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Abstract 

A persistent issue in numerical cognition research is how the format of 

numerical information influences numerical processing.  The format-independent 

view postulates that information from various formats (e.g. ‘3’ or ‘three’) is 

represented in a uniform numerical code and that format should thus have no 

influence on number manipulation.  The format-specific view assumes separate 

representational pathways for arabic digits and number words, which come into 

play during number processing as well as manipulation.  Five experiments were 

undertaken with methods ranging from behavioural measures of reaction time to 

more refined measures of cognitive processes such as eye-tracking and event-

related potentials (ERPs).  In each experiment, effects of format were investigated 

at different levels of mathematics experience, in order to examine how the 

processing of numbers might differ in this regard.   

  The first three experiments focused on basic number processing and 

processing differences that can occur for arabic digits, number words and 

quantifier words.  In Experiment 1, a modified counting Stroop task was 

employed to investigate cognitive interference of arabic digits and number words.  

Participants took longer to respond on incongruent trials (e.g. 4  4  4; how many 

numbers are present? Correct response: ‘3’) relative to neutral (e.g. *  *  *; 

Correct response: ‘3’) and congruent (e.g. 3  3  3; Correct response: ‘3’) trials.  

Individuals with high mathematics experience showed greater interference on 

digit trials, whereas no effect of mathematics experience was found for word trials 

(e.g. three  three; respond ‘2’).  This suggests that the influence of format on 

number processing can be regulated by mathematics experience. 
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 Experiment 2 investigated this effect further by considering numerical (e.g. 

5  2; which number is higher?) and physical size (e.g. 5  2; which number is 

physically bigger?) comparisons of digit and word stimuli.  For both formats, 

participants responded faster on trials with a large numerical distance (e.g. 2  7) 

compared to trials with a small numerical distance (e.g. 2  3) suggesting that 

specific number meanings are accessed spontaneously from digits and number 

words, however the size congruity effect only occurred for digit stimuli.  

Individuals with greater mathematics experience showed an overall advantage for 

numerical comparison, regardless of format. 

 Based on the findings from Experiments 1 and 2, Experiment 3 modified 

the counting Stroop task (Experiment 1) to investigate if mathematics experience 

can be related to the processing of quantifier words (e.g. many, few, each).  

Stimuli were presented as either specific (e.g. both  both; correct response ‘2’) or 

general (e.g. some  some) quantifier words and participants were required to 

count the items on-screen.  While the effects were minimal in comparison with 

Experiment 1, any effects related to the congruity of the stimuli only emerged for 

the highly mathematics experienced participants, suggesting the involvement of 

number experience in quantifier word processing, and in turn for extracting 

number meaning from language in general. 

 As the first three experiments demonstrated format-specific effects in 

basic number processing, the second part of the thesis investigated these effects 

for more advanced numerical processing such as arithmetic.  The second part of 

the thesis also employed more refined measures of cognitive processing (eye-

tracking and event-related potential [ERP] technology) to investigate effects that 

might not be evident from behavioural data alone.  Experiment 4 employed eye-
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tracking technology to compare effects of problem size, operation and format at 

different levels of mathematics experience.  Fixation patterns supported the 

format-specific view of number processing by suggesting that in comparison with 

digit-format, word-format impeded the use of direct memory retrieval in 

arithmetic, an effect that seemed to be more pronounced for individuals with low 

mathematics experience.  Eye-tracking data also supported behavioural data as 

well as self-report data that have been noted in reports on strategy use in 

arithmetic.  From this, inferences were made regarding the degree to which 

surface format influences subsequent calculation processes and how this might be 

moderated by mathematics experience. 

 Experiment 5 investigated the interaction between the encoding and 

answer-retrieval stages in digit- and word-format arithmetic by separating the 

presentation of the first operand and the rest of the equation in a true–false 

verification task (e.g. ‘3’ and ‘x 4 = 12’; correct response ‘true’).  Before each test 

block, participants were told which operation was to follow (addition or 

multiplication).  ERP findings suggested that operands presented in the same 

format were encoded in the same way, with effects of operation only emerging 

during the second part of the equation, after participants had seen the operation 

sign (‘+’ or ‘x’).  Regardless of format, the High Maths group showed greater left 

anterior potentials for multiplication than addition, suggesting an advantage for 

arithmetic fact retrieval.   

 In the final chapter of the thesis the findings are discussed in relation to 

existing theoretical accounts on the influence of format in numerical cognition, 

with specific focus on the benefit of considering mathematics experience in this 

regard.  
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Glossary of Terms 

Additive Viewpoint of Arithmetic:  The view that in arithmetic, the two stages 

of operand encoding and answer-retrieval operate independently of one another.  

Once numbers from different formats have been encoded to underlying number 

meanings, any subsequent calculation processes are thus thought to operate 

independently of encoding. 

 

Arithmetic Fact Retrieval: The process of retrieving answers to arithmetic 

equations from memory. 

 

Automaticity of Processing: The degree to which the processing of a certain 

stimulus occurs automatically, even if it is instructed to be ignored under task 

demands. 

 

Cognitive Interference: Where two stimulus features are processed 

simultaneously and the processing of one feature impedes the processing of the 

other.  In the original colour Stroop task (Stroop, 1935), for example, this effect 

refers to the slowed response on trials where colour and word meaning mismatch 

(e.g. Blue; respond ‘red’). 

 

Developmental Dyscalculia:  A deficit in numerical processing that is 

specifically related to severe impairments in learning arithmetic.  

 

Digit:  The arabic numeral representation of a number (e.g. ‘4’). 

 

Distance Effect:  In numerical comparison, the distance effect demonstrates that 

the time taken to compare two numbers is a function of the numerical distance 

between the two numbers.  For example, it is easier to compare numbers that are 

numerically further apart (e.g. 2 vs. 9) than numbers that are numerically close 

(e.g. 2 vs. 3).  
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Electroencephalography (EEG):   A technique used to study the electrical 

activity of the brain that can be measured by placing electrodes on the scalp.  

 

Encoding:  The process of accessing number meanings from symbolic numerical 

notations (e.g. ‘3’ or ‘three’).   

 

Event-related Potentials (ERPs):  Variations in amplitude that reflects changes 

in brain activation in response to specific stimuli. 

 

Format-independent Processing:  The view that numerical information from 

various different formats is translated to a uniform amodal number representation 

and that similar processing takes place for different numerical formats (see also 

the additive view of arithmetic). 

 

Format-specific Processing:  The view that different symbolic numerical 

notations (e.g. arabic numerals and number words) are processed along separate 

pathways and not necessarily translated to a uniform amodal representation for 

numbers from all formats. 

 

Interactive Viewpoint of Arithmetic:  The view that the stages of operand 

encoding and answer-retrieval in arithmetic interact with one another, such that 

encoding conditions, such as operand format, have a direct influence on answer-

retrieval strategies (see also format-specific processing).  

 

Numeracy:  Proficiency with basic numerical and probability concepts and the 

ability to apply these skills to real-world scenarios. 

 

Numerical Distance:  The numerical difference between two numbers on a 

number line.  The numbers ‘1’ and ‘3’, for example have a numerical distance of 

‘2’.  The numbers ‘1’ and ‘6’ have a numerical distance of ‘5’. 

 

Numerosity:  The number of the objects in a collection. 
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One-To-One Correspondence: The process of matching the items in one set 

with the items of a second set so that each item is paired with one other item. 

 

Operation Effect: The differences in performance or brain activation between 

addition, subtraction, multiplication or division. 

 

Physical Distance:  The difference in physical size between two stimuli.   

 

Problem Size Effect (PSE):  The increase in errors and response time in 

arithmetic as the magnitude of the operands in an equation increases. 

 

Processing Bias: More automatic processing that develops for certain stimuli due 

to extensive practice, memory and exposure. 

 

Size Congruity Effect: The increase in response time when comparing two 

numbers and number meaning is incongruent with the physical sizes of the 

numbers (e.g. 2  5; which number is numerically higher?). 

 

Stroop Facilitation:  The faster response on congruent trials in Stroop tasks.  

This occurs in the counting Stroop task, for example, when number meaning 

matches the number of items to be counted (e.g. 3  3  3; respond ‘3’). 

 

Stroop Interference:  The slowed response on incongruent trials in Stroop tasks.  

This occurs, in the counting Stroop task, for example, when number meaning 

mismatches the number of items to be counted (e.g. 4  4  4; respond ‘3’). 

 

Subitizing:  The ability to quickly and spontaneously perceive the number of 

items presented in a small set (up to 3 or 4 items).  This process differs from the 

more effortful process of counting larger sets of objects. 

 

Task-irrelevant Stimulus Features:  The features in Stroop tasks that are to-be-

ignored under task demands. 

 



 xiii

Task-relevant Stimulus Features:  The features in Stroop tasks that are to-be-

attended to under task demands.  For example, in the counting Stroop task, the 

number of items is task-relevant and number meanings are task-irrelevant (to-be-

ignored). 

 

Transcoding:  The process of reading, writing and understanding numbers from 

various symbolic formats. 
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Chapter 1  

General Introduction 

 

The study of numerical cognition involves the understanding of numbers and 

the mental processes involved in number representation, manipulation and 

calculation. Numerical cognition research aims to understand numerical processing, 

and also to highlight the features that aid numerical competence and proficiency.  

Since our concept of numbers form such a central part of every day life, the origins of 

our ‘number sense’ is of great interest to theorists (Dehaene, 1997).  Leading theorists 

agree that people seem to possess an innate sense of number (e.g. Butterworth, 1999; 

Dehaene, 1997) that can be likened to spontaneous cognitive processes such as colour 

perception.  Knowledge of symbolic number (e.g. ‘3’ or ‘three’) builds on this basic 

number sense and enables more complex mathematical functions (e.g. mental 

arithmetic).   

 The assumption that numerical cognition is closely linked to language has 

influenced many theories of number processing, and in turn, the hypothesis that 

numerical abilities emerge from linguistic abilities (Dehaene, 1992).  Whereas studies 

of animal and infant numerical cognition (e.g. Boysen & Capaldi, 1993; Wynn, 1992) 

suggest a language-independent sensitivity to number, symbolic numerical 

representation is essential for complex, uniquely human, numerical functions (e.g. 

Dehane, 1997).  Successful numerical cognition thus require reading, writing and 

understanding numbers in various different formats, a set of skills referred to as 

transcoding (Dehaene, 1997).  In adulthood, the human brain constantly transcodes 

between numerical formats, reflecting a long learning history of associating certain 
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symbols with certain concepts (e.g. Butterworth, 1999; Deacon, 1997).  In time, 

extensive practice and memory allow number meanings to be accessed automatically 

from different numerical symbols (e.g. Bush, Whalen, Shin & Rauch, 2006).  The 

building blocks of competent numerical cognition in adulthood are thus basic 

numerical skill (e.g. Halloway & Ansari, 2009; Kaufman, Handl, & Thoeny, 2003) 

and knowledge of linking symbolic numerical formats with underlying number 

concepts (e.g. Dehane, 1997; Gilmore, McCarthy & Spelke, 2007). 

 A central debate in numerical cognition research is how different numerical 

symbolic notations (e.g. ‘3’ versus ‘three’) influence the manipulation of numbers.  

Some theorists such as McCloskey and Macaruso (1995) argue that all numbers are 

represented in an underlying uniform code regardless of their symbolic input (e.g. ‘3’ 

or ‘three’), and that the same processes therefore take place for the manipulation of 

numbers presented in different formats.  Others, such as Campbell and Clark (1988; 

see also Campbell & Alberts, 2009) argue for format-specific number representations 

and that the surface format directly influences number processing and calculation.  

Since evidence in support of both views exists (e.g. Campell & Alberts, 2009; Zhou, 

2011) there is still debate on where, and under which task demands, surface format is 

most influential.  In favour of the format-specific view, Campbell and Alberts (2009) 

argued that arithmetic performance reflects experience and practice with the operand 

format in question, which suggests the potential utility of considering individual 

differences in this regard.  However, the research on adult numerical cognition to date 

has not considered individual differences related to mathematics experience and how 

it might regulate the influence of format in numerical cognition. Furthermore, as most 
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of the evidence in support of the format-specific and format-independent views 

comes from studies of arithmetic, it seems that more basic number processing has 

been overlooked in such studies.  The current thesis investigated symbolic numerical 

processing and manipulation at different levels of mathematics experience in 

adulthood.  With the aim to provide a clearer view of how numerical information is 

accessed from different symbolic formats, effects of format were investigated for 

more basic processes such as counting or number comparison, as well as more 

advanced processes such as arithmetic.  Effects of format can serve to identify the 

extent to which numerical concepts are processed independently from input format 

(e.g. Campbell & Alberts, 2009).  By including a wide range of tasks, such effects 

can be informative as regards the cognitive architecture of calculation processes, as 

well as basic symbolic numerical representation (Bassok, 2001; Campbell & Alberts, 

2001; Landy & Goldstone, 2007). 

1.1. The Relationship between Numerical Cognition and Language 

   A long-standing issue in the field of numerical cognition has been whether it 

is our capacity for language that allows us to manipulate numbers or whether these 

skills function independently from language.  Theoretical accounts differ in this 

regard, reflecting underlying differences in how the language–concept relationship is 

viewed.  Some adopt a strong Whorfian hypothesis (e.g. Simon, 1997) and others 

argue that language only facilitates certain aspects of numerical cognition (e.g. 

Dehaene, 1997).  Inferences made from psycholinguistic research adapted for the 

study of numerical cognition strongly depend on which view is supported.  Studies of 

Amazonian tribes, for example, whose languages lack counting words (Saxe, 1981; 
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Wassmann & Dasen, 1994), demonstrate that language differences do not necessarily 

predict conceptual differences. However, processing differences between different 

numerical formats (e.g. arabic digits or number words; e.g. Roelofs, 2006) illustrate 

that certain symbols can activate underlying number meanings more readily than 

others, and the strength of this concept–symbol connection can influence subsequent 

information processing (e.g. Dehaene, 1997).  

While symbolic numerical representation is a uniquely human characteristic, 

this ability is thought to stem from a core numerical knowledge system common to 

animals, infants and human adults.  Considering evolutionary and developmental 

evidence, theorists such as Hauser and Spelke (2004) argue that core knowledge 

systems evolved to form the basis for these advanced knowledge systems that are 

exclusive to humans.  Regarding numerical cognition, these domains involve an exact 

system for representing small magnitudes and an approximate system for representing 

large magnitudes (Dehaene, 1997; Hauser & Spelke, 2004).  Language, however, 

does not seem to underpin the number representation that human adults share with 

pre-verbal infants and non-human primates.  Departing from the cause and effect 

view of the language–thought relationship, symbolic notation is rather thought to 

organise core knowledge systems into meaningful relationships (Gleitman & 

Papafragou, 2005), and thus aids the development of formal knowledge (e.g. the 

knowledge of natural numbers). 

On the other hand, some theorists hold that numerical concepts rely 

exclusively on language and culture (e.g. Simon, 1997) and that the human brain has 

evolved to process many forms of magnitude and not numerical information 
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specifically.  Such views emphasise the importance of counting words in numerical 

competence and argue that exact number discrimination depends on language.  Some 

animal species and pre-verbal infants do, however, engage in exact number 

processing, in the absence of language (see Boysen & Capaldi, 1993; Gallistel & 

Gelman, 1992, Wynn, 1992).   

Studies of Amazonian tribes whose language does not possess counting words 

are often cited by theorists who postulate the central involvement of language in 

number development (Dehaene, 1997).  In the absence of counting words, it is 

predicted that children in these cultures will not develop a true concept of numerosity.  

However, Dehaene (1997), for example, noted that to solve calculations, pupils in a 

New Guinea school often pointed to different parts of their bodies, which represent 

different numbers.  The representation of numbers can thus circumvent number words 

(Saxe, 1981; Wassmann & Dasen, 1994) so that language differences need not 

necessarily reflect conceptual differences.  As Gelman and Butterworth (2005) point 

out, cultural differences in such studies, which were unaccounted for, could also have 

contributed to the differences in performance.  

 If our concept of number is thought of as an innate perceptual sense, which 

can be likened to automatic processes such as colour perception or spatial awareness 

(Spelke & Dehaene, 1999), language should not be necessary for this system to exist.  

Our sensitivity to numerical quantities, indeed, seems to be an automatic perceptual 

process represented in processing pathways in the inferior parietal cortex (Dehaene, 

Molko, Cohen & Wilson, 2004).  Evidence from animal and infant numerical 

discrimination also provides compelling evidence for this innate ability to process 
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number. This effortless process, thought to be the basis of the core analogue 

numerical stream, allows some animals to perform simple numerical discriminations 

(Boysen & Capaldi, 1993; Gallistel & Gelman, 1992).   

Further support for the existence of a language-independent number sense 

comes from studies which showed that infants can discriminate between (small) 

numbers of objects, actions and sounds (e.g. Antell & Keating, 1983; Starkey & 

Cooper, 1980; Starkey, Spelke & Gelman, 1990; Wynn, 1996).  Wynn (1992; 1996) 

reported a number of experiments, which suggested that infants could correctly 

anticipate simple addition and subtraction problems, a finding which has been widely 

replicated (Baillargeon, 1994; Koechlin, Dehaene & Mehler, 1997; Simon, Hespos & 

Rochat, 1995; Wynn, Bloom & Chiang, 2002).  In using a habituation paradigm, 

Wynn’s experiments showed that five-month-olds were sensitive to changes in the 

number of objects presented visually.  The habituation paradigm, a robust measure of 

infants’ expectations in visual perception (Antell & Keating, 1983; Starkey & 

Cooper, 1980; Strauss & Curtis, 1981), relies on an infant’s tendency to look for 

longer at certain stimuli than at others (e.g. a new or unexpected change in the visual 

field).  In an experiment that utilised a 1+1 operation, for example, the infant firstly 

saw an object being placed on a platform and then an upward rotating screen hid the 

object from view.  After this, the infant saw a hand placing another identical object 

behind the screen and an empty hand leaving the stage.  When the screen came down, 

the platform either contained the correct number (two objects) or the incorrect 

number (one object) of objects (Wynn, 1992).  Infants tended to look for significantly 

longer at incorrect (unexpected) compared to correct (expected) outcomes.  The 
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infants’ sensitivity to number was also found to be quite specific, suggesting that 

numerical discrimination took place.  In an experiment which used the 1+1 operation, 

infants looked significantly longer at an outcome of three objects than an outcome of 

two objects.  It thus seems that the infants were not simply expecting the display to 

contain more objects than it initially did, but rather that they engaged in more precise 

numerical discrimination (Wynn, 1992).   

In favouring the view that numerical concepts are exclusively language and 

culture-dependent, Simon (1997) argued that infants’ apparent numerical ability 

reflects mere surprise at a change in the visual scene, as opposed to actual numerical 

discrimination.  Koechlin et al. (1997) also posed the question of whether or not the 

infants were only sensitive to the spatial locations of objects instead of the specific 

number of objects.  Their study, which provided evidence against this argument, 

involved objects placed on a rotating plate located on the platform behind the screen.  

The same results as in Wynn’s studies were obtained, suggesting that the infants did 

not merely look longer at the presence of an object in an unexpected location.  

Instead, the infants seemed to be particularly sensitive to the numerosity of the 

display, supporting the argument of infant numerical discrimination.  Similar 

observations have also been demonstrated with animals (e.g. Boysen & Capaldi, 

1993; Gallistel & Gelman, 1992), which supports the view of an innate language-

independent numerical system, common to infants, human adults and some animal 

species.  Importantly, the apparent precision of the infants’ numerical discrimination 

suggests that humans have an innate ability for numerical processing per se, which 

seems to be independent from spatial and language processing.   
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1.2. The Dissociation between Language and Numerical Abilities  

 Since accurate manipulation of specific numbers often seems to occur even 

when specific words for these numbers are unavailable, the difference between the 

analogue and specific core numerical systems should not be viewed as entirely 

language-based (Gelman & Butterworth, 2005).  The analogue and specific core 

systems are thought to activate separate brain mechanisms under certain 

circumstances, but are not normally mutually exclusive (Stanescu-Cosson, Pinel & 

Van de Moortlele et al., 2000).  When a difficult calculation is performed, for 

example, the two systems are activated in order to perform the operation.  However, 

language-based representations seem to be essential in order to perform operations 

beyond the number three (Dehaene, 1997; Gelman & Gallistel, 1978; Saxe, 1981).  In 

a review of experimental and neuroscientific evidence, Gelman and Butterworth 

(2005) address this issue and support the argument that numerical concepts have 

neural and developmental roots that are language-independent. 

If numerical abilities operate independently of language function, a 

dissociation might be predicted between language and numerical cognition.  This was 

found by Butterworth, Cappelletti and Kopelman (2001) who described a patient with 

semantic dementia who had relatively spared numerical ability.  Despite impaired 

semantic memory and reading of non-number words, the patient, I.H., was able to 

read and write most number words, and could transcode (a property thought to rely 

on language ability; see Dehaene, 1992) from written or spoken number words to 

arabic digits and vice-versa.  He also had relatively spared calculation abilities despite 

compromised language function.  Furthermore, since I.H. was severely impaired on 
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other high frequency items, such as naming pictures of common objects (Butterworth 

et al., 2001), his preserved transcoding ability did not seem to reflect the fact that the 

association of certain numbers with certain words is highly practised.  This observed 

dissociation between language and numerical cognition supports the view that 

number is represented in semantic memory as a domain-specific category (e.g. 

Caramazza & Shelton, 1998).   

This argument is also supported by findings of other conditions, which shows 

a double dissociation of language function and numerical cognition.  Despite having 

good language skills, children with William’s syndrome perform poorly on relatively 

simple number tasks (Ansari & Karmiloff-Smith, 2002; Paterson, Girelli, Butterworth 

& Karmiloff-Smith, 2006; Udwin, Davies, & Howlin, 1996).  The reverse effect is 

also found, with most children with developmental dyscalculia generally not showing 

language impairments (see for example Lewis, Hitch & Walker, 1994; Ostad, 1998).  

If numerical ability relied on language, children with such literacy deficits should not 

be expected to have intact numeracy and vice versa.  Although co-morbidity of 

developmental numeracy and literacy deficits is relatively high, the data show that the 

majority of those with a literacy deficit have relatively spared numeracy (see 

Butterworth, 2005).  

1.3. Development of the Number Symbol–Concept Relation 

Despite having an innate language-independent number sense, people seem to 

possess the capacity to spontaneously link symbols with concepts, a uniquely human 

characteristic.  Although various animal species such as chimpanzees (e.g. Boysen & 

Capaldi, 1993) and rats (e.g. Church & Meck, 1984) have proved capable of symbolic 
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numerical representation, it is important to note that this was only achieved through 

extensive training and not spontaneously as is the case with humans.  Humans are 

capable of derived performance and generalising rules and concepts to new situations 

(e.g. language function), a property which animal species lack (e.g. Deacon, 1997).  

Considering the concept of natural number, for example, even the most extensively 

trained chimpanzees fail to fully master this concept.  Humans, however, seem to 

posses an early capacity for linking numbers with symbolic notations, a property that 

formal mathematics instruction builds on.  Gilmore and colleagues (2007), for 

example, showed that in the absence of arithmetic instruction, children could perform 

simple symbolic calculations.  Children were presented with the following problem, 

for example: “Sarah has fifteen sweets and she gets nineteen more.  John has fifty-one 

sweets.  Who has more?”  The children’s answers were relatively accurate and did not 

seem to rely on guessing strategies.  Performance was also as accurate as in research 

using similar problems in non-symbolic form (e.g. Barth, LaMont, Lipton & Spelke, 

2005).  This suggests that children are capable of translating between symbolic and 

non-symbolic numerical concepts, before they are able to represent exact numbers 

symbolically.  Performance dropped once they were asked to provide an exact, as 

opposed to an approximate answer, suggesting that the children’s performance lies in 

the use of the non-symbolic number system to solve approximate symbolic problems 

(Barth et al., 2005). 

This transition from the analogue representational system of infants (e.g. 

Antell & Keating, 1983; Starkey & Cooper, 1980; Strauss & Curtis, 1981; Wynn, 

1992) to the explicitly trained language-based system,  is needed in order to perform 
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arithmetic on exact numbers that exceed the number three (Dehaene et al., 1999).  

Failure to make this transition from the analogue to the specific symbolic number 

representation seems to be associated with mathematical impairments.  Rousselle and 

Noël (2007) found, for example, that children with mathematical learning difficulties 

only displayed impairments in conditions that employed arabic digits (symbolic 

number magnitude) compared to conditions that employed collections of items (non-

symbolic number magnitude).  Also, in a number Stroop task variant that compared 

the physical sizes of arabic numerals (e.g. 3  7; which font size is bigger?), children 

automatically seemed to access number magnitude, suggesting that the deficit does 

not lie in accessing number magnitude, but rather in specifically accessing number 

magnitude from symbols (Rousselle & Noël, 2006).  There was also no evidence 

found for a difference in performance between children with mathematical learning 

difficulties and children with mathematical learning difficulties co-morbid with 

reading difficulties.  It could thus be argued that the deficit is a more general learning 

impairment, specifically related to the association of certain meanings with certain 

symbols, rather than number per se.  It is also worth mentioning that the association 

of words with number concepts can be more difficult for larger numbers.  Dehaene 

(1997) notes that in the history of language development, naming the numerals 1 – 3 

was probably as easy as naming perceptual properties such as ‘hot’ or ‘cold’.  The 

fact that the brain processes ‘oneness’, ‘twoness’ or ‘threeness’ as effortlessly as 

other perceptual properties could thus make it easier to associate symbols with these 

number meanings.  Beyond the number ‘three’, numerical meanings thus take on a 

less exact mental representation (Dehaene, 1997).  
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The importance of this association is also seen in infants’ treatment of 

quantifier words (e.g. “some”, “many”, “both” etc.), a symbolic format that is not 

explicitly trained to relate to specific numerosities.  In an exploration of 

singular/plural morphology in children’s language acquisition, Barner, Chow and 

Yang (2009) found a significant correlation between quantifier knowledge and 

numeral knowledge.  However, quantifier knowledge does not seem to facilitate the 

acquisition of numeral knowledge, supporting the argument that these two concepts 

develop independently, at least to some degree.  Infants distinguish between numerals 

and other quantifiers early on in development and only assign exact meanings to 

numerals, using quantifier words to gather general information about the semantic 

qualities of a noun.  Specifically, 3- to 5-year-olds only assigned an exact meaning to 

the word ‘one’, whereas the word ‘a’ took on a more general meaning, not necessarily 

relating to only one entity.  Young children also often took the word ‘some’ to refer 

to a whole set of objects as opposed to just a portion, suggesting that children 

understand the core meanings of these quantifiers, but require extensive training to 

learn how these words contrast with other words (Barner et al., 2009).    

