Entanglement Spectrum of Composite Fermion States in Real Space
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We study the entanglement spectra of many particle systems in states which are closely related to
products of Slater determinants or products of permanents, or combinations of the two. Such states
notably include the Laughlin and Jain composite fermion states which describe most of the observed
conductance plateaus of the fractional quantum Hall effect. We identify a set of 'Entanglement Wave
Functions’ (EWF), for subsets of the particles, which completely describe the entanglement spectra
of such product wave functions, both in real space and in particle space. A subset of the EWF for
the Laughlin and Jain states can be recognized as Composite Fermion states. These states provide
an exact description of the low angular momentum sectors of the real space entanglement spectrum
(RSES) of these trial wave functions and a physical explanation of the branches of excitations

observed in the RSES of the Jain states.

In studying quantum states of many particle systems,
it is often of interest to split the system into subsystems
and focus on the reduced density matrix p4 of one of
these subsystems. Various entanglement spectra[l] col-
lect the eigenvalues and eigenstates of such reduced den-
sity matrices for different ‘cuts’ of the initial system into
an A-subsystem and a B-subsystem. Two very natu-
ral cuts for an IV particle system are the particle cut, for
which the A-system simply consists of particles 1 through
N4 (The B-system has the remaining particles) and the
real space cut, where the A-system consists of particles
within a certain spatial domain and the B-system has
the particles in the complementary domain. These cuts
lead to the particle entanglement spectrum (PES) and
the real space entanglement spectrum (RSES). If the full
system is in a state 1, then we may write pa(Za, Zy) =
fDB W (Za, Zp)P(ZY, Zp)dZp, where Za, Z4 and Zg
are sets of coordinates for particles in the A and B sub-
systems. For the particle cut, the domain Dp is all of
space and Z4 and Z4s contain arbitrary positions. For
the real space cut, Dp is the chosen domain for the parti-
cles in the B-system, while the positions Z4 and Z 4 can
be restricted to lie in D4, the complement of Dg. We
should expected the PES and RSES to be adiabatically
connected, as we can continuously grow the domains D 4
and Dp for the A and B systems, allowing them to over-
lap and eventually to encompass all space. In the context
of fractional quantum Hall (FQH) systems, the particle
cut was studied in Refs. 2H4] and the real space cut in
Refs. BHTl and for filling » = 1 in Refs. [§ and Ol The
eigenspaces of ps at fixed angular momentum were in-
deed found the be of equal dimension for PES and RSES,
though the eigenvalues are different.

The most ubiquitous states appearing in many par-
ticle physics are Slater determinants (for fermions) and
permanents (for bosons). These have particularly sim-

ple reduced density matrices due to their factorization
properties. For a Slater determinant Sy, 4y (21,..., 2N ),
involving N particles and N orbitals ¢1...¢ N, we have

Sp1.on (21.2N) = Fringt Lvesy €(0)e(a]a)e(o]B)
XS¢6(1)~~-¢U(NA) (zl...ZNA)S¢U(NA+1)"‘¢U<N) (ZNA-‘rl'“ZN)
(1)
Here the e-factors come from the usual antisymmet-
ric tensors, that is, €(o) is the sign of the permuta-
tion 0 € Sy and €(o|4) and e(o|p) give the sign of
this permutation when it is restricted to {1...N4} and
{N4 4+ 1...N}. Note that the summands depend only on
the sets {o(1)...0(N4)} and the factor m can be re-
moved if we change the sum to a sum over all the possible
choices of N4 out of N orbitals. We see then that the
Slater determinant splits into a sum of products of Slater
determinants for the subsystems, with complementary
occupation of the orbitals in the factors. For permanents
one gets a similar result without the e-factors. It is now
easy to write the density matrix explicitly in terms of
the determinants (or permanents) for the A-system and
one finds that the eigenvalues of p4 are all equal and
the eigenfunctions in the PES are precisely all the de-
terminants (or permanents) that occur for the A-system.
The RSES will usually be less trivial: in particular, the
eigenstates of p4 which have the N4 particles of system
A concentrated in the domain D4 will typically have the
largest eigenvalues (or the lowest entanglement energies).
The low energy states of strongly correlated systems
are typically superpositions of many Slater determinants
or permanents and have much more complicated and in-
teresting entanglement spectra. Nevertheless, many trial
wave functions for such systems, notably the Laughlin
and Jain wave functions for FQH states, are products
of Slater determinants, or projections of such products.
Wave functions of this type have factorizations similar to
Eq. and their PES and RSES can be completely de-



scribed by a set of entanglement wavefunctions (EWF),
which are themselves products of Slater determinants.
To show this explicitly, we consider a general product
of Slater determinants (21...2x) = [[12; S (21...2n).
Here, each of the S is a slater determinant involving
a set of N orbitals (bgz), ceey gf,). It is clear from the ex-
pansion in Eq. that we can write

