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Abstract 

The goal of this project was to design and implement a smartphone-based wearable system 

to detect fall events in real time. It has the acronym STEADI. Rather than have expensive customised 

hardware STEADI was implemented in a cost effective manner using a generic mobile computing 

device. In order to detect the fall event, we propose a fall detector that uses the accelerometer 

available in a mobile phone. As for detecting a fall we mainly divide the system in two sections, the 

signal processing and classification. For the processing both a median filter and a high pass filter are 

used. A Median filter is used to amplify/enhance the signal by removing impulsive noise while 

preserving the signal shape while the High pass filter is used to emphasise transitions in the signal. 

Then, in order to recognize a fall event, our STEADI system implements two methods that are a 

simple threshold analysis to determine whether or not a fall has occurred (threshold-based) and a 

more sophisticated Naïve-Bayes classification method to differentiate falling from other mobile 

activities. Our experimental results show that by applying the signal processing and Naïve-Bayes 

classification together increases the accuracy by more than 20% compared with using the threshold-

based method alone. The Naïve-Bayes achieved a detection accuracy of 95% in overall. Furthermore, 

an external sensor is introduced in order to enhance its accuracy. In addition to the fall detection, 

the systems can also provide location information using Google Maps as to the whereabouts of the 

fall event using the available GPS on the smartphone and sends the message to the caretaker via an 

SMS.  
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1 Introduction  
This chapter provides a high level description of the thesis work. The motivation behind 

developing a fall detector is introduced. The technical problems, challenges, and the research 

questions derived are described here. Lastly, the objectives and structure of this thesis are 

given. 

1.1  Motivation for Fall Detection System Implementation 
Fall detection system has become a popular research topic because of the effects and 

problems that are caused by falls on the increasing population of elderly people, that is, 65 

years of age and above, throughout the world [1]. 

Every year, one in every three adults aged 65 and older falls. However, it's not the 

event itself that we are most concerned with. The impact of the fall itself is the backbone of 

the problem. As people gradually growing older, they typically become frailer, more 

unsteady, and have slower reactions then their younger counterparts. Thus, they are more 

likely to be injured than other people, such as athletes or toddlers, who are also considered to 

fall regularly [41]. 

From all the fall events that have been reported among adults, 40-60% of those lead to 

major injuries, 30-50% are minor injuries, and 5-6% result in fractures .Unfortunately, many 

older adults who sustain fractures due to a fall never regain their previous level of mobility. 

Worst of all, 20% of fall-related hip fractures result in death within a year [1]. 

Speaking of which, the details as to how fall events can lead to other social and 

economic concerns are mentioned below: 

“An injurious fall in a person over 65 can cost the healthcare system US$1049 in 

Australia (Hendrie et al.,2003) or US$3611 in Finland (Nurmi I. & Lüthje P., 2002). If falls 

rates are not reduced in the immediate future, the number of injuries caused by falls is 

projected to double by 2030 (Kannus et al., 2007). “ [1] 

Another common problem is that 54% people over 70 express a fear of falling, which 

results in a reduction in their physical and social activities that could possibly lead to a 

decline in their physical performance as well as decline in their cognitive performance. [42]  

Other than the elderly, falls can also be caused by other circumstances, for example to 

epilepsy patients who are at risk of falling during a seizure due to loss of consciousness, as 

well as to people with the high risk of getting a heart attack or stroke.  [43] 

A fast medical treatment is desired in all such fall situations. However, the fall might 

immobilize the victim to the extent that they are not able to reach a phone to call for help. 

Moreover, if the person ends up in an unconscious state, they may not be able to inform their 

relatives/caretakers. Thus, an automatic fall detection system that requires no human witness 

to raise the alarm would be very beneficial.  

 

1.2 Technical Problem and Challenges 
As people live longer and want to retain their mobility, there is a need for assistive 

technologies to support them. Falls are a very common reason for injuries in geriatric patients. 
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A system that is able to detect a fall event is highly desirable. The crux of the problem is 

designing an algorithm that can differentiate reliably between falling and other mobility 

events [44]. Furthermore, it should be dependable to prevent false alarms but also not fail to 

raise alarm. 

For the recognition of a fall event, some of the current technological solutions are costly 

to implement. We think that the best approach is to have some form of wearable sensor 

equipped with an accelerometer for collecting and processing movement data real- time. An 

accelerometer is an electromechanical device that will measure acceleration forces. If they 

are dynamic, they are by moving or vibrating the accelerometer [9]. There are three main 

challenges with this as described below: 

 The first challenge is to determine when a fall happens. The accelerometer signal 

associated with a fall should be known. However, a fall can vary in terms of its 

direction and speed depending on the circumstances. Needless to say, the 

accelerometer signal can also vary across different people depending on their size. 

 The second challenge is the system accuracy. The ideal system will able to accurately 

to detect every fall and should not give a false alarm. This is challenging because 

people have different activities of daily living (ADL), such as jogging, walking, 

sitting. These will also produce a signal on the accelerometer but should not be 

misclassified as a fall. 

 The last challenge is the budget and time needed to develop fall detection system 

because this system should be implemented in a cost effective manner within a 

limited timeline and should be in a form that is affordable for many people. Thus, the 

reason behind choosing the type of sensor, the computing device, and the detection 

algorithm selected becomes another challenge. 

 

1.3 Research Questions 
From the motivation, technical problems and challenges mentioned above, we are able to 

derive the research question for this thesis work: 

 Is it possible to have a technology for fall detection that is: affordable, robust, portable, 

reliable? Can this be implemented in a cost effective manner using generic computing 

device? That is, can it satisfy the requirements to be an assistive technology? 

 Are we able to use a simple signal processing algorithm that is fast and can accurately 

detect a fall? Will another method, such as a statistical or machine learning technique, 

be needed to enhance the system accuracy?  

 Can we use smartphone as a fall detection device that will reliably give an accurate 

assessment as to whether a fall has taken place? 

 How can we contact a relative where the fall event has occurred? Will this work in 

both external and internal environmental scenarios? How reliably can our technology 

provide the information of the fallen person’s whereabouts? 
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1.4 Objective of The Project 
 The system developed intends to design and implement a device that can differentiate 

between the activities of daily living and falling. The device is categorized as a wearable 

device that should satisfy the basic requirements as mention below: 

 The system shall be able to process the signal in real time. 

 The system must be portable, light weight and easy to wear. 

 The system must be implemented in a cost effective manner using a generic 

computing device. 

 The system should be able to inform relatives/caretaker the information of the fallen 

person whereabouts. 

Thus, the algorithm developed in this thesis is intended to differentiate between activities 

of daily living includes sitting, standing, walking and jogging. Since the system is design for 

geriatric patients, the activity of running vigorously may be excluded. The recognition 

accuracy should be high. 

The algorithm should be implemented using an affordable, portable technology. The 

solution that immediately comes to mind here is a modern smartphone-based application that 

has the facility of an accelerometer sensor, either internally or externally, and would also be 

of reasonable cost.  

1.5 Structure of Thesis 
Chapter 1 introduces the motivation of this thesis work, along with some general information 

about the problem as well as a brief introduction to the approach used for our solution. 

Chapter 2 is the review, which critically evaluates related work in this area. Chapter 3 

describes software development techniques as well as the system algorithm and the reason for 

using it as a solution. Chapter 4 gives the result of several tests conducted during the 

development of the system. Chapter 5 presents a summary of the work and conclusions along 

with some recommendations for future work. 
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2 Related Work  
There are several approaches to implementing a fall detection system, and all of them have 

one similar thing. They use some type of sensor to continuously monitor the condition of the 

target user. This includes (a) video based fall detection, in which the environment is 

continuously monitored by a video Camera and the captured image is digitally processed. [8] 

(b) audio-based fall detection where the system will distinguish between sound frequencies, 

and detect the audio signature of a fall event in comparison to those of ADL, (c) wearable 

sensor based fall detection where the fall is detected by sensor devices attached using a 

generic computing device or bespoke/custom designed hardware to the person [2], and (d) an 

indoor smart floor pressure sensor that will differentiate between different pressures made by 

the person [1]. All these are reviewed in the following sections. 

2.1 Video-based Fall Detector  
Due to the recent advancements in image processing techniques and the availability of low 

cost cameras, video based far detection become more feasible and has turned into one of the 

important areas for development [8]. There are several different approaches for implementing 

such systems. Typically, a video-based sensor uses video surveillance to monitor the user’s 

condition as well as digital image processing applied to the real-time video-captured imaging 

in order to detect whether or not a falling event has occurred as shown in figure 2.1 where the 

movement of the person in the video is captured by the form and position of the shape 

representation in the panel below. A reliable system and efficient surveillance video system 

needs to be robust. Therefore, the correct choice of camera, the position of the camera, and 

appropriate video compression method are important aspects to be considered. [9]. One 

simple method is based on the analysis of a moving object by monitoring its bounding box's 

aspect ratio. However, the ratio itself can also be altered due to blocking by other objects as 

well as the relative position of the person with respect to the camera. Others including, Lee, 

[10] detects a fall by analysing the shape and 2D velocity of the person. Vaidehi in [8] uses 

another alternative model for detecting fall. They implement the system by using static 

parameters of the person under observation such as their aspect ratio and then monitor the 

continuous change of their inclination angle. This method is computationally less intensive as 

it does not involve any velocity computation.  

 

Figure 2.1: Example of video based fall detection system. 