1.4. The Influences of Surface Format on the Core Numerical System  

Once the explicitly trained symbolic number system is in place, numerical 

information can mainly be represented in two formats, namely arabic digits and 

number words (Fias, Reynvoet & Brysbaert, 2001).  According to Cohen, Dehaene 

and Verstichel (1994) there are no reasons to conclude that number words (e.g. one, 

two or three) are processed differently from other words.  However, in light of the 

language-independent number sense that humans seem to possess (e.g. Dehaene, 
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1995), this might not be the case.  Hurewitz, Papafragou, Gleitman and Gelman 

(2006) argue that acquiring number terms, compared to other words, could be 

especially difficult for young learners as they do not describe any individual 

properties in the environment, but refer to sets of objects. In other words, number 

words are more abstract than other words (Butterworth, 1999).  Number words are 

also unique in the sense that they can conform to various different word classes, 

depending on context.  Sometimes the word ‘two’, for example, is used as a noun and 

sometimes as an adjective (Frege, 1974) and the type of objects that are quantified 

also differ from situation to situation. People use the recursive property of language 

extensively in order to generalise from instance to instance that regardless of the 

nature of the objects, the number is always ‘two’ (Hurewitz et al., 2006).   

Whether or not arabic numerals are processed in a similar or different way to 

number words, however, remains uncertain.  Most of the neuropsychological 

evidence suggests that the two formats are processed along separate pathways. 

Dehaene and Cohen (1995) showed that different neuronal pathways are involved in 

reading digits and words.  Split-brain studies indicate, for example, that the left 

hemispheric visual system recognises both formats, whereas the right hemisphere 

only recognises simple arabic digits.  Furthermore, even the left hemispheric pathway 

is sub-divided into many specialised networks, with the lesion of one of these, for 

example, resulting in the impairment of visual word recognition, but not arabic digit, 

object or face recognition (e.g. Anderson, Damasio & Damasio, 1990; Greenblatt, 

1973).  The rare reverse case has also been reported by Cipolotti, Warrington and 
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Butterworth (1995) where arabic numeral reading was impaired, but word reading 

was intact. 

A further line of evidence for processing differences between different 

numerical formats is the issue of how numerical surface format affects arithmetic 

performance, a persistent issue in cognitive research (e.g. Campbell, Parker & 

Doetzel, 2004).  Both neuropsychological evidence and research with normal 

populations have yielded mixed reports in this regard, suggesting that if such a 

processing difference exists, it is still uncertain where it lies.  Cohen and Dehaene 

(1994) and Sokol, McCloskey, Cohen and Aliminosa (1991) presented evidence for 

format-independent arithmetic performance in some acalculic patients, whereas 

others presented evidence of format-specific arithmetic skills (e.g. Kashiwagi, 

Kashiwagi & Hasegawa, 1987; McNeil & Warrington, 1994).  Similar mixed reports 

were found for normally functioning adults, with arguments for both format-

independent arithmetic (Noël & Seron, 1992; Rickard, Healy & Bourne, 1994) and 

format-specific arithmetic (Bernardo, 2001; Blankenberger & Vorberg, 1997; 

Campbell & Alberts, 2009).  Several studies have also suggested that the problem 

size effect, namely an increase in response latencies and errors accompanying an 

increase in magnitude of the numbers in an arithmetic problem, is larger with 

problems written in verbal format (e.g. three + eight) than in problems written in digit 

format (e.g. 3 + 8; Campbell, 1994; Campbell & Alberts, 2009).  This effect has been 

demonstrated across a number of different languages, including French, Dutch, 

English and Chinese (Campbell et al., 1999; Noël, Fias & Brysbaert, 1997) and 
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suggests that a difference in processing of the two formats indeed exists and that this 

difference influences arithmetic performance directly. 

While there seems to be clear differences in how number words and arabic 

digits are represented in the brain, considerable debate still exists on how surface 

format influences the retrieval of answers to arithmetic equations.  Two main lines of 

argument exist in this area, with disagreement on the extent to which access to 

underlying magnitude meaning is important for numerical activities.  Since numerical 

surface formats (e.g. digits or number words) symbolically represent magnitude or 

quantity, it is of great interest to investigate how this symbol–concept relationship 

functions across formats (Fias, Brysbaert, Geypens & d’YdeWalle, 1996) and how it 

influences subsequent number manipulation.  How surface format influences 

numerical cognition is a central debate in the literature, with previous research 

disagreeing on whether different formats are processed along common or separate 

pathways (Zhang, Si, Zhu & Xu, 2010). 

1.5. Theoretical Accounts of Format-independent Number Representation 

The first line of argument assumes that regardless of input format, numbers 

are all represented in a uniform abstract code, which enables similar numerical 

functions to be performed across different input formats (e.g. Gallistel & Gelman, 

1992; McCloskey, 1992; McCloskey & Macaruso, 1995).  This view, postulated by 

McCloskey’s Abstract Code Model (McCloskey, 1992; McCloskey & Macaruso, 

1995) assumes the necessity of accessing underlying magnitude information before 

numbers can be compared, manipulated or processed in any way (Fias et al., 1996).  

Numerical information from various input formats is transcoded into an abstract, 
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amodal code.  This code allows access to magnitude information and calculation 

procedures, from which numerical information is translated to a format-specific 

output code.  In arithmetic, for example, this view postulates that the input format has 

no influence on any subsequent retrieval or calculation processes, since these all 

operate from the same uniform magnitude code (e.g. Zhou, 2011).  In support of this 

view, neuropsychological studies have shown deficits in brain damaged patients that 

varied with arithmetic operation rather than input format (McCloskey, 1992; 

McCloskey & Macaruso, 1995).  Arithmetic performance thus varied depending on 

whether addition or subtraction took place, but not whether or not the problem was 

presented in arabic digit or number word format. 

1.6. Theoretical Accounts of Format-specific Number Representation 

The opposite argument assumes format-specific representation input codes, 

without the need for an amodal abstract code from which all number information is 

accessed.  The two main models that advocate this view are Dehaene’s Triple-Code 

Model (1992b) and Campbell and Clark’s Encoding Complex Model (1988; 

Campbell, 1994).   

In Dehaene’s Triple-Code Model (Dehaene, 1992; Dehaene & Cohen, 1995) 

numerical information is represented in three distinct ways, namely a verbal, arabic or 

amodal magnitude code, and each of the three codes is specialised for specific 

numerical functions.  The verbal code, for example, is involved in retrieval of 

arithmetic facts, the magnitude code in quantity comparisons and the arabic code in 

performing calculations on multi-digit numbers.  When numerical information is 

presented it can be translated between the three codes depending on the function that 
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is required.  For example, if an arithmetic fact is not available from memory, the 

operands can be transcoded to the arabic and amodal codes and arithmetic facts can 

be retrieved accordingly (e.g. 17 + 5 = 17 + 3 + 2 = 20 + 2; LeFevre, Bisanz & Daley 

et al., 1996).  According to this view access to the underlying amodal magnitude 

representations is only necessary for some numerical activities, whereas others can 

function without it.  Schmithorst and Brown (2004) provided fMRI evidence for the 

triple-code model in complex arithmetic by showing that three separate components 

emerged that corresponded to the hypothesised functions of the three codes.  A few 

commentators also support this view of the co-existence of format-dependent and 

format-independent processing pathways.  Nieder, Diester and Tudusciuc (2006), for 

example, found that some neurons in the intraparietal sulcus are sensitive to 

numerical magnitude, but not numerical format, whereas other neurons are 

specifically sensitive to format.   

Campbell and Clark’s encoding complex view (Campbell, 1994; Campbell & 

Clark, 1988; 1992) is a slightly different approach, which assumes purely modality-

specific representations and rejects the notion of a uniform abstract code for any 

numerical processing or manipulation to take place.  This view argues that, for 

example, different surface formats influence calculation procedures not just 

quantitatively, but qualitatively such that arabic digits and number words directly 

promote the use of different strategies in arithmetic (e.g. Campbell & Alberts, 2009).  

Unlike the abstract code and triple code models, this view argues that the encoding 

and retrieval/calculation conditions of arithmetic problem solving closely interact 

with one another, in the absence of a central amodal code.  Evidence for this view 
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comes from Campbell and colleagues’ experiments which showed a format x problem 

size interaction in arithmetic problems: impeded performance on word format 

problems was found to be even greater on problems with large operands (e.g. ‘nine + 

fifteen’ vs ‘one + two’).  Although problems in word format are generally more 

difficult to perform, the fact that this effect was enhanced for large problems led 

Campbell and Epp (2005) to argue that these word format costs could not be 

attributed to the encoding of the operands, but that format influences the retrieval of 

the answer directly.      

1.7. Cognitive Interference:  Processing Differences between Digits and Words 

Most of the support for the above mentioned models comes from studies of 

adult arithmetic.  However, lower level numerical activities, such as number 

comparison or counting, have not been investigated in this regard, with direct 

comparison between arabic digits and number words generally not featuring in such 

experiments.  As a consequence, models such as McCloskey’s (1986) and Campbell 

and Clark’s (1988; 1992) can explain format-specific effects of number manipulation 

very well, but do not explain how semantic access is gained from the presentation of 

a single digit or word, for example (Dehaene, 1992).   

In the field of psycholinguistics, studies of cognitive interference have been 

extensively used to model processing differences between two stimulus features, a 

method that seems well suited to studying basic processing differences between 

numerical surface formats.  Cognitive interference refers to the phenomenon where 

two stimulus features are processed simultaneously and the processing of one 

stimulus feature slows down the processing of the other stimulus feature (e.g. four 
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four four; How many words are present? see Bush et al., 2006).  During such tasks, 

depending on the basis for responding, one stimulus feature is task-relevant and the 

other stimulus feature is task-irrelevant (to be ignored).  It is the conflict between 

these two dimensions that results in cognitive interference and in turn, a slowed 

response (e.g. Tang, Critchley & Glaser et al., 2006).  Experimental tasks that model 

cognitive interference thus illustrate the degree to which processing of one stimulus 

feature activates representations of the other stimulus feature even if this feature is to 

be ignored under task instructions.  Where number words and arabic digits are 

concerned, cognitive interference tasks can be informative as regards the degree to 

which processing of the two formats overlaps or differs (e.g. Bush et al., 2006; Tang 

et al., 2006). 

The original colour/word Stroop interference task showed that it took longer 

for participants to name the colour of the ink that words were written in, when ink-

colour and colour-word did not match (e.g. ‘BLUE’ written in red ink; correct 

response is red; Stroop, 1935), known as the colour Stroop effect.  The Stroop task 

has also subsequently been specifically adapted to study numerical dimensions.  

Windes (1968) introduced an enumeration Stroop task and found that performance 

was slower when stimuli to be counted were arabic numerals that were incompatible 

with the number of items presented (e.g. 4  4  4, correct response is ‘three’).  This 

effect has been widely replicated with robust results (e.g. Flowers, Warner & 

Polansky, 1979; Pavese & Umiltà, 1998; Shor, 1971).  More recently, Bush, et al. 

(1998; 2006) developed a similar counting Stroop task with number words for use in 

fMRI settings (e.g. four four four, correct response is ‘three’).  During this task the 
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highly automatic process of reading is placed in competition with subitizing, the 

automatic enumeration process that takes place for a small number or items (e.g. 

Bush et al., 2006). 

The counting Stroop task has also been used to illustrate that number 

knowledge is extracted from language that does not explicitly refer to specific 

numbers.  In a modified counting Stroop task, for example, participants took longer to 

indicate that there was only one word presented when the word was plural (e.g. 

CATS, correct response is ‘one’), than it did when the word was singular (e.g. CAT, 

correct response is ‘one’; Berent, Pinker & Tzelgov et al., 2005).  In some cases it 

also took longer to indicate that two words were on the screen when the words were 

singular (e.g. CAT CAT, correct response is ‘two’).  Overall, the numerical Stroop 

task seems to be particularly sensitive to underlying number meanings that are 

accessed from words and arabic digits.  

A small number of numerical Stroop studies have also employed different 

numerical formats for comparison in the same task.  Roelofs (2006), for example, 

reported Stroop-like interference in a study that examined the naming of dice, digits 

and number words.  In a series of experiments, arabic digits were presented alongside 

incongruent dot patterns (e.g. 3  ● ●) or number words (e.g. 3  two) and participants 

were asked to either name the number represented by the digit, dot pattern or number 

word, while ignoring the other task-irrelevant incongruent digit, dot pattern or 

number word.  Dot patterns did not affect word or digit naming latencies to a 

significant extent, however, words affected digit naming latencies and digits affected 

word naming latencies to the same (significant) extent.  These results suggested that 
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digit naming was achieved in a manner similar to word naming, as opposed to dice 

naming.  Such findings might be expected as dot patterns on dice would be relatively 

unfamiliar numerical representations of number.  Since arabic digits and number 

words are both symbolic numerical representations, their processing can be expected 

to be more similar compared to dot patterns, which represent number analogically.   

However, other Stroop interference findings which did not include dot 

patterns found that digits produced similar interference to pictures, rather than words 

(Fias et al., 2001; Reynvoet, Brysbaert & Fias, 2002).  During this task, digit and 

word pairs were presented together (e.g. 3  four) and the left–right positions altered 

randomly across trials.  Similar to the experiment of Roelofs’s (2006), participants 

had to respond to either digit or word meaning while ignoring the task-irrelevant 

digit/word.  The pattern of performance mirrored previous findings of word/picture 

interference, which led Fias et al. (2001) to argue that arabic digits and pictures are 

processed similarly.  The basis for this conclusion was that digit naming was 

disrupted with the presence of an incongruent number word, whereas number word 

naming was not found to be disrupted with the presence of an incongruent digit.  

Similarly, in picture–word Stroop tasks, picture naming is generally disrupted by the 

presence of an incongruent word, whereas word naming is not disrupted by the 

presence of an incongruent picture to a great extent (e.g. Alario, Segui & Ferrand, 

2000; Starreveld & La Hej, 1996). The authors argue that the similarity in processing 

of arabic digits and pictures stems from the fact that both digit and picture naming 

occur through a semantic route, whereas word naming can occur without gaining 

access to underlying number meaning.   
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The process of word reading involves mapping letters to sounds, whereas with 

digits there is no such explicit letter-sound mapping opportunity.  In the case of 

words, access to word meaning can follow letter-sound mapping or can occur 

independently if the words are highly practised (e.g. Plaut, McClelland, Seidenberg & 

Patterson, 1996).  Semantic mediation is more direct for digits, since it operates in the 

absence of letter-sound mapping.  Activation of digit meaning is therefore 

unavoidable, whereas with words only letter-sound mapping need to be present for 

accurate naming.  Given the different findings of Roelofs et al. (2006) and Reynvoet 

et al. (2002), whether or not spontaneous semantic activation takes place with number 

words seem to depend on specific task instructions and situations.  

Neuropsychological studies show, for example, that in situations where letter-sound 

knowledge is lost, as is seen with patient I.H. (Butterworth et al., 2001), accurate 

reading and spelling can be achieved by a meaning-mediated process alone.   

Overall, these findings suggest that compared to dot patterns, arabic digits and 

number words are read similarly.  In comparison with each other, however, an 

advantage seems to exist for digit compared to number word processing (e.g. 

Campbell et al., 1999; Noël et al., 1997).  This is likely to be due to time consuming 

letter-sound mapping and phonological activation that occur during number word 

reading.  In addition, people encounter countless combinations of letters every day, 

which can form words to refer to a countless number of concepts, whereas arabic 

digits are usually only used in the context of number.  This association between 

underlying number concepts and arabic digits is thus more practised than this 
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association with number words, which could underpin the observed format-specific 

processing differences. 

1.8. Cognitive Interference Modelled by the Size Congruity and Symbolic 

Distance Effects 

Cognitive interference tasks have also been used to study other dimensions 

that relate to number concepts, such as numerical magnitude and physical size.  

Besner and Coltheart (1979) originally described this task that placed these two 

dimensions into competition with one another.  These tasks typically involve two 

arabic digits, with varying physical sizes and numerical magnitudes presented 

together.  The participant has to indicate which number (left or right) is either 

physically or numerically larger, depending on task requirements. On congruent trials 

the physically larger numeral is also the numerically larger numeral, e.g. 5   2 

(correct response ‘left’ in both physical and numerical comparison tasks), whereas on 

incongruent trials the physically larger numeral is the numerically lower numeral, e.g. 

5   2 (correct response ‘right’ in physical comparison task and ‘left’ in numerical 

comparison task).  Cognitive interference is typically measured as an increase in 

response latencies and errors on incongruent trials relative to congruent trials.  The 

size congruity effect demonstrates that when an arabic digit is presented, underlying 

access is gained to number meaning, which is closely related to physical size, 

underlying the interference on incongruent trials.  The size congruity effect has also 

been demonstrated to a lesser extent with number words (Cohen-Kadosh, Henik & 
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Rubinstein, 2007; 2008) suggesting that a similar process takes place with number 

word processing. 

Cognitive interference in the size congruity effect seems to arise due to the 

automatic spontaneous processing of certain stimulus features, regardless of task-

relevance. The original magnitude Stroop task has been widely adapted to study this 

phenomenon (e.g. Banks, 1977; Dehaene, 1989; Parkman, 1971) and to illustrate that 

number magnitude seems to be automatically accessed when a numeral is presented 

despite it being the unattended task dimension (e.g attend to numerical magnitude and 

ignore physical size; Girelli, Lucangeli & Butterworth, 2000).  Moyer and Landauer 

(1967) suggested that arabic numerals are converted to an analogue representation, 

which enables a physical comparison between the two numbers (Besner & Coltheart, 

1967).  The specific semantic number that the numeral refers to is therefore converted 

to a more general analogue item, with perceptual properties, which allows a physical 

comparison to take place.  

Related to size congruity is the symbolic distance effect, which Moyer and 

Landauer (1967) originally modelled to show that “the time to make the judgement is 

a function of the numerical distance (difference) between the numbers” (p.105).  The 

symbolic distance effect demonstrates that it is generally more difficult to 

discriminate between stimuli that are similar than between stimuli that are dissimilar.  

In number comparison tasks, the time taken to make a judgment is thus inversely 

related to the numerical distance between the two numbers.  In the number Stroop 

task, for example, participants displayed faster response latencies when the two digits 

for comparison were numerically further apart (e.g. 2   9) compared to two digits that 
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were numerically closer together (e.g.  7   9).  The presence or absence of the 

symbolic distance effect is viewed as evidence for the degree to which the two 

stimulus features (numerical magnitude and physical size) are processed 

autonomously, and can in turn provide insight into processing differences between 

different numerical surface formats.  Importantly, numerical and physical distance 

can be varied parametrically (e.g. small, medium and large physical/numerical 

distances) beyond a mere smaller/ larger classification, which allows a more in depth 

investigation into how physical size and magnitude representations overlap (Tang et 

al., 2006). 

Findings from the symbolic distance effect strongly support the notion of a 

pre-verbal, spontaneous capacity for comparing items hierarchically.  A symbolic 

distance effect has been found, for example, for abstract linguistic dimensions where 

the two concepts do not relate to quantification or magnitude.  Friedman (1978), for 

example, found a symbolic distance effect when participants were instructed to 

choose the better or worse of low imagery word pairs such as “hate versus peace” or 

“hate versus pressure”. Thus, when two numbers are compared, underlying 

magnitude representations need not necessarily be activated in order to make a 

decision.  The items could merely be related to each other by a verbal code that 

organises objects in a hierarchical set (see Cohen-Kadosh et al., 2007). We might thus 

predict differences in size congruity and physical/numerical distance effects between 

arabic digits and number words, based on the difference with which the formats 

activate underlying magnitude meanings.   
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1.9. Automaticity of Processing and Cognitive Interference 

Kadosh and colleagues (2007) used event-related potentials (ERP) technology 

in a Stroop task variant to show that the conflict between the two stimulus features 

(physical size and numerical magnitude) is not completely resolved until the response 

is initiated (Kadosh, Kadosh & Linden et al., 2007). Regarding the degree to which 

processing of these two features are shared across cognitive systems, this finding 

supports the argument that distinct mechanisms for physical size and numerical 

magnitude exist, which enables a comparison of the processing of the two features.  

Most notably, magnitude processing seems to be modulated by both shared and 

distinct neural substrates, depending on task requirements. 

  It could be argued that the physical dimension (relating to perceptual 

properties; e.g. Berent et al., 2005) is more related to the analogue numerical system 

and that the numerical dimension (adhering to language dimensions; e.g. Berent et al., 

2005) is more related to the specific numerical system.  Therefore, in a physical 

comparison task (e.g. 2  4, correct response ‘left’) a size congruity effect is not 

observed for young children as they have not been exposed to arabic numerals to such 

an extent that this symbol–concept relation can be accessed automatically.  In 

adulthood, however, sufficient experience with arabic numerals has taken place, 

which results in Stroop interference during incongruent trials (the size congruity 

effect).  On the other hand, the analogue perceptual number representation (e.g. 

physical size) is already in place in infancy (e.g. Antell & Keating, 1983; Starkey & 

Cooper, 1980; Strauss & Curtis, 1981), which results in Stroop interference on 

incongruent trials when physical size is the “to be ignored” dimension. 
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 In light of the differences in size congruity effects between adults and young 

children, similar differences might even be observed in adulthood at different levels 

of mathematics experience.  The automaticity of a cognitive process is not a 

phenomenon that is either present or absent, but rather one that exists on a continuum 

and develops gradually across time depending on practice and experience (Logan, 

1985; MacLeod & Dunbar, 1988; Schiffrin, 1989).  Arguably, if experience with 

numerical information in arabic digit format increases the automaticity with which 

underlying number meanings are accessed from arabic digits, it would result in 

greater cognitive interference in numerical Stroop tasks.  The degree of interference 

could thus be related to the degree of experience with the format in question.  

Individual differences in numerical processing might therefore be useful in studying 

the influences of surface-format in numerical cognition. 

1.10. Individual Differences in Number Processing 

While the studies mentioned above have focused on how numerical 

information is represented and manipulated, individual differences in number 

processing have generally not been considered in this regard.  If increased exposure 

to certain stimuli can produce information processing biases, as has been shown with 

emotional Stroop task paradigms (e.g. Edwards, Burt & Lipp, 2006), individual 

differences relating to mathematics should also influence numerical information 

processing.  Patterns observed in emotional Stroop task paradigms demonstrate, for 

example, that anxious individuals show an involuntary attentional bias for anxiety 

related stimuli (e.g. Edwards et al., 2006).  This bias is thought to result from 

increased focused attention and memory for anxiety related stimuli above other 



CHAPTER 1 

 28 

stimuli. Thus if, as according to Ashcraft (2006), automaticity of processing for 

certain stimuli (e.g. anxiety related words) develops as a result of rehearsal and 

memory, increased mathematics experience could lead to a similar processing “bias” 

for numerical information.  

Although numerical competence is a complex skill, relying on various 

abilities (e.g. Mazzocco, 2008), the argument that practice and memory lead to 

increased proficiency with numbers is held by most leading theorists in the area of 

numerical cognition.  Dehaene (1997), for example, argues that it is unlikely that 

some individuals are biologically predisposed to be mathematics proficient and 

emphasises the role of memory and practice.  For ‘prodigies’, for example, numbers 

are so practised that the presentation of nearly every number activates learned facts 

stored in memory about that number.  In such cases, Dehaene (1997) argues, it is the 

extensive exposure and practice with numbers that result in their superior abilities, 

rather than a predisposed numerical aptitude.  Similarly, Butterworth (1999) is of the 

view that there is no evidence relating mathematics achievement to innate intellectual 

advantages.  Instead, the best predictor of mathematics achievement is practice and 

training.  Furthermore, Stevenson and Stigler (1992) noted that the emphasis placed 

on innate numerical ability varies cross-culturally.  In Japan, for example, effort and 

learning is emphasised in school performance, whereas American parents often 

emphasise innate talents and limitations.  These cultural differences seem to 

profoundly influence mathematics achievement, with the Japanese showing an 

advantage in numerical achievement compared to the American; which further 

strengthens the case for practice and memory. 
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Acquiring advanced numerical concepts seem to be particularly difficult, in 

comparison with language acquisition, for example, which emphasises the need for 

extensive practice and rehearsal in order to master numerical concepts.  Learning to 

count is easy for children as they are already competent in the necessary activities 

that they need to engage in to achieve this, such as searching, verbal labelling and 

one-to-one correspondence.  However, equations beyond simple addition require 

skills that humans are ill-equipped for such as memorisation of large numbers and 

remembering various different facts that are easily confused with one another (e.g. 

multiplication tables; Dehaene, 1997).  In comparison with literacy development, 

which mostly involves adding new words to existing concepts of word classes and 

grammar, mathematical abilities often require developing completely new skills that 

add on to previously acquired skills, but are conceptually distinct (LeFevre, 2000).  

Number representation and calculation, for example, require the abilities to read, 

write and transcode between different symbolic numerical notations (Deheaene, 

1992).  It seems that at this point in development, mathematics education and cultural 

variables would greatly influence numeracy.  Formal numerical manipulation thus 

requires an “increasingly sophisticated understanding of numerosity” (Butterworth, 

2005, p. 15).    

