to use the system is a mobile device running on the Android™ operating system and

access to a web browser. The system that was designed and implemented allows

researchers to use predefined question types or to implement and add their own

question types and experiments. Third party modules are loaded at runtime and can

be HTML, Android or Unity based. This gives researchers a wide variety of options

some of which do not require them to know anything about the Android operating

system, thereby eliminating the entry barrier they would otherwise face.

By building our system for Android, we take advantage of the inherent mobility of

smartphones and tablet devices to bring the experiment to the participant rather

than the other way around. This not only enables researchers to survey more people

of the same demographic group as before, but also gives them access to parts of the

society that are very difficult to accommodate in a laboratory environment. A prime

example is patients confined to hospital that can provide data of great relevance to

the research conducted; this is achievable by using a tablet device and bringing it

into the hospital and to the patients.

At the core, the system is designed to allow participants to participate in

experiments without supervision. This fact can be taken advantage of to conduct

research beyond geographic boundaries by using people’s own smart devices, which

have become common place in most households in the developed world. However,

this depends on the actual experiment that is being conducted.

1 Introduction

- 3 -

Based on the above information, two technical research questions for this work were

identified.

TQ1: How can Android and web technologies be leveraged to build a general purpose

survey framework?

TQ2: How can the system execute remote code without compromising the device’s

security?

In addition, a psychological experiment is conducted to prove the viability of the

system implemented, for which the following research question was identified.

PQ1: Is there a correlation in user performance between the Stroop test and a

vehicle following experiment?

The remainder of this document is structured as follows. Related work to the

proposed research questions is introduced in chapter 2. Chapter 3 gives an overview

of the development approach taken to implement the system. Question TQ1 is

answered in chapter 4 and 5, with a subsection in chapter 5 being dedicated to

question TQ2. The setup and results of the work relating to question PQ1 are

discussed in chapter 6, followed by a general system evaluation in chapter 7. Finally,

the document describes future work and gives a conclusion in chapter 8 and 9,

respectively.

2 Related Work

- 4 -

2 Related Work

Creating automated systems to replace pen and paper based survey forms and

questionnaires is hardly a new idea. Neither is deploying such a system on a mobile

platform. Loading execution binaries at run time is also a well-established feature

in many programming languages and its security implications have been discussed in

various academic reports. This section highlights the academic work and commercial

products and services in those areas and shows how they are related to the system

discussed in this report.

2.1 Survey tools and services

Long gone are the times where researchers are forced to work with pen and paper

as their only tools to collect information from survey participants. Electronic survey

frameworks come in many forms and from many different providers. Generally, they

can be split into two categories, online and offline frameworks.

2.1.1 Online survey frameworks

Some well-known online survey frameworks are SurveyMonkey, KwikSurveys and

Google’s consumer surveys [1] [2][3]. Those online services provide a web based user

interface for both, the authoring of surveys and the survey delivery and response. In

addition to market researcher and analysts, the academic community is also

interested in the possible applications of online survey tools. Pargas et al. proposes

an authoring tool for dynamic online surveys and Burkey and Kuechler are

investigating web-based surveys in the context of corporate information gathering

[4][5]. A more general accumulation of knowledge on online surveys is presented in

Singh et al. [6]. Looking at online surveys from a slightly different perspective are

Kite and Soh, by basing it on calendar events [7].

Looking at question/answer systems in general, there is also work being done on the

Android platform, where Atterwala et al. are analysing how mobile platforms can be

2 Related Work

- 5 -

used for market research [8]. In Stradiotto et al. an e-voting system is proposed

using the Android platform [9]. The main drawback of the aforementioned solutions

is that they all require a permanent network connection to function properly.

2.1.2 Offline survey frameworks

The second big category is offline frameworks. Since, by definition, these

frameworks operate locally, offline frameworks cannot rely on a web browser but

rather require a native application to present a user interface to the participant.

When researching this area it quickly becomes apparent that offline tools rely

heavily on the portability of the devices they run on.

The Google Play store is the main distribution point for Android application and

contains a plethora of offline survey tools, including popular examples such as

Dooblo, Rollapoll and SurveyPocket [10][11][12]. A brief analysis indicates that none

of the available tools offer a feature list comparable to the proposed system in this

report.

But of course Android is not the only platform that has been used to create mobile

survey frameworks, with QuickTapSurvey being an example of an iOS application

[13].

2.1.3 Comparison to the new framework

Similar to the existing applications, the system proposed in this report aims at

supporting offline surveys. However, there is a key difference to the existing services

and tools. Allowing researchers to include their own experiments directly into the

survey is a feature that was not present in any of the system that were analysed.

While it is not in the scope of this project to conduct an exhaustive search for all

existing survey tool the author believe that the support for third party code is a

novel feature in the context of survey tools and services.

2 Related Work

- 6 -

2.2 Code injection

While the idea of providing researchers with the ability to run experiments as part

of their survey is novel, loading external code binaries into an application is not. In

fact, among the many public Java APIs is the ClassLoader class, which facilities

external code to be loaded dynamically. Loading external classes however, does

pose a security risk [14]. Even though other ways of dynamic code loading could be

used, the ClassLoader API seems to be the most popular approach within the

academic setting. Class loading in the context of mobile devices is not a mechanism

that is exclusive to the desktop environment, but is also used in the mobile domain

[15]. Due to the inherent risks external code loading poses, its security implication

has been widely discussed. Several approaches for implementing countermeasures

to minimise the risk of remote code execution have been discussed in the academic

community. The approaches range from automatic defence mechanisms as proposed

in and to general strategies of loading untrusted programs [16][17][18]. Especially

interesting is the analysis pertaining the Android platform performed by Poeplau et

al., which is highly informative and recommended for the interested reader [19]. In

similar research projects, the aim was to identify potential security holes in mobile

applications [20][21]. Furthermore, Hatwar and Shelke propose a system to detect

malicious dynamic code in Android applications [22]. In general, security seems to

be a main concern in the mobile application space, as a variety of papers focus on

this issue [23].

2.3 Android applications

Developing research tools for mobile application to increase the mobility and

flexibility of researchers and their work is not a novel idea. There is general interest

within the research community to include the Android platform into their toolbox

[24].

Ample literature exists that highlights the benefits of mobile over stationary devices.

Smartphones and tablets have an additional advantage in their portability over the

classical portable device, the laptop. Other advantages are the slew of sensors

2 Related Work

- 7 -

integrated into smartphones and tables, not typically found in laptops or netbooks,

such as GPS, Gyroscopes, Accelerometers and Step counters. Murphy and DiMarzio

give a good introduction into mobile application development in general and the

capabilities of the Android framework in particular [25][26].

In addition to devices running Android natively, several solutions exist that attempt

to allow the execution of Android applications on other operating systems as well.

While the Android SDK comes with the facility to run a virtual Android device using,

its performance has often been criticised. As the platform and the SDK matured, the

emulator saw some improvements as well. One of the probably most critical features

increasing performance are the snapshot features, which allows a snapshot of the

emulator to be taken to avoid having to boot the Android operating system within

the emulator every time the emulator is started. Unfortunately, snapshots do not

improve overall performance of the virtual device. The addition on GPU support

however, greatly improved the performance. A detailed description on the use and

the restrictions of the emulator can be found online at the official Android developer

website [27].

Other tools to run Android on other platforms include Windroy and Bluestacks

[28][29]. Both tools are windows applications that run an instance of a virtual

android device, allowing the installation and execution of Android application.

Another way of achieving this would be to install Android on a virtual machine. The

drawback to all of these approaches is however, that the hardware the Android

instance is running on usually does not offer the type of sensors present on most

modern Android devices. Therefore, emulated devices can only be used to do limited

testing and to run applications that do not require special hardware not available on

the host machine. The current implementation of the proposed system was not

tested in any virtual environment. However, since the framework itself does not

require any specialised hardware sensors, it would be possible to run simple surveys

within a virtual environment.

3 Development approach

- 8 -

3 Development approach

This chapter gives an overview over the development techniques used in designing,

implementing and testing the survey framework system. Furthermore, it describes

the tools that aided the development process. Great care was taken to ensure the

reproducibility and the traceability of all steps in the process. Especially any data

processing that might have been accomplished using manual spreadsheet software

was done in an automated fashion. This ensures that, given the same input data,

anyone can produce the same output as described throughout this document.

The system was developed using an incremental approach. Due to the fact that not

all requirements were known at the start of the project and that some domain as

well as technical knowledge had to be acquired, a prototyping phase preceded the

actual development phase. The prototyping phase was used to determine which

functionality could be incorporated into the system envisioned. More importantly

however, it also provided insight into the different technologies and frameworks and

their interoperability.

The commitment to Android as the platform on which the core of the system would

run was made in part because of the author’s previous experience with the platform.

The main reason it was chosen over the other widely popular operating system, iOS,

was the fact that iOS simply would not allow for many of the features of the system

to be implemented.

The commitment to Android subsequently lead to Eclipse (Kepler 4.3.1) being chosen

as the main IDE (integrated development environment) due to the availability of the

Android Development Tool (ADT 22.6.1) plugin for it.

Other technologies, programming and scripting languages and tools were chosen as

their necessity became apparent. Due constraints on time, adoption time of

alternative tools and technologies was one of the selection criteria for the inclusion

into the project.

3 Development approach

- 9 -

Table 1 gives an overview of which technologies and tools were used throughout the

project. It also shows for which purpose they were used.

Table 1: List of technologies and tools employed during the development of the project.

Technology/

Platform/Tool

Purpose

Android Operating system for which the main application was developed.

Eclipse IDE for the development of the Android components.

Notepad++ Used as the default text editor when Eclipse was not

appropriate.

SQLite The database technology used within the mobile application.

PostgreSQL The database technology used on the web server.

Apache Webserver Used to run the web server.

HTML, CSS Used to generate the survey generation form UI.

Javascript, jQuery Used to add the functionality to the survey generation form.

PHP Used to add survey data processing capabilities to the server.

Unity IDE to develop the Unity modules.

Monodevelop IDE provided with Unity to develop the scripts for Unity.

Filezilla Provides an easy interface to transfer files from and to the

server.

pgAdmin III Tool to administrate the PostgreSQL database on the server.

R, RStudio Used for data analysis of the experiment results.

MS Excel Used for data analysis of the experiment results.

3 Development approach

- 10 -

3.1 Project scope

This section gives a brief overview of the work that was put into the creation of the

system. Table 2 shows how many lines of code each component of the system has.

Table 2: A survey framework encompasses a total of 5267 lines of code (including comments). This table shows
how extensive the work was for the individual parts of the project. With 4153 lines of code (LOC), the Android
application holds the lion’s share and is undoubtedly the most complex part of the system.

Technology/Language LOC

Android application & modules 4153

Unity module 348

Web interface & modules 430

Java – data processing 308

R – data processing & analysis 28

Since the Android application and modules made up the bulk of the coding effort,

more detailed on this part is shown in Table 3.

Table 3: The individual Android components that were developed as part of the survey framework. Instead of
lines of code, the McCabe Cyclomatic Complexity is shown [30].

Android sub project McCabe CC

(Average)

Description

ResearchSurveyToolLib 1.444 Contains the core classes for third party

modules

ResearchSurveytool 1.278 The main Android application.

StroopModule 1.765 The modules containing the Stroop task

DrivingModule 1.000 The Android part of the Unity module

The tables in this section give an indication as to how much work it took to create

the proposed system and how complex the Android based modules are. The quantity

described in Table 2 and the complexity in Table 3 are a product of the time invested

into the implementation of the system.

4 System overview

- 11 -

4 System overview

This chapter gives an overview of the research survey tool created. The purpose of

this tool is to provide a start-to-end solution for researchers who want to conduct

surveys and/or experiments on a potentially large scale. From the design of the

survey, its questions and experiment components, distribution and data collection,

to providing the data in a central location for the researcher to access, the system

created covers all steps necessary to conduct and evaluate a survey. The novelty in

the work lies within the capability of the system to serve as a general purpose survey

tool that can load third party code modules to extend and customise its

functionality.

In order to understand such a relatively complex system, we will first introduce the

components and show how they interact with each other. Subsequently, the

individual components and their capabilities will be described in more detail. Figure

1 shows the high level tasks in a work flow diagram, showing the order in which they

are executed and how they rely on each other’s results.

Figure 1: Survey process: These are the steps researchers need to perform when conducting a survey.

As can be seen, the first logical step, once the idea for the survey exists, is to create

the survey. This task encompasses determining whether any experiments are

required or whether just textual responses will suffice, phrasing the questions and

choosing how the survey participants should answer the question (e.g. open

questions, multiple choice, etc.). The next step requires a delivery mechanism to

bring the survey to the survey participants. In a traditional setting, the researchers

Evaluating
data
(5)

Gathering
results

(4)

Conducting
the survey

(3)

Survey
delivery

(2)

Survey
generation

(1)

4 System overview

- 12 -

would bring a printed copy of the survey questions to the participants. More and

more common is sending surveys to participants with links so that they can be

answered in a web browser [1][2]. Once the participants receive the survey they

need to answer the questions and/or perform the required experiment tasks. This

could be anything from simply ticking boxes with pen and paper to recording a video

of the participant performing a task. Step number four involves gathering the survey

results, which can be written responses or recorded experiment data. Only after all

those steps are successfully accomplished the researchers can begin their actual

work of evaluating and analysing the data gathered. One of the goals of this project

was to automate the first four steps so as to significantly reduce the effort

researchers need to invest before they can get to the data they need to do the

survey generation and survey delivery.

To achieve the first two tasks (survey generation and survey delivery), web

technologies are utilised to provide global access to the system. A straightforward

web interface was created using HTML, CSS, JavaScript and PHP. It is accessible

through any modern web browser and allows the creation of surveys in a matter of

minutes. Once all the required information is entered, the survey is stored on the

server and the researcher is provided with a link which can be used to deliver the

survey to the participants. Researchers can either distribute the link to participants

on paper or via email or social media platforms. Since participants cannot use the

link on its own, they need a way to respond to the survey questions. Therefore, a

mobile application was created. The reasons for choosing a mobile platform over

the conventional desktop environment are threefold. Firstly, people are spending

more and more time with their mobile devices in comparison to their desktop

computers or laptops [31][32]. Secondly, using mobile devices adds to the flexibility

of the overall system. Rather than having to bring people into a laboratory to a

dedicated survey machine, researchers can easily bring the survey to the

participants. This is especially valuable in scenarios where researchers deal with

people with limited mobility. The third reason for going mobile is that people

already spent a significant time interacting with their mobile devices, which means

that they are already familiar with the survey device itself. The reason for choosing

the Android platform over other platforms is twofold, the authors experience with

the platform on one hand, and the sheer ubiquity of devices running the platform

4 System overview

- 13 -

on the other hand [33]. Furthermore, the open nature of the Android operating

system enables relatively straightforward code injection mechanisms. Choosing a

different operating system would severely limit the possible reach of the framework.