The advantages of the video surveillance system is  that it  provides a secure and quick 

intervention for senior citizens, and it's claimed that the video-tape images before fall 

occurrences can supply important information to give a better understanding of the origins of 

the falls [11]. However, because of the importance of camera position it makes this approach 

difficult to be portable. Furthermore, not all the users are in favour of this type of intelligent 

video-monitoring system. Some of them are concerned about the safety and privacy of the 

transmission of the video images [11]. 
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2.1 Audio-based Fall Detector  

Another technique that is used for detecting a falling event is based on audio processing. One 

of the research, papers by B. Uğur Töreyin, [12] used both audio and video signals to 

discriminate between falling and other ADL activities. A typical stumble and fall produces 

high amplitude sound as shown in figure Y.  

 

Figure 2.2. (a) a typical amplitude of fall signal, and while a normal ADL signal, person talking 

is shown in figure (b)  

In this particular work, a wavelet transform is applied to the audio data. Their results 

showed that the wavelet coefficients of a fall sound are different to those for ADL. Hence, 

it’s possible to do some signal processing to extract wavelet features, and then by using one 

of machine learning techniques (i.e. HMM) classification of wavelet values can be achieved 

to say whether a fall has happened or not.  

Other approaches of using an audio signal for detecting fall is done by Xiaodan, [13]. 

They use the Gaussian Mixture Model as their baseline. The system will identify the 

existence and approximate occurrence time of falls. Each audio signal then is classified into 

several categories, mainly fall or various type of noise. To better distinguish falls from all 

competing noise sounds, they model falls and classes of noise in the living environment. Each 

class should have a sufficient number of instances in the training data. Each class is relatively 

distinguishable from others. The classes are chosen to better distinguish fall from noise. 

Though the signal generated from fall event can be distinguished from ADL, unfortunately 

this approach will not effective in an outdoors environment where audio signals can come 

from various different sources that will confuse the detection algorithm.   

2.2 Wearable Sensor-based Fall Detector 
In order to implement a fall detection system, a number of algorithms based on a wearable 

accelerometer and gyroscope have been proposed. One approach in common use is to 

discriminate between ADLs and falls by a threshold value (for acceleration and angular 

velocity). Nyan et al.[14] monitored fall events by utilizing a 3-axis accelerometer and 2-axis 

gyroscope strapped into thigh and waist. Other, such as Bourke and Lyons used a gyroscope 

mounted on the torso to measure the pitch and roll angular velocity data. Thresholds were 

again used to distinguish between falls and ADL. In [15] the PerfallD team measured the fall 

event by using a smartphone with a magnetic accessory. Before a fall happens, the magnetic 

field (MF) values are on a relatively stable high level. At the beginning of a fall, the MF 
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value decreases slowly, but suddenly goes higher, making a salient convex shape, and then 

decreases quickly. After it reaches the minimum, it turns back to higher value that is much 

lower than the value before falling, and then remains relatively stable afterward[15]. 

Similarly, Yavuz et al. implement the system using an accelerometer and apply the discrete 

wavelet transform (DWT) to the signal captured rather than solely using a threshold-based 

method. They claim that, compared to a simple threshold-based algorithm, using wavelet 

transforms achieve a better true positive performance while decreasing the rate of false 

positives drastically [16]. Jay, use a slight different algorithm that was based on the 

observation that when a person falls, he or she will have different position before the fall to 

after [11]. The simplest example would be from standing upright to lying flat, give an 

orientation change in around 90 degrees. From the orientation and time of falling information, 

some information can be extracted. So far, the wearable sensor fall detector is considered to 

be a better approach to detect the fall event both indoors and outdoors. However, the current 

systems that are developed are limited only to differentiate ADL with lower impact such as 

walking, sitting and standing to an actual fall event.  

2.3 Indoor Smart Floor Fall Detector 
An indoor smart floor sensor is another option for detecting fall [1]. One possible 

implementation of this smart floor sensor is to do gait assessment. Human gait is a complex 

balance challenge, in which a person must initiate a fall forward and recapture their 

momentum through the appropriate placement of their leading foot [1]. Deficits in balance 

and gait are the most predictive risk factors for falls. The potential for loss of balance during 

walking is significant, and it is not surprising that over 50% of falls in older adults occur 

during walking [45].  The GAITRite system from CIR System Inc is one of the most popular 

methods for the objective measurement of Gait parameters in a clinical setting (using devices 

such as a force plate and EMG system) The GAITRite system automates the measurement of 

the temporal (timing) and spatial (distance) parameters of Gait via an electronic walkway 

connected to a PC. [46] The standard GAITRite system is approximately 366cm long and 

contains 13824 sensors spaced at 1.27 cm apart. As the patient walks across the walkway the 

system dynamically captures pressure data with respect to each footstep and calculates both 

temporal and spatial parameters for the walk. 

 

Figure 2.3. Overview of the TRIL Analysis Platform 

The TRIL Centre developed a gait analysis system (Figure 2) which uniquely combines a 

floor-mat sensor, body worn sensors, video capture, and a software user interface for 



10 
 

clinicians [1]. In addition to fall detector, this system  is able to give feedback about user 

human gait and  it would be possible to train a person to have better gait posture [1]. 

However, this system is not portable and hard to develop in a cost effective manner. 

2.4 Summary 
From the analysis in the previous sections it is clear that for the detection of a fall, a wearable 

device is much better than a camera-based system as well as the floor-mat based system due 

to the free user mobility that is being provided. The wearable device is very suitable for both 

indoor and outdoor uses. Thus, we will adopt the same approach for your system. 

Furthermore, it is definitely less expensive if this wearable device is no custom made but 

rather an off-the-shelf system. Thus, we choose a mobile smartphone as it has a built-in 

accelerometer but can also be extended to connect with external sensors. The next question is 

where to place the device and some research has been conducted to determine the ideal 

location on the body for the wearable sensor to achieve the highest accuracy. Therefore, we 

should choose the sensor placement base on previous related work by PerfallD team [9].  
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3 Solution  
In this Chapter, both the software and the hardware components for STEADI are introduced. 

We describe how the accelerometer data was collected from the sensor is processed to 

determine the fall event. This includes the algorithms to clean the signal and find the features 

that are sent to the classifier to determine if a fall has occurred. Two types of classifier are 

discussed. The software development approach is explained ahead of these details. 

 

3.1 Software Development  
In order to fully build the system, an Iterative and Incremental development process is used. 

The idea behind this method is to create a complete system through repeated cycles (iterative) 

of development of small features (incremental) of the full system [14].   

In this model, the whole requirements are divided into different incremental steps. 

Here, the waterfall model is repeatedly applied to enhance STEADI as a fall detection system. 

Each increment produces a new feature and progression in the work [47]. An iteration has 

several phases: requirements, design, implementation and testing phases as shown in Figure 

3.1 below. A working version of software is produced during the first module. The complete 

system is achieved by doing several increments. 

 

Source: [47] 

Figure 3.1: Incremental Life Cycle model 

The incremental model is used as it will have several advantages compared to the other 

software development process models as follows [15]: 

 The working software can be generated quickly and early during the software life 

cycle  

 It is easier to test and debug during a smaller iteration 
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Our detector system, STEADI, which was developed is divided into 5 increments: 

1. The first increment was building a system that is able to capture the user activity 

signal in real time 

2. The second increment was building the software needed to do the signal processing 

and implement it in the real time generic computing device. At the end of this 

increment the system should be able to classify the user activity using a threshold-

based classification method  

3. The third increment is to enhance the fall detector system. However, instead of using 

the threshold-based classification method, another classification technique called 

Naïve-Bayes classification is included. 

4. After the system was applied on a mobile device, other features such as location 

capture and to inform a caretaker/relative that the fall event has occurred are 

implemented. 

5. Lastly, after the system was implemented in a mobile device. We built a similar 

system that also takes information from another external sensor device and compared 

the result with the original system built in android. 

 

3.2 Requirement specifications 
The application was developed to provide an easy access, user-friendly system to detect if a 

fall event happens to the user. The activity signal is captured using the built-in accelerometer 

the device provides. If the fall event has been detected, the system informs the registered 

caretaker/relative of the time and location of the occurrence. Next, the system and user 

activities are shown using UML representations. 

3.2.1 Use case 

 

Figure 3.2 Use case for STEADI fall detection system 

The use start detector represents the initialisation of the sensor activity of the system. It is 

assumed that the user has already launched the application. The system also consists of other 

menus such as registering the care taker. These are shown in the diagram in Figure 3.2. 
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3.2.2 Analysis and application design 
The interaction with the system can be visualized using a sequence diagram.  The application 

acquires the real-time signal from the built-in accelerometer. Then, the signal captured is 

analysed using some type of classification technique.  Every time there is a change on 

android sensor, the system will try to detect an impact event, and as the impact happens 

further signal processing is needed to determine if the impact was a falling event. The 

following activity diagram in Figure 3.3 shows an outline of how the system detects falling 

events. 

 

Figure 3.3: STEADI sequence diagram 

First, the user will have to launch the application before interacting with the system. 

Here, the user needs to activate the sensor to start STEADI reading from the accelerometer. 

While the STEADI service is running in the background it keeps doing signal filtering and 

classification of each buffered signal into either a non-fall (ADL) or fall event.  Once a fall 

event is detected it triggers the alarm to notify the user. Once the fall has been detected, the 

user is able to push a cancel button within 20 seconds if it is a false alarm. We implemented 

STEADI with duration of 20 seconds because it is considered to be enough time for users 

who are slow at operating their phone because of their age [10]. 