ZskHS(k

Here the summation variable k runs through all splittings
of the sets of orbitals {qﬁgl), e S\Z,)} into subsets of N4
and Np orbitals associated with the A and B subsys-
tem. We may write k = (k{', kP, ..., k2 kB), where k2 is
the subset of {gi)(z) ce, qbs\i,)} consisting of the N4 orbitals
which are assigned to the A-system and kP contains the
remaining Np orbitals in {gbgl) . gbg\z,)}. The constants
sk are the combined signatures of permutations that ap-
pear and hence s, € {1,—1}. The entanglement wave
functions are the products &(Z4) = [, S¢ ®(Z4)

and (x(Zp) :==[[1= S’(k )(Zp) appearing in this factor-
ization. We may now write

= Qri&(Z24)6 (Z)y), with
k1l

ZAazB

HS(’“ (Zp).
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Qi = 5151 C(ZB)( (ZB)dZp. (2)
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If we write the eigenvalues and eigenvectors of p4 as A,
and gp, so pr(ZA,Z;l)gp(Z;,)dZ;, = Apgp(Za), then
we see that, for any g, with A, # 0, we have

Za) = ankgk(ZA)v (3)
%
with

Npk = 51 ZA)gp(ZA) dZA (4)

Z Qi

Hence, we see that the states g, in the entanglement spec-
trum can be written as linear combinations of the EWF.
Substituting the expression for g,(Z4) from Eq. into
the expression for 7, we obtain

Z Munk = MNeMkas (5)
!
with

My = ;@ij /D ICACEATZAC

Thus, the nonzero eigenvalues A, of ps are also eigen-
values of a finite dimensional matrix, M, given in terms
of the overlap matrix of the EWF. In fact, there is a

one to one correspondence between eigenvectors 7, of M
with nonzero eigenvalues and corresponding eigenvectors
> Mki&i of pa (in particular, the rank of M is equal to the
rank of ps). Hence the entanglement spectrum can be
described, completely, in terms of the EWF: the nonzero
eigenvalues of p4 are given by and the corresponding
eigenvectors by , where the 7, are eigenvectors of M.

All calculations above work equally well no matter
what the domain of integration Dp is, so the EWF play
the same role both for the PES and for the RSES with
any choice of domains for the A and B systems. One
may also use products of permanents instead of Slater
determinants or even mix permanents and determinants.

Often, the state ¢ and the orbitals ¢§1) are eigenstates
of some symmetry, e.g. momentum p or angular momen-
tum L, so that py = >, ; Py OF Ly=73%; Ld)y). The
corresponding EWF are then also eigenfunctions of the
symmetry and if the choice of domain Dp respects the
symmetry, pa is block diagonal with blocks labeled by
eigenvalues of the symmetry and the calculation above
can be performed within every block, using only the EWF
with the appropriate eigenvalue of the symmetry.
Usually the number of EWF ¢; is larger than the num-
ber of eigenstates g, of pa, but the & are not linearly
independent. We will now argue that we should expect
that the full space spanned by the &; is needed to describe
the ES. From Eq. @, we see that any linear relation be-
tween the EWF gives rise to a zero eigenvector of M: if
> mi& = 0 then Mn = 0. Hence the rank of M is less
than or equal to the dimension of the space spanned by
the EWF. If the rank of M is in fact smaller, there must
be a vector n such that Mn =0but E,, =, ;& # 0. In
this case, =, is orthogonal to Zj Q;;€; for all i. We now
show that =, with these properties do not exist if the ¢;
are holomorphic functions of the z;. In Ref. [7 three of
us showed that, for holomorphic states, the rank of p4
does not depend on the domain D 4. Actually the states
considered were not quite holomorphic — the property
we used is that they are determined by their values on
any open subset of their domain. This allows for example
FQH trial wave functions built from orbitals in the lowest
Landau level, which are holomorphic up to nonzero geo-
metrical factors (gaussians for a system on a disk). We
will use a straightforward generalization of this result.
Instead of having a single domain D 4 for all particles of
the A-system, we can allow individual (open) domains
D 4 ; in space for each of these particles. The rank of p4
and hence M still does not depend on the choice of these
domains. Consider domains Dy4,; which are very small
neighborhoods of points of space. We take Dp to be the