Studies of individual differences in numerical cognition have mostly come 

from a developmental perspective.  However, studying adult samples can be 

informative of how the experiences encountered earlier in life can influence later 

numerical information processing.  For example, great variability in the processing of 

basic probability and numerical concepts (numeracy) exists among even highly 



CHAPTER 1 

 30 

educated adult populations (e.g. Jukes & Gilchrist, 2006; Lipkus, Samsa & Rimer, 

2001; Peters, Västfjäll & Slovic et al., 2006).  This suggests that while children can 

acquire the necessary skills for performing formal mathematics, they may still not be 

able to apply these skills to novel situations in adulthood (Dehaene, 1997).   

Overall, there seems to be a lack of consideration for mathematics experience 

in adult numerical cognition studies of both lower level number processing (e.g. 

number comparison), as well as more advanced number manipulation (e.g. 

calculation).  Mathematics experience, however, seems important to consider, as 

differences in exposure to numerical information should influence the automaticity 

with which underlying number meanings are accessed from symbolic formats.  For 

example, if individuals with greater mathematics experience are more proficient at 

accessing number meaning from a variety of different numerical formats (e.g. arabic 

digits, number words, quantifier words etc.) it would lend more support to models 

which assume an underlying analogue code for all numbers (e.g. McCloskey’s 

Abstract Code model, 1992).  If all numbers are translated to an internal amodal code 

an advantage with numbers should not discriminate between formats.  On the other 

hand, if processing differences between numerical formats (e.g. arabic digits and 

number words) differ at different levels of mathematics experience, it would be more 

in line with the accounts which postulate that different numerical formats assume 

separate representational codes, without the need for a uniform analogue code 

(Campbell & Clark’s Encoding Complex Model, 1995; Dehaene’s Triple Code 

model, 1992).  Practice with a particular format would thus strengthen its processing 
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(e.g. arabic digits), while not necessarily influencing the processing of another (e.g. 

number words).  

1.11. The Current Research 

 The current study investigated the influences of format and mathematics 

experience across a wide range of numerical functions.  By taking into account 

individual differences related to numeracy and mathematics education, the study 

explored the possibility that format effects in adult number processing and 

manipulation could be regulated by mathematics experience.   

 Support for models of symbolic number representation such as the abstract 

code model (McCloskey, 1992) and the encoding complex model (e.g. Campbell & 

Clark, 1992) have mostly come from studies of arithmetic.  More research is thus 

needed to relate processing differences between formats to early numerical 

processing such as magnitude comparison or subitizing.  While a small number of 

studies have compared the reading of arabic digits and number words, Stroop tasks 

investigating number–size comparisons and subitizing have not compared different 

formats directly, with experiments mostly focusing on either arabic digits or number 

words.  The first three experiments in the current thesis examined such basic 

numerical processing by adapting Stroop tasks to investigate the processing 

differences that might emerge for arabic digits, number words and quantifier words in 

the English language.   

 In chapter 2 (Experiment 1) the original counting Stroop task was adapted to 

include arabic digits for comparison with number words.  The increase in RT on 

incongruent (e.g four four four, respond ‘three’) relative to neutral (e.g. cat cat cat, 
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respond ‘three’) trials was investigated for each format and at high and low levels of 

mathematics experience, based on participants’ Irish Leaving Certificate performance 

and results on a numeracy test.  The view was explored that greater experience with 

mathematics could result in an advantage for processing numerical information, and 

that this might further vary between arabic digits and number words.  Since the 

Stroop task has been widely used in other individual differences domains (see 

Chapter 2) it seemed well-suited to the study of individual differences in numerical 

information processing.    

 Chapter 3 (Experiment 2) addressed a similar question by considering format-

specific effects in terms of size congruity and symbolic distance at different levels of 

mathematics experience.  By modifying the task developed by Tang et al. (2006; see 

Chapter 3), arabic digits as well as number words were investigated in physical  

(e.g. two  five, which number is physically bigger?) and numerical comparison tasks 

(e.g. two  five, which number is numerically bigger?).  This experiment addressed 

the question of whether or not the dimensions of physical size and numerical 

magnitude are processed similarly and the role that stimulus format and mathematics 

experience can play in this regard. 

 Based on the results from Experiments 1 and 2, Experiment 3 (Chapter 4) 

investigated whether or not greater mathematics experience can result in an advantage 

in extracting numerical information from language more generally.  The counting 

Stroop task used in Experiment 1 was adapted for studying quantifier words with 

specific (e.g. both) and general (e.g. some) number meanings.  Since quantifier 

words do not express number meanings as explicitly as number words or arabic 
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digits, it is not certain whether or not quantifier word processing follows a more 

numerical or linguistic processing route.  The role of number knowledge in quantifier 

word processing has not been explored to a great extent. However, in development, 

number knowledge seems to be central to quantifier word knowledge.  Differences in 

quantifier word processing related to adults’ mathematics experience were thus 

explored. 

 Overall, Experiments 1 to 3 considered basic number encoding and how 

mathematics experience can influence this process.  Subsequent to encoding, various 

other functions take place, such as calculation and arithmetic fact retrieval.  To 

investigate these processes, Experiments 4 and 5 considered the role of operand 

format and mathematics experience in performing mental arithmetic.  In addition to 

this, eye-tracking and event-related potential (ERP) technology were used in 

Experiments 4 and 5 respectively, as these measures have been shown to be sensitive 

to effects that might not be evident from behavioural measures alone (e.g. Merkley & 

Ansari, 2010).  Different stimuli can be processed along separate routes, but can still 

yield similar behavioural patterns (e.g. Zhang et al., 2010; Zhou, 2011).  More 

sensitive measures such as eye-tracking and ERP technology were therefore 

employed in the second part of the thesis alongside behavioural measures of accuracy 

and reaction time. 

As mentioned above, two opposing viewpoints exist on how the encoding and 

answer-retrieval stages of arithmetic relate to one another.  Recent studies favour both 

the additive viewpoint (e.g. MCloskey’s abstract code; Zhou, 2011) of format-

independent answer retrieval as well as the interactive viewpoint of format-specific 
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answer retrieval (Campbell & Alberts, 2009).  The role of mathematics experience 

has, however, not been explored in these studies, and it seemed an important variable 

to consider in the study of adult arithmetic.  In Chapter 5 (Experiment 4), a study of 

Campbell and Alberts (2009) was replicated in order to examine the influence of 

operand format on the calculation strategies used in arithmetic.  Campbell and Alberts 

(2009) investigated whether the format of the operands directly influences the 

strategies that participants reported using (e.g. direct memory retrieval or calculation), 

or if relatively similar calculation processes take place for arabic digits and number 

words, with their results supporting the former view.  Since shortcomings have been 

noted with self-reports (Kirk & Ashcraft, 2001), Experiment 4 employed eye-tracking 

measures to investigate if the findings of Campbell and Alberts (2009) could be 

supported.  Specifically, the experiment tested whether or not measures of fixation 

count and fixation duration reflect similar interactions of format, operation and 

problem size as was noted in the self-reports of Campbell and Alberts’s (2009) 

participants.  

 While overall relatively little research has been conducted using eye-tracking 

in the study of numerical cognition, it has been a useful tool in studying information 

processing in reading (e.g. Inhoff, 1984, 1985; Rayner & Pollatsek, 1987) and thus 

seems well suited for the study of numerical processes.  A recent interest in using 

eye-tracking to study numerical cognition specifically has also emerged (e.g. Merkley 

& Ansari, 2010; Moeller, Neuburger & Kaufman, 2009), as eye-tracking can provide 

a more extensive measure of information processing than reaction time and accuracy 

(Desroches, Joanisse & Robertson, 2006).   
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 While addressing the question regarding the relationship between the different 

stages in arithmetic, a more in depth analysis of the interaction between the encoding 

and answer-retrieval stages was conducted in the final experiment.  To do this, 

Experiment 5 replicated an event-related potentials (ERPs) study of Zhou (2011), 

which aimed to separate the presentation of the encoding and retrieval phases of 

arithmetic equations in a true/false verification task that presented addition and 

multiplication equations in separate blocks.  In this study, the equation ‘3 + 2 = 5’, for 

example, was presented as ‘3’ and ‘+ 2 = 5’ on separate presentation-screens (or 

‘three’ and ‘+ two = five’).  This allowed the effects of operation, format and 

mathematics experience at the encoding and answer-retrieval stages to be investigated 

separately.  Zhou (2011) noted a dissociation in how addition and multiplication is 

mentally represented even during the encoding phase where participants only saw a 

single digit operand on-screen.  In support of the additive view of arithmetic (e.g. 

McCloskey’s abstract code model), multiplication and addition operands presented in 

the same format are encoded differently, which allows the relevant arithmetic facts to 

be retrieved.  If the interactive view of arithmetic (e.g. Campbell & Clark’s encoding 

complex model) were supported, the dissociation between arithmetic operations 

should only emerge subsequently to the encoding phase, since addition and 

multiplication operands presented in the same format should be encoded similarly 

(Zhou, 2011).  The final experiment (Experiment 5) investigated the event-related 

potentials at the encoding and retrieval phases separately, while controlling for 

mathematics experience and presenting equations in digit as well as word format, 

unlike Zhou’s (2011) study which only involved arabic digit operands.  By including 
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two formats, the specific effects of operation and mathematics experience that emerge 

for each format and at each level of arithmetic could be compared.  

 The overall objective of the current research was to investigate how numerical 

information is accessed from symbolic formats, and how this might differ at different 

levels of mathematics experience.  By investigating these effects for various 

numerical functions and utilising a wide range of measures, the aim was to gain a 

more comprehensive view of the mental representation of numbers.  The early 

experiments (Experiments 1 to 3) investigated basic number encoding, which formed 

the basis for investigating format effects in more complex numerical cognition, such 

as calculation (Experiments 4 and 5).  The following chapter (Experiment 1) set out 

to explore the role of mathematics experience in format-specific processing in a 

simple counting task.  By investigating cognitive interference of arabic digits and 

number words, the automaticity of processing of the two formats could be directly 

compared.   
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Chapter 2  

Experiment 1: Cognitive Interference in a Digit–Word Counting Task: The Role 

of Mathematics Experience in Format-specific Processing 

2.1. Introduction 

 Widespread evidence supports the argument for format-specific influences on 

performance in tasks where participants are engaged in numerical processing.  As 

mentioned in Chapter 1, format-specific effects have been found in arithmetic studies 

(e.g. Campbell, 1994; Campbell & Alberts, 2009) highlighting differences in 

performance between digits and number words.  Little evidence exists, however, to 

link format-specific processing with early numerical processing such as subitizing: 

the rapid enumeration process that takes place for a small number of items (1 to 4; 

Dehaene, 1997).  While numerous studies have investigated such basic numerical 

processing, these have mostly focused on one or the other format, but have not 

compared the processing of digits and number words directly.   

 According to Ganor-Stern and Tzelgov (2008) the most effective way to study 

mental representations is to investigate if their processing is automatic even when 

participants are instructed to ignore them as part of a task.  Stroop interference tasks, 

for example, make use of the observation that when words are read, access to 

underlying word meaning is generally unavoidable.  Windes (1968) originally 

introduced an enumeration Stroop task and found that participants were slower to 

count stimuli when they were incompatible arabic digits (e.g. 3  3; respond ‘2’).  

Other studies have subsequently replicated this effect (Flowers et al., 1979; Pavese & 
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Umiltà, 1998; Shor, 1971) and have also demonstrated the Stroop effect for number 

words (Bush et al., 1998; 2006).  With the aim to draw on the known success of the 

original colour–word Stroop task (Stroop, 1935), Bush et al. (1998) designed the 

counting Stroop task to study the neural basis of informational conflict in functional 

magnetic resonance imaging (fMRI) settings.  Since speaking requires head 

movements that are not tolerated by fMRI, the original colour–word Stroop task was 

not suitable.  Arbitrarily labelling response-buttons with colour names was also not 

ideal as this would have added undesired cognitive complexity to the task.  The 

counting Stroop was thus created in response to these shortcomings as it allows 

button-press responses (within the subitizing range) that do not require speech.  The 

task requires participants to count the number of (identical) words on-screen while 

ignoring the number meanings of the words (Bush et al., 1998, 2006).  Trials where 

number and word meaning are incongruent (e.g. four  four  four; respond ‘3’) result 

in a slowed response compared to neutral (e.g. cat  cat  cat; respond ‘3’) and 

congruent (e.g. four  four  four  four; respond ‘4’) trials.  While the two formats 

have not been compared directly, this effect has also been shown with arabic digits 

(e.g. Muroi & McLeod, 2004) suggesting that when presented with a digit or a 

number word, access to underlying word meaning is an unavoidable, automatic 

process. 

 Cognitive interference occurs on incongruent trials in the Stroop task when 

two stimulus features are processed simultaneously and the processing of one 

impedes the processing of the other, reflecting the extent to which the processing of 

the two features overlaps (e.g. Bush et al., 1998, 2006).  In the counting Stroop task 
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the two highly automatic processes of subitizing and reading are placed in 

competition, such that number words that are incongruent in meaning interfere with 

the counting process.  The increased response latency on incongruent trials relative to 

neutral trials (e.g. dog  dog  dog; respond ‘3’) acts as a measure of cognitive 

interference.  Another effect, deemed Stroop facilitation is also often noted where 

faster responses occur on congruent (e.g. three three three, respond ‘three’) relative 

to neutral trials (e.g. Bush et al., 2006).  The counting Stroop effect thus demonstrate 

that incongruent numerical stimuli slow down the counting process, congruent 

numerical stimuli speed up the counting process and number-neutral stimuli do not 

influence the counting process. 

 The focus of counting Stroop tasks has mostly been the study of informational 

conflict in general rather than numerical cognition per se.  As such, format-specific 

processing has generally not been of interest and mathematics experience has not 

been considered in these tasks.  The current experiment considered these factors:  if 

arabic digits and number words are processed differently, differences in cognitive 

interference in the counting Stroop task might be predicted between the two formats.  

Research has mostly included only one format without comparing formats directly.  

The original counting Stroop task (Bush et al., 1998; 2006), for example, which was 

designed to measure cognitive interference in fMRI settings only focused on number 

words.  The few Stroop studies that have included different numerical formats (as 

described in Chapter 1, p. 19 – 21) have suggested that different processes take place 

for the naming of digits and number words.  Generally, number words seem to 

spontaneously gain access to phonological codes upon which access to semantic 
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information can follow (Damian, 2004).  Arabic digits seem to gain more direct 

access to semantic codes, and only subsequently gain access to lexical information.  

However, these distinctions are not always as clear-cut even if these are the typical 

routes of processing for these formats.  Dual-route models of word reading, for 

example, argue that access to underlying word meanings can either follow on from 

letter-sound mapping or occur directly (e.g. Coltheart, 2005; Plaut et al., 1996), which 

seems to mirror some of the accounts of digit naming (e.g. Butterworth, 1999; 

Dehaene, 1992, 1997).  Word frequency should also be expected to play a role in the 

extent to which spontaneous access to underlying meaning is achieved.  Similar to 

arabic digits, high frequency nouns (such as small number words) are likely to be 

read through a conceptually driven route, reflecting a strong symbol–concept relation 

established through extensive exposure.  It is this automatic conceptual processing 

that gives rise to cognitive interference in the Stroop task. 

 The processing that takes place when an arabic digit or number word is read 

can thus be classified as ‘automatic’ when its meaning interferes with the task at hand 

even when it is to be ignored under task instructions (e.g. Ganor-Stern & Tzelgov, 

2008).  However, since automaticity of processing is not an “all–or–nothing” process, 

but rather exists on a continuum (MacLeod & Dunbar, 1988), the degree to which a 

format (e.g. digit or number word) spontaneously activates underlying magnitude 

representations could be related to the individual’s experience with the format in 

question.  The Stroop task has been widely utilised in individual differences research 

to highlight any processing biases that might occur as a result of rehearsal and 

memory.  The emotional Stroop task (Edwards et al., 2006; Williams, Mathews & 
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MacLeod, 1996), for example, demonstrated that anxious individuals tend to show an 

involuntary attentional bias towards anxiety related stimuli.  In this adaptation of the 

original colour–word Stroop task (Stroop, 1935), anxious individuals took longer to 

name the colour that threat-related words (e.g. ‘panic’ or ‘coffin’) were printed in 

compared to ‘neutral’ words (e.g. ‘plate’ or ‘button’).  Similar findings have also 

been noted for addiction (see Cox, Fadardi & Pothos, 2006, for review).  With 

regards to numerical cognition, individuals with greater mathematics experience 

could display similar selective processing for certain numerical stimuli.  It could thus 

be hypothesised that individuals with differing mathematical histories, reflecting 

different levels of practice, memory efficiency and education, could display 

differences in the automaticity with which number meanings are accessed from 

symbolic formats.  Although the Stroop task has been widely used to reflect 

individual differences in selective processing, it has not been applied to mathematics 

experience in this regard.  The current study tested this hypothesis by measuring 

differences in cognitive interference in a digit–word counting task. Participants were 

divided into ‘high’ and ‘low’ mathematics experience groups, based on self-reported 

performance in the Irish Leaving Certificate mathematics examination and 

participants’ performance on a numeracy test was also assessed.  Greater cognitive 

interference was predicted for individuals with greater experience with numbers, 

based on the assumption that these individuals could show selective processing for 

numerical stimuli.  This effect was also expected to differ between arabic digits and 

number words, reflecting the relative automaticity with which underlying number 

meaning is accessed from the two formats. 
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2.2. Method 

2.2.1. Participants  

 Forty participants took part in the experiment (age 18 – 29; M = 21.22; SD = 

3.34). Participants were divided into a High Maths and a Low Maths group based on 

Irish Leaving Certificate performance.  Those who reported an obtained grade higher 

than a C3 for higher level mathematics were assigned to the High Maths group (n = 

20; 13 men and 7 women).  The rest of the participants were assigned to the Low 

Maths group (n = 20; 9 men and 11 women).  Participants who had studied 

foundation level mathematics or who reported reading difficulties were excluded 

from the study.  Most of the participants in the High Maths group reported grades in 

the A/B range (n = 15).  All of the participants in the Low Maths group had studied 

ordinary level Leaving Certificate mathematics and most reported grades in the B/C 

range (n = 14).  All participants spoke English as their first language and had normal 

or corrected-to-normal vision.  

2.2.2. Apparatus and Materials 

 Participants completed the counting Stroop task as well as a numeracy test, a 

measure of numerical self-efficacy (the Subjective Numeracy Scale) and a number of 

working memory span tasks.  

 Counting Stroop task.  The stimuli for the computerised counting Stroop 

task were presented on a 15-inch LCD monitor linked to a computer.  Each stimulus 

was positioned centrally on the screen and subtended between approximately 1 to 1.9 

degrees of visual angle.  Programming for the task was done in Superlab®, which 
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recorded all participant input and reported reaction times in milliseconds (ms) as well 

as accuracy.  The stimuli consisted of four stimulus types, namely number words and 

digits (the number stimuli), and animal names and symbols (the neutral stimuli).  The 

four number words employed were: ‘one’, ‘two’, ‘three’ and ‘four’, the digits were: 

‘1’, ‘2’, ‘3’ and ‘4’, the animal names were: ‘dog’, ‘cat’, ‘mouse’ and ‘bird’ and the 

symbols were: ‘?’, ‘*’, ‘@’ and ‘#’.  The word stimuli were selected on the basis of 

being common words within a single semantic category, balanced for word length 

and part of speech (all are nouns), as was employed by Bush et al. (2006).  The 

symbol stimuli used in the neutral condition were selected on the basis that they did 

not resemble digits or evoke numbers in some way.  The stimuli and instructions 

were presented in black print against a white background.  

Some trials involved the meaning of the word or digit matching the number of 

items presented on-screen (congruent trials), for example: ‘2  2’ (correct response: 2).  

Other trials involved the meaning of the word or digit not matching the number of 

items presented on-screen (incongruent trials), for example: ‘three three three three’ 

(correct response 4).  Some trials contained non-numerical words or symbols (animal 

names and neutral symbols), which were presented one to four times on any given 

trial (neutral trials).  

The stimulus sets consisted of 12 different combinations of the 6 different 

stimuli categories, which were neutral digit, congruent digit, incongruent digit, 

neutral word, congruent word and incongruent word.  Each set was presented twice 

resulting in each participant being presented with a total of 144 trials.  Trials were 

presented in a quasi-random order. 
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Numeracy test.  Participants completed a 17-item numeracy test adapted 

from Lipkus et al. (2001).  The test consisted of 17 problems, ranging from easy to 

difficult, to measure participants’ proficiency with probabilities, proportions and 

percentages (see Appendix 2). Ten of the equations were taken from Lipkus et al.’s 

(2001) study (e.g. which of the following represents the biggest risk of getting a 

disease? 1%, 10% or 5%).  A further 7 problems were devised to include more 

difficult calculations (e.g. If the bill came to € 42 and I gave the waiter € 50 as 

payment, after deducting a 10% tip, how much change will I get?).  Participants were 

given eight minutes to complete as many of the problems as possible.  A blank sheet 

of paper was provided to work out the answers.  The experimenter also had a sheet of 

paper for each participant to record demographic information regarding the 

participant’s age, gender and self-reported Irish Leaving Certificate mathematics 

performance.  While self-reported Leaving Certificate mathematics performance was 

used to assign participants to different groups of mathematics experience, the 

numeracy test was used to assess differences in numerical ability between the two 

groups. 

 Digit forward span task.  Sequences of different digits were presented 

aurally by means of a voice recording and after each sequence there was a pause 

during which the participant repeated the digits out loud (Aleman & Van’t Wout, 

2007; Oberauer, Süβ & Schulze, 2000).  The digits forward task consisted of 16 trials 

of different list length: 3 digits (3 trials); 5 digits (5 trials); 7 digits (5 trials); 9 digits 

(3 trials).  The number of correct digits recalled in the correct order was recorded for 

each item and the percentage items correctly recalled acted as a score for the scale.  A 
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similar scoring method was used by Oberauer et al. (2000) as it has the advantage 

over traditional scoring methods of gaining scores for individual items. 

 Digit backward span task.  During this task participants repeated each heard 

sequence in reversed order: 3 digits (3 trials); 5 digits (5 trials); 7 digits (5 trials); 8 

digits (3 trials).  Scoring was similar to the Digit Forward span task.  

 Sentence span task.  The computerised sentence span task was programmed 

in Superlab® to utilise a dual-task paradigm where the participant made true or false 

judgments on simple sentences while remembering the last word of each sentence 

(see Oberauer et al., 2000).  Following the procedure of Oberauer et al. (2000), short 

trivially true or false sentences were used, where the last word of each was a familiar 

noun of no more than 3 syllables (e.g. Cats chase mice).  Each sentence was 

presented on the screen for 3 seconds, followed by a 1-second interval.  The 

participant’s task was to indicate via button press, during the 4 seconds, whether the 

sentence was true or false and also to remember the last word of each sentence.  After 

a few sentences the computer instructed the participant to write down the last word of 

each sentence, in sequence, on an answer sheet.  The participant then pressed the 

space bar to continue the task.  The task included 2 practice sentences and 5 test trials 

(25 sentences overall ranging from word list lengths 3 – 7), presented in ascending 

order of list length.  The number of correct words written down in the correct order 

acted as a score for each trial.  The overall score for the scale was computed as the 

percentage total words correctly recalled across the five trials. 

 Subjective numeracy scale (SNS: Fagerlin, Zikmund-Fisher & Ubel et al., 

2007).  This eight-item self-report questionnaire measured self-perceived efficacy to 
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perform a variety of mathematical tasks (four items of the SNS ability subscale e.g. 

“How good are you at working with fractions?”) as well as preference for information 

presented in prose versus numerical form (four items of the SNS preference subscale 

e.g. “When reading the newspaper, how helpful do you find tables and graphs that are 

parts of a story?”).  A six-point Likert scale (e.g.1 = not at all helpful; 6 = extremely 

helpful) was used, with total scores ranging from 4 – 24 on each of the subscales (see 

Appendix 3).  

2.2.3. Procedure 

 The experiment took place individually for each participant in a quiet room 

with a PC and two chairs.  Upon arrival each participant was told that the study 

would investigate the processing differences between different numerical formats.  

The experimenter explained that as part of the experiment the participant was also 

required to complete some calculations and memory tasks.  The participant then 

received an informed consent form (see Appendix 1).  Once the consent form was 

signed, the experimenter handed the participant the 17-item numeracy test (Appendix 

2) and a blank sheet of paper and a pen.  The blank sheet of paper could be used to 

work out the answers and it was made clear that it would be discarded at the end of 

the experiment.  Participants were told that they would only be given a limited 

amount of time and that they should aim to answer as many questions as possible.  

The experimenter did not tell participants how much time they had (8 minutes).  

Participants were also told to start at the beginning and to continue on from there, but 

to skip a question if it could not be answered.  The experimenter told the participant 

to commence the test once the experimenter had left and that they would be called 
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A NUMBER OF ITEMS WILL APPEAR ON THE COMPUTER SCREEN. 

AT ANY ONE TIME THERE WILL BE ONE, TWO, THREE OR FOUR ITEMS. 

 

YOUR TASK IS TO COUNT THE NUMBER OF ITEMS ON THE SCREEN AND PRESS THE 

APPROPRIATE DIGIT RESPONSE KEY BY PRESSING 1, 2, 3 OR 4 ON THE KEYBOARD 

 

SOMETIMES THE MEANING OF THE ITEMS WILL CLASH WITH THE NUMBER OF ITEMS 

THAT ARE PRESENTED.  YOU SHOULD TRY TO IGNORE THE MEANING OF THE 

STIMULUS AND JUST COUNT THE NUMBER OF ITEMS THAT ARE PRESENT. 

 

BOTH SPEED AND ACCURACY ARE IMPORTANT. 

 

PRESS THE SPACE BAR WHEN YOU ARE READY TO SEE SOME PRACTICE TRIALS. 

 

IF YOU ARE READY TO BEGIN PRESS THE SPACE BAR 

when the time was finished.  A timer was used to keep track of the time.  After eight 

minutes the experimenter announced that the time was finished and collected the 

answer sheet. The participant then completed the Subjective Numeracy Scale (SNS).  