Moreover, both Apple’s iOS and Mircosoft’s Windows Phone do not support dynamic

code loading, which is a key piece of functionality of the proposed system. Figure 2

shows the interface the survey participant interacts with.

Figure 2: Typical format of a survey on a mobile device. First, the participant has to give informed consent.
They are then presented with a set of questions, followed by any experiments the survey might contain. The
order of questions and experiments does not have to follow this particular format. The informed consent is
however, always the first screen the participants are shown.

In addition to serving as a survey delivery mechanism the mobile application also

facilitates the execution of tasks three and four (conducting the survey and

gathering the results), see Figure 1. Participants are provided with a simple and

intuitive interface to answer survey questions and perform experiment tasks. Once

participants have successfully answered all required questions and performed tasks,

the data is stored on the device. It is then at the discretion of the participant to

4 System overview

- 14 -

submit the data by uploading it to the server. The server also provides access to the

survey generation web interface.

Once the data is gathered, the researchers can download the aggregated data as

comma separated values (csv file), with experimental data embedded in JSON

format. Alternatively, a custom format, such as comma separated values, can be

used instead of JSON. The specific format depends on if or how the data is processed

at a later stage. This allows them to edit the data in any spreadsheet program that

can handle this file format. Currently, this is the only way to access the data.

Providing a web interface to directly access data from the database is discussed in

Chapter 8.

It is important to note that the mobile application is designed so that multiple

participants can use a single device, allowing the use case, where the researcher

provides access to one device. Alternatively it would also be possible that

participants install and use the application on their own device. The system model

was designed with the latter scenario in mind. The implementation of the proof of

concept application favours the former user scenario, and does not currently support

multiple devices to be used for the same survey. This distinction is irrelevant for the

underlying concepts of the framework and can therefore be ignored. Wherever this

report discusses implementation details that deviate from the original design, this

will be specifically mentioned.

4.1 System model

Before going into detail on the functionality of the individual system components,

this section explains in detail the underlying model of the system. By first showing

the use cases and scenarios we want our system to support, we can then make the

case for various design decisions that were made with regards to the system model.

The bare minimum that our model was to support is simple questionnaires.

Presenting the participant with questions and giving them the possibility to answer

them is at the very core of the model. Different types of questions require answers

4 System overview

- 15 -

in different formats. Our model therefore categorises questions based on the

expected/desired response. Specifically, the questions types as seen in Table 4

below have been identified.

Table 4: Question types supported by the survey framework.

Question Type Expected response Example

Open question Unstructured textual

information

How do you see your

future?

Range question Single value within a

predefined range
Please state your age

Single select question
Single value picked from a

set of predefined options

Which of the following

attributes describes your

character best?

Multi select question Any number of values picked

from a set predefined

options

Which of the following

attributes apply to you?

Location question A pair of longitude/latitude

values
Where do you live?

Note that the question types focus solely on the structure of the expected response,

not its content. The open question type, for example, could be split up into sub

types depending on the nature of the information, e.g. alphabetical, numerical,

alphanumerical etc. However, while this might improve the user experience in some

scenarios, we wanted to keep the basic model independent of any particular delivery

mechanism (i.e. mouse & keyboard vs. touch screen).

Another feature we want our model to support is question grouping. Question

grouping allows related questions to be grouped together in a logical unit.

Researcher can use it to create different question groups for different research

questions they are trying to answer and still provide them in one single survey.

Moreover, the model was to support different types of question groups. In addition

4 System overview

- 16 -

to standard, one time question groups, recurring questions are supported as well.

This allows for studies to be conducted such as mood studies, where participants are

asked the same question over a period of time in predetermined time intervals.

Moreover, the model allows for question groups to be marked as active, which means

that the survey participant will receive a reminder to answer this specific set of

questions. While the first use case, with a single set of questions which are to be

answered only once, does not require any form of user identification, recurring

questions require that a user can be re-identified so that their responses can be

aggregated properly. This can be achieved by one of two ways. The first is to

explicitly require users to identify themselves by providing some login mechanism.

This would not only create an additional engagement barrier for the participant but

it would also jeopardise the participant’s trust of their anonymity. The second

approach implicitly guarantees re-identification, which is to have one device running

its independent instance of the system for each participant. While this approach

might sound very cost-inefficient, the idea is to make use of devices already owned

by the participants. Question groups are the only instance were the design intended

survey participant to use their own device. The current implementation solely

focuses on a shared device scenario. In particular recurring question groups are

implemented in the model but cannot be created/deployed with the current

implementation of the web interface and the android application.

Even with the aforementioned addition of recurring question groups, the model does

not provide anything new or ground breaking. The key feature of the model is that

it allows for more than mere question/answer pairs. External code can be loaded

into the application at run-time. These code modules are referred to as survey

experiments. By supporting survey experiments, the system can go far beyond the

capabilities of conventional pen and paper or even online forms. Survey experiments

allow researchers to collect more than just textual information. Providing a

standardised way of incorporating survey experiments into a survey, has the

potential to drastically increase the amount of information that can be gathered

with a single survey. Combining survey experiments with the mobility the survey

framework offers, results in more data, which inevitably results in stronger evidence

for or against a researcher’s hypothesis.

4 System overview

- 17 -

Since the experiment’s results depend on the nature of the experiment, a single,

general question type is required. At its core, every survey experiment can be

summarised with the question or a description of the experiment and its result,

generated by the participant. Since any result set can be expressed in textual form

we define survey experiment questions as questions returning some form of textual

response. Whether the response contains timestamps, human readable text or binary

data is of no relevance to the underlying model. As the support for different types

of experiments is platform specific, details on this topic are discussed in the section

Mobile App.

4.2 System components

Figure 3 shows the system and its components.

Figure 3: System components: The mobile application displays surveys stored in its database. A separate table
stores the survey results. The server uses a web interface for survey generation and stores them and
subsequently submitted survey results in a central database

The two main components are the server and the mobile application as they are the

core of the back and frontend, respectively. While the researcher interacts with the

web interface to create the survey and retrieve the gathered data, the survey

participants’ main interaction occurs with the application on the mobile device.

These two components are now analysed in more detail.

4 System overview

- 18 -

4.2.1 Server

The main purpose of the server component of the system is to provide a central

location where surveys and survey results are stored for easy access for participants

and for analysis by the researchers, respectively. Additionally, the server hosts the

web interface to create surveys and to access the results. The data is stored in a

PostgreSQL database. The survey generation is achieved by combining HTML, CSS

and JavaScript to create a JSON encoded representation of the survey, which is

inserted into the database using PHP. The latter is also utilised to retrieve survey

results from the server’s database as well as retrieving the survey itself. Figure 4

shows the survey workflow from a researcher’s perspective.

Figure 4: The researcher’s workflow. Firstly, the survey is created. Using various channels the link to the survey
can be distributed. Finally, the survey results can be obtained as a spreadsheet.

The survey creation feature is the only one with a graphical user interface, and uses

an HTML form to gather the researchers input. JavaScript, and the jQuery framework

in particular, allow the HTML form to extend dynamically, allowing the researcher

to incorporate any number of survey questions. Once all data is entered and the

researcher submits data from the form, a JSON representation of the survey is

generated. Subsequently, the survey is sent via a POST request to the server where

a PHP script opens a connection to the PostgreSQL database, inserting the survey

and returning a link, which is then displayed to the researcher. The link itself points

to another PHP script which retrieves the survey based on its ID. The database

4 System overview

- 19 -

contains a table surveys, with the survey ID as the primary key and the JSON string.

The whole process is summarised in Figure 5 below.

Figure 5: Server components required to create a new survey.

In order to process and retrieve the survey results, several other PHP scripts are

used. Firstly, one script accepts survey results as JSON strings, parses it and inserts

the data into the database. To accommodate any question type and experiment data

the database table, surveyresults, is structured as seen in Table 5.

Table 5: The attributes for the surveyresults table. The first three attributes together form the primary key in
this table.

surveyID userID questionID answer

The first three elements uniquely identify each tuple. The surveyID contains the

unique identifier for the survey that is generated automatically when a researchers

creates a survey. The userID is used to identify individual survey responses. Since a

single person could submit results multiple times and a single device can be used by

multiple people, the userID is simply a timestamp of when the participant started

4 System overview

- 20 -

answering the survey questions. This could cause conflicts when a survey is rolled

out to many devices. However, the main use case the system is implemented for is

one where one device is used by all the participants, the issue could be neglected.

It would be quite simple to include a stronger identifier by including an additional

attribute storing the unique ID of a device. The questionID provides a means of

identifying which question this particular answer is associated with. The answer

attribute stores either the textual response of the participant to the question or a

JSON string if the answer structure is more complex. This can be used to store a

series of events for a particular experiment as a single answer. Submitting this data

in the JSON format is not enforced, but rather recommended as future features of

the system could include the generation of a more sophisticated output than a

simple csv file with four columns corresponding to the four attributes stored in the

database.

This brings us to the other PHP script which generates the aggregated output of all

survey responses. It connects to the database, queries it for the tuples matching the

specified survey ID and uses PHPs built-in method to return a CSV file.

4.2.2 Mobile App

The core component from a survey participant’s point of view is the mobile

application. It is how they participate in the survey and can be the only point of

interaction, since supervision by the researcher is not necessary; although this

depends on the type of survey and on the specific experiments which are being

conducted. This section will give a general overview of the functionality offered by

the Android application. Technical details will be discussed in Chapter 5.

When the survey application is first installed on a device it does not contain any

surveys. Participants can access survey by downloading them using the Android

application. Using standard mechanisms provided by the Android platform, the

Android application was configured to intercept links matching a specific URL

pattern globally on the device. Whenever a user attempts to navigate to a link

matching the pattern a dialog is shown. The dialog lets them chose whether to open

4 System overview

- 21 -

the link in the survey application or in a web browser. Two patterns are specified,

one for surveys retrieved from the database accessible via

https://webcourse.cs.nuim.ie/~dmsc1310/scripts/getSurvey.PHP?id=xx,

providing the ID of the survey. The second pattern intercepts links to surveys stored

in the surveys directory on the server and file names ending with ‘.json’. Once the

survey data is downloaded, it is then stored in a local database on the Android device

to avoid unnecessary network connections, thereby keeping the applications energy

consumption as small as possible.

Since the survey can contain experiments which require their own code and/or data

to be executed properly the application identifies all URLs directly specified in the

survey, downloads the content and stores it locally. This requires the devices to be

connected only initially. For basic functionality of the application a data connection

is not required after this point, allowing surveys to be conducted outside the reach

of wireless networks. It is important to note however, that third party modules can

require a network connection to be present during the experiment. This is not

checked by the application and therefore it is up to the developer of the module to

ensure proper error handling and fall back mechanisms are included. An internet

connection is of course required to upload the survey results. The upload is triggered

manually by the researcher.

4.2.2.1 Question groups

Since the idea of question grouping was already discussed previously, this section

will focus on the difference between the system model and the actual capabilities,

in regard to question groups, of the mobile application. The idea behind the model

is that each survey participant can be presented with a set of one time questions

and sets of recurring questions. Due to the fact that user re-identification was not

implemented, the only scenario were this capabilities could be put to use is one

where every survey participants uses an individual device. However, the survey

conducted for this project used only one device for all participants. Therefore the

implementation does allow one-time question groups to be answered multiple times.

4 System overview

- 22 -

Moreover, while recurring question groups can be displayed they do not behave any

differently from one-time question groups. Also the mechanisms for active recurring

question groups are not in place. Since the application does not support these

features, neither does the survey generation tool. This means that, while the design

model and implementation do not match perfectly, the server side and the mobile

application do support the same functionality. Chapter 8 explains how this issue can

be addressed.

4.2.2.2 Built-in question modules

For every question type discussed earlier a custom question module was created for

the survey application. This allowed for a quick and intuitive interaction with the

application. Open ended questions use a simple text box for user input, range

questions display a slider bar and select questions present the participant with the

options in form of a list. Depending on the type of question chosen the number of

items that can be selected varies.

4.2.2.3 External modules

The application supports three different types of third party modules. Web modules

simply display the URL that is provided by the researcher. While the content of the

URL is downloaded and stored on the device, the same is not true for content

referenced within the resources, e.g. images within HTML pages still require an

active internet connection to be displayed. Navigation through links is disabled to

keep the interaction simple for the user. For the same reason there is no address

bar where the user could enter a URL manually as a web module is not a full-fledged

web browser but rather a special purpose component which can display a single

online resource. Interaction between the web module and the survey application is

achieved using a JavaScript interface that the web module must implement.

Android modules must be implemented by sub classing the Fragment class which are

provided by the Android framework. Fragments are an integral system component

4 System overview

- 23 -

of every modern Android application and have a special lifecycle that is managed by

the operating system. The implications of this for module integration are discussed

in Chapter 5. In addition to being a subclass of Fragment a module must also

implement the FragmentModule (highlighted text refers to class names within the

application) interface provided by the survey framework. The methods specified by

this interface provide hooks to event within the survey fragment. Further details are

discussed later.

Unity modules provide researchers with a powerful gaming engine which they can

leverage when designing their experiments. Similar to Fragments on the Android

platform, Unity applications have modular components called Scenes. While the

survey platform does not impose any special restriction on the design of Unity

modules, it was only tested with modules containing one Scene. Since the focus of

the project was on creating a survey platform, no significant amount of resources

was allocated to investigate the limits of the Unity engine for the Android platform

when used within the framework. Communication between Unity components and

the survey application occurs via a predefined Java interface which can be called

from within the Unity component. The exact interaction is discussed later.

Once the participant has answered all the mandatory questions they can submit the

results. To facilitate offline use of the application the results are stored locally on

the device using a SQLite database. The structure of the table is almost identical to

the table surveyresults (names in italics refer to table names in the database) on

the server side. The only difference is the addition of the attribute uploaded, which

stores a flag indicating whether this particular response has already been

successfully uploaded to the server. For each survey on the device the researcher

can choose to upload all remaining survey responses when they see fit, i.e. when a

data connection is available. The data is converted into JSON and processed by a

PHP script, which inserts the data into the postgreSQL database on the server.

4 System overview

- 24 -

4.2.3 Limitations

The system implemented is stable and ready to use in-house to showcase its

capabilities. It is not, however, ready for a public release. This section elaborates

on the missing functionality that is not required to demonstrate the underlying

concepts of the survey framework but would be critical components in a publically

released version.