full space. We now get, for p = (2§, 25", ...,zj(‘,A),

ZQU/S ZA)En(Za)dZa =~ AZQz;ﬁ p)Y_mé&(p)
I

Here, A is the product of the areas of the D4 ;. The ex-



pression above should be zero by the property that =, is
orthogonal to 3 Q7;&;. However, >, Q;;&; is antiholo-
morphic and clearly nonzero for almost all p (or else M
would be zero). Hence we find that >, m&(p) = 0 for
almost all p and hence }; m,§; = 0, since this expression
is holomorphic. Indeed, no =, # 0 exists. The rank of
M thus equals the number of independent EWF and we
conclude that, when the EWF are holomorphic, the en-
tanglement spectrum spans exactly the same vector space
as the EWF.

We now apply the above results to the Laughlin and
Jain FQH states. These can be written in the form

Yri(z1..28) = P [xn(z1..2n) (X1 (z1-.28))P] . (7)

Here, the z; are complex coordinates on a two dimen-
sional space (usually the plane, sphere or torus) and x.,
is the Slater determinant describing n fully filled Landau
levels of orbitals on this space. Note that the number of
orbitals in the Landau levels is adjusted to the number of
particles. The single Landau level of the y; factors has
N orbitals, while the n Landau levels in the x,, factor
have on average N/n orbitals. One may think of these
as Landau levels for composite fermions[I0], which expe-
rience a reduced magnetic flux, reducing the number of
orbitals available. The operator P is the orthogonal pro-
jection onto the lowest Landau level for the full system.
Eq. gives an excellent description of the ground state
of FQH systems at filling v = pn"H . Excited states above
this ground state can be described by modifying the first
Slater determinant (x,) so that it leaves some of the or-
bitals in the n Landau levels unoccupied and/or includes
some occupied orbitals in the (n+1)" Landau level. The
factor (x1)” is often written in the form [ [, ;(z;—z;)P. It
is not involved in excitations and can be thought of as a
device to attach flux to the composite fermions. We call
all states of the form just described, with or without ex-
citations, composite fermion (CF) states. The Laughlin
states are the case n = 1.

CF states are usually not products of Slater deter-
minants, unless P acts trivially, which happens for the
Laughlin ground states and some of their excitations.
However, since the orthogonal projection P factors into
single particle projections, we can still write

p+1 p+1
vor =y skP (H Stk >(ZA>> p <H S ><ZB>> ,

k =1

where the p + 1 Slater determinants are now built from
subsets of the orbitals involved in x,, and in the p factors
of x1. We see then that it makes sense to define the EWF
for the wave functions in Eq. @ to be projected products

of Slater determinants, &(Z4) := P (Hf;l S’(kiA)(ZA))
and (4(Zp) == P (Hf;jf S*P)(Zp)). With this defini-
tion, we can still apply the results f@. In fact, FQH

systems have symmetries which allow for a refined ver-
sion of the construction above. E.g. for the system on
a sphere, the angular momentum component L, is con-
served, even when the system is split into complementary
A and B domains, as long as the domain boundary is a
horizontal circle (e.g. the equator of the sphere). Since P
commutes with L., 1cr and the EWF are eigenfunctions

of L, and py4 is block diagonal with blocks pizA labeled
by the total angular momentum L2 of the particles in
the A-system. We then get the results through @
for each block.

We note now that a subset of the EWF for the Laugh-
lin and Jain states are themselves CF states. We will call
these states the CF-EWF. The CF-EWF are those EWF
for which the p factors which come from the (x1)? factor
of Yo all have precisely the N4 orbitals with the lowest
angular momenta filled. This means that the product
of these factors can be written as H£V<Aj:1(3i — z;)? and
the factors are thus the usual flux attachment factor for
the particles of the A-system. Clearly, in the expansion
of Yo, terms in which the A-system is in a CF-EWF
have the B-system in a similar state where the Np high-
est angular momenta are filled in the Slater determinants
that come from the p factors of y;. The CF-EWF are
of particular interest when studying the low angular mo-
mentum sectors of the ES. For the RSES, low angular
momentum corresponds with low entanglement energy,
since states with low angular momentum L4 have the
highest probability density to find the particles 1...N4 in
the domain D4 (i.e. near the north pole of the sphere)
and hence also the highest probability density for finding
particles N4 + 1...N in Dp. It is natural to guess that
the CF-EWF give a good description of the low-energy
part of the RSES of the Jain states from the point of view
that the RSES should be similar to the edge spectrum of
the parent state and this was our motivation for intro-
ducing these states very briefly in Ref. [7, without refer-
ence to the full set of EWF. We may in fact expect that,
at low angular momenta, the CF-EWF span the same
space as the full set of EWF. This intuition comes from
considering localized excitations of CF-states. These are
coherent states built from the excitations we have de-
scribed. A local excitation which exists for any FQH
state is a Laughlin quasihole at position w, which can be
introduced by multiplying the wave function by a factor
[1;(zj —w). This excitation can be viewed as a superpo-
sition of Slater determinants with non-minimal angular
momentum either at ¥ = n or at v = 1. However, in the
case of ¥ = 1 we can invert the construction; if we intro-
duce a higher angular momentum orbital in one of the x;
related factors of the EWF, this can always be thought
of as a superposition of Laughlin quasiparticles. As a
result, we could have created the higher angular momen-
tum state also by introducing higher angular momentum
orbitals in the v = n factor of the EWF. It thus seems