3.3 Application Design  
This section describes how STEADI algorithm along with the signal filtering and 

classification are implemented. 

3.3.1 Determining a Fall 
Due to the in-built accelerometer being solely used as the source of data to determine fall 

events, we rely greatly on the quality of data post-processing techniques such as signal 

filtering to enhance the noisy signal coming from the accelerometer. An outline of the 

process is shown in Figure 3.4. 
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Figure 3.4: Fall detection Algorithm 

3.3.2 Choosing a classifier 
The main function of the system is to detect a fall. In order to do so, we need a classification 

system to determine the state of the user in terms of fall and non-fall. Classification is the 

problem of identifying to which of a set of categories (sub-population) a new observation 

belongs to [16]. Once the sensor signal is collected, the raw data is then processed. This will 

be then scanned for particular features that can be categorized to a class. This section 

describes the different kind of classifiers and outlines the reasons we chose the Threshold-

based technique and also the Naïve-Bayes as our classification methods.  

3.3.3 Threshold-based Classification 
This method is most often used to differentiate between each state by a simple amplitude 

value. This method is very easy to implement. However, the presence of noise in the signal, 

and if a fixed threshold applied, make it hard to adapt for different individual cases [21]. It is 

used in our system as it can serve as a starting point for other more complicated methods. 

3.3.4 Statistical classification 
While threshold-based classification can be useful a classification algorithm that involves 

some statistical properties of the signal should improve the accuracy. Such classification 

methods varies from threshold -based classification to more complex algorithm e.g. Naïve-

Bayes classification, artificial neural network or Hidden Markov Model (HMM).  

In machine learning, the classification algorithm are categorized into two classes: 

supervised and unsupervised. Supervised means that labelled training data is provided to the 

classifier so that it can learn how to find the classes before the classifier is given new data. 

Unsupervised means that the classifier must analyse the data itself to find the classes that are 
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present in it. In the subsections below are descriptions of some of the typical machine 

learning techniques for classification. 

 

3.3.4.1 Artificial Neural Networks 
Artificial Neural Networks are computational models that are inspired by the connections 

between natural neurons in the brain. Artificial neutral networks, ANNs basically consist of 

inputs (like synapses), which are multiplied by the strength of respective signals [48], and 

then are evaluated by a mathematical function which determines the activation of neuron. The 

advantage of ANNs includes that they requiring less formal statistical training, and that they 

are quiet flexible to classify a large range of different activities with a highly accurate result if 

correctly implemented. However, some of the networks are difficult to implement and 

sometimes can involves a great computational burden. 

 

3.3.4.2 Support Vector Machine (SVM) 
The SVM is a machine learning algorithm which solves classification problems using a 

flexible representation of class boundaries. SVMs can efficiently perform a non-linear 

classification using what is called the kernel trick, implicitly mapping their inputs into high-

dimensional feature spaces [17]. Though it is quiet powerful to work with a noisy datasets, 

the SVM is slow to train with large dataset as well as sometimes having difficulties to set 

their parameters. 

 

3.3.4.3 K-Nearest Neighbour (KNN) 
KNN is one of the simplest classification methods and works well when there is little or no 

prior knowledge about the distribution of data.  It uses the training set directly to classify an 

input when an input is given [18]. There are some points to note for the advantages and 

disadvantages of KNN: this method can be developed fairly quickly to cluster a range of 

different activities and the learning progress is simple. However, classification is often time 

consuming. 

 

3.3.4.4 Hidden Markov Models (HMM)  
HMM is a statistical technique in which the system being modelled is assumed to be a 

Markov process with unobserved (hidden) states. In a HMM, the state is not directly visible, 

but the output is [19]. Despite of its wide usage for classification, a HMM needs to be trained 

on a set of seed sequences and generally requires lots of sample data. The training involves 

repeated iteration of the Viterbi algorithm, which can be quiet slow. 

3.3.4.5 Naive Bayes Classifier 
A Naïve-Bayes classifier is a simple probabilistic classifier based on applying Bayes theorem 

with the (naive) independence assumption. A naive Bayes classifier can be trained very 

efficiently in a supervised learning setting [20]. The classifier assumes that the existence 

(presence or absence) of some particular features of a class has no relation to the existence of 

other features. Even if these features are not independent with each other, a naïve-Bayes 
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classifier considers all of these properties to independently contribute to the probability [20]. 

The advantage of using the naïve-Bayes classifier for a system lies in the fact that the naïve-

Bayes is able to classify data only with a small amount of training data. This Naïve-Bayes 

method is considered to be a better classifier than other in an environment where only a low 

level of training data is available. Thus, in spite of their naive design and apparently over-

simplified assumptions, naive Bayes classifiers have been shown to work well in many 

complex real world situations [27].  

 

3.3.5 Accelerometer Signal Processing 
“Signal processing is an area of engineering and mathematics that related to operations on 

analog signals as well as digitized signal.” [49]. 

In general, signals can be captured through various devices and methods based on the 

system specification and needs. The term noise in signal processing is a general term for 

unwanted, unknown modification to a signal during capture, storage, transmission, processing, 

or conversion. Noise will also carry no useful information and interferes significantly with 

the integrity of the signal that's being observed. Noise reduction, the recovery of the original 

signal from the noise, is a very common procedure in signal processing systems and this 

process of removing noise is usually done by implementing filters. The following subsections 

will look at the signal processing implemented in the STEADI system before the classifier to 

enhance the signal from the accelerometer. 

In figure 3.5, the block diagram shows the two step of pre-processing the signal before 

extracting the signal feature. 

 

 

 

Figure 3.5 STEADI signal filtering’s block diagram 

3.3.5.1 Buffering technique 
Before we process the signal captured by the built-in accelerometer, the raw signal need to be 

pre-processed to in order to extract some unique features from the signal. Here, a buffering 

technique is used to divide the signal captured into smaller segments, then the filter and 

classifier will be applied independently to each buffer. Each processed buffer gives the 

features that need to be classified. Without the buffering technique, the algorithms would 

process each data sample in succession. This could be considered to be ineffective and 

computationally wasteful as data from more than a few seconds past is irrelevant in 

determining whether a fall event occurred. 

3.3.5.2 Buffering  
There are several different buffering techniques. We use sliding window technique due to its 

simplicity. The sliding window approach does not required complex processing of the signal, 

thus is ideally suited to real-time application. With this method, the signal is divided into 

fixed length frames that are overlapping. Due to its simple method of implementation, most 

activity classification studies have employed this windowing technique [22]. In figure 3.5 

Remove impulsive noise 

(Median Filter) 

 

 

Emphasise signal transition / sharpening   

(High Pass Filter) 
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below is shown an example of raw accelerometer data with a windowed frame of data 

highlighted by vertical bars at 750ms.  

 

 

Figure 3.6 Sliding window technique applied to raw accelerometer data 

 

3.3.5.3 Signal Filtering 
Filter is a procedure to help removing unwanted component, such as noise from a signal [50]. 

Filter are usually specified in the time domain by their impulse response or in the frequency 

domain by their frequency response. 

  

3.3.5.3.1 Median Filtering 

Median Filters are a popular signal processing tool that are used in various applications like 

image and Speech processing, sound analysis, vocal separation and audio noise reduction 

[23]. One of widely use of median filter is to remove crackle sounds from vinyl recordings 

[39]. Median filter are usually used for reducing impulsive noise, enhancing the signal while 

preserving the signal shape.  

The algorithm for median filtering consists of the following steps [64]:  

1 Take an array of data determined by the length of the median filter. 

2. Order the elements by their numerical values.  

4. Take the middle element of selected array as the median value.  

One issue is to deal with edge effects when applying the filter to a set of data. As the filter 

engages and disengages with the signal, padding with zeros needs to be done at the beginning 

and end of the signal as the filter buffer is just filling up with signal values.  
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Figure 3.7:  Application of the median filter to the raw accelerometer data 

 

After the signal is enhanced using median filter, it’s become easier to find impact features. In 

figure 3.6, it is shown that the median filter enhances the noisy signal in the upper panel in 

the region enclosed by the box, by removing impulse noise while preserving the signal giving 

the filtered version in the lower panel. Hence, this technique helps to decrease any false 

positives and false negatives in the fall detection as the signal features become more distinct 

between those that indicate a fall event and those that are due to noise. 

  

3.3.5.3.2 High Pass Filter 

Another filter that we used for processing our captured signal is a High-pass filter (HPF). A 

High pass filter is a filter that will block any signal components which exist below its cut-off 

frequency [50].  

Applying median filter to the raw signal: 

Raw signal is amplified while reducing 

noise and preserving shape.  
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The accelerometer in android is influenced by the gravity.  Here, high pass filter was 

used to reduce the noise from the gravity as well as sharpening the signal by removing the 

unwanted low frequency noise [67].  Figure 3.8 show that we are able to reduce the noise and 

sharpen the fall signal even further by reducing the low frequency noise. 

 

Figure 3.8:  Application of the median filter and high pass filter to the raw 

accelerometer data 

 

3.3.6 Extracting features 
Following the signal enhancement procedure, we can extract signal features from each buffer 

of signal data. The intention behind this approach is to reduce the information complexity 

from that of the complete signal to a set of easily computed features, and hence we can 

increase generalization capability of the classifier [36]. The following figures show three 

different features we could get from the enhanced accelerometer signal given in Figure 3.8: 

the maximum amplitude value in each buffer (Figure 3.9), the mean value of the amplitudes 

in each buffer (Figure 3.10), and the distance between local maxima of signal maximum 

value (Figure 3.11).  