After completion of this, the experimenter noted the participant’s age, gender, 

obtained grade in Leaving Certificate mathematics (e.g. A, B, C etc.) and the level of 

Leaving Certificate mathematics studied (Higher or Lower level).  

 The experimenter then explained that the next part of the experiment would be 

a computerised task and asked the participant to sit facing the computer.  Participants 

were instructed to read the on-screen task instructions, but not to commence the task 

until the experimenter had instructed them to do so.  The following message appeared 

on the screen: 
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After the participant had read these instructions the experimenter emphasised again 

that both speed and accuracy were important and showed the participant which keys 

on the keyboard to use (keys 1 – 4 on the left of the keyboard).  The participants were 

also instructed to use the index and middle fingers of each hand to respond.  The 

experimenter remained in the room as the participant completed two practice trials.  

Once it was clear that the task instructions were understood, the experimenter left the 

room and the participant commenced the task by pressing the space bar.  A total of 

144 trials were presented in a quasi-random order.  Each stimulus remained on-screen 

until the participant responded by pressing a key on the keyboard.  An inter-stimulus 

interval of 1000 ms (blank white screen) was used.  

 Once the participant had completed this task, the experimenter returned and 

explained that the next part would involve some memory tasks.  The experimenter 

then gave verbal instructions to the digit span task.  Participants were told that they 

would hear sequences of digits and that it was their task to repeat the heard sequence 

out-loud after each sequence.  It was emphasised that the order of the digits were 

important and that participants should only repeat the digits that they could 

remember.  The participant was asked to sit with their back to the experimenter so as 

not to be distracted by the experimenter’s movement in recording the participant’s 

responses.  The experimenter remained in the room and recorded the number of 

correct digits recalled in the correct positions on a form with the correct digit 

sequences.  After this, the experimenter explained that the next task would involve 

the same procedure except that this time the participant should report the heard digits 
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in reversed order.  The same procedure was followed as for the forward digit span 

task. 

 After the completion of the digit span tasks, the participant was asked to turn 

around again to face the computer screen, on which instructions to the sentence span 

task were presented.  Participants were told that they would see short sentences on the 

screen and that it was their task to indicate as quickly as possible, after each sentence, 

whether it is true or false.  To indicate that the sentence was true, participants were 

instructed to press the ‘d’ key on the left of the keyboard.  To indicate that the 

sentence was false, participants were instructed to press the ‘k’ key on the right of the 

keyboard.  In addition to this, participants were also told to try and remember the last 

word of each sentence.  It was explained that after a few sentences a computer screen 

would appear with the words: “Now write down the last word of each sentence.  Press 

the space bar to continue”.  Participants were provided with a pen and an answer 

sheet indicating each test block, with slots provided to write down the words.  Once 

participants had completed the practice trials successfully and it was evident that the 

task instructions were understood, the experimenter left the room and the participant 

commenced the task by pressing the space bar.   

 Statistical analyses focused on changes in accuracy and reaction times in 

terms of the congruency of the stimuli.  Interactions between congruency, format and 

maths group were investigated and were thought to be reflective of the degree to 

which automaticity of processing differed between digits and number words and 

between the two maths groups. 
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2.2.4. Ethical Considerations  

 The current research was granted ethical approval from the University Ethics 

Committee.  Before the experiment began, the experimenter made it clear that 

participation was completely voluntary and that the participant could decide to 

withdraw from the study at any stage during the experiment.  The experimenter also 

provided an e-mail address that the participant could contact if they wished to 

withdraw their data from the study and made it clear that this could be done up until 

the results were published.  None of the participants chose to withdraw from the 

study.   

 As described in the informed consent form (Appendix 1), the participant was 

assured that all data and information provided during the experiment would be kept 

confidential.  The experimenter made it clear that during the experiment, all data 

would immediately be coded so that participants could only be identified by a 

participant code number.  Before the study commenced, the experimenter also 

checked if participants had any visual, auditory or reading difficulties that might 

interfere with the tasks.  Participants were made aware that the study does not involve 

any medical treatment, counselling or diagnosis; but that it aimed to investigate 

processing differences between different numerical formats and the role that other 

variables related to mathematics can play in this. 

 After completion of all the tasks, the experimenter thanked each participant 

for their participation.  The experimenter made it clear that only group data were of 

interest and that no individual scores would be considered in the analyses.  These 

ethical considerations also applied to the subsequent experiments. 
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2.3. Results 

 Reaction times (RTs) in the counting Stroop task were recorded as time taken 

(ms) to press the 1, 2, 3 or 4 key on the keyboard after the stimulus appeared.  The 

mean RTs were calculated for each stimulus category for the High and Low Maths 

groups.  Errors were also recorded and were excluded from the RTs analysis (4.27 % 

of the overall data).   

 An independent samples t-test indicated that the High Maths group (M = 11.8, 

SD = 3.59) outperformed the Low Maths group (M = 9.05, SD = 3.38) on the 

numeracy test, t(38) = 2.49, p = .017.  Overall, men (M = 11.73, SD = 3.82) also 

outperformed women (M = 8.83, SD = 2.96) on the numeracy test, t(38) = 2.63, p = 

.012. 

 The High Maths group also showed higher self-perceived numeracy ability (M 

= 4.64, SD = 1.17), than the Low Maths group (M = 3.75, SD = 1.19), t(38) = 2.38, p 

= .023, suggesting that participants’ assessments of their own numerical ability was 

relatively accurate.  Regarding working memory, the High Maths group performed 

better on sentence span (M = 80.6, SD = 15.04), t(38) = 2.35, p = .024, and backward 

digit span (M = 72.02, SD = 14.42), t(38) = 2.41, p = .021, than the Low Maths group 

(Sentence Span M = 67.6, SD = 19.59; Backward Digit Span M = 62.27, SD = 10.92).  

No significant advantage for the High Maths group was found for forward digit span 

(High M = 83.57, SD = 8 and Low M = 79.22, SD = 12.3).  The High Maths group 

thus showed an advantage for the storage and transformation functions of working 

memory, whereas the two groups showed similar short term memory function.  
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2.3.1. Accuracy 

 Errors were classified as trials where a participant indicated the wrong number 

of items presented on-screen (i.e. pressing the wrong key).  Table 2.1 presents the 

mean percentage of errors made across the different stimulus categories for the Low 

and High Maths groups. 

Table 2.1.  Mean percentages of errors across congruent, neutral and incongruent 

conditions for the Low and High Maths groups. 

Maths 

Group 

 

Congruent 

Digit 

Neutral 

Digit 

Incongruent 

Digit 

Congruent 

Word 

Neutral 

Word 

Incongruent 

Word 

Low 2.5  3.54  8.33  1.46  2.92  7.71  

High 0.62 1.67  12.71  0.62  1.46  7.71  

Average 1.56  2.61  10.52  1.04  2.19  7.71  

 

Overall, most errors were made on incongruent trials and least errors were made on 

congruent trials.  Participants also made more errors on incongruent digit than 

incongruent word trials, an effect that was more evident for the High Maths group.  A 

2 x 3 x 2 mixed (between–within) ANOVA was conducted to analyse the differences 

in error rates between the different stimulus types (digits and words), congruency 

levels (congruent, neutral and incongruent) and Maths groups (Low and High).  A 

main effect was found for congruency, F(2, 76) = 45.03, p < .001, with a medium 

associated effect size (partial eta squared = 0.54), that is, overall more errors occurred 

on incongruent conditions.  A main effect was also found for format at the p = .05 

level, F(1, 38) = 4.09, with a small effect size (partial eta squared = 0.097) indicating 

that slightly more errors were made for digit than word stimuli overall.  No other 

effects were significant. 
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 Paired samples t-tests with Bonferroni adjustments showed that the increase in 

errors on incongruent (relative to neutral) trials was significant for the High Maths 

group for both digits, t(19) = -4.91, p < .001, and words, t(19) = -3.42, p < .001.  

Similarly, for the Low Maths group, errors on incongruent digit, t(19) = -3.52, p < 

.001, and word trials, t(19) = -4.52, p < .001, were more frequent than errors on 

neutral trials.  No significant difference in error rates was found between congruent 

and neutral trials. 

2.3.2. Reaction Times 

 Congruency.  Figure 2.1 and Table 2.2 present the mean correct RTs across 

the stimulus categories for the Low and High Maths groups.   

(a)          (b)  

Figure 2.1.  Mean RTs (± SEM) across congruent, neutral and incongruent stimuli for 

(a) the Low Maths (n = 20) and (b) the High Maths group (n = 20). 

 

The overall patterns reflected an increase in RT from congruent to neutral to 

incongruent trials and this pattern was relatively similar for digit and word stimuli as 

presented in Figure 2.1 and Table 2.2.   
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Table 2.2.  Means and standard deviations of RTs on congruent, neutral and 

incongruent conditions for the Low and High Maths groups. 

Maths 

Group 

 

Congruent 

Digit 

Neutral 

Digit 

Incongruent 

Digit 

Congruent 

Word 

Neutral 

Word 

Incongruent 

Word 

Low Maths 623.11 

(88.15) 

651.04 

(79.96) 

691.35 

(93.74) 

629.57 

(80.98) 

655.16 

(86.31) 

712.83 

(94.07) 

High Maths 605.53 

(84.02) 

632.94 

(95.01) 

729.1 

(105.8) 

610.24 

(68.8) 

635.81 

(82.53) 

710.43 

(105.13) 

Average 614.32 

(85.47) 

642 

(87.16) 

710.22 

(100.5) 

619.91 

(74.8) 

645.49 

(83.93) 

711.63 

(98.47) 

 

A 3 x 2 x 2 mixed between-within groups ANOVA was conducted to analyse the 

effects of congruency (congruent, neutral and incongruent trials), format (digits and 

words) and Maths group (Low and High Maths) on RTs.  A main effect was found 

for congruency, F(2, 76) = 90.06, p < .001, with a large associated effect size (partial 

eta squared = 0.72).  No main effect was found for Maths group suggesting that the 

overall response latencies did not differ significantly between the High (M = 654.01) 

and Low (M = 660.51) Maths groups.  However, a significant congruency x Maths 

group interaction effect was found, F(2, 76) = 4.53, p = .014 (partial eta squared = 

0.11), suggesting that the High Maths group was more affected by the congruency of 

the stimuli.  No further main or interaction effects were found. 

 For digit stimuli, Bonferroni corrected dependent t-tests showed that the RT 

increase on incongruent relative to neutral trials was significant for High Maths, t(19) 

= -9.19, p < .001, but not Low Maths participants.  For word stimuli RTs on 

incongruent trials were significantly slower than RTs on neutral trials for both High, 

t(19) = -6.25, p < .001, and Low Maths participants,  t(19) = -4.2, p < .001.  RTs on 
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neutral conditions did not differ with format or Maths group.  No significant 

difference was found in RTs between congruent and neutral trials. 

 To summarise, the RT data showed that participants took overall longer to 

count the items on-screen when digit/word-meaning mismatched the number of items 

than on trials where they did match or where digit/word-meaning was neutral.  While 

the overall patterns of performance were quite similar for the High and Low Maths 

groups, a congruency x Maths group interaction suggested that the RT increase on 

incongruent trials was greater for the High Maths group.  While both groups showed 

this effect for number word stimuli, only the High Maths group showed this effect for 

word as well as digit stimuli. For digit stimuli the High Maths group showed 

approximately double the RT difference between incongruent and neutral trials 

compared to the Low Maths group (96.16 ms difference vs. 40.31 ms difference).  To 

investigate the congruency x maths group interaction further, difference scores were 

calculated as the discrepancy in RT between incongruent and neutral trials and are 

presented in the next section.    

2.3.3. Interference 

 Stroop Interference scores were calculated for each participant by subtracting 

the mean RTs on neutral conditions from the mean RTs on incongruent conditions 

(presented in Figure 2.2).  A 2 x 2 mixed (between–within) ANOVA was conducted 

to analyse the differences in interference between the two formats and the two 

groups.  Overall, no significant difference in interference was found between digit (M 

= 68.24, SD = 65.34) and word (M = 66.15, SD = 57.44) stimuli.  A main effect was 

found for Maths group, F(1, 38) = 84.77, p = 0.017 (partial eta squared = 0.141) 
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indicating that the High Maths group showed overall greater interference. No further 

significant effects were found.  However, independent t-tests (Bonferroni corrected) 

showed that this group difference in interference was due to the digit stimuli, with 

significantly greater digit interference found for the High (M = 96.164, SD = 46.79) 

than the Low Maths group (M = 40.31, SD = 70.23), t(38) = 2.96, p = .005.  The 

difference in interference for word stimuli (High M = 74.62 and Low M = 57.67) was 

not significant (p = 0.357). 

2.3.4. Facilitation 

 Facilitation scores were similarly calculated as the disparity between RTs on 

congruent and neutral trials.  The facilitation effect, however, was not significant 

since the RT data showed no significant difference in RT between congruent and 

neutral trials for word stimuli.   A 2 x 2 ANOVA with format and Maths group as 

factors were conducted on the facilitation data.  No significant main or interaction 

effects were found.  Figure 2.2 presents the mean facilitation scores along with the 

mean interference scores. 

 

 

 

 

 

Figure 2.2.  Mean disparity in RTs between congruent and neutral (facilitation, 

shown above the x axis) and incongruent and neutral (interference, shown below the 

x axis) conditions in the Low and High Maths groups for digit and word stimuli (± 

SEM). 
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In summary, the interference data show that interference from digit stimuli differed 

between individuals in the High and Low Maths groups.  For individuals with greater 

mathematics experience (High Maths), incongruent digit meanings interfered with the 

counting process (e.g. 4  4  4; respond ‘3’) producing slower RTs on incongruent 

digit trials.  While both groups showed this interference effect for incongruent 

number word stimuli, only those in the High Maths group also showed this effect for 

arabic digit stimuli.  For word stimuli, the pattern of interference was relatively 

similar for those in High and Low Maths groups.    

2.4. Discussion  

 Previous research has been rather inconclusive as regards processing 

differences between digits and words.  In accordance with the counting Stroop 

literature, the Stroop interference effect was found for number words (Bush et al., 

1998; 2006) in the current study, demonstrating that number meaning is readily 

accessed from number words and that it interferes with the counting process on 

incongruent trials.  With regards to arabic digit stimuli, only individuals with greater 

mathematics experience showed an interference effect.  While previous studies have 

noted interference effects of incongruent arabic digit stimuli (e.g. Flowers et al., 

1979; Pavese & Umiltà, 1998; Shor, 1971), individual differences relating to 

mathematics experience have previously not been considered. The current study 

suggests that format-specific processing differences can emerge when participants’ 

mathematics experience is considered.  These findings might be interpreted as a 

heightened appreciation for numerical information in digit format that results from 

extensive exposure to arabic digits through learning.  As automaticity of processing 
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exists on a continuum (MacLeod & Dunbar, 1988), the more experience gained with 

a symbolic format, the stronger the symbol–concept relation becomes and the more 

automatically its underlying number meaning is activated.  It is this automatic access 

to underlying number meanings that interferes with the counting process.  Only when 

incongruent numerical stimuli are to be counted does interference occur and not when 

the items to be counted are number neutral (e.g. 4  4  4 vs. *  *  *).  Any observed 

between-groups processing differences thus reflect the relative strengths of these 

relations between symbols and concepts.   

 As previous Stroop task findings have yielded mixed results regarding 

processing differences between digits and words (Fias et al., 2001; Reynvoet, 

Brysbaert & Fias, 2002; Roelofs, 2006), the strongest evidence for format-dependent 

processing comes from studies of arithmetic and brain damage studies that yielded 

double dissociations of processing.  Such studies (e.g. Campbell, 1999; Campbell & 

Epp, 2005) support the notion that surface format affects ‘later’ numerical processing 

such as calculation (arguably because digits place fewer demands on working 

memory resources than words), but do not provide much evidence to suggest that 

such effects are present in ‘early’ numerical cognition (e.g. subitizing).  The current 

findings suggest that format-specific effects can be present even in early number 

processing, if an individual’s experience with the symbolic format is considered.  

Overall, arabic digits and number words slowed down the subitizing process to 

relatively the same extent, suggesting similar processing of the two formats.  

However, when individual differences related to mathematics experience were 
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considered, the findings suggest a heightened appreciation of arabic digit format that 

accompanies High Maths experience. 

 As the current measure of assigning participants to the two groups was 

primarily based on self-reported Leaving Certificate mathematics performance, a 

more robust measure could yield even greater group differences.  It could be the case 

that highly mathematics competent and experienced individuals were included in the 

Low Maths group and vice versa.  However, High Maths participants did, on average, 

outperform Low Maths participants on the numeracy test, storage and transformation 

working memory and numerical self-efficacy, supporting concrete differences 

between the two groups.  The two groups were slightly unbalanced in terms of sex, 

with most of the High Maths group consisting of men (13 men and 7 women) and 

most of the Low Maths group consisting of women (9 men and 11 women), which 

could have contributed to the overall advantage for men on the numeracy test.  

However, gender differences are generally not known to affect Stroop performance 

(e.g. see MacLeod, 1991).  

 In summary, the study showed that in the counting Stroop task individuals 

with greater mathematics experience found it more difficult to ignore task-irrelevant 

digit stimuli, whereas both groups found it equally difficult to ignore task-irrelevant 

word stimuli.  Such individual differences, reflecting experience with numbers, thus 

seem to play a role in format-specific processing differences that emerge during basic 

numerical functions such as subitizing.  In Chapter 3 this effect was investigated 

further to see if it would also hold for other basic numerical functions such as 

magnitude and size comparisons.   

 



CHAPTER 3 

 60 

Chapter 3  

Experiment 2:  Size Congruity and Distance Effects in a Digit–Word Number 

Comparison Task at Different Levels of Mathematics Experience 

3.1. Introduction 

Many studies of number processing have investigated the size congruity 

(Henik & Tzelgov, 1982) and symbolic distance (Moyer & Landauer, 1967) 

effects. The size congruity effect is a Stroop-like phenomenon where the 

processing of one stimulus feature impedes the processing of another, resulting in 

cognitive interference.  Besner and Coltheart (1979) originally described a task 

that placed the two dimensions of numerical magnitude and physical size in 

competition with one another.  Two arabic digits, with varying physical sizes and 

numerical magnitudes are presented together for comparison and the participant 

makes a judgement based on either physical size or numerical magnitude.  On 

congruent trials the physically larger numeral is also the numerically higher 

numeral, e.g. ‘5   2’; whereas on incongruent trials the physically larger numeral 

is the numerically lower numeral, e.g. ‘2   5’.  Cognitive interference is typically 

measured as an increase in response latencies and errors on incongruent trials 

relative to congruent trials or neutral (e.g. 2  5) trials.  The size congruity effect 

reflects the automaticity of processing of the task-irrelevant dimension, namely 

physical size in numerical comparison and numerical magnitude in physical size 

comparison (e.g. Besner & Coltheart, 1979; Dehaene, 1992; Henik & Tzelgov, 

1982; Schwarz & Heinze, 1998).  The degree of interference thus indicates the 

degree to which the processing of physical size and numerical magnitude 

overlaps. 
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The symbolic distance effect is often investigated alongside the size 

congruity effect to illustrate that in-depth processing takes place, beyond a mere 

small–large comparison of number magnitude (e.g. Tang et al., 2006).  In a 

landmark study, Moyer and Landauer (1967) modelled the symbolic distance 

effect, which states that when two numbers are compared “the time to make the 

judgement is a function of the numerical distance (difference) between the 

numbers” (p.105).  For example, it is easier to compare two numbers that are 

numerically further apart than two numbers that are numerically close (e.g. ‘2  7’ 

vs  ‘2  3’).  Numerical Stroop tasks, unlike the original colour–word Stroop task 

(Stroop, 1935) allow the parametric variations of the two conflicting stimulus 

features (physical size and number magnitude).  Distance effects can thus reflect a 

level of processing that surpasses the classification of numbers as either small or 

large, and shows that the magnitudes of each number are distinctly encoded 

(Tzelgov, Meyer & Henik, 1992).  In short, the symbolic distance effect 

demonstrates that it is generally more difficult to discriminate between two stimuli 

that are similar than between two stimuli that are dissimilar (Tang et al., 2006).   

Moyer and Landauer (1967) suggested that when a symbolic numeral is 

read it is converted to an analogue representation that allows a physical 

comparison between the two numerals to take place, similar to other spontaneous 

perceptual processes (e.g. comparing the sizes of two objects).  This effect seems 

to be the case for both symbolically presented numbers such as number words 

(e.g. Foltz, Poltrock & Potts, 1984) and analogically presented numbers such as 

dot patterns (Buckley & Gillman, 1974).  

 Distance effects are typically observed in task-relevant dimensions, 

namely a physical size distance effect in the physical comparison task and a 
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numerical distance effect in the numerical comparison task (e.g. Fias, Lammertyn 

& Reynvoet et al., 2003; Pinel, Piazza, LeBihan & Dehaene, 2004; Tang et al., 

2006).  In the task-irrelevant (to be ignored) dimensions, distance effects can 

either disappear (Rubinsten, Henik, Berger & Shahar-Shlev, 2002) or reverse 

(Girelli et al., 2000; Tang et al., 2006).  The reversed distance effect operates as 

follows:  during trials with a great difference in the task-irrelevant dimension, a 

judgement is made quicker and this quick automatic response interferes with the 

generation of a response to the task-relevant dimension, which is required.  Thus, 

as the symbolic distance in the task-irrelevant dimension increases, time taken to 

make a judgement based on the task-relevant dimension increases.  Processing of 

physical size and numerical magnitude thus seem to operate in a similar way, but 

independently of one another (Tang et al., 2006).  

Not surprisingly, physical comparison is mostly faster than numerical 

comparison (e.g. Girelli et al., 2000).  Physical size comparison is a spontaneous 

perceptual process whereas numerical comparison involves transcoding symbols 

to underlying magnitude meanings before a comparison can take place, which can 

be a time-consuming process.  If physical size and numerical magnitude 

processing overlap/diverge depending on presentation format, differences in size 

congruity and distance effects could emerge between digits and number words.  

Furthermore, if experience with numbers aids the transcoding process from 

symbols to magnitudes, such effects could be further modulated by mathematics 

experience. 

The present study employed a digit–word number Stroop variant with 

numerical magnitude and physical size as the two competing dimensions.  While 

the symbolic distance effect has been noted with number words as well as digits, 
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less research has addressed the size-congruity effect for number words.  Besner 

and Coltheart (1979) originally reported the size congruity effect for digit stimuli, 

but found no effect for word stimuli.  The words in this study were presented 

vertically, however, which confounded results according to Cohen-Kadosh et al. 

(2007) who found a size congruity effect for number words presented 

horizontally.  However, this study did not include arabic digits for comparison and 

also only assessed numerical, and not physical, comparison of number words.  In 

a subsequent study that included both digits and verbal numbers, size congruity 

effects were found for both formats, but to a lesser extent for verbal numbers 

(Cohen-Kadosh et al., 2008).   

The stimuli used in the current task were based on the digit stimuli used by 

Tang et al. (2006), who highlighted a number of shortcomings with previous 

numerical magnitude Stroop tasks.  Importantly, previous studies did not balance 

the task-relevant and -irrelevant dimensions (e.g. Girelli et al., 2000; Henik & 

Tzelgov, 1982).  In the study of Girelli et al. (2000), for example, nine single 

arabic numerals were employed to create two levels of numerical distance, namely 

numerically ‘close’ and numerically ‘distant’ pairs.  These were digit pairs with 

numerical distances of either 1 (e.g. 4  5) or 5 (e.g. 4  9).  In the physical 

dimension, three different font sizes were employed to create physically large, 

small and neutral stimuli, which resulted in only one level of physical distance on 

congruent and incongruent trials, where one ‘small’ and one ‘large’ size was 

presented in each case.  Physical and numerical distances were thus unbalanced in 

terms of level, which made it difficult to judge how much information was 

available in the task-relevant and -irrelevant dimensions on each trial.  For this 

reason, Tang et al. (2006) parametrically varied both numerical and physical 
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distance: the stimuli comprised of nine different numbers (arabic digits 1 – 9) as 

well as nine different physical sizes.  From this, four numerical distances and four 

physical distances were created.   

The current study used a similar method to create three physical and three 

numerical distances, but included arabic digits and number words, unlike Tang et 

al.’s (2006) study, which only considered arabic digits.  In line with the number 

Stroop literature (e.g. Girelli et al., 2000; Tzelgov et al., 1992), Tang et al. (2006) 

found that participants automatically processed physical size and numerical 

magnitude of digit stimuli even when it is to be ignored under task instructions. 

Distance effects were also found suggesting that participants found it easier to 

respond to trials where the physical size or numerical distance between the 

numerals were great than when they were small.  This suggests that the magnitude 

of each numeral was encoded distinctly, beyond a mere large–small comparison 

(Tang et al., 2006).   

Tang et al. (2006) also found greater parietal activation for numerical 

magnitude comparison than physical size comparison and argued that numerical 

magnitude involves deeper processing than physical size.  This was also found by 

Pinel et al. (2004) suggesting that physical size and numerical magnitude are 

processed differently.  If numerical magnitude requires higher processing than 

physical size, we can expect an advantage for more mathematics experienced 

individuals on numerical comparison, but not necessarily on physical comparison.  

Such group differences would be informative of the role that experience with 

numbers plays in the automatic transcoding of numerical symbols to magnitudes.  

It is hypothesised that both digit and word stimuli would show task-relevant 

distance effects, demonstrating that distinct number magnitudes are accessed from 
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both formats.  The presence of size congruity effects could be informative of the 

degree to which task-irrelevant information interferes with the task, and in turn 

how the processing of the two formats differ.  Chapter 2 showed that with high 

mathematics experience, an advantage is gained for processing digit stimuli, but 

not necessarily number word stimuli.  Similar format-specific interference 

patterns were therefore predicted in the current tasks. 