Lf -64 -63 -62 -61 -60 -59 -58 -57 -56 -55 -54 -53
ES 1 1 2 3 5 7 11 15 22 29 40 52
EWF | 1 1 2(3) 3(5) 5(11) 7(18) 11(34) 15(55) 22(95) 29(148) 40(238) 52(360)

CF-EWF| 1 1 2 3 5 7 11 15 22 28 38 48
LY |61 60 -59 58  -57 -56 -55 -54
ES 1 4 9 20 40 72 121 194

EWF | 1 4 (5) 9 (15) 20 (40) 40 (97) 72 (212) 121 (435) 194 (843)
CF-EWF| 1 4 9 20  40(42) 70(76) 115(131) 176(212)

TABLE I: ES, EWF and CF-EW countings. Numbers of
independent states given. Total numbers of states in
brackets, if different. Top: v = 1/2 Laughlin state for

N = 16. Bottom: v = 2/3 Jain state for N = 18.

naively that the CF-EWF should fully describe the ES of
the system. However, it is clear that the correspondence
just described must break down beyond some maximal
L24§ once the N4 orbitals in the x, factor of the EWF
are precisely the largest angular momentum orbitals in
the n CF LLs, the only way to raise the angular momen-
tum further is to change the orbitals in the y; factors.
Still, we expect that the set of angular momenta where
the spaces of EWF and CF-EWF coincide increases with
N (with N4/N fixed while taking this limit), so that
eventually, for any given excess in L2 above the minimal
L2, the RSES in the limit N — oo (with N4 /N nonzero)
may be obtained from the CF-EWF.

We now present a comparison between the CF-EWF
construction and the RSES of CF states on the sphere
calculated using the method introduced in Ref.[7l In Ta-
blewe show the numbers EWF and CF-EWF (both the
total numbers and the numbers of independent states),
for different LZ' sectors, for the v = § Laughlin and v = 2
Jain states on the sphere. We also give the number of
independent states in the entanglement spectra for these
states. As expected, the numbers of independent EWF
match perfectly with the counting of the ES and the num-
ber of independent CF-EWF matches the EWF and ES
at low angular momenta. We note that at low angular
momenta, the CF-EWF are all linearly independent. In
fact for the v = % state, they are independent at any Lf
and it is not difficult to see that this is true for the CF-
EWF of any state where the projection P acts trivially.
More generally, we conjecture that the CF-EWF at any
given excess in L7 above the minimal L# become linearly
independent when N — oo (keeping 0 < N4/N < 1 in
the limit).

Fig. [1] shows the RSES of the v = 2/5 Jain state
for N = 36 and N = 38 particles. Observe that the
RSES exhibits branches of excitations and that it de-
pends on the N4 parity (similar results have been ob-
tained in studies of edge states in ref.[11]). We find that,
in the large N4 limit, the RSES counting is given by
2,4,12,24,44.50,92, .. for even N4 and by 1,4, 9, 20,42, ..
for odd N4. The counting within each branch is indepen-
dent of the parity and given by, 1,2,5,10, 20,..., which

40+ 40
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FIG. 1: Low L% part of the RSES for the v = 2/5 Jain
state, for (N, Na) = (36, 18) (left) and for (N, N4) = (38,19)
(right). Eigenvalues of pa are calculated up to a single
overall scale. This sets the zero of entanglement energy &.
We normalize so that the lowest level shown has & = 0.