While it is perfectly reasonable to allow public (read) access to the surveys stored

on the server it would be highly irresponsible to allow the same level of access to

survey results, mainly because there is no control over what questions will be asked

by researchers. In order to protect this potentially sensitive information access

control needs to be put in place to ensure that only authorised users of the system

can access the data. From an engineering perspective this could be easily achieved

by requiring researchers to register before they can use the system. They would then

have personal login credentials that would make it straightforward to manage access

control.

Data must not only be properly secured on the server side. Despite the sandboxing

and access control mechanism in place on the Android platform, there are ways to

access the private data of any application, including survey results temporarily

stored on the device. Storing the data in an encrypted format would prevent any

unauthorised access to survey results stored on mobile devices. This is not only a

sensible thing to do but also required by the Data Protection Act [34].

The survey generation form currently accepts any input to the form fields. Even

though the system is safe from SQL injections, incorrect input can cause application

crashes when the users attempts to participate in a survey. Therefore input

validation is a vital component that would need to be implemented for a publically

accessible system. This issue only pertains to the survey generation form and not

the Android application. Survey participants’ input in the mobile application is

limited to valid inputs through the use of slider bars and drop down menus.

5 Android survey framework application

- 25 -

5 Android survey framework application

This chapter provides an in depth discussion of the technical aspects of the system.

Brief descriptions of the platforms, frameworks and API used are also provided. Some

of the details covered here however, might require a deeper understanding than can

be covered in this document as they are fairly technical. The interested reader is

invited to refer to Chapter 2 for material on e.g. the Android operating system and

framework. Many implementation and design decision were based on how the

operating system handles the life-cycle of application components.

5.1 Model

This section describes the classes provided by the operating system and the classes

created specifically for the survey framework data model. Any reference to class

names or object methods are highlighted, to help the reader distinguish between

for example the noun “question” and the java class Question. At the core of the

framework is the Java class Survey. Apart from storing the survey’s identifier, name,

description and the authoring institution, it also stores all the questions and

experiments. Because of the question groups explained in the chapter System

overview, questions are not stored in a simple data structure like an array or list.

Instead, each Survey instance holds a reference to two QuestionGroup instances, an

OneTimeQuestionGroup and a RecurringQuestionGroup (RQG). A QuestionGroup object holds

a list of questions and a list of sub groups. Sub groups can only be of the same type

as the parent QuestionGroup. This is achieved through the use of Java Generics. The

signature of the QuestionGroup class looks as follows:

public abstract class QuestionGroup<T extends QuestionGroup<?>>,

with the method signature for adding groups being:

public void addSubGroup(T group).

Now, when the RQG is defined as

public class RecurringQuestionGroup extends QuestionGroup<RecurringQuestionGroup>,

5 Android survey framework application

- 26 -

its addSubGroup() method only accepts RecurringQuestionGroup as a parameter. The

same applies for the return type of the method getSubGroups().

While sub groups can be added to all QuestionGroup instances, adding groups to an

OneTimeQuestionGroup object does not change its behaviour. This is not the case with

RQG, where subgroups can represent independent sets of questions, depending on

their state. A RQG is defined to be independent if it contains questions that

represent a self-contained set of questions. This is indicated by the existence of a

non-null Timing member. The class Timing holds information on when questions within

a group should be answered.

Independent RQGs have an additional flag indicating whether they are an active

RQG. This means that the participant should be actively notified when it is time to

answer the questions within this RQG (according to the Timing member). The UML

class diagram shown in Figure 6 gives an overview of the relation between Survey,

QuestionGroup, Timing and Question. For the sake of clarity only the class names are

shown. For a more detailed figure refer to appendix A.

Figure 6: Class diagram showing the relation between the core model classes. A survey object contains two
different types of question groups which in turn can have their own, sub question groups and/or question.

5 Android survey framework application

- 27 -

5.2 Activity

This section covers the Android specific implementation details of the system. First,

the key Android components provided by the software development kit (SDK) are

introduced. Next, the different possibilities of employ the SDK components to

implement a dynamic surveying tool are compared and their advantages and

disadvantages analysed. Finally, the concrete implementation of the survey

framework is detailed.

Unlike regular desktop java applications that can use Swing, AWT, SWT, JavaFX or

any of the many other GUI frameworks for their graphical interface, Android comes

with its own GUI API. It is tightly coupled to the core components Activity and

Fragment. An Activity represents a single screen within an Android application. They

are the backbone of every Android application that has a GUI. Their life-cycle is

handled by the system and it is up to the developer to implement the hooks into the

life-cycle method calls appropriately, to ensure that the Activity behaves properly.

Figure 7 was taken from the android developer website and shows the life-cycle

stages of an Activity including the most common transitions.

5 Android survey framework application

- 28 -

Figure 7: Activity life-cycle diagram as used in the official android developer documentation. The main
methods usually overridden in Activity subclasses are onCreate(), onResume(), onPause() and onStop().1

Figure 7 illustrates how relatively complex an Activity is. Only a few properties of

the Activity class are discussed here, as they are the most relevant to the design

decision of the survey system. In particular it is of importance to understand what

Fragment and Activity components have in common and were their key differences

are. Every subclass of an Activity that is used in an application must be declared in

the application’s manifest. The manifest is an xml file that stores public properties

of the application, such as the package name, application name, required security

permissions and applications components, including Activity components. In

addition to the above transitions, an Activity can be re-created by the system under

1 Figure obtained from: http://developer.android.com/reference/android/app/Activity.html#ActivityLifecycle

5 Android survey framework application

- 29 -

certain circumstances. Activity components in their paused state for example will

be killed by the system if the current foreground Activity requires more resources.

If the user navigates back to a killed Activity it is re-created by the system. To

ensure proper re-creation the state of the Activity (and its associated data) must be

preserved. Another case were an Activity is re-created is when the device

configuration changes. Such changes include, but are not limited to, screen

orientation changes, system language changes and default font size changes. In such

cases the life-cycle methods may be called in quick succession. Nonetheless, the

state of the Activity that is about to be re-created must still be persisted. This re-

creation process, while necessary to support all the different types of device

configurations, can cause problems when Activity components outsource resource

intensive creation tasks to other threads. If an application for example, loads and

displays a web page and the user rotates the devices from landscape to portrait

mode, the web page is reloaded if the state changes are not handled properly, i.e.

the web page is persisted temporarily to avoid unnecessary network traffic. If the

timing is particularly bad, the background thread loading the web page (it is common

practice to move tasks that might block the UI thread to a worker thread) returns

the data to the Activity just after it was destroyed, resulting in a

NullPointerException. Properly handling such situations requires careful consideration

from the developer, this is discussed further in section 5.5.

5.3 Fragment

Fragment is a complementary component to Activity that can also be used to define

parts of the application layout. However, Fragment components cannot be used as

standalone components, rather they need an Activity to host them and can either

define the layout of an entire screen or just part of it. They too have a life-cycle

that is handled by the system and is often tied to the life-cycle of the Activity hosting

the Fragment. Most of the life-cycle methods shown in Figure 7 also apply to the

Fragment class. On the other hand, Fragment components are not declared in the

application’s manifest. In addition, they can host other Fragment components. Such

nesting is not possible with Activity components. Furthermore, in contrast to the

5 Android survey framework application

- 30 -

Activity class, instances of Fragment can be retained across configuration changes,

preserving all its contained objects and its data, making the handling of concurrent

tasks easier. Another key difference between the two is that moving from one

Activity to another requires the use of the Android intent system, whereas Fragment

transitions are managed by the FragmentManager of the hosting Activity. Intent objects

can pass on data but the encapsulating object must either implement Java’s

Serializable interface or Android’s equivalent Parcable interface. On the other hand,

since changes of Fragment components occur within a single Activity, data can be

passed back and forth between those components much more easily.

5.4 One Fragment per Question

In general, Activity and Fragment are the two options to provide a GUI for survey

questions within the application. Fragments were chosen as they are more lightweight

components and allow nesting. They can also be retained across configuration

changes. Furthermore, communication between Fragment instances within the same

Activity object can be done with little overhead. Another reason to favour Fragments

over Activities, is the system’s use of the ViewPager component provided by the

Android SDK. A ViewPager is a UI component which provides lateral navigation

between its sub UI components, in this case Fragments. Once the ViewPager is set up

properly, it also handles all the Fragment transitions that one would have to deal with

otherwise. It also allows for an arbitrary number of Fragments and therefore an

arbitrary number of questions to be included.

5.5 Application structure

This section shows how the classes from the survey model interact with their Android

counterparts. Figure 8 illustrates the relations between the individual components

in a QuesitonGroupActivity, which is responsible for displaying all questions within its

associated question group.

5 Android survey framework application

- 31 -

Figure 8: The component structure within a QuestionGroupActivity. The QuestionGroupFragment allows its
containing data to be retained, which is much easier done with Fragments compared to Activities. The
ViewPager hosted in the QuestionGroupFragment itself hosts the actual Fragments representing survey
questions. Each question is stored in its own instance of class Question and is displayed in an instance of class
Fragment.

The main component within a QuestionGroupActivity is its QuestionGroupFragment. While

this setup causes some overhead since the ViewPager could be hosted by the Activity

directly, it proves highly efficient when considering the fact that the Activity is

destroyed and recreated when a configuration change occurs. This would mean that

at the very least the ViewPager component would need to be recreated as well. To

ensure a consistent user experience, the state of the ViewPager would need to be

stored temporarily so it can be restored in the new instance. This means that all

Fragment components and their position within the ViewPager must be saved. By

placing the ViewPager object into the QuestionGroupFragment retaining it as well as all

other Fragment that represent questions, very little overhead is required to properly

handle configuration changes. In general, not all Fragments can be retained, however,

as stated in the documentation for setRetainInstance:

“THIS [METHOD] CAN ONLY BE USED WITH FRAGMENTS NOT IN THE BACK STACK.”

The back stack, in this case, refers to Fragments the user navigated away from within

the same Activity, provided that addToBackStack() was called for them. This would be

an issue if, instead of using the ViewPager, navigation between Fragments would have

been implemented manually, since the easiest way to maintain a history of displayed

Fragments is to add them to the back stack. The ViewPager however, manages Fragments

5 Android survey framework application

- 32 -

automatically, therefore providing the desired features without the additional

coding overhead that a custom navigation component would bring. This justifies the

additional effort put into setting up the ViewPager.

The actual Fragments being displayed by the ViewPager have a one-to-one mapping

with the question types introduced in the chapter System overview. Figure 9 shows

this mapping. Additional classes are shown that have a different mapping. They are

explained in the next section.

Figure 9: Class diagram showing the mapping between QuestionFragments and their corresponding Question
subclasses.

All QuestionFragments are subclasses of the Fragment class provided by the Android

system and there is no actual class QuestionFragment. Instead the FragmentModule

interface is defined to ensure that functionality common for all QuestionFragments is

implemented. Because the methods defined in the FragmentModule interface have

almost identical implementations across all QuestionFragments it might seem that it

would be a better approach to create an abstract class which implements the

common functionality and allows for methods to be overridden were necessary.

However, while most of the classes are direct subclasses of Fragment some are

indirect subclasses and have ListFragment, another system provided class, as their

direct superclass. Instead of creating a QuestionFragment and a QuestionListFragment

5 Android survey framework application

- 33 -

the interface approach was chosen. The side benefit of the interface approach is

that it offers greater flexibility for extensions of the system as it allows e.g. an

Activity to implement the FragmentModule as well, whereas otherwise the system

would be strictly limited to the use of Fragments.

Using the approach outlined in this section a mapping is created between Fragment

classes implementing the FragmentModule interface and their corresponding Question

classes. Additionally Fragment retention and the back stack, two concepts from the

Android framework, were discussed. The ViewPager component was introduced in this

chapter to show that it is a vital part of the structure of the Android application.

However, the next section explains the inner working of the ViewPager component in

more detail.

5.5.1 ViewPager & FragmentModule

This section gives a detailed description of how the ViewPager component works and

how it interacts with Fragment instances that implement the FragmentModule interface.

Its main purpose is to show why the chosen application structure is necessary and

skipping it will not negatively affect the understanding of the remaining sections in

this chapter.

In order to understand the necessity for the methods defined in the FragmentModule

interface it is important to realise the exact workings of the ViewPager class. The

ViewPager instance is backed by subclass of FragmentStatePagerAdapter (Adapter), which

is responsible for providing the Fragments to be displayed to the ViewPager. Only two

methods need to be overridden in the subclass, namely public Fragment getItem(int

pos) and public int getCount(). The latter returns the total number of elements for

this Adapter and the former provides the ViewPager with the Fragment belonging to the

specified position. The ViewPager itself requires the addition of a PageChangeListener,

which receives callbacks when the user scrolls through the ViewPager and when a

page (i.e. Fragment) is selected. While the former is irrelevant in this context, the

latter callback is the key to achieving the desired behaviour of the ViewPager. The

ViewPager class has no default mechanism to prevent the user from advancing through

its pages. Some questions however, might be mandatory and it should therefore not

5 Android survey framework application

- 34 -

be possible to simply skip them. The functionality is achieved by overriding two

methods of the ViewPager that handle touch input, onInterceptTouchEvent() and

onTouchEvent(). Both methods deal with MotionEvents rather than clicks, therefore it

is safe to manipulate them without risking adverse effects when the user touches

the screen with the intent of clicking a child element, e.g. a button within a Fragment.

In order to intercept the MotionEvents received by these methods it is enough to not

call their respective superclass methods. To determine whether the user can scroll

through the pages, every time a MotionEvent is received, the currently displayed

Fragment, which is being kept track off by the PageChangeListener, is queried by calling

its canSkip() method as defined in the FragmentModule interface. Depending on the

returned value the superclass method of the method that received the event is

called or not.

The FragmentModule interface is also needed for another reason. In order to ensure a

smooth scrolling experience for the user the ViewPager loads Fragments before they

are needed. By default it keeps references to three Fragments, the currently

displayed one and the two Fragments immediately to its right and left. This means

that the Fragment code will be executed before the Fragment itself is visible to the

user. While most QuestionFragments are not affected by this, some are. In order to

delay code executing that requires the user to see what is happening the

PageChangeListener’s onPageSelected() method is used. Whenever a page (i.e. Fragment)

is selected its onShow() method is called. The page that was removed from the screen

by this action receives a call to onHide(). The Fragments affected by this issue are

covered in the next section.

Once the ViewPager is setup correctly it allows lateral navigation between questions

by swiping the screen. In addition it manages all the Fragment instances that are

contained within the question group which the ViewPager is displaying.