3.2. Method 

3.2.1. Participants 

 Forty-five participants took part in the experiment (age 18 – 29; M = 

23.22; SD = 3.26).  All participants had normal or corrected-to-normal vision and 

spoke English as their first language.  Participants took part in both tasks (physical 

and numerical comparison) and task presentation was counterbalanced across 

participants.  The same method of assigning participants to High and Low Maths 

groups as in Chapter 2 (p. 42) was used. The High Maths group consisted of 10 

men and 10 women (N = 20) and the Low Maths consisted of 9 men and 15 

women (N = 24).  The same exclusion criteria were used as in Chapter 2.  One 

participant indicated that they had completed their Leaving Certificate in Irish and 

their data was therefore excluded from the analysis. 

3.2.2. Apparatus and Materials 

 Stroop Task. Stimuli were presented on a 15-inch LCD monitor linked to 

a computer.  The stimuli were the numbers 2 – 9 in arabic numeral form and 

written word form.  The stimuli and task instructions were presented in black ink 

against a white background. Eight different numerical magnitudes (the numbers 2 

– 9) and 8 different physical sizes were used.  Each stimulus was positioned 
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centrally on the screen and subtended between approximately 3.8 to 9.7 degrees of 

visual angle, with a mean ratio of 20 squared pixels between adjacent physical 

sizes (smallest was 50 squared pixels; greatest was 190 squared pixels).  Word 

stimuli were in lower case and corresponded to these sizes vertically, with a mean 

ratio of 20 squared pixels between adjacent sizes (letter sizes were approximately 

the same as digit sizes). Programming for the task was done in Superlab®, which 

recorded participant input and reported reaction times in milliseconds as well as 

errors made.  

 From the 8 numbers (2 – 9) and pixel sizes (50 – 190 squared pixels), 3 

numerical distances (ND) and 3 physical distances (PD) were created.  Number 

pairs had a numerical distance of 1 (e.g. 2  3), 3 (e.g. 2  5) or 5 (e.g. 2  7).  

Physical distance was also manipulated to create PDs of 1, 3 or 5 based on the 8 

different physical sizes that were created.  There were three trial types employed, 

namely a) Congruent, where the physically larger digit/word was also numerically 

larger (e.g. 4  1); b) Incongruent, where the physically larger digit/word was 

numerically smaller (e.g. four   one); and c) Neutral, where the two digits or 

words were presented either in the same size (e.g. 2   4; in the numerical 

comparison task) or where two identical digits or words were presented in 

different sizes (e.g. three   three; in the physical comparison task). 

Nine stimulus categories were used overall with 6 stimulus pairs in each.  

This resulted in 54 congruent word stimuli, 54 congruent digit stimuli, the same 

number of incongruent stimuli for each stimulus type, 18 neutral word stimuli and 

18 neutral digit stimuli.  Overall, each task (physical and numerical comparison) 

contained 252 trials.  Participants also completed the same numeracy test, 
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subjective numeracy scale (SNS) and working memory span tasks as described in 

Chapter 2 (p. 44 – 46). 

3.2.3. Procedure 

 The experiment took place in a small windowless cubicle.  Each 

participant completed both the physical and numerical comparison tasks 

individually and task presentation was counterbalanced across participants.  Care 

was taken to ensure than no auditory or visual distractions would interfere with 

participants’ task performance.  Participants were provided with verbal 

instructions as to what the study would entail and were then asked to sign an 

informed consent form (Appendix 1). 

 Participants were told that two number words or two digits will appear on 

screen and that they might differ in physical size and/or numerical magnitude.  In 

the physical task, participants were told to indicate which of the two numbers (left 

or right) were physically larger, while ignoring the meaning of the word or 

number.  The experimenter emphasised that both speed and accuracy were 

important.  Participants were told to use the index finger of each hand to either 

press the ‘d’ key (left of keyboard) to indicate that the word/digit on the left is the 

largest or the ‘k’ key (right of keyboard) to indicate that the word/digit on the 

right is the largest.  Markers were placed on the keyboard to clearly highlight 

these response keys.  Task instructions were then presented on-screen and 

participants were given an opportunity to ask questions if the task was not clearly 

understood.  Similar instructions appeared for the numerical comparison task, but 

numerical comparison was required and physical comparison to be ignored.  

Participants were given two practice trials to further ensure that they clearly 

understood what was expected.  The practice trials involved one stimulus from the 
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incongruent digit condition and one stimulus from the incongruent word 

condition.  Practice trials were also employed to prevent differences in keyboard 

familiarity from playing a role, but were limited to two due to the practice effect 

noted by Bush et al. (1998) in the counting Stroop task.  The following 

instructions appeared for numerical comparison: 

 

 

 Once it was clear that the task requirements were understood, the 

experimenter told the participant to commence the task by pressing the space bar 

when ready once the experimenter had left.  Each stimulus remained on-screen 

until the participant responded by pressing either the ‘d’ or the ‘k’ key.  An inter-

stimulus interval of a 1000 milliseconds blank white screen was used.  Stimuli 

were presented in a pseudo-random order with digits and words presented in the 

same test block. 

YOU ARE ABOUT TO SEE SOME NUMBER WORDS AND DIGITS ON THE SCREEN. 

YOU WILL SEE EITHER TWO WORDS OR TWO DIGITS AT A TIME. 

EACH TIME YOU HAVE TO INDICATE WHICH OF THE TWO NUMBERS IS THE 

HIGHEST WHILE IGNORING THEIR PHYSICAL SIZES. 

 

IF THE ONE ON THE LEFT IS THE HIGHER NUMBER PRESS THE ‘D’ KEY.  IF THE 

ONE ON THE RIGHT IS THE HIGHER NUMBER, PRESS THE ‘K’ KEY. 

SOMETIMES THE PHYSICALLY LARGER NUMBER WILL ALSO BE THE 

NUMERICALLY HIGHER NUMBER, HOWEVER SOMETIMES THE PHYSICALLY 

LARGER NUMBER WILL BE THE NUMERICALLY LOWER NUMBER. 

 

REMEMBER YOU HAVE TO INDICATE WHICH NUMBER IS NUMERICALLY HIGHER 

WHILE IGNORING THE PHYSICAL SIZE OF THE NUMBERS. 

 

TRY TO GO AS FAST, BUT AS ACCURATELY AS YOU CAN. 

 

PLEASE PRESS THE SPACE BAR TO DO SOME PRACTICE TRIALS. 
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 After the participant had completed the first task, the experimenter 

explained that as part of the experiment the participant was required to complete 

some calculations.  The experimenter then handed the participant the 17-item 

numeracy test and a blank sheet of paper and a pen.  The same instructions were 

given to complete the numeracy test as is described in Chapter 2.  The 

experimenter also noted each participant’s age, gender, obtained grade in Leaving 

Certificate mathematics (e.g. A, B, C etc.) and the level of Leaving Certificate 

mathematics studied (Higher or Lower). 

 After the completion of the numeracy test, participants completed the SNS 

and the working memory span tasks, which followed the same procedure as 

described in Chapter 2.  Participants then completed either the physical or 

numerical comparison task depending on which task had already been completed. 

Participants were then thanked for their time and participation.  The 

experimenter explained that the study investigated processing differences between 

arabic digits and number words.  The experimenter addressed any remaining 

questions and emphasised that group, as opposed to individual, data were of 

interest. 

3.3. Results  

 Reaction times (RTs) in the numerical and physical comparison tasks were 

recorded as time taken (ms) to press the ‘d’ or ‘k’ key on the keyboard after each 

stimulus appeared.  Errors were also recorded and were excluded from the RTs 

analysis.  Overall, 1.28 % of the data was excluded from the physical comparison 

task and 2.47 % from the numerical comparison task due to errors made.  The 

mean RTs were calculated for each stimulus category for the High and Low Maths 

groups. 
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 An independent samples t-test indicated that the High Maths group (M = 

12.85; SD = 3.45) outperformed the Low Maths group (M = 10.38; SD = 2.28) on 

the numeracy test, t(42) = 2.85 p = .007.  There was no significant gender 

difference in numeracy test scores. 

 Similar group differences were found for self-perceived numeracy and 

working memory as was found in Experiment 1.  The High Maths group showed 

higher self-perceived numeracy ability (M = 4.54, SD = 0.89), than the Low 

Maths group (M = 3.53, SD = 1.14), t(42) = 3.22, p = .002, suggesting that 

participants’ assessments of their own numerical ability was relatively accurate.  

Regarding the storage and transformation function of working memory, the High 

Maths group showed an advantage for backward digit span (High M = 76.08, SD 

= 12.51 and Low M = 63.67, SD = 13.73), t(42) = 3.12, p = .003.  The difference 

between the groups on sentence span (High M = 80.2, SD = 16.44 and Low M = 

71.5, SD = 13.52) was approaching significance (p = .061).  No significant 

difference between the two groups were found for short-term memory (p = .22), 

measured as forward digit span (High M = 85.82, SD = 8.79 and Low M = 82.28, 

SD = 9.72).   

3.3.1. Accuracy 

 Errors were classified as incorrect responses (i.e. pressing the wrong key).  

Table 3.1 presents the mean error percentages across the different conditions in 

the physical and numerical comparison tasks.  Errors were minimal overall and 

were excluded from any subsequent analyses. 
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Table 3.1.  Mean percentages of errors across congruent, neutral and incongruent 

conditions in the physical and numerical comparison tasks. 

Maths 

Group 

Congruent 

Digit 

Neutral  

Digit 

Incongruent 

Digit 

 

Congruent 

Word 

Neutral  

Word 

Incongruent 

Word 

Physical  Comparison 

Low 0.23  0.23  0.62  2.47  0.46  3.09  

High 0.19  0.56  1.39  2.50  0.83  0.65  

Numerical Comparison 

Low 0.23  0.46  3.16  1.39  2.08  5.09  

High  0.46  0.93  3.80  2.78  2.32  4.074 

 

 Physical Comparison Accuracy.  On congruent trials performance was 

less accurate for word stimuli than for digit stimuli, whereas performance on 

neutral trials was relatively similar for the two formats.  Differences between the 

two groups seemed to emerge on incongruent trials: the Low Maths group made 

more errors on incongruent word than incongruent digit trials, whereas the reverse 

pattern seemed to occur for the High Maths group with greater accuracy on 

incongruent word than incongruent digit trials.  A 2 x 3 x 2 mixed between–within 

groups ANOVA was conducted to analyse the influences of format (arabic digits 

vs. number words), congruency (congruent, neutral and incongruent trials) and 

maths group (High and Low) on error rates in the physical comparison task.  

Overall, performance was more accurate on digit than on word trials, F(1, 42) = 

18.7, p < .001 (partial eta squared = 0.31), and less accurate on incongruent trials, 

F(2, 84) = 6.78, p = .002 (partial eta squared = 0.14).  However, significant format 

x congruency, F(2, 84) = 8.25, p = .001, and format x congruency x maths group 

interaction effects, F(2, 84) = 6.85, p = .002, were also found (partial eta squared 

= 0.16 and 0.14 respectively).  No further main or interaction effects were found 

in the physical comparison task. 
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 Dependent t-tests with Bonferroni corrections showed that for both groups 

the accuracy on neutral trials did not differ between digit and word stimuli.  

Congruency did not influence accuracy on digit trials, with relatively similar error 

rates across congruent, neutral and incongruent trials for both groups.  The Low 

Maths group’s performance was more accurate on neutral word trials (e.g. three  

three) than on incongruent (e.g. two  three), t(23) = -3.15, p = .005, word trials 

and the decrease in accuracy on congruent, relative to neutral, word trials 

approached significance t(23) = -2.96, p = .056.  This is likely to reflect the fact 

that when two identical words appear the physical size difference can be more 

obvious, which makes performance less error prone on neutral trials.  In line with 

this, the High Maths group seemed to find it easier to compare neutral over 

congruent word stimuli, t(19) = -3.76, p = .001, however, no significant difference 

in accuracy was found between neutral and incongruent trials.  As the task 

requires rapid responding, it could be the case that High Maths participants are 

more alert to incongruency, which enables a more cautious and accurate response 

decision to be made on incongruent trials.  

 Numerical Comparison Accuracy.  In the numerical comparison task, 

where participants compared the magnitude of the numerals (e.g. 2  5; which 

number is numerically higher?) error rates seemed to follow the expected 

congruency pattern with a linear increase in errors across congruent, neutral and 

incongruent trials.  Overall, participants made more errors on word than on digit 

trials, but the pattern of performance for the Low and High Maths groups were 

relatively similar.  The same analyses were conducted for error rates in the 

numerical comparison task as was done for the physical comparison task. 

Significantly more errors were made on word than on digit trials, F(1, 42) = 
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21.22, p < .001 (partial eta squared = 0.34), and overall more errors were made on 

incongruent trials, F(2, 84) = 26.42, p < .001 (partial eta squared = 0.39), with no 

further significant effects.  In the High Maths group, the increase in errors on 

incongruent relative to neutral trials was significant for digit, t(19) = -3.68, p = 

.002, but not word trials, with no significant differences in error rates between 

congruent and neutral trials.  For the Low Maths group error rates did not differ as 

a function of congruency.  

 Accuracy: Digits vs. Words.  In the two tasks overall, more errors were 

made for word than digit stimuli.  Congruency did not affect error rates for digit 

stimuli in the physical comparison task (error rates were relatively low). For word 

stimuli, however, the Low Maths group made significantly more errors on 

incongruent than on neutral trials, whereas the High Maths group showed no 

difference in this regard.  With regards to congruent trials, the High Maths group 

made significantly more errors than on neutral trials, suggesting that neutral trials 

were easier to respond to than congruent trials.  In the numerical comparison task, 

congruency only influenced accuracy for the High Maths group: more errors were 

made on incongruent relative to neutral digit trials. 

3.3.2. Congruency 

 Physical Comparison Task.  Figure 3.1 presents the mean correct 

reaction times (RTs) across congruent, neutral and incongruent trials in the 

physical comparison task.  The RTs for digit stimuli showed an increase across 

congruent, neutral and incongruent trials.  For word stimuli, RTs seemed 

relatively slow across all three congruency levels and RTs on both congruent and 

incongruent trials were slightly slower than RTs on neutral trials.   
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Figure 3.1.  Mean RTs (± SEM) in the physical comparison task across congruent, 

neutral and incongruent trials for (a) the Low Maths (n = 24) and (b) the High 

Maths group (n = 20). 

 

A 2 x 2 x 3 mixed between–within groups ANOVA was conducted on the 

mean RTs in the physical comparison task.  The factors were Maths group, format 

and congruency.  Main effects were found for congruency, F(2, 84) = 2420.93, p 

< .001, and format, F(1, 42) = 2144.38, p < .001, with large associated effect sizes 

(partial eta squared = 0.98 and 0.98 respectively).  A significant format x 

congruency interaction effect was also found, F(2, 84) = 2978.87, p < .001, with a 

large associated effect size (partial eta squared = 0.99) indicating that congruency 

influenced RT on digit trials more than on word trials.  No further main or 

interaction effects were found.  Overall, the two groups showed similar response 

patterns suggesting that the High Maths group had no significant advantage for 

physical size comparison. 

 Dependent t-tests (Bonferroni corrected) showed that for digits, RTs on 

congruent stimuli (High M = 518.62, SD = 66.86; Low M = 541.38, SD = 70.44) 

were significantly faster than RTs on neutral stimuli (High M = 1152.62, SD = 
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74.6; Low M = 1169.78, SD = 78.9).  This was found for both the High, t(19) = 

63.22, p < .001, and Low maths groups, t(23) = 112.286, p < .001.  

 RTs on incongruent digit stimuli (High M = 1556.02, SD = 100.46; Low M 

= 1566.04, SD = 90.82) were significantly slower than RTs on neutral digit stimuli 

for both High, t(19) = -37.97, p < .001, and Low maths groups, t(23) = -40.24, p < 

.001.  RTs on digit stimuli thus reflected the Stroop effect, namely a faster 

response to congruent stimuli (e.g. 2  5) and a slower response to incongruent 

stimuli (e.g.  2  5) relative to neutral stimuli (e.g. 2  2). 

 Congruency also affected RTs on word stimuli, however RTs were 

relatively slow across all three congruency levels.  In the Low Maths group, RTs 

on neutral trials (M = 1631.93, SD = 127.18) were slightly faster than RTs on both 

congruent (M = 1694.09, SD = 172.71), t(23) = -3.89, p = .001, and incongruent 

(M = 1692.76, SD = 161.96) word trials, t(23) = -3.48, p = .002.  This followed 

the pattern suggested by the accuracy data in the Low Maths group, namely fewer 

errors on neutral stimuli overall.  For the High Maths group, congruency did not 

seem to influence RTs on word trials:   RTs were relatively similar on neutral (M 

= 1591.15, SD = 127.49) congruent (M = 1633.79, SD = 144.36), and incongruent 

(M = 1650.03, SD = 127.22) trials.  

 To summarise, in the physical comparison task, performance on digit 

stimuli reflected the Stroop effect, namely faster responses on congruent trials and 

slower responses on incongruent trials relative to neutral trials.  Congruency 

effects were much less evident for word stimuli with relatively slow RTs across 

congruent, neutral and incongruent trials.  The Low Maths group responded faster 

on neutral word trials than on congruent and incongruent word trials, whereas no 

effect of congruency was found for the High Maths group in this regard. 
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 Numerical Comparison Task.  Figure 3.2 presents the mean correct 

reaction times (RTs) across congruent, neutral and incongruent trials in the 

numerical comparison task.   

(a)      (b)  

Figure 3.2.  Mean RTs (± SEM) in the numerical comparison task across 

congruent, neutral and incongruent trials for (a) the Low Maths (n = 24) and (b) 

the High Maths group (n = 20). 

 

A similar pattern was observed for digit stimuli in numerical comparison as was 

seen in physical comparison, namely an increase in RT across congruent, neutral 

and incongruent trials, whereas RTs on word trials were relatively slow overall.  

An analysis of variance was conducted for RTs in the numerical comparison task.  

Main effects were found for congruency, F(2, 84) = 3034.36, p < .001, and 

format, F(1, 42) = 2472.42, p < .001 (partial eta squared = 0.99 and 0.99).  A 

significant congruency x format interaction effect was also found, F(2, 84) = 

2440.16, p < .001, with a large associated effect size (partial eta squared = 0.98) 

showing that congruency influenced RTs on digit trials more than on word trials.  

A significant main effect was also found for Maths group, F(1, 42) = 7.15, p = 

.011 (partial eta squared = 0.15) indicating that the High Maths group showed 

faster performance overall. 
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 Taking digit stimuli, dependent t-tests (with Bonferroni corrections) 

showed that the Stroop effect was significant.  In the Low Maths group RTs on 

congruent digit stimuli (M = 676.55, SD = 120.59), were significantly faster, t(23) 

= 55.414, p < .001, and RTs on incongruent digit stimuli (M = 1754.56, SD = 

159.35), were significantly slower, t(23) = 55.41, p < .001, than RTs on neutral 

digit stimuli (M = 1418.97, SD = 123.43).  Similarly, in the High Maths group, 

RTs on congruent digit stimuli (M = 591.64, SD = 84.92) were significantly faster 

than RTs on neutral digit stimuli (M = 1332.88, SD = 104.07), t(19) = 70.409, p < 

.001, and RTs on incongruent digit stimuli (M = 1646.8, SD = 105.36) were 

significantly slower than RTs on neutral digit stimuli, t(19) = -29.63, p < .001.  

RTs on word stimuli were relatively slow overall and did not differ significantly 

across congruent, neutral and incongruent trials. 

 Congruency: Digits vs. Words.  To summarise, congruency effects were 

overall considerably more prominent for digit than word stimuli in both physical 

and numerical comparison, with relatively slow RTs across all three levels of 

congruency for word stimuli.  Taking the physical comparison task, the RTs on 

digit stimuli showed that incongruent digit meanings slowed down the size 

comparison and congruent digit meanings facilitated the size comparison.  A 

different pattern emerged for number words in the physical comparison task with 

slower RTs overall.  When comparing the physical sizes of two number words, 

Low Maths participants also seemed to find it easier when the two words were 

identical than when the two words were different (e.g. three three vs. two three) 

regardless of congruency.   

 While the congruency patterns were relatively similar for the two maths 

groups, the High Maths group made faster numerical comparisons, whereas no 
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group differences were found for physical comparison.  The possibility that the 

High Maths group were merely faster responders overall was thus ruled out (in 

which case faster responses would also have been expected in the physical task).  

In the numerical comparison task, the Stroop effect occurred for digit stimuli, 

whereas for word stimuli RTs did not differ significantly with congruency. 

3.3.3. Distance Effects 

 Further analyses were conducted on the RTs on incongruent trials to test 

for distance effects.  While the size congruity effect demonstrates the degree to 

which participants are able to ignore task-irrelevant numerical/physical stimuli, 

the distance effect provides a more refined measure of the automaticity of 

numerical processing.  In number comparison tasks, the presence of distance 

effects demonstrates that the magnitude of each number has been processed 

distinctly (Tang et al., 2006; Tzelgov et al., 1992).  Thus if each number is 

encoded beyond a mere small–large classification, the distance effect shows that it 

is generally easier to compare numbers that are numerically further apart (e.g. 2  

7) than numbers that are numerically closer together (e.g. 2  3).  In the current task 

three numerical distances (ND) and three physical distances (PD) were used.  

Number pairs had a numerical distance of 1 (e.g. 2  3), 3 (e.g. 2  5) or 5 (e.g. 2  7).  

Physical distance was also manipulated to create PDs of 1, 3 or 5 based on pixel 

size.  To investigate distance effects, incongruent trials were selected for analysis 

as they involve the simultaneous processing of two competing stimulus features 

(see Tang et al. 2006).  Tables 3.2 and 3.3 present the mean correct RTs on 

incongruent trials at each level of physical and numerical distance in the two 

tasks.  Figures 3.3 and 3.4 present the overall physical distance (PD) and 

numerical distance (ND) effects in the two tasks.  Distance effects were classified 
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as task-relevant (PD in the physical comparison task and ND in the numerical 

comparison task) or -irrelevant (ND in the physical comparison task and PD in the 

numerical comparison task). 

 Physical Comparison Task.  In the physical comparison task, participants 

seemed to respond faster on trials where the physical distance was great than on 

trials where the physical distance was small (e.g. 4  6 vs. 4  6) and this effect 

occurred for both digit and word stimuli.  Numerical distance (the task-irrelevant 

dimension) did not seem to influence RT with relatively similar responses when 

numerical distance was great (e.g. 2  7) and when it was small (e.g. 2  3).  Figure 

3.3 presents the distance effects in the physical comparison task for a) the Low 

Maths group and b) the High Maths group. 

(a)                Low Maths   (b)                  High Maths 

 

Figure 3.3.  Distance effects in the physical comparison task across task-relevant 

(physical distance) and -irrelevant (numerical distance) dimensions for (a) the 

Low Maths and (b) the High Maths group (± SEM). 

 

A 2 x 2 x 3 x 3 mixed between–within groups ANOVA was conducted 

with the factors format (digits and words), Maths group (high and low), physical 

distance (1, 3 and 5) and numerical distance (1, 3 and 5).  A main effect was 
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found for format, F(1, 42) = 61.63, p < .001, indicating overall faster response 

times on digit stimuli (partial eta squared = 0.59).  RTs decreased significantly as 

physical distance became larger, F(2, 84) = 172.59, p < .001, (partial eta squared 

= 0.8).  A significant format x physical distance interaction effect was also found, 

F(2, 84) = 32.64, p < .001, (partial eta squared = 0.44) suggesting that physical 

distance influenced the two formats differently.  No effects were found for 

numerical distance or for Maths group.  

 Paired samples t-tests with Bonferroni corrections were conducted to 

investigate the significance of the distance effects.  At task-relevant level, RTs on 

digit stimuli decreased as physical distance increased from PD 1 (High M = 

1693.79, SD = 111.13; Low M = 1698.02, SD = 93.09) to PD 3 (High M = 

1490.45, SD = 80.2; Low M = 1508.7, SD = 84.52), but not significantly from PD3 

to PD 5 (High M = 1480.39, SD = 78.13; Low M = 1494.26, SD = 80.4).  This 

decrease was significant from PD 1 to PD 3 for both High, t(19) = 7.36, p < .001, 

and Low Maths groups, t(23) = 7.1, p < .001, with overall similar responses for 

both PD3 and PD5.   

 For word stimuli RTs decreased as physical distance increased from PD 1 

(High M = 1881.19, SD = 230.34; Low M = 1951.02, SD = 323.75) to PD 3 (High 

M = 1570.55, SD = 93.63; Low M = 1596.58, SD = 121.93) to PD 5 (High M = 

1497.22, SD = 71.65; Low M = 1530.68, SD = 81.02).  This decrease in RTs was 

significant from PD 1 to PD 3 for both High, t(19) = 8.904,  p < .001, and Low, 

t(23) = 7.42, p < .001, maths groups and also from PD 3 to PD 5 for both High, 

t(19) = 7.65, p < .001, and Low, t(23) = 3.76, p = .001, maths groups.  Overall, a 

relatively similar pattern of performance was found for the two groups with no 

significant advantage gained by the High Maths group on physical comparison. 
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 To summarise, physical distance effects were found for digits and words: 

as the size-difference between the two stimuli became greater, the easier it became 

for participants to make a size comparison.  However, different distance effects 

were observed for the two formats.  For word stimuli, RTs decreased linearly as 

physical distance became greater (i.e. from PD 1 to 3 to 5), whereas RTs on digit 

stimuli was only significantly impeded when the size difference between the two 

numerals was small (PD 1).  On subsequent physical distance levels (PD 3 and PD 

5), with a greater size difference, responses were relatively faster overall and did 

not differ significantly.  While physical comparisons of number words were 

slower overall, this difference in RT between digits and words became smaller as 

physical distance increased.  Thus on trials with a great physical distance where 

physical comparison is easiest, the performance on word trials approached that of 

the performance on digit trials.  No significant effects were found in the task-

irrelevant dimension (numerical distance) suggesting that when physical 

comparison takes place, the exact numerical distance of the stimuli does not 

interfere with the process.   

 Numerical Comparison.  Figure 3.4 presents the distance effects in the 

numerical comparison task across task-relevant and -irrelevant distance 

dimensions for a) the Low Maths group and b) the High Maths group (mean RTs 

in the physical and numerical comparison tasks across distance levels are 

presented in Tables 3.2 and 3.3). 
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Figure 3.4.  Distance effects in the numerical comparison task across task-

relevant (numerical distance) and -irrelevant (physical distance) dimensions for 

(a) the Low Maths and (b) the High Maths group (± SEM). 