L? -405 | -404 | -403 | -402 | -401 | -400 | -399 | -398
Ecr
7 - - - - - - 1 2
8 - - 1 2 5 10 20 36
9 1 2 5 10 20 36 65 110
10 1 2 5 10 20 36 65 110
11 - - 1 2 5 10 20 36
12 - - - - - - 1 2
Total 2 4 12 24 50 92 172 | 296
LzA -451.5(-450.5|-449.5 (-448.5|-447.5|-446.5 |-445.5 |-444.5
Ecr
8 - - - - 1 2 5 10
9 - 1 2 5 10 20 36 65
10 1 2 5 10 20 36 65 110
11 - 1 2 5 10 20 36 65
12 - - - - 1 2 5 10
Total 1 4 9 15 42 80 147 | 260

TABLE II: Numbers of independent CF-EWF vs. Ecp
for the v = 2/5 Jain state. Top: N = 36 and N4 = 18,
Bottom: N = 38 and N4 = 19.

corresponds to the counting of a U(1) x U(1) conformal
field theory, or two non-interacting chiral edge bosons.
This counting can be understood from the point of
view of the CF-EWF. The Slater determinants in the
EWF which relate to 2 can be characterized by the num-
bers ng and ny = N4 — ng of orbitals filled in the first
and second CF LLs, or alternatively in terms of the CF
kinetic energy Ecp. We will take Ecp = >, In;, so we
work in units of the CF cyclotron energy and set the zero
point energy for particles in the lowest CF LL to zero.
In Table [T, we give the number of linearly independent



CF-EWF in terms of the CF kinetic energy, Fc g, for the
first L2 sectors. Observe that the counting within a row,
given by the number of independent CF-EWF with the
same kinetic energy, matches the counting of the RSES
branches. Moreover, if we interpret every row as a branch
we recover exactly the same multi-branch structure ob-
served in Fig. |1} with the expected counting in the large
N4 limit.

Note that because we are considering two CF LL’s, the
CF-EWF contributing to a single branch, i.e. the CF-
EWF with the same kinetic energy, correspond to states
in which the composite fermions are excited only within
the same CF LL (inter-LL CF excitations), otherwise we
change Fcr and we move to another branch. Because
inter-LL excitations produce a U(1) counting per LL, in
the large N4 limit, this explains the U(1) x U(1) counting
observed in the v = 2/5 RSES branches.

601
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\
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FIG. 2: RSES counting for the v = 3/7 Jain state for
(N, Na) = (42,21) (left) and for (N, Na) = (39,19) (right).

L -515.5|-514.5|-513.5|-512.5|-511.5 L -444|-443 |-442 (-441|-440
Ecr Ecr
19 - - - - 1 17 - - - - 1
20 - - 2 6 18 - - 1 3 10
21 1 3 24 19 - 1 4 12 | 31
22 - 2 6 18 44 20 1 3 |10 | 25 | 61
23 1 3 9 24 57 21 1 4 |12 31|73
24 2 6 18 44 22 1 3 10 | 25 | 61
25 1 3 9 24 23 - 1 4 112 31
26 - - 2 6 24 - - 1 3|10
27 - - - - 1 25 - - - - 1
Total 1 9 27 82 207 Total 3 | 12 ] 42 | 111|279

TABLE III: number of independent CF-EWF vs. Ecp
for the v = 3/7 Jain state. Left: N =42 and N4 = 21.
Right: N =39 and Ny = 19

For the v = 3/7 Jain state we also find a RSES

with many branches of excitations (see Fig. . As
shown in Table [Tl for N4 mod 3 = 0, the spectrum
presents two types of branches with countings 1, 3,9, 24, ..
and 2,6,18,... For any other value of N4, there are
two type of branches, with countings 1,3, 10,25, .. and
1,4,12,31, ... Again, these countings are as predicted by
the CF kinetic energy of the CF-EWF. Note that now
we are considering three CF LL in our construction and
as a result, we have CF-EWF with the same Ecp but
with different numbers of CF’s in the CF LL’s (e.g. for
N4 = 3, we may have 1 CF in each CF LL or 3 CF's in the
middle CF LL) Therefore the counting of the branches
for large IV 4 exceeds the counting that would be expected
from 3 independent chiral boson edge modes.

Explicit generating functions for the numbers of inde-
pendent CF states with given Fop and L, will be pre-
sented in a forthcoming work [I2]. There we will also
present results on the RSES of Jain states with reverse
flux attachment. The EWF and CF-EWF can also be
applied to these states, but the resulting countings are
more difficult to obtain, since the LLL projection P now
has a nontrivial effect, even as Ny — oo.
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