5 Android survey framework application

- 35 -

5.5.2 Experiments & Third party modules

The key piece of functionality that differentiates this survey framework from the

many survey applications available on the market2, is that it allows researchers to

include experiments into their surveys. Not only can they add online resources such

as HTML pages but also experiments specifically written for the Android platform,

leveraging a lot of the capabilities offered by the mobile device. Furthermore, the

framework supports third party code written for the Unity platform, a game engine

that allows for realistic physics simulations. All three approaches allow the reuse of

existing code and only require the implementation of the appropriate interface to

allow communication between the third party components and the survey

application itself. This section shows how third party modules are integrated with

the existing components of the application, how each of the different module types

interacts with the framework and most importantly, how, for each type, the code is

added to the application dynamically at runtime.

As seen in Figure 9 additional Question subclasses are added to accommodate for the

additional information that needs to be stored for those types of questions. Instead

of the typical one-to-one mapping the ModuleFragmentQuestion class is used for both,

Android and Unity modules.

5.5.2.1 Web modules

WebModuleQuestions have a quite straightforward implementation since the Android

system provides everything that is needed to download and display online content.

The WebModuleQuestionFragment contains a WebView component, which is used to display

2 https://play.google.com/store/apps/details?id=net.pocketsurvey.android
https://play.google.com/store/apps/details?id=com.surveypocket
https://play.google.com/store/apps/details?id=dooblo.surveytogo
https://play.google.com/store/apps/details?id=appdictive.instasurvey
https://play.google.com/store/apps/details?id=com.shikshainfotech.customersurvey
https://play.google.com/store/apps/details?id=com.qscript.demo
https://play.google.com/store/apps/details?id=com.tsurveys.application
https://play.google.com/store/apps/details?id=de.cluetec.mQuestSurvey

https://play.google.com/store/apps/details?id=net.pocketsurvey.android
https://play.google.com/store/apps/details?id=com.surveypocket
https://play.google.com/store/apps/details?id=dooblo.surveytogo
https://play.google.com/store/apps/details?id=appdictive.instasurvey
https://play.google.com/store/apps/details?id=com.shikshainfotech.customersurvey
https://play.google.com/store/apps/details?id=com.qscript.demo
https://play.google.com/store/apps/details?id=com.tsurveys.application
https://play.google.com/store/apps/details?id=de.cluetec.mQuestSurvey

5 Android survey framework application

- 36 -

the online content (e.g. HTML page). Instead of fetching the data every time the

user answers the questions, it is stored locally on the device. This allows the use of

the application even when no internet connection is available. The current

implementation only stores the URL specified in the WebModuleQuestion. Referenced

content within the specified resource are not preloaded. This means that images in

HTML pages still require an active internet connection to be displayed. Interaction

between the online resource and the WebModuleQuestionFragment is facilitated by

combining JavaScript and the FragmentModule interface implemented by the

WebModuleQuestionFragment. For the WebView component to react to JavaScript method

calls, JavaScript must first be enabled for the WebView itself, as it is disabled by

default for security reasons. Furthermore an object implementing the

JavaScriptInterface interface must be added to the WebView by calling its

addJavascriptInterface() method. Once the WebView is set up, Android method within

the scope of the WebView can be called in JavaScript by using the prefix ‘Android.’.

Only methods with the @JavaScriptInterface annotation can be executed using this

approach. As the WebModuleQuestionFragment implements both, the FragmentModule and

JavaScriptInterface interfaces, the answer to the WebModuleQuestion can be set by

calling Android.setAnswer() from the JavaScript script and passing the answer string

as a parameter.

As all questions have a corresponding Fragment class which implements the

FragmentModule interface it is fairly easy to see that in order to allow experiments, all

that is really necessary is a way to provide room for custom questions. Therefore,

all that is needed to create an experiment is to create a subclass of Fragment, a

requirement that is in place because questions are displayed in a ViewPager for

Fragments, and for it to implement the FragmentModule interface. Conceptually and

actually, this is all a researcher needs to know in order to provide their own custom

question types or experiments. Integrating those experiments (read: external code)

is one of the key features of the survey application. To understand the complexity

of, not only loading external code, but also managing the loaded Fragment’s life-cycle

appropriately, the principles necessary for this understanding are laid out in the

following paragraphs.

5 Android survey framework application

- 37 -

5.5.2.2 Dynamic class loading

Most android developers write their application code in Java, although using C with

Android’s NDK (Native Development Kit) is also possible. The use of Java would

normally indicate the presence of a JVM (Java Virtual Machine) on the device it is

running on. Instead, rather than using the compiled Java byte code directly, it must

be recompiled into Dalvik byte code since Android applications run on a DVM (Dalvik

Virtual Machine). While Java byte code is stored as .class files, Dalvik byte code is

stored in .dex files. Additionally, all .class files created for any one particular

Android application are recompiled into one single classes.dex file. For regular

Android applications this file is packaged together with pre- and uncompiled

resources (strings, bitmaps, binary data, etc.) and a compiled version of the

manifest file into an .apk file. These are the basic steps needed to create a runnable

Android application from Java source code. Other steps, such as aligning the package

and signing it are an essential part of building an app before publishing it; however

those steps are ignored for the sake of brevity and clarity.

One of the main strengths of Java is the abundance of APIs available for it. One such

example is the ClassLoader API. As the name suggests and the Java documentation

confirms:

“A class loader is an object that is responsible for loading classes.”3

As further explained by the documentation, typically a .class file is read from the

file system to make the class definition of the desired class available. While

ClassLoader is an abstract class its subclasses SecureClassLoader and URLClassLoader are

concrete classes that can be used to load classes. The latter simply takes a URL of

the class to be loaded, providing developers with an intuitive way of extending their

application’s code dynamically. While those classes are also available within the

Android framework, they are not equipped to handle .dex files since .class files are

effectively useless on an Android powered device. Fortunately, the Android

3 http://docs.oracle.com/javase/7/docs/api/java/lang/ClassLoader.html

http://docs.oracle.com/javase/7/docs/api/java/lang/ClassLoader.html

5 Android survey framework application

- 38 -

framework also provides the classes BaseDexClassLoader, DexClassLoader and

PathClassLoader. These classes are specifically designed to load classes from .dex

files. While the first one serves as a base class, containing common functionality

across its subclasses, the other two allow classes to be loaded from .jar or .apk files,

and from files contained in a directory, respectively. Since DexClassLoader cannot

load classes from .jar or .apk files directly, it requires access to an application-

private, writeable directory to store the unpacked .dex files from which to load

classes, as explained in the documentation.4 DexClassLoader was found to be the most

suitable ClassLoader for our survey application. The following code snippet shows the

usage of the DexClassLoader within the framework.

File dex = ctxt.getDir("survey_"+question.getSurvey(), Context.MODE_PRIVATE);

DexClassLoader classLoader = new DexClassLoader(path, dex.getAbsolutePath(),null,

 ctxt.getClassLoader());

String className = question.getPackageName() + "." + question.getFragmentName();

Class<?> c = classLoader.loadClass(className);

Fragment f = (Fragment)c.newInstance();

Listing 1: Sample code loading an external class from a .dex file

The DexClassLoader constructor takes four parameters, with the first two specifying

the path to the source .jar or .apk file and the path to the location where the

unpacked .dex files are to be stored, respectively. Both parameters are determined

by the Question object holding information about the experiment. The third

parameter, which in our case is null, serves to add paths to libraries. Since

DexClassLoader is a subclass of ClassLoader it also follows the same hierarchical where

it delegates any loadClass() calls to its super class and only loads the class itself it

its parent is unable to do so. Therefore, the parent needs to be provided with the

DexClassLoader constructor (last parameter). In this case it is the ClassLoader retrieved

from the Context object associated with the Activity that holds the component which

initiated the class loading. Once the DexClassLoader is constructed its loadClass()

4 http://developer.android.com/reference/dalvik/system/DexClassLoader.html

http://developer.android.com/reference/dalvik/system/DexClassLoader.html

5 Android survey framework application

- 39 -

method is called with the fully qualified name (package + class name) of the

Fragment to be loaded, as a parameter.

This concludes this section which showed the basic idea of how the ClassLoader API

can be used to create object instances of dynamically loaded classes in Android.

5.5.2.3 Android modules

Creating an instance of the externally supplied Fragment is the first big step; the

second one is adding it as a page in the ViewPager and ensuring that it is maintained

properly throughout the containing Activity’s life-cycle. Including the Fragment into

the ViewPager can be done in one of three ways. The most straightforward approach

is to simply add the Fragment to the ViewPager’s Adapter and to call its

notifyDataSetChanged() method, which will trigger the ViewPager to reload the Fragment

for its current position. If the Fragment is added before the currently displayed

position the ViewPager will now display the previous question since it is not at the

position the previously displayed Fragment was at. However, if the Fragment is added

after the currently displayed position, the only change that is apparent to the user

is that the indicator, showing how many questions are in the current QuestionGroup,

will be adjusted. Both scenarios are not ideal, with the former one being very

disruptive for the user as it causes a sudden question change that is caused by user

interaction. The second possibility is to create placeholder Fragments that are

replaced when the proper Fragment is loaded and instantiated. This approach causes

no sudden changes in the UI except when loading the actual Fragment that is to

replace the placeholder, at which point the screen would change from a loading

symbol to the actual experiment UI. From a user’s perspective this is certainly the

better approach.

Nonetheless, both the aforementioned solutions have a significant drawback,

namely that the external Fragment is managed directly by the ViewPager and its

Adapter. This in itself might not seem like a particularly bad situation, but it causes

major issues when the device undergoes a configuration change after the external

Fragment has been added. As previously mentioned, when a configuration change

occurs all Activities are re-created. This includes its contained Fragments unless they

5 Android survey framework application

- 40 -

are retained by a call to setRetainInstance(true). If the external Fragment is not

retained, the system attempts to create a new instance of it and discards the old

one. But as the system class loader has no reference to the class because it was

originally instantiated by a custom class loader, the application will crash with a

fatal RuntimeException. By retaining the Fragment the system has no need to attempt

recreating a new instance of the external Fragment and the issue can therefore be

avoided. Despite it being such seemingly easy solution, retaining Fragments only

alleviates the problem’s symptoms without dealing with the problem itself. As

mentioned previously, configuration changes are only one possible trigger for

Activity re-creation. There are also others which will force the Fragments to be

destroyed as well. While they might not be of particular relevance to the default

use case, envisioned for the survey framework, the very fact that it is a framework

for others to use implies that one cannot rely that everyone will adhere to the

default use case. Therefore the decision was made to not retain externally loaded

Fragments as the exact workings of the Fragment cannot be known. Therefore, a third

party module might also rely on the fact that it will not be retained across

configuration changes.

The third solution, which is also the chosen implementation for the system, takes

advantage of the nesting capabilities of Fragments. Instead of replacing the actual

module for the placeholder Fragment, the module is inserted into the placeholder.

This maintains the advantage of the previous solution that the number of questions

is known to the participant form the start and it also works around the Activity re-

creation issue. The placeholder Fragment is retained and the actual module kept as a

member, effectively retaining it too. In order to avoid putting restriction on Fragment

retention on external modules, the placeholder checks if the implicitly retained

module actually wants to be retained. If not, the placeholder simply discards the

old module and executes its own logic which re-creates the module using the

ClassLoader approach discussed previously. While this solution may seem fairly

straightforward it conflicts with the aforementioned restriction that nested

Fragments cannot be retained. To circumvent this restriction the nested Fragment is

managed by the Activity’s FragmentManager rather than the placeholder’s child

FragmentManager. While this solved the retention issue, it brings back the problem that

the Activity is asked, by the system, to re-create the Fragment, resulting in the same

5 Android survey framework application

- 41 -

RuntimeException as encountered before. This is avoided by storing the retention state

of the module separately within the placeholder Fragment, which has its own logic

for retaining or re-creating the contained module, and calling setRetainInstance(true)

on the module Fragment. This tells the Activity to keep the instance, but it might be

replaced by the placeholder Fragment after the Activity is successfully re-created.

This section described how external Android modules are handled by using

placeholder components. Rather than replacing the placeholder component, the

external module is loaded within the placeholder to ensure that it can be retained

across orientation changes. Without the use of placeholders the Android application

would simply crash anytime the QuestionGroupActivity is recreated by the system.

5.5.2.4 Unity

Apart from just handling simple Android code the framework also allows researchers

to include Unity based programs into their surveys. The intention was to provide

researchers with a way to deploy experiments with complex physics simulations

mimicking some aspect of the real world. The Unity platform was chosen because it

offers good integration with the Android platform and it is free to use unlike other

solutions such as Monogame for Android. This section gives an introduction into the

application development with Unity and elaborates on the communication between

the Unity program and the survey framework, how the framework accommodates

the external code and what researchers must do to add a unity module to their

survey.

Unity is a cross-platform game engine, currently supporting every major desktop and

mobile operating system. Developers can use a combination of C#, JavaScript

inspired UnityScript and Python inspired Boo for the program logic. The game

environment is created within the Unity IDE with support for a wide variety of asset

resources. Program logic can be attached to individual virtual objects which are

executed by the unity player, controlling the objects behaviour. Similarly to the

Android components Activity and Fragment, the system calls predefined methods at

certain points in time. Unlike Android though, were these calls manage the life-cycle

of components, Unity provides hooks to initialise game objects and their behavioural

5 Android survey framework application

- 42 -

logic. The main methods are shown in Table 6 with a brief description of their

intended use. For most game objects, logic will be executed in one of these

methods.

Table 6: Most frequently used life-cycle methods within a Unity application.

Method Description

Start Called once, to do any initialisation work.

Update Called every frame to update the object.

LateUpdate Called every frame after OnUpdate has been called.

OnCollsionEnter Called when two rigidbodies collide

FixedUpdate Called at a fixed interval and intended for physics

calculations.

OnGUI Called every frame to draw any GUI components

Where the online resource displayed in the survey framework’s WebModule worked

with Android’s JavaScriptInterface, communicating between the Unity program and

the survey application requires some more work. The UnityPlayer, which is the

component executing the Unity program, has a custom implementation depending

on the platform it is designed for. In the case of the Android platform, the UnityPlayer

has a reference to the current Activity it is executed in. A reference to it within a

script (UnityScript) can be obtained with code shown in Listing 2.

var className : String = "com.unity3d.player.UnityPlayer";

var activity : String = "currentActivity";

var cPlayer : AndroidJavaClass = new AndroidJavaClass(className);

var oActivity : AndroidJavaObject = cPlayer.GetStatic.<AndroidJavaObject>(activity);

Listing 2: Within the Unity script, instances of Android classes can be created and accessed. This mechanism is
used to send Unity data to the Android survey framework.

The classes AndroidJavaObject and AndroidJavaClass are Unity representations of

instances of Java objects and classes, respectively. Whether Unity uses the Java

Reflection API or a different mechanism was not explored and is not relevant to the

5 Android survey framework application

- 43 -

functionality of the survey framework.