 

The same analysis was conducted for the numerical comparison task 

where participants were asked to attend to numerical magnitude and to ignore 

physical size.  Faster RTs were found on trials with a greater numerical distance 

(e.g. 2  7) than on trials with a smaller numerical distance (e.g. 2  3), whereas the 

physical distance of the stimuli did not seem to influence RTs.  An analysis of 

variance was conducted with the factors of format, numerical distance, physical 

distance and Maths group. A main effect was found for format, F(1, 42) = 195.24, 

p < .001 (partial eta squared = 0.82), reflecting overall faster responses for digit 

than for word stimuli.  Responses were overall significantly slower on trials with a 

small numerical distance (ND1), F(2, 84) = 31.12, p < .001, (partial eta squared = 

0.43).  Overall, the High Maths group responded faster than the Low Maths group, 

F(1, 42) = 7.74, p = .008 (partial eta squared = 0.16) suggesting an advantage for 

numerical comparison.   
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 Paired samples t-tests with Bonferroni corrections were conducted to 

investigate the significance of the distance effects.  RTs for digit stimuli decreased 

from ND 1 (High M = 1689.12, SD = 115.61; Low M = 1755.91, SD = 115.34) to 

ND 3 (High M = 1632.73, SD = 98.23; Low M = 1692.80, SD = 87.61), but not 

significantly from ND 3 to ND 5 (High M = 1618.55, SD = 112.03; Low M = 

1690.41, SD = 87.83).  The decrease from ND 1 to ND 3 was significant for both 

High, t(19) = 4.92, p < .001, and Low, t(23) = 3.85, p = .001, Maths groups. 

 While performance on word stimuli was slower overall, a similar 

numerical distance effect was found as for digit stimuli.  RTs decreased from ND 

1 (High M = 1827.33, SD = 120.95; Low M = 2000.74, SD = 244.28) to ND 3 

(High M = 1755.73, SD = 105.17; Low M = 1896.06, SD = 227.63), but not 

significantly from ND 3 to ND 5 (High M = 1739.31, SD = 119.25; Low M = 

1842.86, SD = 138.12).  The decrease from ND 1 to ND 3 was significant for both 

High, t(19) = 4.82, p < .001, and Low, t(23) = 5.75, p < .001, maths groups.  

  To summarise, while responses on digit trials were faster overall, similar 

numerical distance effects were found for digits and words: on trials where 

numerical distance was small (ND1) participants found it more difficult to make a 

numerical comparison than on trials where numerical distance was greater (ND3 

and ND5).  No significant effects were found in the task-irrelevant dimension 

(physical distance) suggesting that although the physical size of digit stimuli 

interfered with RT (the size congruity effect presented in figure 3.2), the 

processing of physical size was not as refined as the processing of numerical 

magnitude when physical size is the task-irrelevant dimension.  The data also 

show that for numerical comparison, the High Maths participants were faster 

responders on incongruent trials compared to Low Maths participants. 
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3.4. Discussion 

 Experiment 2 compared the processing of physical size and numerical 

magnitude for arabic digits and number words at different levels of mathematics 

experience.  By adapting the task developed by Tang et al. (2006) the two 

dimensions of physical size and numerical magnitude were methodically 

manipulated in order to control the amount of interference for each of these 

dimensions.  Considering arabic digits, the size congruity findings are in line with 

the Stroop literature (e.g. Girelli et al., 2000; Tang et al., 2006; Tzelgov et al., 

1992), namely that participants found it difficult to ignore number meanings in 

physical comparison and difficult to ignore the physical sizes of stimuli in 

numerical comparison.  

 For number words however, the size congruity findings suggest 

differential processing of the two formats.  Firstly, in the physical comparison 

task, the influence of congruency did not follow the expected Stroop pattern 

marked by faster responses for congruent and slower response for incongruent, 

relative to neutral word trials.  Instead, for number words no influence of 

congruency was found for High Maths participants and Low Maths participants 

seemed to find it easier to respond to neutral word trials than to congruent or 

incongruent word trials. As response times for word stimuli were relatively slow 

overall, this effect seems to be related to the difficulty in responding to two 

different words, compared to responding to two identical words, in which case the 

size difference between the two words is more visually obvious.  While care was 

taken to match letter sizes to digit sizes, this effect could also be related to the fact 

that different number words differ in physical length (e.g. ‘two’ vs. ‘three’).  This 
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could explain why a similar effect was not observed for digit format trials in the 

physical comparison task, in which case the Stroop effect was found. 

  Task-relevant distance effects were found in both physical and numerical 

comparison at task-relevant level, namely a physical distance effect in physical 

comparison and a numerical distance effect in numerical comparison, in 

accordance with the Stroop literature (Fias et al., 2003; Pinel et al., 2004; Tang et 

al., 2006).  The presence of a distance effect suggests that processing has gone 

deeper than small/large classifications and that the magnitude meanings of each 

number have been encoded (Tzelgov et al., 1992).  As distance effects were found 

for digits and number words, it suggests that this automatic process takes place for 

both formats at task-relevant level.   

For word stimuli, the presence of a numerical distance effect suggests that 

automatic access to number meanings is gained, but the absence of a size 

congruity effect suggests that participants found task-irrelevant information easier 

to ignore.  Cohen-Kadosh et al. (2007) interprets distance effects from a purely 

verbal point of view and argue that, verbally, numbers are connected to each other 

in a similar way to semantic relations between different words (e.g. DOG  and 

CAT).  Numbers that are closer together are thus more difficult to compare as 

they are verbally more connected to the same category than numbers that are 

numerically further apart.  The further apart the numbers are, the less the verbal 

code would interfere.  If this interpretation is followed, magnitude representations 

need not even come into effect when two number words are being compared.  A 

purely symbolic distance effect could thus take place for word stimuli, thus 

explaining the diminished size congruity effects.   
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High Maths participants showed an overall advantage on numerical 

comparison, whereas no such group difference was found in the physical 

comparison task.  This suggests that the High Maths participants were not merely 

faster responders overall, but that the advantage lies in the processing of 

numerical magnitude per se.  Physical size and numerical magnitude processing 

could thus diverge at a cognitive level in relation to an individual’s experience 

with numbers.  This finding is in line with Zorzi and Butterworth’s (1999) 

classification of numbers as either “discrete numerosities” or physical sizes 

presented analogically.  The former is thought to require higher processing.  Tang 

et al. (2006) also found greater parietal activation for numerical distance 

processing relative to physical distance processing indicating a quantitative 

difference in processing between numerical and physical distance.  Experience 

with numbers could therefore confer an advantage for numerical comparison, 

whereas no advantage is gained for physical comparison which takes place at a 

perceptual level and does not depend on higher level processing (Tang et al., 

2006). 

To conclude, the current study showed differences in processing between 

digits and number words in terms of the size congruity and distance effects.  This 

suggests that the process of gaining access to underlying number meanings occurs 

more automatically for arabic digits than for number words.  High Maths 

participants were also faster at numerical comparison in arabic digit as well as 

number word format, suggesting an advantage for numerical processing from 

various formats.  Since High Maths participants showed this advantage for digits 

and number words, such an effect might also occur for extracting number meaning 

from language more generally.  To investigate this possibility, Experiment 3 
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employed quantifier words that do not convey number meanings as explicitly as 

arabic digits or words.         
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Chapter 4  

Experiment 3:  Congruency Effects in a Quantifier Word Counting Task as a 

Function of Mathematical Experience 

4.1. Introduction 

Evidence from neuropsychology suggests that the degree to which a digit or 

number word activates underlying number representations reflects the degree to 

which the semantic referent of the format is preserved (see Chapter 1, p. 22).  

Quantifier words, such as “both” or “each” have also been investigated in this regard 

(e.g. Cappelletti, Butterworth & Kopelman, 2006; McMillan, Clarke, Moore & 

Grossman, 2006; Troiani, Peelle, Clark & Grossman, 2009).  Lexically, quantifier 

words operate similarly to other words; however, semantically these words refer to 

quantities (e.g. Cappelletti et al., 2006). As these words do not convey number 

meaning explicitly, the question of whether or not these words mainly reflect a 

numerical or linguistic representation remains uncertain, with little existing research 

on this question (Cappelletti et al., 2006). 

Neuroscientific evidence has provided some insights, suggesting that the 

processing of quantifier words operate more numerically than linguistically.  Such 

studies show that the same brain areas are activated during numeral and quantifier 

word processing.  McMillan and colleagues (2005), for example, found right 

intraparietal activation during a true/false quantifier word judgement task (McMillan, 

Clark & Moore et al., 2005).  During this task participants saw an array of objects and 

had to judge whether the sentence presented with the array (e.g. “some of the balls are 
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blue”) was ‘true’ or ‘false’.  The observed right intraparietal activation was consistent 

with the literature that highlighted its involvement in number knowledge (e.g. 

Chochon, Cohen, van de Moortele & Dehaene, 1999; Simon, Mangin & Cohen et al., 

2002).  Patients with selective impairment of numerical comprehension, such as 

Corticobasal degeneration (CBD) also generally display both a numeral and 

quantifier word processing deficit, despite being unimpaired in other language 

functions (McMillan et al., 2006).  Cipolotti, Butterworth and Denes (1991) also 

presented a patient that suffered a stroke whose severe numerical deficits could not be 

attributed to impairments in language or memory.   Number knowledge thus seems to 

play a central role in quantifier word comprehension.   

Similarly, Troiani et al. (2009), based on evidence from both healthy and 

dyscalculic adults, argue that abstract number knowledge is central to quantifier 

comprehension.  In brain organisation, a dissociation seems to be evident between 

numerical quantifiers (e.g. “at least three”) and logical quantifiers (e.g. “some”), with 

the former depending on areas typically involved in number processing and the latter 

depending on areas involved in focusing attention on specific elements in a 

distribution (“conceptual logic”).  Specifically, quantifiers that are explicitly related 

to cardinal knowledge activate lateral parietal-dorsolateral prefrontal regions, which 

are also involved in numeral comprehension. Logical quantifiers, on the other hand, 

activate a rostral medial prefrontal-posterior cingulate network, suggesting that 

processing of general quantifiers is more ‘logically’ than numerically based (Troiani 

et al., 2009).   
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However, Cappelletti et al. (2006) argued that even quantifiers that refer to 

approximate (e.g. “some” and “every”) rather than exact quantities are organised in a 

more numerical than linguistic pattern in the brain.  This argument was based on the 

observation that patient AM who suffered from semantic dementia, had preserved 

comprehension of quantifier words, despite being impaired in the understanding of 

non-quantifier words of the same frequency.  The patient’s numerical knowledge was 

also preserved, while the meanings of words, objects and linguistic concepts were 

impaired.  Cappelletti et al. (2006) thus argued that the reason that quantifier as well 

as numeral knowledge was preserved is that the semantic referent of quantifier words, 

namely the number domain, was preserved.  

In the development of quantifier understanding, it seems that learning and 

experience play a fundamental role in whether exact or general meanings of 

quantifier words are understood (Barner et al., 2009).  However, whereas quantifier 

and numeral acquisition in infancy is significantly correlated, they do not seem to 

facilitate the development of one another (see Chapter 1, p. 12).  Extensive training 

and experience is needed in order for children to learn the specific numerical 

meanings of quantifier words.  The understanding of quantifier words thus seems to 

become more and more ‘numerical’ (meaning based) and less ‘linguistic’ with 

development as specific number knowledge increases.  These findings strongly 

suggest that quantifier processing does not operate on a purely linguistic basis and 

also support the argument that semantic memory is organised in different specific 

domains, an example of which is number (Caramazza & Shelton, 1998; McMillan et 

al., 2005).  
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Most previous research regarding the numerical vs. linguistic processing of 

quantifier words has been neuropsychological in nature and has not taken individual 

differences related to mathematics into account. However, the processing of 

quantifier words could also be investigated by means of the counting Stroop task.  As 

discussed in Chapters 1 and 2, during counting Stroop tasks the two highly automatic 

processes of counting small numbers (subitizing) and reading are placed in 

competition with one another and the degree to which one of these processes slows 

down the processing of the other is indicative of the degree to which the two systems 

overlap (e.g. Brugger, Pietzsch, Weidmann & Biro, 1995).  The original counting 

Stroop task (Bush et al., 1998; 2006; see Chapter 2) found congruency effects for 

number words such that congruent trials resulted in a speeded response (Stroop 

facilitation) and incongruent trials resulted in a slowed response (Stroop interference).  

Such effects arise from the automatic spontaneous processing of certain stimulus 

features (e.g. number of words on-screen) even if these features are to be ignored 

under task demands.  Thus, if quantifier knowledge is largely dependent on number 

knowledge we might predict greater effects of congruency, if any, for individuals 

with more mathematical education and experience.   

Since the previous experiments showed an advantage for High Maths 

participants in number encoding from arabic digits and number words, the current 

experiment investigated if this effect might also emerge for quantifier words.  The 

stimuli used in the current counting task were quantifier words that could either refer 

to specific quantities (e.g. “both” or “each”) or general quantities (e.g. “some” or 
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“much”) and trials were also manipulated to be congruent, neutral or incongruent in 

meaning.   

4.2. Method 

4.2.1. Participants 

 Thirty participants took part in the experiment (age 18 – 29; M = 21.7; SD = 

3.42).  The sample consisted of 15 High Maths (9 men; 6 women) and 15 Low Maths 

(8 men; 7 women) participants based on the same criteria as Experiments 1 and 2.  

The same exclusion criteria as was used in Experiments 1 and 2 were also used here. 

4.2.2. Apparatus and Materials 

 Quantifier word counting task. Fifteen quantifier words and 5 neutral words 

were selected as stimuli in the experiment.  These consisted of 10 quantifier words 

referring to the numbers ‘one’ or ‘two’ (5 each), 5 ‘General Quantifier’ words and 5 

neutral words.  The ‘One Quantifier’ words were: ‘first’, ‘unit’, ‘single’, ‘once’ and 

‘each’. The ‘Two Quantifier’ words were:  ‘second’, ‘pair’, ‘double’, ‘twice’ and 

‘both’.  These two stimuli groups were matched in terms of common part of speech, 

such that, for example, the equivalent of the word ‘first’ in the One Quantifier word 

list would correspond to the word ‘second’ in the Two Quantifier word list. The 

General Quantifier words were: ‘few’, ‘little’, ‘some’, ‘much’, and ‘many’.   

 Five neutral words were chosen on the basis that they do not semantically 

relate to quantity or measurement.  The neutral stimulus group consisted of the 

words:  ‘still’, ‘lady’, ‘busy’, ‘soon’ and ‘able’.  The neutral stimuli were matched to 

the critical stimuli for number of letters, number of syllables, Kucera-Francis written 
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frequency and Brown verbal frequency using the MRC Psycholinguistic database 

(Coltheart, 1981).   

 The One, Two and General Quantifier words were presented as either 

congruent or incongruent trials.  For the One and Two Quantifier words, congruent 

trials involved the number that the word corresponded to (one or two) matching the 

number of identical words presented on-screen (e.g. ‘twice  twice’ or ‘first’; respond 

‘2’ and ‘1’ respectively), whereas incongruent trials involved the number that the 

word corresponded to mismatching the number of identical words presented on 

screen (‘twice’ or ‘first  first’; respond ‘1’ and ‘2’).  Congruency was also 

manipulated for the General Quantifier word trials such that when the words 

corresponding to smaller quantities (e.g. ‘little’ or ‘few’) were presented once on-

screen these acted as congruent trials (e.g. ‘little’; respond ‘1’).  Trials where these 

words were presented twice on-screen (e.g. ‘little  little’; respond ‘2’) acted as 

incongruent trials.   

 Similarly, the General Quantifier words corresponding to greater quantities 

(e.g. ‘much’ or ‘many’) presented twice on-screen (e.g. ‘many  many’; respond ‘2’) 

acted as congruent trials; and presented once on-screen (e.g. ‘many’; respond ‘1’) 

acted as incongruent trials.  Neutral trials consisted of the neutral words (e.g. still, 

soon etc.) presented either once or twice at a time on-screen.   

 Each stimulus was presented three times in a test block, except for the neutral 

trials where each stimulus was presented 6 times (3 times as one word on-screen and 

3 times as two words on-screen) resulting in a total of 120 trials.  There were 45 

congruent, 45 incongruent and 30 neutral trials overall.  Trials were presented in a 
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quasi-random order on a laptop screen.  Each stimulus was positioned centrally on the 

screen and subtended between approximately 1 to 1.9 degrees of visual angle, 

presented in black print against a white background.  Programming for the task was 

done in Superlab ®, which recorded all participant input and reported reaction times 

(RTs) in milliseconds and accuracy.  

 Participants also completed the same numeracy test, subjective numeracy 

scale (SNS) and working memory span tasks as described in Chapters 2 and 3. 

4.2.3. Procedure 

 The experiment took place in a small windowless cubicle.  Each participant 

was told that the study would investigate the processing of numerical stimuli and was 

then asked to sign an informed consent form (Appendix 1).  The participant then 

completed the 17-item numeracy test (Lipkus et al., 2001).  The same procedure was 

followed for the numeracy test as is described in Chapters 2 and 3.  

 The experimenter then asked the participant their age, whether they had 

studied ordinary or higher level Leaving Certificate Mathematics and the grade they 

obtained. Once the demographic information had been collected and participants had 

completed the numeracy test.  The following message appeared on-screen:   

YOU ARE ABOUT TO SEE SOME WORDS ON SCREEN.  

EACH TIME THERE WILL BE EITHER ONE OR TWO WORDS PRESENT.  YOU HAVE 

TO INDICATE AS FAST, BUT AS ACCURATELY AS YOU CAN, HOW MANY WORDS ARE 

PRESENT EACH TIME. 

IF THERE IS ONE WORD ON THE SCREEN PRESS THE ‘D’ KEY ON THE KEYBOARD.  

IF THERE ARE TWO WORDS, PRESS THE ‘K’ KEY ON THE KEYBOARD. 

PRESS THE SPACE BAR TO TRY SOME PRACTICE TRIALS. 
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The experimenter also told the participant to try and ignore the meaning of the words 

and to just indicate the number of words by either pressing the ‘d’ key (left of 

keyboard) or the ‘k’ key (right of keyboard).  Participants were clearly instructed that 

the ‘d’ key should be pressed to indicate that one word is on-screen and that the ‘k’ 

key should be pressed to indicate that two words are on-screen.  The index fingers of 

both hands were recommended for pressing the corresponding keys and the keys were 

labelled.  It was also emphasized that both speed and accuracy were important in the 

task. 

Once the task instructions were read and explained in more detail by the 

experimenter, the participant pressed the space bar and two practice trials followed.  

The practice trials involved one stimulus from the incongruent ‘One Quantifier’ 

condition (e.g. ‘each  each’) and one stimulus from the incongruent ‘Two Quantifier’ 

condition (e.g. ‘double’).  Bush et al. (1998) noticed a practice effect in the counting 

Stroop task, with improved performance emerging after a few minutes. Practice trials 

were therefore limited to two.   

 Once it was clear that the task instructions were understood, the experimenter 

left the room and the participant commenced the experiment by pressing the space bar 

when ready.  Each stimulus remained on-screen until the participant responded by 

pressing either the ‘d’ or ‘k’ key.  An inter-stimulus interval of 1000 milliseconds 

blank white screen was used and trials were presented in a quasi-random order.  After 

participants completed the quantifier task, they completed the subjective numeracy 

scale (SNS) and working memory span tasks as described in Chapter 2.   
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4.3. Results  

 Reaction times (RTs) were recorded as response latencies to press the d (‘1’) 

or k (‘2’) key on the keyboard to indicate the number of words on-screen after each 

stimulus onset.  Mean correct RTs were calculated for each participant on each of the 

seven stimulus categories.  These were congruent (One, Two and General Quantifier 

words), incongruent (One, Two and General Quantifier words) and neutral (neutral 

words) trials. 

 After assessing the normality of the sample, one outlier was removed from the 

High Maths group as most of these scores were extreme data points.  An independent 

samples t-test indicated that on average the High Maths participants (M = 12.357; SD 

= 3.692) outperformed Low Maths participants (M = 9.533; SD = 2.997) on the 

numeracy test, t(27) = 2.269, p = .032.  Men also outperformed women on the 

numeracy test (Men M = 12.24, SD = 3.49; Women M = 9, SD = 2.89), t(27) = 2.63, p 

= .014.  There were no significant working memory or self-perceived numeracy 

differences between the High and Low Maths groups. 

4.3.1. Accuracy 

 Errors were minimal and were excluded from the reaction times (RTs) 

analysis.  Overall error for the High Maths group was 2.8 % and for the Low Maths 

group 3 %.  Table 4.1 presents the mean error percentages for the different stimulus 

categories for the High and Low Maths groups.  Overall, congruency did not seem to 

have a strong effect on error rates.  The only significant increase in errors on 

incongruent conditions was found for the High Maths group in the One Quantifier 
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condition, t(13) = -3.12, p = .008 (see Table 4.1).  Overall, 2.9 % of the data was 

excluded from any subsequent RT analyses due to errors made.   

Table 4.1.  Mean percentages of errors for the Low and High Maths groups across 

congruent, neutral and incongruent quantifier word trials. 

Group Neutral Congruent 

General 

 

Incongruent 

General 

Congruent 

One 

Incongruent 

One 

Congruent 

Two 

Incongruent 

Two 

Low 3.33  2.67  3.11  1.78  1.78  3.11  4.89  

High 2.61  3.33  3.81  0.48  3.33  2.86  3.33  

   

4.3.2. Reaction Time   

Figure 4.1 presents the mean correct RTs across the different stimulus 

categories for a) the Low Maths and b) the High Maths groups.  On average, there 

seemed to be a small increase in RT on incongruent relative to congruent trials.  

However, the RTs were relatively slow overall across One, Two and General 

Quantifier trials.  The performance of the High Maths group was also faster overall 

than the performance of the Low Maths group.  A 2 x 3 x 2 mixed between–within 

groups ANOVA was conducted to analyse the RTs differences between congruent 

and incongruent trials.  The factors were congruency (congruent and incongruent), 

and word type (One, Two and General Quantifier) and Maths group.  A significant 

main effect was found for congruency, F(1, 27) = 11.02, p = .003, indicating that RTs 

on congruent trials were faster overall than RTs on incongruent trials, however the 

size of the effect was small (partial eta squared = .29).  A main effect was also found 

for Maths group, F(1, 27) = 12.6, p = .001, reflecting the faster overall performance 
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of the High Maths group (partial eta squared = .32).  No further main or interaction 

effects were found. 

(a)      (b)  

Figure 4.1.  Mean RTs (± SEM) across congruent, neutral and incongruent trials for 

One, Two and General Quantifier words for (a) the Low Maths (n = 15) and (b) the 

High Maths (n = 14) group. 

   

On average, High Maths participants responded 23.33 ms faster on congruent 

Two Quantifier trials (M = 1430.02, SD = 30.88) than on incongruent Two Quantifier 

trials (M = 1453, SD = 40.16), t(13) = -2.925, p = .012 (Bonferroni corrected). No 

significant effect of congruency was found for General Quantifier (congruent M = 

1431, SD = 29.34 and incongruent M = 1444.77, SD = 38.22) and One Quantifier 

words (congruent M = 1436.62, SD = 32.21 and incongruent M = 1441.75, SD = 

40.91; p = .55).    

For Low Maths participants, no significant RT differences were found 

between congruent and incongruent trials for One (Congruent M = 1487.19, SD = 

52.02 and Incongruent M = 1500.65, SD = 54.77), Two (Congruent M = 1486.38, SD 



CHAPTER 4 

 100 

= 37.6 and Incongruent M = 1504.56, SD = 62.94) or General (Congruent M = 

1488.27, SD = 62.83 and Incongruent M = 1499.81, SD = 66) Quantifier words (all p 

> .15). 

To summarise, differences in RT between congruent and incongruent trials 

were only found in the High Maths group.  High Maths participants responded 

slightly faster on trials where quantifier word meaning matched the number of items 

on-screen (e.g. both  both; correct response ‘2’) compared to where quantifier 

meaning did not match the number of items on-screen (e.g. both; correct response 

‘1’).  The analysis showed that this congruency effect was only due to the Two 

Quantifier words (e.g. both, second, double etc.).  The Low Maths group showed no 

advantage for congruent over incongruent trials.  To investigate Stroop interference 

and facilitation effects, the RTs on congruent and incongruent trials were compared 

with RTs on neutral trials and are discussed in the following section. 

4.3.3. Interference and Facilitation  

 Regarding Stroop facilitation and interference (the RTs discrepancy between 

congruent/incongruent and neutral trials), paired samples t-tests (Bonferroni 

corrected) showed a facilitation effect in the High Maths group, with significantly 

faster RTs on congruent relative to neutral trials in the Two Quantifier condition, 

t(13) = 3.94, p = .002.  However, no facilitation effect occurred for One and General 

Quantifier words. No interference effect was found as RTs on incongruent trials did 

not differ significantly from RTs on neutral trials in any of the conditions.  In the 

Low Maths group, RTs on neither congruent nor incongruent trials differed 

significantly from RTs on neutral trials.   
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 The RT data showed that the High Maths group responded faster than the 

Low Maths group on congruent and incongruent trials (all p ≤ .015) whereas the two 

groups did not differ significantly in RT on neutral trials (Low M = 1482.559, SD = 

53.28 and High M = 1449.708, SD = 34.33; p = .06).  This suggests that the High 

Maths group’s observed advantage for congruent Two Quantifier trials was not just 

due to these participants merely being faster responders, in which case an advantage 

would have been expected on neutral trials as well.   