 

 

Figure 3.9:  Enhanced Accelerometer Signal 
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Figure 3.10: Maximum amplitude for each buffer  

 

Figure 3.11:  Mean amplitude value for each buffer 

 

 

Figure 3.12: Local maxima from the Maximum buffer amplitude feature 

A strong candidate feature set was found to be the mean and maximum amplitude 

value of each buffer. The maximum value of the buffered signal is being used because its 

value essentially captures the amplitude spike in the accelerometer signal associated with a 

severe movement such as a fall. The mean amplitude of the buffer is used to find the typical 

amplitude value within one buffer [51]. The mean value summarises the array of amplitudes 

in the buffer into a single value. This helps to differentiate between a sudden and transient 

amplitude spike in the buffer amplitudes against a consistently stronger set of amplitude 

values in a particular buffer that may be associated with a vigorous ADL activity, such as 

jogging and walking down stair that might produce spikes that are similar to, but not exactly 

the same as those associated with falls [11]. The last feature is the distance between the local 
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maxima of the maximum value of the buffered signal feature. With the peaks identified in 

figure 3.11, STEADI will be able to compare the feature before and after an impact has been 

detected. Again, it assists in checking whether the user is still engaging in some type of ADL.  

3.4 Analysis  
The characteristic features of a fall event and activity daily living (ADL), using the features 

of maximum buffer amplitude, mean buffer amplitude and distance between the local 

maxima peaks can also be used to differentiate among a number of ADL events such as 

standing, walking, small jogging, walking to sitting, or using the stairs. This section shows 

how the feature set for several different activities has the potential to produce an impulse 

similar to fall events and how we differentiate those activities with fall event itself.   

3.4.1 ADL Signal Features 
Due to time constraints and practical limitations in carry out the tests, the variety of fall types 

between forward fall, backward fall, leftward fall, and rightward fall have not been examined. 

During different falls that were measured, the maximum value of buffer is always very 

distinct. Thus, it is possible to solely use the maximum buffer value feature with the 

threshold-based classifier [26]. However, sometimes other events produce a similar 

magnitude of maximum buffer values to fall events. Thus, the other features are also used to 

differentiate the event of falling from other ADL. 

Table 3.2 below shows a typical enhanced accelerometer signal along with features 

extracted from various activities. The graphs show how the spike in the features associated 

with an impact detected can be used to make sure that the user has fallen. In the graphs for 

the fall event it is shown that the amplitude of the local maxima peak will decrease 

significantly compare to the other ADLs.  
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Activity Signal Captured Remark 

Falling 

 

Typical signal captured 

from android 

accelerometer 

 

 

Maximum value 

extracted from signal 

captured 

 

 

Mean value extracted 

from signal captured 

 

Table 3.2 (a) fall signal features.  

 

Table 3.2 (a) clearly show the anatomy of falling. First the user engages in activities of daily 

living, then the impulse signal show that the user was in free-fall and makes an impact on the 

ground. 
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Activity Signal Captured Remark 

Jogging 

 

Typical filtered signal 

captured from android 

accelerometer 

 

 

Maximum value 

extracted from signal 

captured 

 

 

Mean value extracted 

from signal captured 

 

Table 3.2 (b) Jogging signal features.  

Here, the waveform clearly shows that running generates almost as high an acceleration 

signal as falling. However, the jogging signal high acceleration looks to be continuous 

compared to the fall signal that has lower acceleration value after impact.  
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Activity Signal Captured Remark 

Walking 

down 

stair 

 

Typical filtered signal 

captured from android 

accelerometer 

 

 

Maximum value 

extracted from signal 

captured 

 

 

Mean value extracted 

from signal captured 

 

Table 3.2 (c) Walking down stair signal features.  

Although the signal clearly also generates almost as high an acceleration as falling. However, 

the high acceleration was followed by a brief low acceleration, unlike the fall signal that has a 

longer low acceleration after impact.  
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3.5 Classification  
In this work we implemented both Threshold-based classification and Naïve Bayes 

Classification. Then, we compared both of them to determine if it was necessary to 

implement the statistical classification method within application. As for the statistical 

analysis approach, the Naïve-Bayes classification was implemented because of its high 

accuracy given a small set of training data [20]. 

3.5.1 Threshold Based Classification  
The threshold-based classification is the simplest way to categorize the event of falling. Here, 

we set the Threshold based on the maximum amplitude of each buffer. Once we recorded the 

training data, we could simply use the value directly to determine the event of falling. 

Initially, we set the threshold to 80 m/s2 as our training data showed that the average 

maximum value of falling event is around 85 to 90m/s2.  If the data captured exceed that 

value, we determined that a fall event has taken in place. Additionally, because different 

individuals might require a different threshold [9], for example, a person with a greater 

weight and height might need to have higher threshold value [26], In STEADI, we have the 

option to set the sensitivity of the application. This sensitivity option is used to decrease and 

increase the threshold.  

3.5.2 Naive Bayes Classifier 
Under the Naive- Bayes classification algorithm in STEADI, it is assumed that for the fall 

event the features are independent of each other. These feature variables will contribute 

evenly to the computation of the probability that a fall has occurred. For the system 

implemented, the Naive-Bayes is trained using the supervised learning setting [28]. The next 

subsection gives an outline of how the classifier works. 

3.5.2.1 The Naive Bayes Probabilistic Model 
The probability of event X given the evidence Y can be represented as below: 

𝑃(𝑋|𝑌) =
𝑃(𝑌|𝑋).𝑃(𝑋)

𝑃(𝑌)
     (3.1) 

where P(X) is the prior probability, that is the probability of event before the evidence is 

applied, and P(X|Y) is the probability of event after incorporating the evidence. Provided that 

P(Y|X), P(Y), and P(X) are known, then P(X|Y) can be calculated.  

To simplify the detection, we only have two classes, fall and non-fall. All other ADL 

such as walking, using the stair, jogging, and sitting are classified as being non-fall. As for 

the attribute, for the evidence, we use the 3 described in Section 3.3 and 3.4. A summary is 

given in Table 3.2. 

Parameter Number of Parameter Remark 

Class 2 Fall and Non-fall 

Evidence/attribute  3 Max buffer value, Mean 

buffer value, local maxima 

distance 

Table 3.3 STEADI Naïve-Bayes classification parameter 

The probability model for the classifier is a conditional model as shown below: 
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𝑃(𝑋|𝑌1, … , 𝑌𝑛)      (3.2) 

The Bayesian Probability terminology can be written as 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =  
𝑝𝑟𝑖𝑜𝑟 𝑥 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒
    (3.3) 

In practice, only in the numerator (3.3) is of interest because the denominator does not 

depend on X and the values of the features Y are given, so that the denominator is effectively 

constant [28].  

The numerator is equivalent to joint probability model, which can be written as follows, 

𝑃(𝑋, 𝑌1 … , 𝑌𝑛) = 𝑃(𝑋)𝑃(𝑌1|𝑋) … . . 𝑃(𝑌𝑛|𝑋, 𝑌1 … . 𝑌𝑛)   (3.4) 

As for the naive conditional independence, we assume that each Y is conditionally 

independent of every other feature given the category X, thus the conditional probability over 

the class variable X is: 

𝑃(𝑋|𝑌1, … , 𝑌𝑛) =  
1

𝑍
𝑃(𝑋) ∏ 𝑃(𝑌1|𝑋)𝑛

𝑖=1     (3.5) 

Where Z = 𝑃(𝑌1 … , 𝑌𝑛) is a scaling factor dependent only on the features F1,…, Fn [28]. 

With (3.5) it is possible to apply the Naïve-Bayes classification in STEADI. STEADI uses 

the value of 0.5 for the prior for both fall and non-fall event because we assume that the 

probability for such event is unknown and thus they are equally likely. From (3.5) in order to 

get the probability of falling event, the training data is used to calculate the evidence and 

likelihood for each feature. The training data were taken from two material arts student, they 

were asked to do the following activities: 

 Walking followed by simulated falling 

 Standing followed by simulated falling 

 Running followed by walking 

 Walking up/down stair 

 Walking followed by sitting 

The training data was then collected and is shown in Table 3.3 for the three features over the 

two classes. 
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Class Maximum value Mean Value Local Maxima distance 

Fall Event 97.44628 

110.9488 

108.3926 

112.5929 

92.29689 

98.21989 
 

35.41202 

33.24051 

28.39338 

39.16586 

27.13851 

33.61478 
 

55.36282394418663 

50.54269711509716 

59.88731678644783 

51.36883782689136 

56.91362 
 

Non-Fall 90.26046 

94.7635 

89.67175 

95.53383 

84.05313 
 

23.69591 

29.08734 

24.52235 

24.28613 

22.43171 

24.10916 

19.75125 

28.9545 

24.59877 

20.44753 

27.46918 

23.69591 

19.11767 
 

24.31397930818467 

23.44238364185715 

39.3385238046875 

40.88731678644783 

25.179158581382765 

35.24026 
 

Table 3.4 STEADI training data for Naïve-Bayes classification 

From the training data then we can measure the mean value and variance of each 

feature which is shown in Table 3.4. 