One the Activity instance is obtained any methods contained within it can be called

using the AndroidJavaObject’s Call and CallStatic methods. For the survey framework

application, the UnityModuleActivity, which hosts the UnityPlayer instance referenced

in the script above, implements the two methods seen below.

public void finishUnity(String resultMessage, String resultData)

public void updateUnity(String data)

Listing 3: Signatures of the two methods in the UnityContainerActivity that are called from the Unity script.

These two methods can then be called from the Unity script using the following two

lines of code.

oActivity.Call("updateUnity", "data");

oActivity.Call("finishUnity", "message", "data");

Listing 4: Continuing from Listing 2, the oActivity object is used to call the Android methods shown in Listing
3.

The reason why the Unity program calls Activity methods rather than Fragment

methods, as might be expected, is twofold. On one hand, it keeps the UnityScript

code compact and clean as the developer does not need to know anything about

FragmentManagers and ViewPager. On the other hand, UnityModuleFragments are

integrated into the survey framework application in a different way compared to

Android based modules. The reasons and technical details for this decision are

outlined in detail in the next paragraphs.

The biggest challenge with adding support for Unity programs to the survey

framework application was the synchronisation of a) the UnityPlayer instance running

the Unity code, b) the Activity containing the UnityPlayer instance, and c) the

process the Activity runs in. While synchronising the former two components is

relatively straightforward, including the latter required some creative thinking. In

older version of Unity the UnityPlayer class used to be its own independent class

5 Android survey framework application

- 44 -

which, amongst other things, kept a reference to a View object that the UnityPlayer

would use to draw its GUI in. In newer version of Unity the UnityPlayer is a subclass

of Android’s View class, allowing it to be directly attached to a layout. In addition to

all the methods it inherits from the View class, it also has a few methods that help

it synchronise with the Activity’s life-cycle. Table 7 below lists the methods and the

Activity’s methods they need to be called from.

Table 7: Mapping between Activity methods and UnityPlayer methods. Calls to Activity methods are done
exclusively through the Android system.

UnityPlayer method Activity method Description

resume() onResume() Informs the UnityPlayer

that it can update itself

to show the Unity GUI.

pause() onPause() Informs the UnityPlayer

to pause execution as

the Activity is currently

not in the foreground.

onWindowFocusChanged() onWindowFocusChanged() Called when the current

Window loses focus.

Inherited from View.

windowFocusChanged() onWindowFocusChanged() Same as above.

UnityPlayer’s own

method. Both methods

must be called for

correct functionality.

quit() onStop()/onDestroy() Informs the UnityPlayer

to finish execution of

the Unity program.

In general, the mapping from UnityPlayer to Activity life-cycle methods, as shown in

Table 7, is simple, however it is easy to miss that the UnityPlayer class has two almost

identically named methods, onWindowsFocusChanged() and windowFocusChanged(), both of

which must be called for the UnityPlayer to function properly. The second peculiarity

5 Android survey framework application

- 45 -

with respect to the UnityPlayer class is its quit() method. While it does not matter

right away if the containing Activity is finished (by calling finish()) without calling

quit() on the UnityPlayer instance, it appears to cause the UnityPlayer not to

shutdown properly, which results in an application crash the next time a UnityPlayer

instance is started. However, rather than just ensuring a proper shutdown of the

UnityPlayer instance, quit() also kills its host process, resulting in the survey

framework application to crash. So on first sight it seems that the only choice is

between crashing now and crashing later. Fortunately however, Android allows

applications to run more than one process. By default any component declared in an

application’s manifest runs in the same, default, process. A separate process for the

component to run in can be specified by using the android:process attribute within a

components declaration. In order to avoid killing the Activity which hosts all

Fragments of a question group a separate UnityContainerActivity was declared and its

android:process attribute set to :unity_container. The Activtiy/Fragment structure for

Unity programs is shown in Figure 10.

Figure 10: The Android application runs its components in two separate processes to prevent the UnityPlayer
instance from killing the application when it completes.

The upper half of the figure is part of the structure previously shown in Figure 10

above, which runs in the default application process and contains the

QuestionGroupActivity that holds the ViewPager (a) and the Fragments associated with

the QuestionGroup’s questions. Part (b) is the placeholder Fragment which loads a

subclass of UnityModuleFragment. With a button press the application launches the

5 Android survey framework application

- 46 -

UnityContainerActivity (d), which is started in its own process as requested in the

manifest declaration. To avoid recreation of the UnityPlayer instance (f) it is not

directly inflated into the Activity but rather in the UnityContainerFragment (e) so that

it can be retained across configuration changes. The aforementioned life-cycle

mapping between the UnityPlayer and the UnityContainerActivity also had to be

extended to the UnityContainerFragment. A fairly uncomplicated affair, as the

Fragment’s life-cycle is tied to the Activity’s anyway. The execution of the Unity

program within the UnityPlayer instance therefore happens in a separate process and

quit() can be called safely without causing the application to crash.

While android offers a mechanism for inter-process communication (IPC) utilising

remote procedure calls (RPCs), the execution logic for the Unity program is

contained within the UnityContainerActivity and its subcomponents. Therefore the

launching of the Activity and retrieving the experiment results from it can be easily

accomplished using Android intent mechanism instead of IPC. Intent instances on

Android can refer to their target component either explicitly by name or implicitly

by the target’s capabilities. For components within the same application explicit

Intents are the most common approach. For Activities in particular the methods

startActivity() and startActivityForResult(), both taking an Intent object as their

parameter, are used. As their names suggest, the former simply starts an Activity

while the latter starts it, expecting a result from it. The latter was used to call the

UnityContainerActivity (d) from the UnityModuleFragment (c). Before finishing the

Activity all that needed to be done was to call its setResult() method, providing the

result code indicating that the results are valid and the result data itself. This results

in onActivityResult() to be called by the system for the original starting component,

allowing the results to be passed on, to later be stored with the answers of the other

questions.

This section showed how Unity applications can be loaded dynamically within the

Android application and the interface both, the Android and Unity code, must

conform to.

5 Android survey framework application

- 47 -

5.6 Deployment strategy

One of the goals envisioned for the system was to eventually make it accessible to

other students across university departments to conduct their own surveys. The web

interface for survey generation allows for basic survey to be generated including

surveys with experiments. Despite the simplicity of the form based survey generation

tool, technical knowledge is still required to implement an external question

module. While no special tools are needed for the creation of a web module, a

complete IDE is required for Android and Unity modules. In addition, access to some

of the survey framework classes is required as well. The application code was

therefore split into a regular Android project and a library project. The latter

contains all classes needed to create the code for Android and Unity modules.

Splitting the code into two separate entities has several advantages. Firstly, it

reduces the size of the code, researchers need to include into their project, which

ultimately affects the download time for the module. A reduction also means that

researchers do not have to sift through over 4000 lines of code (LOC) to find the

relevant classes and methods of the framework they need. Instead, they are

presented with less than 800 LOC, which undoubtedly decreases the learning curve

for any researcher, independently of their programming skills. Secondly, the split

keeps parts of the framework private, allowing for changes to be made without

having to worry that somebody might rely on a particular implementation detail that

could change in future versions. The following deployment diagram shows which

parts of the code base are packaged into the library project and which remain within

the actual application. Furthermore it shows the components on the device as well

as on the remote server.

5 Android survey framework application

- 48 -

Figure 11: Deployment diagram for the survey framework. The only permanent component on the mobile device
is the survey application itself. Third party modules are downloaded and executed as required and only stored
temporarily on the device. The webserver provides the Android application with the necessary third party byte
code and the researcher with an interface to create surveys. The database server stores the generated survey
and any survey results uploaded from the Android device.

As can be seen on the left side of Figure 11, the survey application is deployed with

the library binaries, which are also used when developing third party modules. The

package names in the library and the application are abbreviated and have the

common prefix edu.ie.nuim.researchsurveytool. They also contain sub packages

that are not shown in the diagram. In general Android does not require the

application to use the same package names as the library they use, however it was

done in this case as the components belong to the same logical unit. On the right

side of Figure 11 are the online components of the system. While the university

server might actually comprise of multiple different actual and/or virtual machines,

they are all administrated by the university and are therefore shown as a single

entity. The web server component contains various directories which divide the

system files into their relevant categories. The elements shown as packages within

the database server component are the tables used to store system relevant

information on surveys and their results.

5 Android survey framework application

- 49 -

5.7 Summary

This chapter gave a detailed insight into the concepts and classes underpinning the

Android application of the survey framework. The model was discussed and it was

shown how the two subclasses of the QuestionGroup class form the core of the model

logic. Next the basic Android components Activity and Fragment were introduced and

compared. It was shown that the Fragment class is better suited to hold the user

interface for questions within a question group. Furthermore the more advanced

component Android ViewPager was introduced. The advantages of using this

component were explained as well as the additional implementation effort that was

caused through a combination of the ViewPager component and the way the Android

operating system handles the life-cycle of the two basic components Activity and

Fragment. This concluded the introduction of all relevant components within the

Android application.

The second part of the chapter analysed how code can be loaded dynamically in an

Android environment. It showed what types of modules are supported and how web

based modules and unity based modules have a similar interface to the Android

application. Furthermore it introduced Android based modules and explained that

Unity based modules use the same code loading technique. However, Unity based

modules require additional code to access the assets and scripts of the Unity

experiment itself.

Finally, the chapter shows how the components are deployed and what is necessary

to allow external code to be actually downloaded and run on the Android

application.

6 Example survey and System validation

- 50 -

6 Example survey and System validation

This chapter describes the psychological experiment that was conducted to attempt

to validate the viability of the survey framework. The question the survey set out to

answer was PQ1: Is there a correlation in performance between the Stroop test and

a vehicle following experiment? The purpose of the survey is twofold. Firstly, it aims

to answer a research question in the area of psychology. Secondly, it shows how a

survey might be conducted using the proposed framework to author and distribute

the survey as well as collect the results and evaluate them. It is important to note

that the main purpose of the conducted survey was to show the viability of the

proposed survey framework. Therefore, the focus was on creating a survey that

shows as many of the currently implemented features as possible and not to survey

a statistically significant number of people. Since only 10 participants were surveyed

the presented results are not statistically significant. However, the analysis was

performed independent of that fact. Thus any claims in this chapter are not proven

to be applicable to the general population, but do demonstrate the utility of the

system framework to researchers.

Attention, in particular sustained attention, has been found to be a key factor in

driving related tasks. A driver’s attention on the road and traffic can be easily

reduced, whether it is through the use of objects or engaging in non-driving related

activities while manoeuvring a vehicle through traffic, lack of sleep, alcohol or drug

consumption [35][36][37]. However, also demographic factors influence one’s

attention, such as age [38].

Sustained attention a cognitive function and can be measured with a variety of

psychological tests. The Sustained Attention to Response (SART) test, the Simon task

and the Stroop test are only a few examples [39][40][41]. The Stroop test was chosen

for our experiment because it is a good measure of attention and has been used in

several similar scenarios to assess participants’ capabilities [42][43]. It is also

generally used in driving related experiments and even in other smartphone-based

tests [44][45]. A more general evaluation of the Stroop test is conducted by MacLeod

[46].

6 Example survey and System validation

- 51 -

The driving task builds on the work done as part of an undergraduate project at NUI

Maynooth, in which a vehicle following experiment is designed [47]. The difference

between the driving tasks lies within the user interface. The original experiment was

designed for a desktop environment, with a full keyboard for user input. The

experiment described in this report is conducted on a mobile the device, the user

interaction with the virtual environment is facilitated through the devices touch

screen. In order to avoid cluttering the relatively small screen of mobile devices

with too many UI elements, the experiment was simplified by eliminating the need

for the participant to keep the vehicle on a straight line.

The survey itself consisted of a set of 10 questions, asking the participants for

demographic information and their driving experience. Table 8 lists the questions

and their response type.

Table 8: Participants were asked to answer the 10 questions before they performed the Stroop test and the
driving task.

Question Type

Please indicate your gender: Categorical

Please state your age: Numerical

Please indicate your type of driver's licence: Categorical

When did you obtain your current driver's licence? Numerical

How many kms do you think you drive per year? Categorical

Where do you typically do most of your driving? Categorical

Do you have any medical conditions that could affect your

driving? (Visual impairment, epilepsy, a heart condition, etc.)

Yes/No

Have you ever experienced motion sickness while driving? Yes/No

Please indicate how you would rate your own driving ability,

from 1 to 10, 1 being poor and 10 being excellent:

Numerical

6.1 Participants

6 Example survey and System validation

- 52 -

This section describes the demographics and other important characteristics of the

participants in this survey.

In our survey 10 participants were asked to answer the questions in the survey and

to perform the Stroop test and a driving task. Out of all participants 7 were male

and 3 female. All participants have an academic background, with 9 being students

and 1 member of staff. The mean age of the participants was 22.7 (±2.5) years. Due

to the relatively young age of the participants the variability of how long each of

the participants has held their license for is quite small. One participant did not

have a driver’s license at all. The values range from 1 to 8 years, with an average of

3.8 (±2.4) years.

6.2 Stroop task

The participants were also asked to complete two tasks as part of the survey. Firstly,

they were asked to complete a 90 second Stroop test, which measures the reaction

time of participant to various types of stimuli. The stimuli are words displayed in

different colours. The participant has to click one out of four buttons that

corresponds to the colour of the word. The Stroop test is an established and widely

used test in the fields of psychology and neuroscience [48][49][50][51]. The test in

this particular survey contained congruent, incongruent and neutral stimuli which

were occurring with a frequency of 50%, 25% and 25%, respectively. Congruent

stimuli are words of colours written in the matching colour, e.g. the word “BLUE”

written in blue colour. Incongruent stimuli are words of colours written in a different

colour, e.g. the word “RED” written in green colour. Neutral stimuli are words that

are not colours such as “BOOK” or “CAR. The distribution was chosen based on a

Stroop task available in the PEBL test suit5, a freely distributed collection of

psychological test implemented in PEBL, the Psychology Experiment Building

Language [52]. The participants had four buttons available to submit their response,

where the button itself has a neutral colour and the button label is the name of the

5 http://pebl.sourceforge.net/battery.html

6 Example survey and System validation

- 53 -

associated colour. The colours of the labels themselves match the label. This is

shown in Figure 12 which shows a screenshot of the Stroop task on a mobile device.

Figure 12: The Stroop task as seen by the participant on the mobile device. An incongruent stimulus is shown
and the participant has four possible responses. In this case the correct answer is “GREEN”.

The event based data from the Stroop task was recorded as tuples of timestamp and

event. The five possible events for the Stroop tasks are split into two groups, “show”

events and “response” events. The “show” events are split into “show congruent”,

“show incongruent” and “show neutral”, whereas the “response” events can only

take the value “correct” or “incorrect”. Together with the timestamp the data can

be ordered chronologically and analysed. Table 9 shows the measures that were

calculated from the Stroop task data for each participant.