 To summarise, congruency did not seem to have a strong influence on RTs 

with relatively slow RTs overall.  However, any significant effects related to the 

congruency of the stimuli were only found in the High Maths group; a facilitation 

effect was found, showing faster RTs on congruent than neutral trials for quantifier 

words relating to the number ‘two’.  Specifically, High Maths participants were 

slightly faster to respond on trials where the number or words matched the quantifier 

word (e.g. both  both) than on trials where a neutral word was presented (e.g. still  

still). No interference effect was found, however, since RTs on incongruent 

conditions did not differ significantly from RTs on neutral conditions.  The Low 

Maths group showed no significant effects of congruency. 

4.4. Discussion 

During the counting Stroop task the two highly automatic processes of 

subitizing and reading are placed into competition (as discussed in Chapter 2), and 

effects related to the congruency of the stimuli are thought to be indicative of the 

degree to which the words are processed automatically (e.g. Bush et al., 1998; 2006).  

The current task investigated the processing of quantifier words by means of a 
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counting Stroop task.  Unlike the original counting Stroop task with number words, 

congruency did not seem to influence overall response times to a great extent.  

However, the small, but significant congruency effects that did emerge were only 

found for High Maths participants.  As previous research suggested that the reading 

of quantifier words do not operate on a purely linguistic basis (e.g. Cappelletti et al., 

2006; McMillan, Clarke, Moore & Grossman, 2006), the current study further 

supports this argument for individuals with greater mathematics experience.  

Although a minimal effect overall, the facilitation effect found for High Maths 

participants is similar to the facilitation effect found in the traditional counting Stroop 

task (Bush et al., 1998; 2006), namely that a congruent number word (e.g. two  two) 

speeds up the counting process.  As quantifier words semantically refer to number 

and lexically operate similarly to other words (Cappelletti et al., 2006), this finding 

could be interpreted as more spontaneous access to the underlying number meanings 

of some quantifier words as a result of experience with numbers.  

The observed congruency effect was related to Stroop facilitation rather than 

Stroop interference, as is generally observed in numerical Stroop tasks (e.g. Bush et 

al., 2006; Girelli et al., 2000).  The processes that give rise to facilitation effects, 

however, are not as clear to account for as those that give rise to interference effects 

(the latter occurring due to parallel processing of two conflicting stimulus features).  

MacLeod and Macdonald (2000) caution against the view of facilitation as the 

advantage of congruence mirroring the disadvantage of incongruence and argue that 

the two effects should rather be seen as reflecting different processing mechanisms or 

bases of responding.  In traditional counting Stroop tasks, for example, the main 
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difficulty in interpreting facilitation effects is that on congruent trials a response to 

either the meaning or the number of the items (e.g. two  two; respond ‘2’) would 

result in the correct response (MacLeod & MacDonald, 2000), despite the fact that 

the task requires only responding to the number of items.  In other words, on 

congruent trials there is a ‘double chance’ of responding correctly.  This is not the 

case for incongruent trials, where only a response to the task-relevant dimension 

(number of words) would be correct.  In light of this, it is possible that undetected 

responses based on reading are included in the overall RT of congruent trials.  

MacLeod and Dunbar (1988), for example, provided evidence for this in an 

experiment where reading errors were filtered.  In the current task, facilitation could 

thus be based on reading response times, which circumvents the counting process.    

However, even if facilitation is partly based on reading responses, the fact that 

this effect only occurred in the High Maths group points towards the involvement of 

number knowledge in quantifier word processing for this group.  Also, while High 

Maths participants responded faster overall, the two groups did not differ 

significantly in reaction time on neutral stimuli.  The possibility that the facilitation 

effect is due to the High Maths participants being faster readers was thus ruled out.  

Instead, the effect could be accounted for as follows: an arbitrary response number 

line was created from one (left) to two (right), where quantifier meanings could 

correspond to either one of these numbers.  Given that quantifier words do not 

convey number meanings as explicitly as number words (e.g. in the original counting 

Stroop), if responses were based on reading of the quantifier words, participants had 

to map the number meaning of the quantifier word onto this arbitrary number line 
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(e.g. the word ‘both’ corresponds to the number ‘two’ in the number line).  

Performance on congruent trials could thus still, at least to some extent, reflect the 

automaticity with which quantifier words are transcoded to underlying number 

meanings.  This facilitation effect was, however, only found for quantifier words 

relating to the number ‘two’ and not for ‘one’ or ‘general’ quantifier words, which 

limits strong conclusions being drawn regarding individual differences in the 

processing of quantifier words.   

A number of methodological issues relating to the stimuli employed in the 

current study are also worth mentioning, which could account for the limited effects 

of congruency that were noted.  Although responses on congruent Two Quantifier 

trials were faster than responses on neutral and incongruent trials in the High Maths 

group, no significant congruency effects were found in any of the other quantifier 

conditions.  For One and General Quantifiers, RTs on congruent trials did not differ 

significantly from incongruent trials.  A possible explanation for why the facilitation 

effect only occurred in the Two Quantifier condition could be that the words chosen 

to represent the number ‘one’ in the task do not do so as explicitly as the words 

chosen to represent the number two.  While the two stimulus groups were matched in 

terms of word frequency and part of speech, those in the Two Quantifier word 

category always relate to the number ‘two’, whereas the meanings of those in the One 

Quantifier word category could be more dependent on sentence context .  In language 

usage, the word ‘both’, for example, always refers to the number ‘two’, whereas the 

corresponding word ‘each’ could be used when describing a whole collection of 

objects and referring to ‘each’ object in the whole collection.  The number ‘one’ 
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might thus not be the only or most immediate representation that is evoked when the 

word ‘each’ is presented.  Similarly, the word ‘every’ could refer to any number of 

individual objects in a collection of items.  Processing of other words, such as ‘first’ 

might be more explicitly related to cardinal number knowledge and might thus 

operate similarly to the Two Quantifier words. 

  Regarding the neutral stimuli, the overall slow RTs and lack of an 

interference effect, could have been due to the fact that the neutral words used in this 

study were not all in a single semantic category, unlike the animal names used in the 

original counting Stroop task (Bush et al., 1998).  However, the neutral stimuli were 

matched to the critical stimuli for number of letters, number of syllables, Kucera-

Francis written frequency and Brown verbal frequency using the MRC 

Psycholinguistic database (Coltheart, 1981), which is why animal names were not 

suitable.  Care was also taken to ensure that the neutral words did not semantically 

relate to quantity or measurement in any way (although the word ‘lady’ like the 

animal names in the original counting Stroop might suggest ‘one’).  Furthermore, the 

words in each of the critical stimulus categories were not in a single semantic 

category either.  The main differences between critical and neutral stimuli were thus 

that the critical stimuli had numerical meanings whereas the neutral stimuli 

(arguably) did not.  Group differences in RTs are thus believed to reflect this, as the 

two groups only differed in quantifier word RTs and not neutral word RTs. 

 Finally, the small, but significant, congruency differences found between the 

two groups could be related to the sampling method used.  A more robust measure of 

assigning participants to groups of mathematics experience might yield greater 
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differences.  As High Maths participants in this study were those who obtained a 

grade of a C3 or higher for higher level Leaving certificate mathematics, whereas the 

rest of the participants were placed in the Low Maths group, highly mathematics 

experienced individuals could have been included in the Low Maths group.  Also, 

unlike Experiments 1 and 2, the two groups did not differ in working memory or self-

reported numerical efficacy, suggesting that the differences between the High and 

Low Maths groups could have been more robust in Experiment 3.  The sample could 

also have been more balanced in terms of gender, with women being relatively 

unrepresented in the High Maths group (9 men and 5 women), which could have 

contributed to the gender difference in numeracy scores.  Nonetheless, in accordance 

with the findings of Experiments 1 and 2, the group differences obtained in 

Experiment 3 shows that the advantage that individuals with greater mathematics 

experience show for extracting number meaning from stimuli could also extend to 

quantifier words.   

 Overall, the findings from Experiments 1 to 3 suggest that processing 

differences between individuals with differing levels of mathematics experience are 

evident when considering basic numerical processes such as number comparison and 

subitizing.  While no response time differences occurred on neutral stimuli, 

individuals in the High Maths group were generally faster responders on trials that 

contained numerical stimuli.  For the High Maths individuals, a heightened 

appreciation for numerical information seems to emerge, in particular for digit 

format, but also to a lesser extent for number words and quantifier words.  
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Chapter 5  

Experiment 4:  Format-specific Effects in Arithmetic at Different Levels of 

Mathematics Experience:  Evidence from Eye-tracking 

5.1. Introduction 

 

 Stimulus format seems to affect early stages of number processing (e.g. 

Ischebeck, 2003), such as subitizing (Experiment 2) or number size comparison 

(Experiment 3).  However, mixed reports exist regarding the influence of numerical 

surface format on more advanced numerical functions such as arithmetic (e.g. 

Bernardo, 2001; Rickard et al., 1994).  As discussed in Chapter 1 (p. 15 – 18), some 

theorists argue that number representations are independent from the input format 

(e.g. Dehaene & Cohen, 1995; McCloskey & Macaruso, 1995) and that performance 

is not expected to differ with different surface formats.  Others argue that surface 

format influences calculation per se (e.g. Campbell, 1994; Campbell & Epp, 2005) 

and that arabic digit operands would result in better performance than word operands.  

 Some recent studies have suggested that effects of surface format can arise 

due to different formats promoting or hindering the use of different strategies in 

arithmetic, such as counting or directly retrieving the answer from memory 

(Campbell & Alberts, 2009; Campbell et al., 2004; Szücs & Csépe, 2004).  Different 

effects of format seem to emerge for each of the four arithmetic operations (addition, 

subtraction, multiplication and division) reflecting the different strategies of problem 

solving that are promoted by digit/word format in each.  In an arithmetic task that 
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compared addition, subtraction, multiplication and division, Campbell and Alberts 

(2009) presented problems in digit and word format (e.g. ‘2 + 3’ or ‘two + three’) and 

asked participants to report the strategies that they used to solve each problem.  The 

strategies used were direct memory retrieval, reference to another operation (e.g. if ‘2 

+ 3 = 5’ then ‘5 – 3 = 2’), using knowledge of a related problem (e.g. if ‘2 + 2 = 4’ 

then ‘2 + 3 = 5’) and counting one by one (e.g. 1 + 1 + 1 + 1 + 1 = 5).  In addition and 

subtraction, direct retrieval was the most common strategy reported, followed by 

addition/subtraction reference and counting.  Retrieval was used less in subtraction 

and on larger number problems.  Participants also reported that word format problems 

promoted counting strategies over direct retrieval, which corresponded with slower 

RTs on word format problems.  In multiplication and division however, the cost of 

word format on retrieval was much less evident than in addition and subtraction.   

 Following Campbell and Alberts (2009), the lack of, or less prominent, format 

effects related to performance and strategy reports could be an indication that 

participants use similar strategies for digit and word stimuli (e.g. memory based 

strategies such as direct retrieval or multiplication-reference).  Operations that utilise 

one dominant strategy for problem solving (e.g. memory retrieval in multiplication; 

Campbell & Xue, 2001; LeFevre & Morris, 1999) do not show much difference in 

performance between digit and word format problems since both formats promote the 

use of the same strategy, namely retrieval.  Other operations, that can either be solved 

through retrieval or procedural strategies (e.g. addition), for example, show clearer 

effects of format, as word format seems to promote procedural strategies and digit 

format seems to promote direct memory retrieval (e.g. Campbell & Alberts, 2009).  
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Since retrieval is generally a faster process than calculation, the cost of word format 

on performance is very evident here. 

 Effects of format in arithmetic can thus highlight the degree to which problem 

solving processes operate separately from input format.  One line of evidence that 

sheds some light on the debate on the influence of surface format comes from the 

problem size effect (PSE; see Chapter 1, p. 14), which shows that response time and 

errors in an arithmetic problem usually increase when the operands in the problem 

increase in magnitude (e.g. 2 + 3 vs. 8 + 9; see Ashcraft & Christy, 1995; Geary, 

1996).  Smaller numbers have stronger memory retrieval strength due to more 

extensive exposure, which make small number problems easier to solve (Zbrodoff & 

Logan, 2005).  Larger problems are more likely to be solved by a strategy other than 

retrieval (e.g. calculation or reference to another operation), which takes longer and 

can be more error prone (Campbell & Xue, 2001).  Studies consistently show that the 

problem size effect is greater for numbers written in number word format (e.g. two + 

three) compared to arabic digit format (e.g. 2 + 3; e.g. Campbell et al, 1999; 

Campbell & Alberts, 2009).  Campbell and colleagues suggest that the slower 

performance on large word format problems is because retrieval processes are less 

efficient with number words than with arabic digits (see Campbell & Epp, 2005, for 

review).  Campbell and Fugelsang (2001), for example, found that in a simple 

addition true–false verification task, participants reported the use of procedures (e.g. 

counting vs. retrieving answer from memory) much more with words (41 %) than 

with digits (26 %) and that this effect was even greater for large number problems 

(see also Campbell & Penner-Wilger, 2006).  As both format and problem size seem 
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to influence strategy choice, a switch to an alternative strategy occurs when retrieval 

strength is low.  The cost of word format on retrieval is thus more evident on large 

number problems with already low retrieval strength.   

 Apart from Campbell and Alberts’s (2009) study, the influence of format on 

strategy use in arithmetic has only been demonstrated for addition.  More evidence is 

thus needed to link format effects with arithmetic strategies in subtraction, 

multiplication and division.  Campbell and Alberts (2009) suggested that the use of 

retrieval is related to the efficiency and accuracy with which an answer can be 

accessed from long-term memory.  It follows then that individual differences related 

to mathematics should influence the use of retrieval in arithmetic and that this might 

differ between formats.  The current study considered mathematics experience and 

how it can further regulate the interactions of format, problem size and operation in 

arithmetic.  As Campbell and Alberts (2009) suggested, operation and problem size 

effects in arithmetic should reflect long-term learning and experience.  If this is the 

case, individuals with high mathematics experience could show an advantage for a) 

transcoding between number formats, b) solving large number problems and c) 

arithmetic fact retrieval in general.  Effects of format, problem size and operation 

should thus reflect these advantages of high mathematics experience.   

 In addition to behavioural measures, the current experiment employed eye-

tracking to explore processing differences that can occur as a result of surface format.  

As Zhang et al. (2010) pointed out, reaction time data is insufficient for highlighting 

processing differences between formats, since different formats might still yield 

similar behavioural responses, despite being processed along separate pathways.  
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Eye-tracking offers a more precise measure of processing than reaction time or 

accuracy (e.g. Desroches et al., 2006) as it provides an index of the location as well as 

the duration of fixation on certain stimuli (Merkley & Ansari, 2010).  Eye-tracking 

has proven a useful technique in reading tasks by, for example, illustrating the 

process of integrating information read with information stored in memory and the 

pattern in which the information is processed (see Liversedge & Findlay, 2000 for a 

review).  In reading, gaze duration has been argued to be an indication of access to an 

internal lexicon and integrating text information with existing knowledge in memory 

(e.g. Inhoff, 1984, 1985; Rayner & Pollatsek, 1987).  Eye-tracking thus seems to be 

particularly useful for investigating strategies such as direct memory retrieval of 

arithmetic facts versus calculation.  With regards to numerical cognition specifically, 

Merkley and Ansari (2010) have also recently employed measures of fixation count 

and fixation duration to study numerical magnitude processing and showed that both 

measures revealed additional effects that were not evident from behavioural data 

alone. 

 Eye-tracking might also be a useful alternative to self-reports in studies of 

strategy use in arithmetic.  Whereas most research on strategy use in arithmetic have 

employed self-reports of participants (e.g. Campbell & Alberts, 2009; Campbell & 

Penner-Wilger, 2006), some shortcomings have been noted, which calls the validity 

and reliability of this approach into question.  As cognitive processes that have 

become automatic are generally not readily available to self-report (e.g. Crutcher, 

1994; Ericsson & Simon, 1993; Wilson, 1994), it could be argued that only 

information in short-term memory that is attended to could be consciously reported 
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(e.g. Kirk & Ashcraft, 2001).  Arithmetic strategies which involve working memory, 

such as counting, might also be more accurately reported than those that occur more 

automatically, such as direct memory retrieval (Kirk & Ashcraft, 2001).  In the case 

of the latter, the answer is reportable, but not the strategy, which is believed to be a 

largely automatic process (e.g. Ashcraft, 1992; Campbell & Graham, 1985; Lebiere & 

Anderson, 1998).  Strategy self-reports might thus not always be an accurate 

reflection of the actual strategies employed in a task. 

 Furthermore, strategy self-reports may influence strategy choice in a task.  If 

participants are aware that they would have to report strategies after performing each 

operation, they might deliberately engage in the use of certain strategies in order to 

arrive at an answer (Kirk & Ashcraft, 2001).  While self-reports in such a task might 

be highly accurate, they might not be indicative of the typical strategies that an 

individual would use in arithmetic.  Indeed, Kirk and Ashcraft (2001) biased 

instructions towards either direct retrieval or non-retrieval based strategies in a simple 

arithmetic task and found that participants’ strategy reports were highly influenced by 

these instructions.  However, self-reports have still been shown to converge with RT 

findings based on the assumption that procedural strategies are generally slower than 

direct retrieval (Campbell & Alberts, 2009; Campbell & Penner-Wilger, 2006) 

suggesting some level of validity to strategy self-reports.  Nonetheless, self-reports 

should still be interpreted with caution since instruction can strongly influence 

strategy choice (Kirk & Ashcraft, 2001). 

 In light of these shortcomings, the current experiment did not record 

participants’ self-reports of strategies used.  Instead, the current study is the first to 
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use eye-tracking measures (average fixation count and duration) to study effects of 

format and problem size in simple arithmetic.  The degree to which format and 

problem size effects differed across conditions and with mathematics experience was 

presumed to reflect the use of different strategies.  Eye-tracking patterns were 

expected to indicate differences in cognitive processes between the different 

conditions, and were assumed to eliminate any strategy report biases. 

 The use of eye-tracking technology in the study of arithmetic problem 

solving has been limited and such studies have mostly investigated arithmetic word 

problems (e.g. De Corte, Verschaffel & Pauwels, 1990; Hegarty, Mayer & Monk, 

1995; Verschaffel, De Corte & Pawels, 1992).  Merkley and Ansari (2010) recently 

noted that, surprisingly, eye movement patterns in number processing have to date 

not been systematically investigated.  While behavioural measures are useful, we can 

devise more precise and testable hypotheses of the underlying mental processes 

involved in a task if we know where, when and for how long participants looked at a 

certain stimulus (Merkley & Ansari, 2010).  Furthermore, if eye-tracking patterns, 

like self-reports, also converge with reaction time data, it would suggest that strategy 

self-reports are valid and that eye-tracking measures provide another index for 

investigating strategy use in arithmetic.  However, if eye-tracking measures diverge 

from RT and accuracy data, it could suggest that eye-tracking measures pick up on 

subtle underlying cognitive processes that are not evident from reaction time and 

accuracy data alone. 

 Very few studies have employed this technique to investigate arithmetic in 

arabic digit format.  However, the few studies that have done this have shown that 
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eye movements differ with the steps required in the different conditions.  Suppes 

(1990) recorded eye movements of three participants while performing single-digit 

subtraction and addition problems in column format (the procedure taught in 

schools).  Eye fixations varied according to structural features of each problem, such 

as the number of columns and whether or not the operation required a carry or borrow 

action.  Verschaffel and colleagues presented 8 and 9 year olds with addition 

problems with three addends presented in a horizontal line (e.g. 2 + 5 + 6; 

Verschaffel, De Corte, Gielen & Struyf, 1994).  Fixations of at least 100ms were 

identified and the final gaze that lasted the longest (at least 180 ms) was assumed to 

be the number that participants added to the other two operands.  Importantly, eye 

movements concurred with verbal reports of strategies: participants rearranged items 

so as to first add two complimentary numbers that equalled 10 or two identical 

numbers together. 

 The current study closely followed the method of Campbell and Alberts 

(2009).  The first part compared the performance of addition and subtraction 

problems across different levels of problem size and across digit and word format 

equations.  Following Campbell and Alberts (2009), greater format X problem size 

interactions were expected for addition problems, as problems written in word-format 

were expected to be more taxing on memory retrieval (and thus performance) for 

larger, more difficult addition problems, relative to problems in digit-format (e.g. 

Campbell & Penner-Wilger, 2006).  This effect was not expected for subtraction 

problems, based on the argument that in education subtraction is introduced after 

addition and taught as inverse addition, rendering subtraction subordinate to addition 
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(Campbell & Alberts, 2009).  Larger subtraction problems are thus often solved by 

strategies that make use of the addition-reference (e.g.  Le Fevre et al., 2006).  Small 

subtraction problems are solved primarily through retrieval (however this retrieval 

strength is relatively weak compared with addition) with small subtraction 

performance closely matching large addition performance (Cambell & Xue, 2001).  

Small subtraction problems were thus expected to display similar word-format 

performance costs to addition problems.  On large subtraction problems, on the other 

hand, due to their retrieval strength being too low to promote retrieval strategies even 

in digit format, word-format effects were not predicted to be particularly prominent, 

as was found in the study of Campbell and Alberts (2009). 

 Part 2 of the study compared format and problem size effects for 

multiplication and division across different levels of mathematics experience.  In 

multiplication and division, counting-based strategies are rarely used due to their 

relative inefficiency as a strategy: counting would involve repeated addition and 

subtraction to solve multiplication and division problems respectively (Campbell & 

Xue, 2001).  Instead, the main strategy for multiplication is direct memory retrieval 

(e.g. Campbell & Xue, 2001; LeFevre, Bisanz & Daley et al., 1996; LeFevre & 

Morris, 1999) and for division either direct retrieval or multiplication-reference (e.g. 

2 x 3 = 6 therefore 6 ÷ 3 = 2; LeFevre & Morris, 1999; Mauro, LeFevre, & Morris, 

2003).  Regarding format effects, Campbell and Alberts (2009) found that similar to 

addition and subtraction, word format hindered retrieval, but that this effect was 

greater for division than multiplication.  The reason for this is that the multiplication-

reference strategy is efficient enough for division problem solving to afford a rapid 
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shift away from retrieval.  Multiplication, on the other hand, does not afford a shift 

away from retrieval as another strategy would be too inefficient (division-reference or 

counting is unlikely) and both digit and word formats are thus mainly solved via 

retrieval.  Format and problem size effects are still expected in multiplication, as the 

retrieval strength of word format or large problems are generally weaker than digit 

format or small problems.  However, these effects are still unlikely to encourage 

strategies other than retrieval and would thus be less evident in multiplication 

(Campbell & Alberts, 2009).  To investigate effects of format and problem size a 

number of dependent measures were used in Experiment 4.  The four dependent 

measures were 1) accuracy 2) response latency in milliseconds 3) total number of 

fixations across each problem and 4) the average fixation duration across each 

problem.  In all four operations, performance was expected to be generally poorer for 

Low Maths participants.  Participants across each level of Maths group were expected 

to answer simple arithmetic problems (e.g. 2 + 2) accurately and relatively quickly.  

However, the eye-movement patterns were expected to reflect subtle between–groups 

differences in arithmetic fact retrieval that might not be evident from behavioural 

measures alone.  Stimulus format and problem size was also expected to interact with 

problem solving strategies, which were expected to be reflected in the eye-tracking 

measures. 

5.2. Method 

5.2.1. Participants   

 Eighteen women and 23 men participated in the study with ages ranging from 

18 to 30 (M = 23.1, SD = 4.25).  The current study aimed to improve on the previous 
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method (see Chapters 2 – 4) of assigning participants to groups of mathematics 

experience, by including a ‘Middle’ Maths group.  Participants were recruited so as to 

have three groups of differing mathematics experience (‘High’, ‘Middle’ and ‘Low’ 

Maths) based on self-reported Leaving Certificate performance, numeracy test results 

and third level mathematics education.  Twelve participants were recruited from a 

university department of mathematics and comprised the High Maths group (9 men 

and 3 women).  These were individuals who are currently completing advanced 

mathematics courses (e.g. abstract mathematics) at degree level or who had 

completed a degree course in mathematics.  Of these 12 participants, 9 had studied 

Higher Level Leaving Certificate mathematics and had obtained a grade in the A (N = 

4) or B (N  = 5) range (one participant had studied Ordinary Level Mathematics with 

an obtained A grade).  Two participants in the High Maths group had also studied 

Higher level Leaving Certificate mathematics with an obtained grade of a D.  Both 

these participants had obtained the maximum score in the numeracy test (17) and had 

also studied mathematics to degree level and were therefore included in the High 

Maths group.  Seventeen participants were assigned to the ‘Middle Maths’ group (8 

men and 9 women).  These participants were those who had studied Ordinary Level 

mathematics with an obtained grade A or Higher Level mathematics with obtained 

grade A – D at Leaving Certificate level, but did not hold/were not pursuing a degree 

in mathematics.  Of these participants, 11 had studied Higher Level Leaving 

Certificate mathematics (grades A = 1, B = 9 and C = 1) and 6 had studied Ordinary 

Level Leaving Certificate mathematics (A = 6). The twelve participants in the ‘Low 

Maths’ group (6 men and 6 women) were those who had studied Ordinary Level 



CHAPTER 5 

 118 

mathematics at Leaving Certificate level with an obtained B grade or lower and who 

did not hold/were not pursuing a degree in mathematics.  Two participants (both from 

the Middle Maths group) had to be excluded from the analysis due to missing eye-

tracking data.  One participant from the Low Maths group was excluded from the 

multiplication and division analyses (Part 2) due to too many errors made.  

5.2.2. Apparatus and Materials  

 Participants completed the17-item numeracy test adapted from Lipkus et al.’s 

(2001) Numeracy Scale as well as on-screen arithmetic tasks of addition, subtraction, 

multiplication and division.   

 Eye-tracking apparatus.  Participants’ eye movements were recorded at 50 

Hz with a remote Tobii 1750 eye tracker manufactured by Tobii Technology AB 

(Tobii, Stockholm, Sweden).  A chin rest was used in order to ensure that all 

participants were seated the same distance from the computer screen (approximately 

60cm) and to minimise any head movements.  The Tobii system’s analysis software, 

ClearView was used to identify participants’ total fixation count and fixation 

durations per stimulus. 