Class Mean value Standard deviation Remark 

Fall 103.31621061166668 70.3872 Maximum value 

 32.82751127666666 19.9341 Mean value 

 54.81505877941129 15.1403 Gap value 

Non-fall 90.85653335399029 21.2966 Maximum value 

 24.012876193846157 10.0283 Mean value 

 31.400270077557185 64.0022 Gap value 

 Table 3.5 STEADI training data for Naïve-Bayes classification 

Using (3.3) the numerator for each class can then be calculated. Due to fact that the 

evidence between a fall and non-fall event given the specific value of maximum, mean and 

local maxima distance extracted from signal acceleration are equal  , we are able to determine 

the event (fall/non-fall) by solely comparing the numerators [28].     
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3.6 Implementation on Android  
In this section we describe the detail of the system implementation on an actual android 

mobile device.  

3.6.1 Background to Android 
In order to detect the event of falling, we need to be able to design an algorithm that can 

differentiate reliably between falling and ADL. In implementing such system, a real-time 

processing application is needed. Real-time signal processing demands an extremely high 

computational performance. At one time it was done by using a specialized microprocessor 

[52]. This would pursue performance at the expense of other system features such as 

generality, maintainability, and portability among other things [52]. Fortunately, nowadays 

real time signal processing can be done with generic computing device.  

There were two main motivations behind the work in this thesis. First, we wanted to 

develop an assistive technology for detecting fall that was robust, portable and reliable. This 

implementation needed to be done in cost effective manner using a generic computing device. 

Thus, we developed the system for one of most common devices that is widely used and 

affordable: the Android smartphone [29]. Android is the first open source mobile application 

development platform based on Linux kernel. [29] The popularity of android is increasing 

year on year since it was unveiled in 2007 [29] along with the founding of the Open Handset 

Alliance—a consortium of hardware, software, and telecommunication companies devoted to 

advancing open standards for mobile devices [30]. Android is capable of doing multitasking, 

creating an intents to integrate each application installed on the device, using navigation, 

developing apps and utilizing various kind of sensors.  

3.6.2 Android OS Architecture 
The Android OS is a software system that is divided into several components as illustrated in 

Figure 3.12 below: 

 

Figure 3.13: Android Architecture [53] 
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Figure 3.12 shows that Android is running on Linux. The Linux kernel provides system 

functionality like memory management, process management as well as device management 

[54]. Android is provided with various libraries including an open-source Web browser 

engine, a SQL database which is used for storage and sharing data between applications. It is 

also equipped with libraries to play and record audio and video, and has SSL libraries that are 

responsible for its internet system and security among other things.  

During run time, Android uses another key component called the Dalvik Virtual 

Machine which is similar to Java Virtual Machine [65]. As for running various applications, 

Android provides an application framework with lots of services that can be used by any 

application built for it.  

3.6.3 Android Application and Development Environment 
Android applications are written in Java language. Once it is compiled into bytecode, it will 

be converted to a .dex file, a Dalvik executable file, using a dx converter. Further, it will be 

compiled into an Android package file that can be installed on any Android device [54]. Each 

android application is treated as single Linux user, each application is identified by a unique 

Linux user id with its own virtual machine. Android applications usually composed of four 

basic components [54]. The main building blocks of an android application can be listed as 

follows [54].  

1. Activity 

Activity is usually categorized as the User interface (UI) of its application which the user 

will interact with. An application usually consists of multiple activities that are bound to 

each other [31] and the main activity will first appear in the UI when the application is 

launched. An Activity can also be stopped, suspended, paused, resumed and destroyed. 

2. Service 

Services are designed to allow one of an application’s features to run in the background. 

Services are responsible for tasks like updating, remote processes and also continuous 

monitoring of sensors. However, service does not provide UIs. 

3. Content Provider 

The Content Provider is a mechanism that allows applications to share data between each 

other. There is no specific type of data structure implemented by the system. The Content 

provider is uniquely identified by its authority and contains many types of object. The 

most common method of accessing an object is to query the Content provider with the 

specific content of an android Uniform Resource Identifier (URI) as the basis for 

requesting data. 

4. Broadcast Receiver 

Broadcast receiver is an android component that can receive an event and react to events. 

Each broadcast receiver will register a particular event that they are interested in, for 

example listening for an outgoing MMS message. When events occur, they are 

represented as Intents. Those intents are then broadcast to the system. 
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3.6.4 Android Implementation 
This section describes the STEADI implementation using Android. The source file and the 

resources required by the application are explained here. 

3.6.4.1 Android “manifest.xml” 
The android manifest is a file consisting of important information related to the application 

that is required by the Android system for launching the application. The minimum API level 

is declared here as well as all the components that are used in the application. The manifest 

also consists of different kinds of permissions such as camera access, messaging, and location 

manager [31].   

3.6.4.2 Android Component 
We need an interface that enables the user to do important activities as mentioned in the use 

case in Section 3.2.1. Therefore, because this application is targeted at various users from 

different kinds of backgrounds, a clear, direct UI that is easy to use is important. The UI can 

be simple and minimal. The STEADI application comprises of three activity classes and one 

service class. The first activity class is implemented as a welcome screen that has two menus: 

Start detector and Register user. The main view is defined in the main.xml layout file. Figure 

3.13 picture shows the main layout along with its menu. 

 

 

Figure 3.14: The main layout view of the application 

The register relative button on the main layout will direct the user to the next activity 

that enables the user to register their caretaker along with the name and phone number. The 

UI is shown in figure 3.14. All the data are saved in the Android shared preferences; hence, 

the data can be shared throughout all activities.  
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Figure 3.15 Register a relative UI layout 

The last activity class is triggered when a fall event is detected. This activity will 

inform the registered care taker by sending the information message with the location of the 

occurrences to desired phone.  

As for the service class, STEADI consist of four main classes: FallDetector.java, 

FallListener.java, FallService.java, and GPSTrackker.java. The FallListener is an interface 

that consists of the method onFall() that needs  to be overwritten by the FallService class. 

The FallDetector class implement the SensorEventListener. Here, the algorithm for detecting 

a fall event is implemented, including the signal processing and the data classifier. 

3.6.4.3 Android Location Tracker 
In order to detect the location of the devices Android uses GPS and Android's Network 

Location Provider to provide the user location coordinate.  

  Although GPS is most accurate, it only works outdoors, it quickly consumes battery 

power, and doesn't return the location as quickly as users want. Android's Network Location 

Provider determines user location using cell tower and Wi-Fi signals, providing location 

information in a way that works indoors and outdoors, responds faster, and uses less battery 

power.  [55] 

 Hence, STEADI implements both the GPS and the Network Location Provider so that 

the whereabouts of the fall event can be detected both for indoors and outdoors locations. The 

relevant class is GPSTrackker.java. The GPSTrackker object is called in the TestActivity.java 

which includes the method to automatically inform the caretaker after the fall detected. In the 

TestActivity.java we implement the Runnable interface which do the time counting in the 

background and will automatically trigger the sms if the user didn’t push any cancel button 

during certain timeline as shown in figure 3.16.  
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Figure 3.16 After Fall detected UI layout 

3.7 Adding an External Sensor  
They are several ways to improve STEADI’s accuracy to detect fall, one of which is 

including another peripheral device with a gyroscope and accelerometer and integrating the 

data it generates on the mobile device. With this peripheral device we were able to put our 

mobile phone anywhere, in the user’s bag for example [61]. In this section, we describe the 

STEADI implementation using an Arduino-based sensor as the peripheral device.  

3.7.1 Implementation of a Peripheral Device 
The Arduino uno is a microcontroller board based on the ATmega328 [59]. This device is 

highly accessible and very prevalent offering developers and casual users a chance to get 

started in experimenting with microcontroller projects. Arduino projects can be developed in 

several programming languages through an IDE such as Processing [59]. 

For STEADI, our Arduino was equipped with an IMU (Inertial Measurement Unit) 

that had 6DOF (degrees of freedom), consisting of an ADXL345 accelerometer and ITG-

3200 gyroscope [66] as shown in figure 3.17.  

 

Figure 3.17 Arduino with IMU 
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The gyroscope is used to measure the device rotation while accelerometer is used to 

determine its orientation [60]. A fusion filter that has been implemented in the freeIMU 

Arduino library by varesano et al [60]. is available to combine the data streams from the 

accelerometer and gyroscope function into the features of Pitch, Yaw, and Roll.  

In order to detect the fall event, some modifications of several methods from the 

freeIMU code are required. The system implements the threshold-based classification from 

the data captured for both the acceleration signal and rotation as shown figure 3.18 to 3.19. 

 

Figure 3.17Arduino acceleration signal of the fall event 

When we simulate the fall event using a mannequin, figure 3.17 shown how the impact 

appears in terms of the acceleration signal as the mannequin hit the ground.  As for the 

gyroscope signal, an event is count as a fall event when the rotation (roll) change is more than 

90◦ [61] as shown in figure 3.18.  

 

Figure 3.18Arduino Rotation signal of the fall event 

3.8 Summary 
STEADI is an application built for an Android mobile phone to detect falls. It is categorized 

as wearable-device for determining fall.  It was implemented on an Android mobile phone 

that uses the built-in accelerometer, GPS, and other services that the phone offers. The 

STEADI algorithm can be divided into two main parts: the signal processing section and the 

classification. Here we use the signal processing to enhance the accelerometer signal and then 

convert it into features that represent the activities performed. As for the classification, both 

the threshold-based classification and the Naïve-Bayes were used.  Because of the high 

accuracy that could be obtained regardless of size of the training data available, the Naïve-

Bayes is most preferable than the threshold-based classification. Lastly, another sensor, a 

combined 6DOF accelerometer and Gyroscope sensor running on an Arduino platform, was 

introduced and it was shown how it can detect a fall event. 
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4 Evaluation  
In this chapter we describe in more detail the testing and evaluation of the STEADI 

application. For the fall detector system, we conduct several tests such as unit testing, 

integration testing, as well as system testing. We also conducted a survey for evaluating the 

user interface of the application. 