6 Example survey and System validation

- 54 -

Table 9: The 13 measures that were calculated for each participant's Stroop task results. The sum of the first
6 measures shows the total number of interactions the participant had during the task. Of particular interest
are the incorrect responses to incongruent stimuli as they indicate a lapse in attention.

Measure Description

cong-c Number of correct responses for congruent stimuli

cong-inc Number of incorrect responses for congruent stimuli

incong-c Number of correct responses for incongruent stimuli

incong-inc Number of incorrect responses for incongruent stimuli

neutral-c Number of correct responses for neutral stimuli

neutral-inc Number of incorrect responses for neutral stimuli

stroop-score Total number of correct responses

rt-avg Average reaction time per stimulus

rt-avg-c Average reaction time for correct stimuli

rt-avg-c-cong Average reaction time for correct congruent stimuli

rt-avg-c-incong Average reaction time for correct incongruent stimuli

rt-avg-c-neutral Average reaction time for correct neutral stimuli

multiple-tries Number of stimuli the participant responded to incorrectly

more than 2 times

6.3 Driving task

The second experiment the participants were subjected to was a virtual driving task.

The participants were asked to follow the car on the screen in front of them, while

maintaining a constant safe distance. Only two buttons, “ACCELERATE” and “BRAKE”

were available to the participants. The road geometry is a straight line and there

are no trees, houses or traffic signs on the side of the road. The user interface is

shown in Figure 13. The experiment duration was set to 190 seconds, with only the

last two minutes being evaluated in the analysis. The first 70 seconds were used to

give the participants a chance to familiarise themselves with the user interface and

were therefore discarded. During the experiment the lead car would brake 7 times

at random times (real brakes). Furthermore the brake lights of the lead car would

switch on 3 times without the car actually braking (fake brakes). This results in a

total of 10 brake event perceived by the participants. By analysing the difference in

6 Example survey and System validation

- 55 -

reaction to real and fake brakes a conclusion can be made whether participant react

to the brake lights or rather the distance to the lead car.

Figure 13: The user interface for the driving task. The participant can apply the brake using the left button or
accelerate using the right button. If neither of the buttons are pressed the car will start to decelerate. The
timer in the upper right corner shows the participant when the experiment will finish.

The data was recorded by sampling 4 measurements every 0.3 seconds. The

measurements recorded the time, the state of the user’s car, and the state of the

lead car and the distance of the user to the lead car. The user’s car could be in one

of three states, namely “ACCELERATING”, “DECELRATING” and “BRAKING”. The lead

car however, has an additional, fourth state, which is “BRAKE LIGHTS”, indicating

that the car’s brake lights are switched on without the car’s brakes actually being

applied. Similarly to the Stroop task, by ordering the samples chronologically the

measures shown in Table 10 can be calculated.

6 Example survey and System validation

- 56 -

Table 10: The 8 measures calculated from the driving task data for each participant.

Measure Description

dist-avg The average distance between the two cars

dist-sd The standard deviation of the distance between the two cars.

user-acc The percentage of time the user spent accelerating

user-dec The percentage of time the user spent decelerating

user-br The percentage of time the user spent braking

rt-br-avg The average reaction time to a lead car brake

missed-br Number of times the user did not react to a lead car brake

missed-br-safe Number of times the user did not react to a lead car brake but

maintained a safe distance.

In addition to these calculated measure, the raw data can also be visualised to get

a quick understanding of how a participant performed. A diagram showing a test run

of the experiment is shown in Figure 14.

Figure 14: Sample data from a driving task. The blue line shows the distance between the two cars over the
course of the experiment. Its values are shown on the primary vertical axis (left). The green line shows when
the survey participant was braking. The red line indicates brakes of the lead car. For the lead car fake brakes
are also shown. In this example they occur in the first third of the experiment and have a value of 1.1 compared
to real brakes which have the value 1.

It is important to note that the graphical assets, i.e. the road and the cars were used

as they were provided. One distance unit within the provided model represents

0.2m.

6 Example survey and System validation

- 57 -

6.4 Analysis

This section describes the finding from the analysis of the gathered results. Data

from 10 participants was used in the analysis. Every step is done programmatically

to ensure full reproducibility of the presented results. First, some general

observations about the participant data are discussed. Secondly, the two

experiments are compared and the correlations between the measures of the Stroop

and the driving task are analysed.

6.4.1 General observations

Research on road accidents shows that young and male drivers are more likely to be

involved in accidents [53][54][55][56]. Since gender and age were recorded for the

participant of this survey, the data was examined to see if gender has an impact on

key measures of the driving task. Figure 15 show box plots for the average reaction

time to a lead car’s brake, the average distance between the participant and the

lead car and the standard deviation of the distance, respectively, for male and

female participants.

It is important to note that this section shows how possible conclusion could be

drawn from the presented survey. It is intended as a pilot study and has no

statistically significant results. However, a future collaboration with the Psychology

department here at NUI Maynooth is intending to repeat a revised version of the

described survey with a larger number of participants to create statistically

significant results.

6 Example survey and System validation

- 58 -

Figure 15: The three key measures for the driving task as box plots for females (yellow) and males (green).
Each box represents five pieces of information. The whiskers represent the lowest and highest values with each
group that are not outliers. The box itself represents the range of values from the first to the third quartile
within a group. The bold black line within the box indicates the median value within the group. Outliers are
shown as small circles. Values are considered outliers if their distance from the box is greater than the box
height.

The results in Figure 15 a) seem to indicate that females in the test group tended to

react much quicker to a brake of the lead car. Furthermore, there is a much higher

variability of reaction times with the male participants than there is with the

females. The data gathered in this experiment perhaps indicates that female drivers

are generally more attentive, or that female participants are simply more cautious

when they see a car brake in front of them. Since the participants were not asked

to brake as soon as the lead car brakes but rather to maintain a constant safe

distance, the high reaction time with the male participants could indicate that they

are less exact when keeping a constant distance. This theory is supported by the

data on the standard deviation of the distance as shown Figure 15 c), which shows

that only a minority (<25%) of male participants have a smaller variability than a

majority of the female participants, i.e. only few male participants are better than

most female participants at keeping a constant distance.

Another interesting observation is that the male participants seem to disagree on

what constitutes a safe distance. As indicated by the data shown in Figure 15 b), the

variability of the average distance within the group of male participant is much

higher compared to the female group.

6 Example survey and System validation

- 59 -

However, when after further examining the data it becomes apparent that none of

the results were statistically significant, as measured with the t-test. The results

are shown in Table 11 In addition, not only is the sample size rather small with only

10 participant, only 3 participants were female. This makes it very difficult to

generalise to the general population. As the results are not significant it cannot be

said using this experimental data that females were more cautious or attentive than

their male counterparts.

Table 11: Results of significance tests for gender related differences. Significance tests are a statistical measure
expressing whether the results of an experiment have occurred by chance or whether they show a pattern. The
t-test used determines whether the means of two sample groups are different enough to allow a conclusion to
be derived based on that difference. The t-values indicate the similarities between the groups. The bigger the
- value, the bigger the difference between the groups. Additionally, the p-value indicates how likely it would
be to get their corresponding t-values from random data. A p-value of 0.882 means that there is an 88.2%
chance that the difference between the two groups occurred by chance. Therefore, the smaller the p-value the
more significant the results. In general, results are said to be significant when the p-value is below 0.05, thus
the results shown in Figure 15 are not statistically significant. The experiment would therefore need to be
continued until a significant result is achieved, i.e. the p value drops below 0.05.

measure t p

Average brake reaction time 0.153 0.882

Average distance 0.676 0.516

Standard deviation from average distance 0.671 0.519

6.4.2 Experiment correlation

Since the data set collected is not very big and the number of measures is relatively

small, the correlations between all numeric measures were calculated to identify

pairs of measures that might be of interest. The full table of correlations can be

found in Appendix A. This section only covers the most interesting correlations,

relevant to the above research question PQ1.

Firstly, the data shows a strong correlation between the individual measures of the

Stroop test. This simply shows that the different measures are all related, e.g. the

number or correct congruent trials is related to the total number of congruent trials.

The same inter correlation is found with the measures of the driving task.

Secondly, due to the small number of participants the dataset does not contain a

single missed brake and only one safe missed brake. When a participant did not react

6 Example survey and System validation

- 60 -

to the brake lights of the lead car it was considered a missed brake. However, if the

distance between the participant and the lead car was greater than their average

distance plus one standard deviation, the missed brake was regarded as safe.

Because only safe missed brakes were recorded for the participants, it can be said

that none of the participants had significant lapses in attention while performing

the driving task. Therefore any correlation with the measures “missed brake” was

ignored.

The correlations between measures of the Stroop task and the driving task have an

overall strong correlation. In particular the average distance and the standard

deviation from the average distance have very strong correlations with almost all

the Stroop task measures. Especially, the correlation to the reaction time measure

of the Stroop task has absolute values of 0.73 to 0.91. This indicates that the

performance in both tasks are somewhat related.

Figure 16: Reaction time measure of the Stroop task and the driving task show strong correlations, with their
absolute values ranging from 0.73 to .91.

Other correlations with lower values include the questions with numerical responses

such as the number of years a participant has had their license or their age. This is

probably in part because of the limited age range of the sample population. An

interesting correlation however was found between the duration for which a

participant has had their license and their perception of their own driving skills.

6 Example survey and System validation

- 61 -

6.5 Summary

The survey framework was used to create and conduct a survey that attempts to

correlate the participants’ performance in two tasks. The first is the widely used

Stroop task which measure reaction time and sustained attention. The results from

the Stroop task are compared to the results from a vehicle following experiment,

where the participant is asked to maintain a constant safe distance to a car in front

of them. The survey creating and delivery worked as expected and delivered the raw

data to the scientist. The subsequent evaluation indicated that there are strong

correlations between reaction times in the driving task and the reaction times in the

Stroop task. Unfortunately, due to the small number of participants, the results are

not statistically significant.

In summary it can be said, that this area of research needs further investigation,

since there seems to be a correlation between the two experiments. However, it is

imperative to re-run the experiments on a larger scale with a much larger number

of participants.

From a software engineering perspective, the experiment demonstrated the

feasibility of research surveys with the proposed framework. Especially due to the

mobility and flexibility of mobile devices, the survey could be easily repeated with

more participants.

6 Example survey and System validation

- 62 -

6.6 Threats to validity

The main issue with this survey is the small number of participants and the fact that

the sample was drawn almost exclusively from the international student population.

This means that similarities between participants are much stronger than in would

normally be in the general population. In particular this results in a narrow age range

and a narrow range for how long participants have had their current license. Also,

while most participants had a valid license they did not drive a car in the last few

months, which could potentially affect the results of the driving task.

From the perspective of measures and the evaluation of the raw data, a more

sophisticated approach to what constitutes a missed brake could have been

employed. However, since the number of missed brakes and safe missed brakes is

very small this does not affect the evaluation of the particular dataset analysed in

this report.

7 System verification

- 63 -

7 System verification

In this chapter we analyse and evaluate the system. Unlike conventional commercial

software products, the verification focus for the proposed survey framework is on

system testing rather than unit testing. While unit testing is an important aspect of

software development, in a research project like this it is more important that

verification is performed on the experiment results. However, one vital data model

component of the system was unit tested. This section describes system testing that

was conducted to verify that the results gathered during the survey presented in

chapter 6 are correct. The chain of dependencies is analysed to determine if the

aspects of the systems that must function properly in order to ensure the correctness

of the data gathered by the survey framework. Moreover, the unit testing techniques

used to verify the functionality of a key component in the system are shown. Finally

the limitations of the current implementation are discussed.

7.1 System testing

While, in an ideal world, the entire system would be unit tested, testing has to be

prioritised in a time constraint project such as this. Therefore, testing focuses on

verifying that the system produces the correct output which is then analysed by

researchers and used to accept or reject a given hypothesis. This requires a chain of

dependencies to be identified and verified. Each link in the chain takes some input,

processes it and passes its output on as input to the next link in the chain. This is

depicted in Figure 17. This section shows how the individual links were verified, or

if they were not verified, how they would be.

7 System verification

- 64 -

Figure 17: Chain of dependencies. Each link has receives input that it processes. The resulting output is relayed
as input to the next link. Each link must be verified to ensure that the output matches the expected input into
the next link. E.g. if not all questions the researcher adds to a survey are displayed on the participants screen,
any further action will inevitably lead to the wrong data being delivered back to the researcher.

7.1.1 Survey generation

Surveys are generated using a web based user interface which was built using

common web technologies such as HTML, CSS and Javascript. Once the survey is

submitted it is stored in a database using PHP and PostgreSQL. Again, using PHP the

survey can then be retrieved and displayed on a mobile device. Manual testing was

conducted to ensure the proper functioning of those components. Initially this was

done explicitly during the development of the components and later implicitly by

conducting the survey presented in chapter 6. In order to properly verify each

component unit testing could be used to test that data that is being submitted is

entered into the database. Moreover, it could be tested that the survey retrieval

mechanism returns the correct survey that was requested based on its ID.

Furthermore, the web UI could be tested using a software testing framework for web

applications such as Selenium6. Selenium automates browser testing by directly

interacting with the web application as displayed in the browser. While this

technique is not as fast as unit testing, it does enable test to be written based on

use cases, such as creating a survey with one question of each question type.

6 http://docs.seleniumhq.org/

7 System verification

- 65 -

7.1.2 Data collection

Data collection is the process in which survey participants respond to survey

questions or perform experiments. The results are textual, numerical or categorical

answers to the questions and raw or pre-processed experiment data. The main

components involved at this stage are the Android application and any third party

modules that are loaded with the survey. As such, the verification can be split into

sub activities. Firstly, the framework should be verified by checking that all the

questions within a survey are presented to the participant. Furthermore, it must be

ensured that the survey module download and survey result upload function

properly. That is, all the data must be transmitted to and from the server and must

not be altered during transmission. While this step was only verified manually by

running several demo surveys and uploading their results, it could be formally

checked using some form of hashing. For example, a checksum could be generated

for the survey and its modules, which is compared to the checksum of the

downloaded files on the device. Analogously, a checksum could be created and sent

to the server which only accepts the results if their checksum matches the value

that was sent by the remote device.

The second aspect that must be verified is the correctness of any externally loaded

modules. A programming fault could immediately render all collect data useless,

depending on the type of fault. Ideally, external modules would be unit tested.

However, it requires substantial time and effort to properly unit test UI components,

especially when there is a timing component involved. Therefore, rather than

attempting to verify a small portion of the module rigorously, more general sanity

checks were carried out. For the two external modules presented in the example

survey in chapter 6, it was checked whether the reaction times reported for both

tasks are correct. Instead of trying to accurately compare the measure reaction with

the actual reaction time, an experiment was performed to determine whether the

values are within the expected range. For both modules, very low, low and high

values were checked. The concrete values and the average results of the performed

trial runs for each module are shown in Table 12.

7 System verification

- 66 -

Table 12: The average reaction time measures for the two external modules are compared to their expected
values. The average result is based on 9 – 17 sample measurements for each category.

Expected time Stroop task Driving task

~150ms 149.412ms 1.24s

~1s 1.012s 1.206s

~10s 10.006s 10.021s

The experiment was conducted by manually clicking on buttons every, 10 seconds,

every second, or as fast as possible. Then the values recorded by the system are

compared to the expected results. For the Stroop task the actual values very closely

match with the expected values. Conducting the same experiment for the driving

task however shows that, while the correleation is good for 10 second and 1 second

intervals, the recorded time for very fast interactions deviates significantly. This is

due to the fact that the data from the experiment is recorded 3 times per second,

resulting in a resolution of 0.333333 seconds. The implication is that the granularity

of reaction time measurements is 0.333333, which should be improved when the

experiment is run again. Increasing the sampling frequency would simply mean that

more data needs to be transferred to the web server. This is well within the

capabilities of the system. The maximum sampling frequency that can be achieved

depends on the maximum frame rate of the device for the experiment.

Theoretically, measurements could be made up to 60 times per second.

Alternatively, the data processing could be done during run-time instead of sending

the raw data to the researcher to do the processing offline.

The other measure that was checked for the driving task, is the distance between

the user and the lead car. While the distance is not reported in meters, but rather

in a virtual distance (as explained in section 6.3), the value should increase

proportionally to the lead car’s speed if the user car remains at the starting position.

Therefore, the lead car was set to drive without braking and at a constant speed for

20 seconds, while the user car does not move at all. The data is then checked if the

reported distance increases linearly. Figure 18 shows the result of this test.

7 System verification

- 67 -

Figure 18: Testing the distance between the two cars. Initially, the user car remains in its starting position and
the lead car accelerates up to a constant speed. Then the user car accelerates to maximum speed. This is
repeated twice.

After the lead car reaches its constant speed around 6 seconds into the experiment

the distance increases linearly up to the point where the user car is accelerated to

maximum speed. The speed of the user car is greater than the speed of the lead car

and therefore the distance between the two cars decreases. This shows that the

reported distance is indeed correct.

7.1.3 Data processing & Analysis

In general, data processing can be implemented within the external module.

Alternatively, as in the case of the example survey, raw data is sent to the server,

in which case the data processing occurs separately. Ideally it would be subjected

to the same type of unit testing covered in the previous sections. Because of the

research oriented nature of the project functionality was prioritised over detailed

unit testing.

The analysis part is a manual task, as the processed data needs to be interpreted by

a human expert. In the case of the example survey, the entire analysis process is

described in the previous chapter.

7 System verification

- 68 -

7.2 Unit testing

Ensuring that the low level components of an application behave as expected is the

key requirement to the overall correct functionality of a system. There exist several

black box and white box techniques that help developers to properly test their code

by comparing expected output to the actual output of their code for a carefully

selected set of test cases. Those techniques are in place because exhaustive testing,

i.e. checking the output of a method for all possible inputs is often not feasible.

Rather than spending valuable time on unit testing the complete system, system

tests ensure that the data produced by the experiments is valid. One of the core

components of the data model is unit tested. The following section shows the unit

testing conducted for the class RecurringQuestionGroup. The same techniques could

be applied to any other class within the framework.

7.2.1 RecurringQuestionGroup testing

This section shows the testing conducted to ensure the correctness of the

RecurringQuestionGroup class. It is a concrete implementation of the abstract class

QuestionGroup and can contain subgroups of type RecurringQuestionGroup, as well as a

list of Question objects. In addition it holds a Timing object which specifies during

which times a participant can be asked to answer the Questions within the group and

its subgroups. A RecurringQuestionGroup is said to be independent if and only if its

Timing object is not null.

Testing of the class is split into black box testing, where the expected output is only

based on the specification of the class, and white box testing which ensures that all

parts of the class are exercised. All testing techniques are taken from “Software

Testing – Principles and Practice”, by Brown et al. [57]. Testing this class is relevant

because the QuestionGroup class is at the core of the survey framework data model.

Since the abstract class cannot be tested directly, the choice is between

OneTimeQuestionGroup and RecurringQuestionGroup. The latter was chosen because it

subsumes the functionality of the OneTimeQuestionGroup which does not add any extra

functionality to what it inherits from QuestionGroup.

7 System verification

- 69 -

7.2.1.1 Black box testing

This section shows how black box testing was conducted for the non-trivial methods

in the RecurringQuestionGroup class. One line setter and getter methods are regarded

as trivial, and are therefore not described in this report although there were

implemented. Table 13 lists all non-trivial methods that were tested for the class

under test. Since we are testing objection oriented software, the appropriate

techniques must be used. This section shows how equivalent partitions (EP) and

boundary value analysis (BVA) were conducted in a class context.

The most complex method within the class is getQuestionAt() which returns a Question

object based on its position within the group or its subgroups. Since the Equivalence

Partitions (EPs) and therefore also the Boundary Values (BVs) depend on the number

of subgroups, their nesting and the number of questions contained within each

subgroup, testing was performed by selecting a representative example. In

particular 4 cases with different processing were identified.

Firstly, a question group can only contain questions and no subgroups. Secondly, a

group can contain a single sub group with some questions. Thirdly, the group’s

subgroup itself can contain a subgroup. And finally, the question group can have

multiple subgroups with some of them having subgroups themselves.

These four cases can be summarised in one example which is displayed in Figure 19.

The number of test cases in order to achieve exhaustive testing is small as one test

case is required for each question within this structure. The resulting 19 test cases

were implemented and uncovered two faults which were subsequently corrected.

7 System verification

- 70 -

Table 13: List the methods that were tested for the class, including their parameters, return values and a brief
description.

Method name Parameter Return value Description

getQuestionCount - int Returns the number of

questions within the group

(including sub groups).

getQuestionAt int Question Returns a Question based on

its position in the group (or

subgroups).

getQuestionById int Question Returns a Question based on

its unique identifier.

addSubGroup Recurring-

Question-

Group

- Adds a subgroup to the

group and sets the

subgroup’s owner to be this

group.

addQuestion Question - Adds a question to the

group and sets the

question’s owner to be this

group.

getDuration - int Returns the duration in

minutes it takes for a

participant to answer all

questions within this group

(including subgroups).

getAllIndependent-

SubGroups

- List<Recurring-

QuestionGroup>

Returns a list of sub groups

of this group that are

independent, i.e. have

their own Timing object.

7 System verification

- 71 -

Figure 19: Sample question group structure.

For a more complicated structure the EPs BVs would need to be identified and

tested. In the above example the EPs are related to the number of direct question

within a group and the structure of the groups. The EPs are summarised in Table 14.

Table 14: Equivalence Partitions for the example question group shown in Figure 19. The first and last EPs are
error cases. The BVs are the start and beginning of each EP.

MIN_VALUE..-1 0..4 5..7 8..11 12..18 19..MAX_VALUE

The remainder of the methods was tested without formally specifying EPs and BV

because their logic was fairly straightforward. However, he same technique as

described for the method getQuestionAt() could have been applied.

7.2.1.2 White box testing

White box testing was conducted on the RecurringQuestionGroup class to ensure

statement coverage. The coverage tool used was Ecl Emma7. As can be seen in Figure

20, the test for the RecurringQuestionGroup class also cover most of the QuestionGroup

class. The only part that was not covered was an empty, private, no-args constructor

which is needed for an external API that was used in the project.

7 http://www.eclemma.org/

7 System verification

- 72 -

Figure 20: Snippet of the Ecl Emma coverage report for the class RecurringQuestionGroup.

No test were required in addition to the black box tests to achieve this coverage.

7.3 Limitations

In addition to the limitations mentioned in chapter 5, there are a few issues with

the current implementation which would stand in the way of a public release. This

section briefly gives an overview of those issues.

The biggest limitation is that the framework does not allow the user to utilise one

of the most useful features the Android platform has to offer. Loading pre-compiled

resources, which are packaged in the resources.arsc file of an Android application

file is not possible with external code modules. This requires the entire layout of

the experiment to be created with the appropriate API in Java. It also restricted

binary resources such as image or audio files to be accessible by placing them on a

server and downloading them the first time the experiment is run.

While the system model allows recurring question groups to be included in a survey,

the current implementation of the Android application and the online survey

generation tool, does not support this feature. The online tool would need to be

adapted to support nested groups and the ability to reference groups in multiple

locations to allow researchers to fully take advantage of the system model. The

Android application already supports nested groups to a certain extent. The bigger

implementation detail that is missing is the notification system that would remind

participants to answer recurring questions.

What is more, the access to the server and thus the survey data is not restricted.

Since the focus of the project lies elsewhere the server component would require a

security overhaul before releasing the system publicly.

8 Future work

- 73 -

8 Future work

This chapter shows that the current implementation of the system is merely a

stepping stone to a much more comprehensive surveying application. The current

implementation of the system achieved its goal, which was to create a general

purpose survey tool with support for external survey experiments. The potential

future features discussed in this section show what is required to make the system

of practical use for researchers, especially a researcher with little technical

background. Furthermore potential functionality building on the existing code base

is proposed.

The first thing that would need to be done before the public can be given access to

the system is to put proper security measures in place, to protect the privacy of the

data submitted by the participants but also to allow researchers to keep their

research private until it is ready to be published. In order to achieve this,

registration and login functionality would need to be added to the web server

component. Also the data should be stored in an encrypted format. Furthermore,

despite the fact that transmission between the mobile application and the server

are performed using the HTTPS standard, the data itself should be also encrypted

within the local device database and transmitted in this form to ensure that nobody

intercepting the data in transit can misuse it.

Similarly, survey participants could be asked to register to ensure that questions

that are supposed to be only answered once per participant are not answered

multiple times. This would require some effort as it would need to ensure that the

data submitted by the participant still remains anonymous.

A survey related feature available in many of the online survey tools researched is

the capability of defining a skip-logic. This allows the survey tool to skip questions

based on the participant’s answer of a previous question. This could eliminate

questions such as “If you answered the previous answer with yes, please answer the

following…”.

As mentioned in the section Question groups, the model supports recurring question

groups. However, this functionality was not implemented for the Android application

8 Future work

- 74 -

or the survey generation tool. Adding this functionality would greatly extend the

number of types of survey researchers could conduct.

Another security related potential feature would be a code checker which performs

static analysis on the third party modules. Currently, the survey tool requires only a

limited number of permission such as internet access from the Android system. When

a third party module requires access to the camera for example, the application

would crash with a security exception as the survey tool does not have permission

to access the camera. Static analysis could be performed to at least prevent modules

from being executed if calls to API are found that the survey tool has no permission

to access. Going a step further such analysis could be done when researchers

attempt to generate a survey that includes a problematic module. This would give

them feedback much earlier in the development process.

In addition to supporting Android, Web and Unity modules, the inclusion of other

frameworks and game/physics engines could yield a great benefit to the usability of

the system. In particular it would be of interest to add module integration for

frameworks using other programming languages than Java, C# and Javascript. Adding

support for e.g. python modules would allow the research community to reuse any

experiments written in python and greatly reduce the porting effort that would be

required to make it run within the survey tool. In fact, existing work in this area

could be used to extend the supported module types [58].

A current limitation of the survey tool is that Android based modules cannot use

precompiled resources such as xml layouts, nor binary assets such as images or audio

files. Instead layouts must be defined programmatically and binary assets must be

loaded at run-time from a remote location. This not only reduces the legibility of

the code but is also a much more cumbersome way of specifying a layout in Android.

Adding support for such resources would greatly increase the code quality of third

party modules and would reduce the burden of development on the researchers.

Static analysis could also be performed to identify any online resources that third

party modules might need, allowing the system to download them when the survey

is first added to the application. This would allow the survey tool to work without

any internet connection once the survey is added.

9 Conclusion

- 75 -

9 Conclusion

In a world driven by big data, it is imperative that researchers adapt their methods

to the available technology that allows them to scale their research. This report

discussed a framework that incorporates many aspects of today’s technology to

allow researchers to conduct their survey in a much more automated and scalable

way.

The proposed system implements a generic survey framework with support for

external code modules which can contain custom question types or experiments.

While the application is developed for the Android platform, third party modules

can be Android, Web or Unity modules. An online survey generation tool allows

researchers to easily create new surveys. The system overview and implementation

details showed the underpinnings of the system which was built using Java,

JavaScript, HTML, CSS, PHP, UnityScript, SQLite, PostgreSQL, JSON and XML.

To prove the feasibility of the system a psychology survey was conducted

investigating the correlation between the well-known Stroop task and a driving task

where the participants are asked to maintain a constant safe distance to the lead

vehicle. The results did show a correlation between the measures of both tasks.

However, due to the limited number of survey participants further investigation is

required to get a conclusive result. More importantly however, the process of how a

survey would be conducted using the proposed system was shown, and thereby

validating the system.

Finally, the system is verified using a number of system tests. System testing was

conducted to ensure that the data reported by experiments is valid. Detailed unit

testing was performed on a critical component of the system.

We believe that the proposed system can be taken even further and that it could

greatly increase the impact of the work of researchers.

10 References

- 76 -

10 References

[1] SurveyMonkey, '"SurveyMonkey: Free online survey software & questionnaire
tool:", vol. 2014, no. 20 May 2014.

[2] KwikSurveys, '"KwikSurveys: Free online survey & questionnaire tool ", vol.
2014, no. 20 May 2014.

[3] Google Inc, '"Home | Google Consumer Surveys:", vol. 2014, no. 20 May 2014.

[4] R.P. Pargas, J.C. Witte, L. Brand, C. Hochrine and M. Staton, '"OnQ: an
authoring tool for dynamic online surveys," Information Technology: Coding and
Computing [Computers and Communications], 2003. Proceedings. ITCC 2003.
International Conference on, pp. 717-723.

[5] J. Burkey and W.L. Kuechler, '"Web-based surveys for corporate information
gathering: a bias-reducing design framework," Professional Communication, IEEE
Transactions on, vol. 46, no. 2, pp. 81-93.

[6] A. Singh, A. Taneja and G. Mangalaraj, '"Creating online surveys: some wisdom
from the trenches tutorial," Professional Communication, IEEE Transactions on,
vol. 52, no. 2, pp. 197-212.