4.1 Testing 
The purpose of software testing is to verify its correct operation to the specifications [32]. 

Two complementary ways of achieving this has been developed: by generating the tests from 

the specification (Black-Box testing), and by generating tests from the implementation 

(White-Box) testing [32]. Black box testing is a testing technique based entirely on the 

specification, and uses no knowledge of the inner working of the program code [32] while 

White box testing does use the code. 

4.1.1 Unit testing  
Unit testing is the testing certain functions or methods of code to verify that it works as 

expected. These units are generally small in size. Here, unit testing was done for the classifier 

method and signal filtering method as it is the backbone for the application. Firstly, we 

implemented the unit test using the black-box testing technique. Black-box tests are 

characterized by how the input test data is selected using the specification [32]. We 

performed the Equivalence Partitioning (EP) Black-Box test technique on several methods 

given in Table 4.1 below: 

ID Method Name Result Remark 

 HannSmoother Pass Signal Filtering  

 MedianValue Pass Signal Filtering 

 padSignal Pass Signal Filtering 

 IIRHighPass Pass Signal Filtering 

 MedianFiltering Pass Signal Filtering 

 getFallDetected  Pass Classifier (Naïve-Bayes) 

Table 4.1. Application method unit testing result 

We use the Equivalence Partition method because we assume that the input accelerometer 

data and the buffer feature values given to the relevant method during run time will vary only 

within a certain range. If any value within a particular partition does not expose a fault in a 

particular method, we can assume that the method operate according to specification because 

the other values that belong to a same partition will be treated in the same way. From Table 

4.1 all the EP tests carried out passed with the actual output matching the expected output so 

we are sure that the methods were implemented correctly. The detail of tests listed in the 

appendix.  
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4.1.2 System testing 
System testing of an Android mobile device can usually be done using the development tool 

only. However, to test the accelerometer, it's required to do the testing on the Android device 

itself [56].  Here we use low cost android device, an Acer Liquid Z3 with an Android OS ver 

4.4, with its details given in the Appendix. For the application black box testing is also 

applied. For the fall detection, we have separate test cases that focus on the detection of fall 

events specifically. 

The following Table 4.2 show a list of tests for the application: 

ID Test Description  Steps taken Result 

1 Installation  and starting 

up the application 

Open ADT 

Install the application to the 

desired device 

Start/launch the application 

Application was 

successfully 

installed and 

launched. (PASS) 

2 Accelerometer testing Start the detector activity 

Simulate falling 

System should detected the fall 

event 

Fall was 

successfully 

detected. (PASS) 

3 Register and location 

testing 

Start the program 

Register the caretaker along with 

their real phone number 

Start the detector 

Simulate fall 

Idle until the message was send to 

the desired phone.  

Open Google maps and display 

the location with a marker 

Message with 

location information 

was successfully 

sent. 

(PASS) 

4 Robustness test, to test 

that the application runs 

smoothly [56] 

Start the application  

Run the accelerometer for more 

than 4 hours 

Check whether the application 

still run correctly by simulating a 

fall each hour. 

Fall was 

successfully 

detected. (PASS) 

Table 4.2 STEADI system testing description and result 

 

4.1.3 Application Testing and Evaluation 
We evaluate the STEADI prototype by conducting experiments. In this section, we introduce 

how the data was collected so that we could compare the algorithms being used, that is, the 

threshold-based classifier and the Naïve-Bayes classifier, and also make another comparison 

with other fall-detector applications implemented on a mobile device.  

During this evaluation, we didn’t measure the resource consumption of STEADI as it 

is not within the scope of our work. We focused only on evaluating a fall occurrence with the 

sensor. It’s a best practice if all the testing is performed on different subjects as well as 

mannequins for testing the fall detector implemented on Arduino [9]. The sensor was mainly 

attached in the waist for the reason that in the previous related work it was found to give the 

best accuracy [9] because the waist is the nearest point of people centre of gravity.  
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4.1.3.1 Data Collection 
As we didn't specifically study different directions of fall, we simplify the fall event by 

simulating only one direction of falling.  Then, we asked the  subject to repeat certain actions, 

such as: walking, jogging, walking then falling, walking then sitting down, jogging then 

jumping, and walking up and down stairs. 

We conducted the tests on 8 volunteers from 20 - 30 years, and one 65 years old martial arts 

teacher. The height is range from: 155 – 185 cm, with weight from: 50 – 85 kg. We could not 

conduct the test with elderly people as subjects as it was not feasible and high risk [10].   

Each subject was asked to perform various actions as described in Table 4.3. The device was 

set to detect the event of falling with both methods at the same time, (1) the Threshold-based 

classifier and (2) the Naïve-Bayes classifier. Training had been done using just one subject 

alone already as mentioned in Section 3.5.1.  

Category Detail Activity  Test units 

Fall walking then falling 40 

Non-fall 

  

  

  

  

  

walking  10 

walking then sitting 5 

walking up stair 5 

walking down stair 5 

Jogging 10 

jogging then 

jumping 5 

Table 4.3 Testing activities 

Below are more details of the tests performed.  

1. The term of one unit activity varies through different types of activity, such as: 

 Each time the subject walks up/down stairs for one storey is considered as one 

unit activity 

 Each time the subject runs a lap, for approximately one minute (100 – 150 m) 

is one unit activity  

 Each occurrence of a subject walks for 1 minute ( 50 – 100 m) is one unit 

activity 

 Each time where the subject does the activity of walking and then sitting is 

considered one unit activity 

 Each occurrence of subject performing a  jump is one unit activity 

 Each occurrence of subject performing a fall event is one unit activity 

2. We didn’t test the event of falling when the subject was walking up/down stairs due to 

safety reasons.  

3. To test the detection all participants put the phone near waist area in their pocket 

jacket or their pants for accuracy and user convenience [9] as shown in the picture 

below. Here, the use of extra strap is not necessary to place the mobile phone. The red 

circle is the place where the subject put the mobile phone. 

The testing activities were done in sequence to get more feel for the real situation. The 

activities and the associated features captured were saved to the device.  
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Figure 4.1 Subject of STEADI testing, the red circle shows the place where the mobile 

phone is placed 

 

Figure 4.2 Mannequin for STEADI testing, the red circle shows the place where the 

arduino system is placed   

 

4.1.3.2 Detection Evaluation  
In detecting the fall event for the test, we tested our application for the Threshold-based 

method without the filter to compare the effectiveness of using signal filtering on the raw 

signal captured.  Then, we implemented both the threshold-based (Th) and Naïve Bayes (NB) 
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classification algorithm on the mobile device. The application recorded both results 

separately. Table 4.4 show the detail of the test results. 

Category Detail Activity  Total  detection         

      

Thnf 

non-fall 

Thnf 

Fall Th non-

fall 

Th 

Fall 

NB 

non-

fall 

NB 

fall 

Fall 

walking then 

falling 40 

4 6 

1 39 1 39 

Non-fall walking  10 7 3 10 0 10 0 

  

walking then 

sitting 5 

- - 

4 1 5 0 

  walking up stair 5 - - 5 0 5 0 

  walking down stair 5 - - 2 3 4 1 

  Jogging 10 - - 2 8 0 5 

  

jogging then 

jumping 5 

- - 

0 5 1 4 
Note: for the Thnf we only test both the fall event and walking activity 10 times. 

Table 4.4 Detail of the STEADI activities test result 

After we have collected the data we measured the performance reliability of the system in 

terms of the proportion of false positives (FP) and false negatives (FN). A False positive 

happens when the system triggers the fall alarm without a real fall event. A False negative 

happens when as fall occurs, however the system misses the detection of such an event. The 

performance metrics we then use to evaluate STEADI are Precision, Recall (Negative 

predictive value), Sensitivity, Specificity, and Accuracy, which can be calculated as follows 

[57]. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
𝑥 100     (5.1) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
𝑥100     (5.2) 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 =  
𝑇𝑁

𝑇𝑁+𝐹𝑁
𝑥100  (5.3) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
𝑥100     (5.4) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑁+𝐹𝑃+𝑇𝑃+𝐹𝑁
𝑥100     (5.5) 

For the evaluation, there are four main cases that need to be observed: 

 True positive: A fall event is correctly identify as a fall 

 False positive: A non-fall event that’s incorrectly identify as a fall 

 True negative: A non-fall event that’s not categorized as a fall 

 False negative: A fall event that’s categorized as fall 
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From the equation and the test result we can calculate the performance matrix shown in Table 

4.5 (a) and (b) for the threshold classification and Table 4.6 for Naïve-Bayes classification. 

Result\Case Fall Non-fall (a) 

 Fall 6 (TP) 4  (FP) 60 % Precision 

Non-fall 3 (FN) 7 (TN) 70 % Recall 

 

66.67% 63.64% 65 % Accuracy 

 

Sensitivity Specificity 

   

Result\Case Fall Non-fall (b) 

 Fall 39 (TP) 17 (FP) 69.64% Precision 

Non-fall 1 (FN) 23 (TN) 95.83% Recall 

 

97.50% 57.50% 77.50% Accuracy 

 

Sensitivity Specificity 

  Table 4.5 Performance matrix of threshold-based classification: (a) without filter (b) 

with filter 

 

Result\Case Fall Non-fall 

  Fall 39 (TP) 2 (FP) 95.12% precision 

Non-fall 1 (FN) 38 (TN) 97% Recall 

 

97.50% 95% 96.25% Accuracy 

 

Sensitivity Specificity 

  Table 4.6 Performance matrix of Naïve-Bayes classification 

The test results show that signal filtering improves the accuracy by more than 15%. Further, 

the Naïve Bayes method is better than the threshold method for Fall detection by itself. Next, 

when the subject performs activities like jogging, jumping, and walking down the stairs if the 

fall detection algorithm is based on the threshold value method, it gives lots of false positives 

because those activities can easily cause the accelerometer signal to exceed the threshold 

value. However, the use of the Naïve Bayes algorithm gives far better results than threshold-

based classification and achieved more than 20% accuracy than the threshold-based 

classification for both Fall and non-Fall activity detection.  

After we tested STEADI mobile application, we tested the Arduino and external 

sensor using a mannequin. We performed 10 fall events and 10 non-fall (moving the 

mannequin to the next chair) events by moving the mannequin as shown in figure 4.3 and 

figure 4.4. The outcome of the tests is shown in table 4.7 below. 
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Figure 4.3 Arduino  non- fall testing 

 

Figure 4.4 Arduino fall testing 

Result\Case Fall Non-fall 

  Fall 10 (TP) 0(FP) 100% precision 

Non-fall 0 (FN) 10(TN) 100% Recall 

 

100% 100% 100% Accuracy 

 

Sensitivity Specificity 

  Table 4.7 Performance Matrix for using an External Sensor with an Arduino 

By adding the gyroscope to record the rotation of the device, the accuracy of the device is 

high even though we only implement the threshold-based classification on the accelerometer 

signal. It also adds the possibility to determine the actual orientation of fall, such as forward, 

backward, or lateral falling [61]. However, in order to determine if the use of external sensor 

is much more preferable another extra set of tests should be conducted. 
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4.2 Performance Comparison 
In this section we compare the performance of STEADI to the other existing wearable fall 

detection devices. Here, we can only use the data provided from their research papers. Table 

4.10 illustrates a comparison between each device for a mobile phone detection device and a 

custom-made wearable device. 

Other Mobile 

Application Accuracy Precision ADL Activity 

Sun SPOT [21] 87.55% NA 

standing, sitting, lying and 

walking 

Mark V. Albert and co. 

[33] 98.20% NA not mentioned 

sAfe [34] 

98.91 - 

99.45% NA 

standing, sitting, lying and 

walking 

perFallD (waist + forward 

falling event) [9] 94.35% NA Standing 

Gokhan Remzi Yavuz and 

co.[10] NA 95% 

walking, sitting down, lying 

and jumping 

STEADI 96.25% 95.12% 

jogging, walking, walking 

up/down stair,  sitting down, 

lying and jumping 

Table 4.10 Performance comparison of STEADI with other wearable fall detection 

devices 

The results also show that STEADI is quite robust in comparison to the others. The tests 

show that STEADI is able to give highest accuracy, more than 95%, while the subjects 

engage in a wider variety of ADL. 

4.3 User Interface Evaluation  
There are many possible ways to evaluate the user-interface of a system [41]: Accuracy, 

speed, and user friendliness are some of performance attributes that should be measured 

because they affect a person attitude toward a system. Additionally, the time it takes to learn 

a system is associated with how effectively a system can be used [41]. 

One of the methods by which it is possible to measure attributes of the user interface 

is by using a questionnaire [41]. Here, we use a measurement tool called the Generic User 

Interface Questionnaire (QUIS) which based on research in the Development of an 

Instrument Measuring User Satisfaction of the Human-Computer Interface [41]. The original 

questionnaire consisted of a total 90 questions. However, the short version of QUIS (2.0) has 

only 20 main questions [41].  

As for the STEADI survey, the questionnaire was also tailored to the system 

developed. The STEADI questionnaire has several sections as follows: (a) screen, (b) 

terminology and system information, (c) learning and system capabilities. Each section has 

several questions. 
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4.3.1 Method  
The participants consisted of 10 people raging from the age of 20-30. Two of the participants 

were assumed to have a better level of computer experience while the other ten participants 

were from various different backgrounds such as arts and psychology. First, the participants 

were given a brief explanation about the system. Then, they were asked to do various tasks 

using the system as provided. After they have used the system for about 5 - 10 minutes, they 

needed to fill the questionnaire.  The questions asked are available in the Appendix. 

4.3.2 Survey Results 
After conducting the survey, we calculated the scores. The result of the survey showed that 

the average user interface score for STEADI application was 169 out of 200, that is, 80%. 

Even though we can’t measure the user friendliness using objective measures of the software 

[58], we concluded from the subjective results that the application is easy to use and is user 

friendly as the survey showed a score of more than 70% on average.  However, due to the 

lack of a help menu, some of the subjects suggested the addition of a help menu on the 

STEADI application would make it easier to learn the features of the application.  

4.4 Summary  
The tests and survey that were conducted on STEADI shows that we answered our research 

questions from the first chapter. First, the tests showed that STEADI is robust because it has 

achieved an accuracy of more than 80% overall. Being implemented on an Android mobile 

phone makes STEADI not only portable but also implemented in a cost effective manner. 

With an average score to 169/200 from the survey illustrates that STEADI is easy to use. 

STEADI can also contact a relative/caretaker when a fall event is determined to have taken 

place via a SMS message.  

Lastly, we know that by solely doing signal processing to enhance the accelerometer 

signal before applying the threshold method can drastically improve the precision of the 

system. However, because more vigorous activity can confuse the threshold-based classifier 

it was necessary to implement a further algorithm to differentiate these fall-like events with a 

real fall. Thus, the Naïve-Bayes classification was found to be extremely useful.  

We can conclude that the experimental results have shown that a fall detection system 

that built on generic mobile phone in a cost effective mannered has satisfied the requirement 

to be an assistive technology. 
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5 Conclusion   
This chapter draws conclusions from the work that has been carried out. Then we discuss the 

other work that could be developed in the future related to implementation of the fall detector 

system. 

5.1 Summary   
The advancement of technology in mobile and wireless healthcare systems is growing 

significantly and one particular application is to recognize physical activity and detect falls. 

For the problem to detect falls, we have considered several solutions. This project has 

proposed a mobile application development on the android platform. The android application 

uses the built-in accelerometer sensor the device. In term of our algorithm, we implemented a 

signal processing algorithm to enhance the captured accelerometer data and then converted it 

into features. To do the classification we examined a threshold-based approach, followed by a 

statistical classification technique, Naive Bayes. All of the processes of filtering and 

classification were done in the real time.  

We have also conducted some testing and a user survey. We first tested the 

application to recognise a falling event and we found that the combination of the signal 

processing and classifier gives an accuracy of 96.75% overall. In addition to the fall detection, 

we also included a system to inform the caregiver/relatives as to the whereabouts and time of 

a falling event.  

Although we have successfully implemented a real-time system that is robust, reliable 

and cost efficient, there are still limitations. Taking into considerations time and resource 

limitations the training and testing data was collected from young subjects. Thus, more work 

would need to be done to prepare the system for deployment with its target users of people 

over 65 years old. 

 

5.2 Future work 
In the future, other than implementing more testing, one feature we could improve is that the 

algorithm should have lower power consumption. It’s also possible to determine the fall 

direction by using the use of an external sensor (gyroscope).  

Another possibility is to test the system for more other vigorous activities so that it can 

be targeted not only to the elderly but also at people from other categories that have a high 

probability of falling while they are doing vigorous activity and need immediate treatment 

such as those at risk of a heart attack, stroke, or who have Parkinson’s disease [10]. Another 

aspect for the future development is to conduct extensive testing using other mobile devices 

and at different locations to test the robustness of the system.   
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6 Appendix 

6.1 Mobile Device Specification [62] 
GENERAL 2G Network GSM 900 / 1800 / 1900 

3G Network HSDPA 900 / 2100 

SIM Optional Dual SIM 

Announced  2013, August 

Status  Available. Released 2013, September 

BODY Dimensions  109 x 60 x 10.4 mm (4.29 x 2.36 x 0.41 in) 

Weight  120 g (4.23 oz) 

DISPLAY Type  TFT capacitive touchscreen, 16M colors 

Size 320 x 480 pixels, 3.5 inches (~165 ppi pixel density) 

Multitouch  Yes 

SOUND Alert types  Vibration, MP3, WAV ringtones 

Loudspeaker  Yes, with stereo speakers 

3.5mm jack  Yes 

MEMORY Card slot  microSD, up to 32 GB 

Internal  4 GB, 512 MB RAM 

DATA GPRS  Yes 

EDGE  Yes 

Speed  HSDPA, 21 Mbps; HSUPA, 5.76 Mbps 

WLAN  Wi-Fi 802.11 a/b/g/n, Wi-Fi hotspot 

Bluetooth  Yes, v3.0 with A2DP, EDR 

USB Yes, microUSB v2.0 

CAMERA Primary  3.15 MP, 2048 x 1536 pixels 

Features  Geo-tagging 

Video  Yes 

Secondary  No 

FEATURES OS Android OS, v4.2 (Jelly Bean) 