[7] J. Kite and Leen-Kiat Soh, '"An intelligent survey framework using the life
events calendar," Electro Information Technology, 2005 IEEE International
Conference on, pp. 6 pp.-6.

[8] A. Attarwala, A. Das and D. Wilson, '"Mobile Platforms: A New Frontier for
Market Research," Mobile Services (MS), 2012 IEEE First International Conference
on, pp. 115-116.

[9] C.R.K. Stradiotto, A.I. Zotti, C.O. Bueno, S.P.M. Bedin, H.C. Hoeschl, T.C.D.
Bueno, T.P.S. Oliveira and V.O. Mirapalheta, '"2010 IEEE International Conference
on Progress in Informatics and Computing; Web 2.0 e-Voting system using android
platform ", pp. 1138 <last_page> 1142.

[10] Dooblo, '"Android Survey App | Conducting Surveys using Android Survey App ",
vol. 2014, no. 20 May 2014.

[11] CREOSO Corp, '"Rollapoll mobile survey app for Android tablets ", vol. 2014,
no. 20 May 2014.

[12] SurveyPocket, '"SurveyPocket - Home,", vol. 2014, no. 20 May 2014.

[13] QuickTapSurvey, '"Mobile & Offline Survey App ", vol. 2014, no. 20 May 2014.

[14] Li Gong, '"Secure Java class loading," Internet Computing, IEEE, vol. 2, no. 6,
pp. 56-61.

[15] L.L. Petrea and D. Grigora, '"Dynamic Class Provisioning on Mobile Devices,"
Parallel and Distributed Computing, 2006. ISPDC '06. The Fifth International
Symposium on, pp. 140-147.

10 References

- 77 -

[16] Jin-Cherng Lin and Jan-Min Chen, '"The Automatic Defense Mechanism for
Malicious Injection Attack," Computer and Information Technology, 2007. CIT
2007. 7th IEEE International Conference on, pp. 709-714.

[17] Jin-Cherng Lin, Jan-Min Chen and Cheng-Hsiung Liu, '"An Automatic Mechanism
for Sanitizing Malicious Injection," Young Computer Scientists, 2008. ICYCS 2008.
The 9th International Conference for, pp. 1470-1475.

[18] M. Payer, T. Hartmann and T.R. Gross, '"Safe Loading - A Foundation for
Secure Execution of Untrusted Programs," Security and Privacy (SP), 2012 IEEE
Symposium on, pp. 18-32.

[19] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel and G. Vigna, '"Execute
This! Analyzing Unsafe and Malicious Dynamic Code Loading in Android
Applications,".

[20] D. Sbirlea, M.G. Burke, S. Guarnieri, M. Pistoia and V. Sarkar, '"Automatic
detection of inter-application permission leaks in Android applications," IBM
Journal of Research and Development, vol. 57, no. 6, pp. 10:1-10:12.

[21] H. Shukla, V. Singh, Young-Ho Choi, Jaeook Kwon and Cheul-hee Hahm,
'"Enhance OS security by restricting privileges of vulnerable application," Consumer
Electronics (GCCE), 2013 IEEE 2nd Global Conference on, pp. 207-211.

[22] S. Hatwar and C. Shelke, '"An Assess Android Antimalware that Detects
Malicious Dynamic Code in Apps," International Journal of Computer Science and
Mobile Computing, vol. 3, no. 3, pp. 263.

[23] B.J. Berger, M. Bunke and K. Sohr, '"An Android Security Case Study with
Bauhaus," Reverse Engineering (WCRE), 2011 18th Working Conference on, pp. 179-
183.

[24] A. Hense, F. Quadt and M. Romer, '"Towards a Mobile Workbench for
Researchers," e-Science, 2009. e-Science '09. Fifth IEEE International Conference
on, pp. 126-131.

[25] L.M. Murphy, '"The Busy Coder's Guide to Android Development ", ed. 1.3,
2008.

[26] F.J. DiMarzio, '"Android: A Programmer's Guide,", ed. 1, 2008.

[27] Google, '"Using the Emulator | Android Developers ", vol. 2014, no. 6/3/2014.

[28] Socketeq, '"Run Android on Windows -- Windroy, Android with Windows kernel
", vol. 2014, no. 6/3/2014.

[29] BlueStacks, '"BlueStacks ", vol. 2014, no. 6/3/2014.

[30] T.J. McCabe, '"A Complexity Measure," Software Engineering, IEEE
Transactions on, vol. SE-2, no. 4, pp. 308-320.

[31] A. Smith, '"Smartphone Ownership - 2013 Update,".

[32] Cisco, '"Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update, 2013 – 2018,".

10 References

- 78 -

[33] Gartner, '"Gartner Says Worldwide Application Infrastructure and Middleware
Market Revenue Grew 5.6 Percent in 2013 " Gartner Announcements, Thu, 15 May.

[34] Anonymous '"Data Protection Acts 1988 and 2003: Informal Consolidation -
Data Protection Commissioner - Ireland ", vol. 2014, no. 6/10/2014.

[35] F.P.C. George, '"Driving Risks and Accidents,", vol. 2014, no. 6/6/2014.

[36] T. Åkerstedt, P. Philip, A. Capelli and G. Kecklund, '"Chapter 11 - Sleep loss
and accidents—Work hours, life style, and sleep pathology ", vol. 2014, no.
6/6/2014.

[37] R.A. Barkley and D. Cox, '"A review of driving risks and impairments associated
with attention-deficit/hyperactivity disorder and the effects of stimulant
medication on driving performance " J.Saf.Res., vol. 38, no. 1, pp. 113 <last_page>
128.

[38] L. Di Milia, M.H. Smolensky, G. Costa, H.D. Howarth, M.M. Ohayon and P.
Philip, '"Demographic factors, fatigue, and driving accidents: An examination of the
published literature " Accid.Anal.Prev., vol. 43, no. 2, Mar, pp. 516-532.

[39] T. Manly, '"The Sustained Attention to Response Test (SART) - Neurobiology of
Attention - Chapter 55 ", vol. 2014, no. 6/6/2014.

[40] J.R. Simon and A.M.J.r. Small, '"Processing auditory information: interference
from an irrelevant cue," Journal of Applied Psychology, vol. 53, pp. 433.

[41] J.R. Stroop, '"
Studies of interference in serial verbal reactions," Journal of Experimental
Psychology, vol. 18, pp. 643.

[42] S.W. Park, E.S. Choi, M.H. Lim, E.J. Kim, S.I. Hwang, K.I. Choi, H.C. Yoo, K.J.
Lee and H.E. Jung, '"Association between unsafe driving performance and
cognitive-perceptual dysfunction in older drivers " PM R., vol. 3, no. 3, Mar, pp.
198-203.

[43] D. Romer, Y. Lee, C.C. McDonald and K.F. Winston, '"Adolescence, Attention
Allocation, and Driving Safety " Journal of Adolescent Health, vol. 54, no. 5, pp. 6.

[44] C. Collet, C. Petit, A. Priez and A. Dittmar, '"Stroop color–word test, arousal,
electrodermal activity and performance in a critical driving situation "
Biol.Psychol., vol. 69, no. 2, pp. 195 <last_page> 203.

[45] J.S. Bajaj, D.M. Heuman, R.K. Sterling, A.J. Sanyal, M. Siddiqui, S. Matherly,
V. Luketic, R.T. Stravitz, M. Fuchs, L.R. Thacker, H. Gilles, M.B. White, A. Unser,
J. Hovermale, E. Gavis, N.A. Noble and J.B. Wade, '"Validation of EncephalApp,
Smartphone-based Stroop Test, for the Diagnosis of Covert Hepatic Encephalopathy
" Clinical Gastroenterology and Hepatology.

[46] C.M. MacLeod, '"Half a century of research on the Stroop effect: an integrative
review " Psychol.Bull., vol. 109, no. 2, Mar, pp. 163-203.

[47] E.A. Dunne, '"Measuring Sustained Attention in a Driving Simulator,".

[48] S. Park, K.E. Hong, Y.H. Yang, J. Kang, E.J. Park, K. Ha, M. Park and H.J. Yoo,
'"Neuropsychological and behavioral profiles in attention-deficit hyperactivity

10 References

- 79 -

disorder children of parents with a history of mood disorders: a pilot study "
Psychiatry.Investig., vol. 11, no. 1, Jan, pp. 65-75.

[49] V. Piai, A. Roelofs, D.J. Acheson and A. Takashima, '"Attention for speaking:
domain-general control from the anterior cingulate cortex in spoken word
production " Front.Hum.Neurosci., vol. 7, Dec 9, pp. 832.

[50] G. Dong, X. Lin, H. Zhou and Q. Lu, '"Cognitive flexibility in internet addicts:
fMRI... [Addict Behav. 2014] - PubMed - NCBI ", vol. 2014, no. 5/23/2014.

[51] M. Jackson, R. Croft, G. Kennedy, K. Owens and M. Howard, '"Cognitive
components of simulated driving pe... [Accid Anal Prev. 2013] - PubMed - NCBI ",
vol. 2014, no. 5/23/2014.

[52] S.T. Mueller and B.J. Piper, '"The Psychology Experiment Building Language
(PEBL) and PEBL Test Battery " J.Neurosci.Methods, vol. 222, Jan 30, pp. 250-259.

[53] A.H. Al-Balbissi, '"Role of gender in road accidents " Traffic Inj.Prev., vol. 4,
no. 1, Mar, pp. 64-73.

[54] R. Factor, D. Mahalel and G. Yair, '"Inter-group differences in road-traffic
crash involvement " Accid.Anal.Prev., vol. 40, no. 6, Nov, pp. 2000-2007.

[55] M. Hasselberg, M. Vaez and L. Laflamme, '"Socioeconomic aspects of the
circumstances and consequences of car crashes among young adults " Soc.Sci.Med.,
vol. 60, no. 2, Jan, pp. 287-295.

[56] S. Chandraratna, N. Stamatiadis and A. Stromberg, '"Crash involvement of
drivers with multiple crashes " Accid.Anal.Prev., vol. 38, no. 3, May, pp. 532-541.

[57] S. Brown, J. Timoney and T. Lysagth, '"Software Testing - Principles and
Practice,", 2012.

[58] Yonghong Wu, Jianchao Luo and Lei Luo, '"Porting Mobile Web Application
Engine to the Android Platform," Computer and Information Technology (CIT), 2010
IEEE 10th International Conference on, pp. 2157-2161.

11 Appendices

- 80 -

11 Appendices

11.1 A. Complete UML diagram of the data model

11 Appendices

- 81 -

11.2 A. Complete table of correlations between numeric responses, Stroop and driving measures

age license.year self.score cong.c cong.inc incong.c incong.inc neutral.c neutral.inc multiple.tries rt.avg rt.avg.c rt.avg.c.cong rt.avg.c.incong rt.avg.c.neutral stroop.score dist.sd dist.avg user.acc user.dec user.br rt.br.avg missed.br.save

age 0

license.year -0 0

self.score -0 0.682590601 0

cong.c -0 -0.05762063 -0.200454 0

cong.inc 0.5 0.229840032 0.071087 -0.225 0

incong.c -0 0.189390752 0.211732 0.441 -0.3738 0

incong.inc -0 0.052281052 0.363823 0.134 0.04374 0.37716 0

neutral.c -0 0.138377097 -0.023476 0.307 -0.4065 0.63717 -0.387154 0

neutral.inc -0 0.218562463 -0.28656 -0.096 -0.3101 0.29166 -0.458475 0.552982 0

multiple.tries 0.5 0.09819473 -0.06368 -0.652 0.62017 -0.8102 -0.070535 -0.72365 -0.1666667 0

rt.avg 0.4 -0.03453967 -0.025164 -0.822 0.45353 -0.8303 -0.161541 -0.68217 -0.1425032 0.940937536 0

rt.avg.c 0.5 0.009916365 -0.012848 -0.786 0.50992 -0.8215 -0.095855 -0.72106 -0.167583 0.96943567 0.994 0

rt.avg.c.cong 0.5 -0.0186611 -0.072932 -0.697 0.54042 -0.8693 -0.123808 -0.74618 -0.242824 0.978313514 0.975 0.9857 0

rt.avg.c.incong 0.5 0.028655526 0.025204 -0.812 0.47296 -0.7342 0.005252 -0.69194 -0.0917299 0.935837838 0.962 0.9739 0.928681812 0

rt.avg.c.neutral 0.4 0.00977456 0.009444 -0.771 0.51253 -0.8447 -0.120474 -0.73567 -0.2107495 0.961048356 0.993 0.996 0.988975746 0.95418836 0

stroop.score -0 0.067508853 -0.063375 0.856 -0.3843 0.79047 0.0860902 0.701215 0.2034232 -0.886716521 -0.99 -0.9723 -0.94021478 -0.951525795 -0.975040192 0

dist.sd 0.4 0.291229884 0.21245 -0.664 0.58548 -0.7755 -0.211821 -0.58645 -0.2592255 0.885136528 0.875 0.8822 0.90621494 0.787708861 0.905574446 -0.84049185 0

dist.avg 0.2 0.283553075 0.359344 -0.65 0.38175 -0.7766 -0.251165 -0.57726 -0.258664 0.74774348 0.82 0.8061 0.804402101 0.728112897 0.844362207 -0.82944802 0.919 0

user.acc 0.3 0.223064014 0.212992 0.048 -0.0117 0.12699 -0.169922 0.430656 -0.1595785 -0.166669793 -0.18 -0.1985 -0.13527757 -0.295625931 -0.180748579 0.202010304 0.1428 0.01313 0

user.dec -0 -0.19298227 -0.225684 -0.008 0.07878 -0.127 0.107012 -0.37913 0.1805912 0.156003223 0.157 0.1727 0.113974545 0.265975859 0.156166246 -0.16157995 -0.147 -0.026 -0.9914 0

user.br 0.3 0.159411369 0.234553 -0.032 -0.1449 0.12491 -0.041919 0.320798 -0.1986031 -0.142589461 -0.13 -0.1438 -0.09059183 -0.231580374 -0.128759112 0.118146256 0.1487 0.03853 0.96576 -0.99136 0

rt.br.avg -1 0.195172847 -0.18968 0.462 -0.0598 -0.0855 -0.420829 0.024382 0.1984212 -0.108016489 -0.19 -0.1919 -0.11511384 -0.305228006 -0.148363681 0.266706818 -0.029 0.03907 -0.2611 0.3082 -0.35 0

missed.br.save 0.2 0.171048884 -0.4776 -0.172 0.31009 -0.4861 -0.282138 -0.31745 0.375 0.666666667 0.494 0.5345 0.575717393 0.499408636 0.50647728 -0.35990259 0.465 0.26374 -0.1815 0.19161 -0.198 0.32412 0