Chipset  Mediatek MT6572 

CPU Dual-core 1 GHz Cortex-A7 

GPU Mali-400 

http://www.gsmarena.com/network-bands.php3
http://www.gsmarena.com/network-bands.php3
http://www.gsmarena.com/glossary.php3?term=sim
http://www.gsmarena.com/acer_liquid_z3-5624.php
http://www.gsmarena.com/acer_liquid_z3-5624.php
http://www.gsmarena.com/acer_liquid_z3-5624.php
http://www.gsmarena.com/acer_liquid_z3-5624.php
http://www.gsmarena.com/glossary.php3?term=display-type
http://www.gsmarena.com/acer_liquid_z3-5624.php
http://www.gsmarena.com/glossary.php3?term=multitouch
http://www.gsmarena.com/glossary.php3?term=call-alerts
http://www.gsmarena.com/glossary.php3?term=loudspeaker
http://www.gsmarena.com/glossary.php3?term=audio-jack
http://www.gsmarena.com/glossary.php3?term=memory-card-slot
http://www.gsmarena.com/glossary.php3?term=dynamic-memory
http://www.gsmarena.com/glossary.php3?term=gprs
http://www.gsmarena.com/glossary.php3?term=edge
http://www.gsmarena.com/glossary.php3?term=3g
http://www.gsmarena.com/glossary.php3?term=wi-fi
http://www.gsmarena.com/glossary.php3?term=bluetooth
http://www.gsmarena.com/glossary.php3?term=usb
http://www.gsmarena.com/glossary.php3?term=camera
http://www.gsmarena.com/glossary.php3?term=camera
http://www.gsmarena.com/glossary.php3?term=camera
http://www.gsmarena.com/glossary.php3?term=video-call
http://www.gsmarena.com/glossary.php3?term=os
http://www.gsmarena.com/glossary.php3?term=chipset
http://www.gsmarena.com/glossary.php3?term=cpu
http://www.gsmarena.com/glossary.php3?term=gpu
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Sensors  Accelerometer, proximity 

Messaging  SMS (threaded view), MMS, Email, Push Email 

Browser HTML 

Radio  Stereo FM radio 

GPS  Yes, with A-GPS support 

Java  Yes, via Java MIDP emulator 

Colors  Rock Black, Classic White 

  - Separately sold exchangeable back covers in Rock 

Black, Classic White, Sakura Pink, Pop Yellow and 

Lagoon Turquoise 

- SNS integration 

- MP3/WAV/WMA/AAC player 

- MP4/H.264/H.263 player 

- Organizer 

- Document viewer 

- Photo viewer/editor 

- Voice memo/dial 

- Predictive text input 

BATTERY   Li-Ion 1500 mAh battery 

Stand-by  
 

Talk time   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.gsmarena.com/glossary.php3?term=sensors
http://www.gsmarena.com/glossary.php3?term=messaging
http://www.gsmarena.com/glossary.php3?term=browser
http://www.gsmarena.com/glossary.php3?term=fm-radio
http://www.gsmarena.com/glossary.php3?term=gps
http://www.gsmarena.com/glossary.php3?term=java
http://www.gsmarena.com/acer_liquid_z3-5624.php
http://www.gsmarena.com/glossary.php3?term=stand-by-time
http://www.gsmarena.com/glossary.php3?term=talk-time


46 
 

6.2 Equivalence Partitioning Unit Testing (EP)  

 

  Table B.1 HannSmoother EP Test Cases 

ID 

Test Cases 

Covered Input Expected Output 

1 1,2,3,4 {1,2,3,2,1} {1.0, 4.0, 8.0, 10.0, 8.0} 

Table B.2 HannSmoother EP Test Data 

 

Test 

Case Parameter Range 

Test 

no. Remark 

1 Signal 0.. Integer.MAXIMUM 2 double [], length of array 

2 value(signal) 

Double.MINIMUM.. 

Double.MAXIMUM 2 double[], value inside array 

3 

Return 

Value 

Double.MINIMUM.. 

Double.MAXIMUM 2 double 

Table B.3 MedianValue EP Test Cases 

ID 

Test Cases 

Covered Input Expected Output 

2 1,2,3 {1,2,3,2,1} 2 

Table B.4 MedianValue EP Test Data 

 

Test 

Case Parameter Range 

Test 

no. Remark 

1 Input 0.. Integer.MAXIMUM 3 double [], length of array 

2 value(signal) 

Double.MINIMUM.. 

Double.MAXIMUM 3 

double[], value inside 

array 

3 filtDim 

Double.MINIMUM.. 

Double.MAXIMUM 3 integer 

4 

Return 

Value 0.. Integer.MAXIMUM 3 double[], length of Array 

Table B.5 padSignal EP Test Cases 

 

Test 

Case Parameter Range Test no. Remark 

1 Input 0.. Integer.MAXIMUM 1 double [], length of array 

2 value(input) 

Double.MINIMUM.. 

Double.MAXIMUM 1 

double[], value inside 

array 

3 

Return 

Value 

Double.MINIMUM.. 

Double.MAXIMUM 1 

double[], value inside 

array 

4   0.. Integer.MAXIMUM 1 double [], length of array 
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ID 

Test Cases 

Covered Input Expected Output Remark 

3 1,2,3,4 {1,2,3,2,1}, filtDim = 4 

{0.0, 0.0, 1.0, 1.0, 2.0, 

2.0, 3.0, 0.0, 0.0} length: 9 

Table B.6 padSignal EP test data 

 

Test 

Case Parameter Range 

Test 

no. Remark 

1 Signal 0.. Integer.MAXIMUM 4 double [], length of array 

2 value(signal) 

Double.MINIMUM.. 

Double.MAXIMUM 4 double[], value inside array 

3 Cutoff 

Double.MINIMUM..Do

uble.MAXIMUM 4 - 

4 Dt 

Double.MINIMUM..Do

uble.MAXIMUM 4 - 

5 Return Value 0.. Integer.MAXIMUM 4 length of array 

Table B.7 IIRHighPass EP test case 

ID 

Test Cases 

Covered Input 

Expected 

Output 

4 1,2,3,4 {1,2,3,2,1}, cutoff = 1, dt = 1 length: 5 

Table B.8 IIRHighPass EP test data 

 

Case Parameter Range 

Test 

no. Remark 

1 Input 0.. Integer.MAXIMUM 5 double [], length of array 

2 value(signal) 

Double.MINIMUM.. 

Double.MAXIMUM 5 double[], value inside array 

3 filtDim 

Double.MINIMUM.. 

Double.MAXIMUM 5 integer 

4 

Return 

Value 0.. Integer.MAXIMUM 5 double[], length of Array 

5   

Double.MINIMUM.. 

Double.MAXIMUM 5 double[], value inside array 

Table B.9 MedianFiltering EP Test Case 

 

ID 

Test Cases 

Covered Input Expected Output Remark 

5 1,2,3,4,5 

{1,2,3,2,1}, filtdim = 

4 {0.5, 1.5, 2.0, 2.0, 1.5} length: 5 

Table B.10 MedianFiltering EP test data 
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Test 

Case Parameter Range Test no. Remark 

1 maximum 

Double.MINIMUM.. 

Double.MAXIMUM N1 - 

2 Mean 

Double.MINIMUM.. 

Double.MAXIMUM N1 - 

3 Gap 

Double.MINIMUM.. 

Double.MAXIMUM N1 - 

4 return value TRUE N1 - 

5   FALSE N2   

Table  B.11 getFallDetected EP Test Cases 

 

ID 

Test Cases 

Covered Input 

Expected 

Output 

N1 1,2,3,4 

maximum = 103; mean = 32; local 

minima distance = 54 TRUE 

N2 1,2,3,5 

maximum = 90; mean = 24; local 

minima distance = 30 FALSE 

Table B.12 getFallDetected EP test data 
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6.3 STEADI Survey 
STEADI is an application designed to monitor the human activity and respond to certain event. This 

application is designed to observe the event of falling. If falling event is detected, the system will 

inform (via sms) to other user that registered as a care taker when the event has happened along 

with the location.  

Thank you for taking the time to complete the survey. Your feedback is important to us in how  

 we can measure the user friendliness of our system.  

This survey should only take about 5 minutes of your time. Your answer will be completely 

anonymous. 

Screen 

  1 2 3 4 5 6 7 8 9 10  

Reading character 
on the screen 

Terrible           Wonderful 
 

Highlighting / 
simplifies task 

Not at all            Very much 
 

Organization of 
information 

Confusing           Clear 
 

Sequence of screen Confusing           Clear 

 

Terminology and System Information 

  1 2 3 4 5 6 7 8 9 10  

Use the terms 
throughout system 

Inconsistent            Consistent 
 

Position of 
message on screen 

Inconsistent           Consistent 
 

Prompts for user 
input  

Confusing           Clear 
 

Computer informs 
about its progress 

Confusing           Clear 

 

Learning  

  1 2 3 4 5 6 7 8 9 10  

Learning to operate 
the system 

Difficult           Easy 
 

Exploring features by 
trial and error 

Difficult           Easy 
 

Remembering names 
and commands 

Difficult           Clear 
 

Performing task is 
straightforward 

Never           Always 
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System Capabilities 

  1 2 3 4 5 6 7 8 9 10  

System speed Slow           Fast enough 
 

System Reliability unreliable           reliable 
 

System noise 
 

noisy           quiet 
 

Designed for all level 
of users 

disagree           Agree 

 

Based on: Chin, J.P., Diehl, V.A., Norman, K.L. (1988) Development of an Instrument Measuring User Satisfaction of the Human-Computer Interface. 
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