 Arithmetic Stimuli.  The stimuli, based on the study of Campbell and Alberts 

(2009) were addition problems ranging from 2 + 2 to 9 + 9 and corresponding 

subtraction problems (4 – 2 to 18 – 9) presented in arabic digit or word format.  For 

subtraction pairs the second number in the addition problem became the subtrahend 

(e.g. 3 + 8 became 11 – 8).  For each operation, 36 pairings of the numbers 2 to 9 

were used, ignoring operand order (e.g. 3 + 4 and 4 + 3) resulting in a total of 72 

stimuli per operation and stimulus format (144 problems per block).  The stimuli 
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included 8 tie problems (e.g. 2 + 2 or 8 + 8).  These were included in the test blocks, 

but were excluded from the analysis due to unique encoding characteristics (e.g. 

Campbell et al., 2004).  Operand order for each of the non-tie pairs were selected 

quasi-randomly and constrained such that the same operand order was used for digit 

and word format versions of the same pair.  Pairs with a product of less than or equal 

to 25 were classified as small problems and those with a product of more than 25 

were classified as large problems.  Campbell and Alberts (2009) used this method to 

define problem size in order to have two balanced sets of 18 problems and to aid 

comparison of results across operations and with previous research (e.g. Campbell & 

Xue, 2001).  In Part 2 (multiplication and division) problems ranged from 2 x 2 to 9 x 

9 in multiplication and from 4 ÷ 2 to 81 ÷ 9 in division.  Apart from the different 

stimuli, the same procedure and analyses were followed as for the addition and 

subtraction task (Part 1). Participants took part in both Part 1 and 2 of the study, with 

order of Parts 1 and 2 counterbalanced across participants.  Each trial began with a 

fixation dot which flashed twice over a 2 second interval.  The problem appeared on 

what would have been the third fixation flash, with the operation sign (+ or  – ) 

appearing in the space where the fixation dot would have been (Campbell & Alberts, 

2009).  Each problem remained on-screen until the participant responded by pressing 

the space bar.   

Stimuli were presented centrally on a computer screen and subtended between 

1 and 1.9 degrees of visual angle.  Each equation appeared horizontally on the 

computer screen in either arabic digit or lower case written number word format in 

white ink against a black background.  Digit operands were separated by a ‘+’ or ‘–’ 
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sign with three character spaces on each side of the sign.  Digit problems occupied 9 

or 10 character spaces and word problems occupied 10 – 17 spaces in length (each 

character space was approximately 3mm wide and 5 mm high).  Figure 5.1 shows 

examples of the digit and word format stimuli employed. 

 

 

 

 

 

 

        1000ms               1000ms 

Figure 5.1.  Presentation examples of digit and word format equations 

 

Note.  Fixation dots were presented twice over a 2 second interval. The problem appeared on what 

would have been the third fixation flash and stayed on-screen until the participant responded. 

 

  Numeracy Test. The same numeracy test adapted from Lipkus et al. (2001) 

as was used in the previous experiments was used in this task.  However, given the 

more competent sample, participants were given six, as opposed to eight, minutes for 

the test to guard against possible ceiling effects.  A blank sheet of paper was provided 

to work out the answers.  The experimenter also noted demographic information 

regarding each participant’s age, gender and mathematics experience (Leaving 

Certificate and third level education).  
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5.2.3. Procedure  

 The experimenter told the participant that the experiment would involve a 

number of arithmetic tasks and a numeracy task.  The task followed the same 

procedure as the Campbell and Alberts (2009) study.  However, instead of using a 

voice recorder, which can be subject to microphone failure, participants were asked to 

press the space bar once they know the answer to the problem and then to report the 

answer verbally, which was noted by the experimenter.  The following task 

instructions were given, both verbally and on-screen:  

 

After the experimenter had given basic task instructions, the eye-tracker was 

calibrated to ensure that gaze direction could be accurately calculated for each 

individual.  This was done for each participant prior to commencing the arithmetic 

tasks.  A series of practice trials then followed.  The practice trials involved four 

problems (two digit and two word problems) for each operation.  Once the 

experimenter was confident that the participant understood the task instructions, the 

participant was told that the task would begin.  Participants were told to try and 

answer the problems correctly, but to also try and answer as fast as they could.  The 

experimenter emphasised that it was important not to sacrifice accuracy for speed.  

A NUMBER OF EQUATIONS WILL APPEAR ON THE COMPUTER SCREEN. 

YOUR TASK IS THIS: AFTER EACH EQUATION, PRESS THE SPACE BAR WHEN 

YOU KNOW THE ANSWER.  THEN SAY THE ANSWER OUT LOUD.  SPEED AND 

ACCURACY ARE IMPORTANT. 
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The order of completing Parts 1 (addition and subtraction) and 2 (multiplication and 

division) was counterbalanced across participants.   

Before each test block the word ‘ADDITION’ or ‘SUBTRACTION’ appeared 

on-screen to indicate which operation the block would test.  Participants completed 

two test blocks of 72 trials (one addition and one subtraction block).  Order of 

presentation of the test blocks were counterbalanced across participants.  Each test 

block consisted of all 36 problems once presented as digits and once presented as 

words.  Following Campbell and Alberts (2009), digits were presented on odd trials 

and words were presented on even trials.  The problem order was quasi-random, but 

constrained such that digit and word versions of the same problem did not appear 

within at least 10 trials of one another.  Each participant received the same order of 

trials.   

 The experimenter remained in the room during the arithmetic tasks, seated at a 

table behind the participant with an answer sheet to record participants’ accuracy on 

the task.  Trials on which the participant pressed the space bar, but did not promptly 

report an answer were noted and were excluded from the analyses (these were 

minimal overall). 

 After the participant had performed the addition and subtraction tasks, the 

experimenter offered the participant a 5 minute break if desired.  The participant then 

performed the multiplication and division tasks (part 2).  Apart from the different 

stimuli, Part 2 followed the same procedure as Part 1.  After completing all the 

arithmetic tasks, the participant was then asked to complete the timed 17-item 

numeracy test.  To control for ceiling effects, participants were only given 6, as 
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opposed to 8, minutes to perform the test.  Instructions for the numeracy test were the 

same as for the other experiments (see Chapter 2, p. 44).  Participants were then 

debriefed and it was explained that group as opposed to individual data was of 

interest in this study.   

5.2.4. Ethical Considerations 

 In addition to the ethical considerations that were set out in Chapter 2 (p. 50), 

participants were asked not to participate in Experiment 4 if they had prior head 

injury, suffered from epilepsy or had any reading or visual difficulties.  None of the 

participants were excluded based on these criteria.  Before commencing the tasks, 

each participant was given an information sheet with general information on what to 

expect from an eye-tracking study (Appendix 4) and each participant was required to 

read the information sheet before the experiment began.   

5.3. Results 

 Reaction times (RTs) were recorded as time taken in milliseconds to press the 

space bar after each stimulus onset.  The eye-movement measures were the total 

number of fixations and average fixation duration (ms) per stimulus.  Errors were also 

recorded and were excluded from RT and eye-movement analyses.  Overall, 2.08 % 

of the data was excluded from Part 1 (addition and subtraction) and 4.75 % from Part 

2 (multiplication and subtraction) due to errors made.  For each part (1 and 2) a 

separate 2 x 2 x 2 x 3 mixed between–within groups analysis of variance was 

conducted for each dependent measure.  The dependent measures in each case were 

accuracy, RT, number of fixations and average fixation duration.  In each case the 



CHAPTER 5 

 124 

influences of operation (e.g. addition and subtraction), format (digits and words), 

problem size (small and large) and Maths group (Low, Middle and High Maths 

groups) were investigated.  Post-hoc comparisons used the Tukey HSD test.  

 Preliminary t-tests were conducted to assess the differences between the three 

Maths groups on the numeracy test.  The Low Maths group (M = 8, SD = 3.22) was 

outperformed by both the High (M = 13.92, SD = 3.55), t(22) = 4.27, p < .001, and 

Middle Maths groups (M = 12.2, SD = 3.63), t(25) = 3.14, p = .004.  The High Maths 

group did not perform significantly better than the Middle Maths group (p = .23).  

Overall, men outperformed women on the numeracy test (men M = 13.43, women M 

= 8.94), t(38) = 3.97, p < .001. 

 

5.3.1. Part 1: Addition and Subtraction 

 Accuracy.  Errors were minimal overall and did not seem to differ with 

mathematics experience or format.  However, problem size seemed to have an 

influence on overall error rates.  On average participants made more errors on large 

problems (addition 2.06 % and subtraction 4.48 %) relative to small problems 

(addition 0.78 % and subtraction 1 %).  Table 5.1 presents the percentage of errors 

made in addition and subtraction problems for the High, Middle and Low Maths 

groups.   
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Table 5.1.  Mean percentages of errors in the addition and subtraction tasks. 

Operation Problem  

Size 

Maths  

Group 

Percentage Errors  

Addition   Digit Word 

 Large  Low 1.85  0.93  

  Middle 0.37  1.11  

  High 1.39  0.69  

  Total 1.14  0.93  

      

 Small  Low 0.23  0.69  

  Middle 0.19  0.56  

  High 0.46  0.23  

  Total 0.29  0.5  

Subtraction     

 Large  Low 3.24  3.24  

  Middle 1.67  1.85  

  High 1.85  1.85  

  Total 2.21  2.28  

     

 Small  Low 0.69  0.93  

  Middle 0.56  0.18  

  High 0.69  0  

  Total 0.64  0.36  

 

The ANOVA found a main effect for operation, F(1, 36) = 9.17, p = .005, with a 

large associated effect size (partial eta squared = 0.2), indicating that participants 

made significantly more errors in subtraction (2.74 %) than in addition (1.42 %).  A 

main effect was also found for problem size, F(1, 36) = 30.84, p < .001 (partial eta 

squared = .46).  A significant problem size x operation interaction effect, F(1, 36) = 

9.59, p = .004 (partial eta squared = .21), was also found.  Dependent t-tests with 

Bonferroni corrections showed that the size effect was only significant in the 

subtraction task, for problems written in both digit, t(38) = -3.75, p = .001, and word 

format, t(38) = -5.2, p < .001.  Problem size thus influenced error rates more in 

subtraction than addition, with most errors made on large subtraction problems in 

comparison with the other problem types.  This is in line with the notion that large 
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subtraction is usually solved through calculation (as opposed to retrieval), which is a 

more error prone strategy.  Overall 2.08 % of the data was excluded from any 

subsequent analyses due to errors made. 

 Reaction times (RTs).  Figure 5.2 presents the mean correct RTs in 

milliseconds in terms of problem size (small and large), format (digits and words) and 

Maths group in (a) the addition and (b) the subtraction task. 

(a)                                         (b)  

Figure 5.2.  Mean RTs across format, problem size and maths group (Low, Middle or 

High) in (a) the addition and (b) the subtraction task (± SEM). 

 

Note.  The scale on the Y-axis is set at 700 – 4600 ms to allow comparison with RTs in the 

multiplication and division tasks (presented in Figure 5.3). 

 

 Overall, participants performed the addition task faster than the subtraction 

task (M = 468.28 ms and M = 1157.81 ms respectively).  In both tasks participants 

answered problems written in digit format (M = 1163 ms) faster than problems 

written in word format (M = 1463.9 ms) and small problems (M = 1100.73 ms) faster 

than large problems (M = 1525.36 ms).  The Low Maths group’s performance (M = 
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1797.38 ms) was also overall slower than the Middle (M = 1081.81 ms) and High 

Maths groups’ (M = 1059.93 ms) performance.  Significant main effects were found 

for operation, F(1, 36) = 86.2, p < .001, format, F(1, 36) = 80.4, p < .001, problem 

size, F(1, 36) = 80.63, p < .001, and Maths group, F(2, 36) = 11.86, p < .001 (all 

partial eta squared ≥ .4).  Post-hoc comparisons showed that the Low Maths group 

took significantly longer to answer than the Middle (p < .001) and High Maths groups 

(p < .001).  On average, RTs for the Middle and High Maths groups did not differ 

significantly (p = .99).  Problems size effects also differed with Maths group and 

operation as indicated by significant problem size x Maths group, F(2, 36) = 8.78, p = 

.001 (partial eta squared = 0.33) and problem size x operation, F(2, 36) = 19.19, p = 

.001 (partial eta squared = 0.35) interaction effects.  No significant interaction effects 

were found for format. 

 To compare the size effects between the operations and maths groups, 

difference scores were calculated by subtracting the mean RT on small problems 

from the mean RT on large problems.  Table 5.2 presents the mean difference scores 

in the addition and subtraction tasks.  Overall, the problem size effect was greater in 

subtraction (M = 533.49 ms difference) than addition (M = 315.76 ms difference).  

Problems size also seemed to become less influential on performance as the level of 

Maths group increased (Low M = 705.82 ms difference, Middle M = 313.12 ms 

difference and High M = 254.93 ms difference).   
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Table 5.2.  Mean RT disparity (ms) between small and large problems (problem size 

effect) in the addition and subtraction tasks. 

Operation Maths  

Group 

Reaction Time difference (ms) 

Addition  Digit Word 

 Low 614.78 (450.82) 576.68 (299.16) 

 Middle 222.41 (132.02) 219.04 (171.74) 

 High 111.84 (121.78) 149.81 (114.76) 

 Total 309.12 (338.09) 307.78 (272.78) 

    

Subtraction Low 762.35 (567.75) 869.47 (829.47) 

 Middle 347.33 (249.45) 463.72 (274.12) 

 High 373.33 (250.93) 384.73 (286.4) 

 Total 483.03 (412.52) 564.26 (542.38) 

 

A 2 x 2 x 3 mixed between–within groups ANOVA was conducted on the difference 

scores with operation, format and maths group as factors.  A main effect was found 

for operation, F(1, 36) = 19.19, p < .001 (partial eta squared = 0.35), indicating that 

the size effect was overall greater for subtraction than addition.  A main effect was 

also found for Maths group, F(2, 36) = 8.78, p = .001 (partial eta squared = 0.33).  

Post-hoc comparisons with Tukey HSD showed that the Low Maths group was 

significantly more susceptible to the problem size effect compared to the Middle (p = 

.004) and High Maths groups (p = .001).  The size effect did not differ significantly 

between the Middle and High Maths groups (p = .86).  No main or interaction effects 

were found for format.   

 To summarise, the RT problem size effect, namely a slowed response on large 

problems, varied with operation and Maths group.  The size effect was greater in 

subtraction than addition in line with the notion that large subtraction usually 

involves counting or addition-reference strategies, whereas small subtraction can be 

solved by direct retrieval.  For addition, the size effect was also significant, but 
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smaller, as both small and large addition problems can be solved through retrieval 

(although larger problems have relatively weaker retrieval strength than small 

problems).  Overall, the Low Maths group was also more susceptible to the problem 

size effect than the Middle and High Maths groups, who showed a relatively small 

RTs difference between small and large problems.   

 Regarding format effects, participants answered word format problems slower 

than digit format problems, consistent with the argument that retrieval strength is 

relatively low for word format problems, which causes a shift from retrieval to 

procedural strategies and, in turn, slower RTs.  However, while RTs on word-format 

problems were slower in all conditions, the slowed response on large problems was 

relatively similar for digit and word formats.  In other words, word format-costs were 

similar on small and large problems.  Word-format costs on RTs were also relatively 

similar for addition and subtraction and across the three maths groups. 

 Number of Fixations. The mean number of fixations across each stimulus 

category was calculated for each participant and is presented in Table 5.3.  The 

fixation count data reflected the overall patterns in the RT data: participants made 

more fixations in subtraction (M = 3.4) than addition (M = 2.91), more fixations on 

word format problems (M = 3.7) than digit format problems (M = 2.62), and more 

fixations on large (M = 3.6) than small problems (M = 2.71).  On average, the Low 

Maths group also made more fixations (M = 4.1) than the Middle (M = 2.71) and 

High Maths groups (M = 2.66).   
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Table 5.3.  Means and standard deviations of number of fixations in the addition and 

subtraction tasks 

Operation Problem  

Size 

Maths  

Group 

Number of Fixations  

Addition   Digit Word 

 Large  Low 3.99 (2.02) 4.99 (2.47) 

  Middle 2.37 (0.54) 3.11 (0.81) 

  High 2.25 (1.17) 3.04 (1.36) 

  Total 2.83 (1.52) 3.66 (1.83) 

     

 Small  Low 2.24 (0.92) 3.99 (1.76) 

  Middle 1.63 (0.47) 2.77 (0.69) 

  High 1.56 (0.71) 2.95 (1.25) 

  Total 1.79 (0.75) 3.2 (1.35) 

Subtraction     

 Large  Low 4.69 (2.64) 5.63 (2.53) 

  Middle 2.76 (0.92) 3.81 (1.32) 

  High 2.63 (1.38) 3.91 (1.37) 

  Total 3.31 (1.94) 4.4 (1.93) 

     

 Small  Low 3.18 (1.37) 4.1 (1.82) 

  Middle 2.16 (0.61) 3.07 (0.85) 

  High 1.93 (0.88) 2.99 (1.135) 

  Total 2.4 (1.09) 3.36 (1.36) 

 

The ANOVA showed that the influences of operation, F(1, 36) = 16.83, p < .001, 

format, F(1, 36) = 129.88, p < .001, problem size, F(1, 36) = 62.24, p < .001 and 

maths group, F(2, 36) = 5.69, p = .007 (all partial eta squared ≥ .3) on number of 

fixations were significant.  Post-hoc comparisons showed that the Low Maths group 

made significantly more fixations than the Middle (p = .014) and High Maths (p = 

.016) groups, whereas the Middle and High Maths groups did not differ significantly 

in this regard (p = .99).  Similar to the RT data, a significant size x maths group 

interaction effect was also found, F(2, 36) = 6.04, p = .005 (partial eta squared = 

0.25) suggesting that the influence of problem size on fixation count decreased with 

the level of Maths group.  The fixation count analyses also showed a significant 

three-way operation x size x format interaction effect, F(1, 36) = 19.78, p < .001 
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(partial eta squared = 0.35).  Differences in effects between the RT and fixation 

analyses emerged here, as no significant format x size interaction effect was found in 

the RT analyses. 

 To compare the fixation count size effects between the operations, Maths 

groups and formats, difference scores were calculated for each participant as the 

discrepancy in mean number of fixations between small and large problems 

(presented in Table 5.4).  Similar to the RTs findings, problem size seemed to 

influence the number of fixations more for the Low Maths group (M = 1.44) than the 

Middle (M = 0.61) and High Maths (M = 0.6) groups.  The size effect also seemed to 

be greater for digit than word format problems in addition, whereas in subtraction this 

effect was relatively similar for the two formats (see Table 5.4). 

Table 5.4.  Mean disparity in number of fixations between small and large problems 

(fixation count problem size effect) in the addition and subtraction tasks. 

Operation Maths  

Group 

Difference in no. fixations 

Addition  Digit Word 

 Low 1.75 (1.2) 0.99 (0.85) 

 Middle 0.74 (0.4) 0.34 (0.24) 

 High 0.7 (0.55) 0.09 (0.36) 

 Total 1.04 (0.89) 0.46 (0.64) 

    

Subtraction Low 1.5 (1.77) 1.53 (1.68) 

 Middle 0.6 (0.5) 0.75 (0.58) 

 High 0.7 (0.77) 0.92 (0.49) 

 Total 0.91 (1.16) 1.04 (1.06) 

 

A 2 x 2 x 3 ANOVA was conducted on the fixation count problem size difference 

scores with operation, format and Maths group as independent variables.  A main 

effect was found for Maths group, F(2, 36) = 6.03, p < .006 (partial eta squared = 

0.25).  Post-hoc comparisons showed that the overall size effect was significantly 
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greater for the Low Maths group relative to the Middle (p = .01) and High Maths (p = 

.014) groups.  A significant operation effect, F(1, 36) = 4.23, p = .047 (partial eta 

squared = 0.1), and format x operation interaction was also found, F(1, 36) = 19.79, p 

< .001, (partial eta squared = 0.35).  Paired samples t-tests (Bonferroni corrected) 

showed that in the addition task the size effect was significantly greater for problems 

in digit relative to problems in word format.  This was found for the High, t(11) = 

4.43, p = .001, Middle, t(14) = 3.44, p = .004, and Low Maths groups, t(11) = 3.03, p 

= .011.  In the subtraction task, the increase in the number of fixations on large 

problems was relatively similar for digit (M = 0.91) and word (M = 1.04) format 

problems (all p > 0.4).  Thus, on large subtraction problems, word format did not 

result in significantly more fixations than digit format. 

 Overall, the fixation count analysis found a format x size interaction in 

addition, but not in subtraction, which showed that the increase in fixations that 

accompanies large problem size was relatively similar for digit and word format 

problems in subtraction.  This pattern was found for all three groups, however, the 

overall influence of problem size on fixations was greater for the Low Maths group. 

Fixation Duration.  Table 5.5 presents the mean fixation duration in 

milliseconds in the addition and subtraction tasks.  Participants fixated longer on digit 

(M = 275.54 ms) than word format problems (M = 226.65), and slightly longer on 

large (M = 256.94 ms) than small problems (M = 245.25).  Overall, fixation durations 

were relatively similar across addition (M = 252.1 ms) and subtraction (M = 250.09 

ms). 
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Table 5.5.  Means and standard deviations of fixation duration in the addition and 

subtraction tasks. 

Operation Problem  

Size 

Maths  

Group 

Fixation Duration (ms) 

Addition   Digit Word 

 Large  Low 256.48 (84.96) 229.85 (57.92) 

  Middle 308.45 (125.01) 244.28 (78.16) 

  High 284.05 (156.08) 214.03 (56.64) 

  Total 284.95 (123.99) 230.54 (65.66) 

     

 Small  Low 248.51 (79.91) 213.81 (47.65) 

  Middle 281.34 (99.64) 238.57 (63.64) 

  High 296.85 (139.75) 209 (48.7) 

  Total 276.01 (107.45) 221.85 (54.94) 

Subtraction     

 Large  Low 248.67 (95.55) 239.16 (87.43) 

  Middle 302.05 (122.19) 262.68 (88.06) 

  High 287.77 (188.86) 205.85 (42.75) 

  Total 281.23 (137.8) 237.96 (78.52) 

     

 Small  Low 242.66 (84.07) 216.18 (70.26) 

  Middle 285.32 (104.67) 242.1 (75.52) 

  High 264.32 (157.38) 204.35 (64.42) 

  Total 265.73 (116.5) 222.51 (70.71) 

 

The effects of format, F(1, 36) = 18.37, p < .001 (partial eta squared = 0.39) and 

problem size, F(1, 36) = 8.073, p = .007 (partial eta squared = 0.183), were 

significant and a four way interaction effect was found for operation x format x 

problem size x Maths group, F(2, 36) = 5.13, p = .011 (partial eta squared = 0.22).  

However, effect sizes were relatively small overall. 

 To investigate the format x size interactions, difference scores were calculated 

as the discrepancy in mean fixation duration between small and large problems and 

are presented in Table 5.6.  Overall, the increase in fixation duration on large 

problems was greater in subtraction than in addition, in accordance with the RT and 

fixation count data.   
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Table 5.6.  Mean disparity in fixation duration between small and large problems 

(problem size effect) in the addition and subtraction tasks. 

Operation Maths  

Group 

Difference (ms) in mean fixation duration 

Addition  Digit Word 

 Low 7.97 (31.21) 16.04 (28.6) 

 Middle 27.11 (43.41) 5.72 (26.1) 

 High -12.79 (33.29) 5.03 (17.56) 

 Total 8.94 (39.71) 8.68 (24.53) 

    

Subtraction Low 6.01 (28.1) 22.98 (31.12) 

 Middle 16.72 (65.73) 20.58 (30.35) 

 High 23.45 (49.99) 1.49 (38.63) 

 Total 15.5 (50.87) 15.44 (33.79) 

  

 

Paired samples t-tests suggested that fixation duration was not particularly sensitive 

to effects of problem size or format: no significant differences in fixation duration 

were found between small and large problems for any of the maths groups (see Table 

5.6).  With regards to format effects, paired samples t-tests (Bonferroni corrected) 

showed that the only significant decrease in fixations on word problems relative to 

digit problems was found in the Middle maths group, t(14) = 3.82, p = .002.  Overall, 

fixation durations were relatively similar across maths groups, operations, formats 

and problem sizes. 

5.3.2. Part 2: Multiplication and Division 

Similar analyses as for Part 1 were conducted to compare performance in the 

multiplication and division tasks in terms of Maths group, format and problem size.  

One participant from the Low Maths group was excluded from the Multiplication and 

Division data due to excessive errors made.   
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Accuracy.  Table 5.7 presents the error rates in the multiplication and division 

tasks.  Errors were minimal overall and were excluded from any subsequent analyses.  

Participants made more errors in division (4.75%) than in multiplication (3.98%) and 

made more errors on large (1.25 %) than small problems (0.31 %).  Error rates were 

relatively similar between digit (4.38 %) and word format (4.35 %) problems.  

Overall, the Low Maths group made more errors (5.43 %) than the Middle (4.77 %) 

and High (2.89 %) maths groups.  

Table 5.7.  Mean percentages of errors in the multiplication and division tasks. 

Operation Problem  

Size 

Maths  

Group 

Percentage Errors  

Multiplication   Digit Word 

 Large  Low 4.55  5.56  

  Middle 4.63  4.63  

  High 0.69  1.62  

  Total 3.36  3.95  

     

 Small  Low 0.51  0.51  

  Middle 0.74  0  

  High 0  0.23  

  Total 0.44  0.22 

Division     

 Large  Low 3.79  3.28  

  Middle 2.59  3.89  

  High 3.7  3.01  

  Total 3.29  3.44  

      

 Small  Low 2.27  1.26  

  Middle 1.3  1.3  

  High 1.62  0.69  

  Total 1.68  1.1  

 

A main effect was found for problem size, F(1, 35) = 19.01, p < .001 (partial eta 

squared = .35) as well as a significant problem size x operation interaction, F(1, 35) = 

6.56, p = .015 (partial eta squared = .16), with no further main or interaction effects.  

In multiplication, problem size influenced errors more (1.18 % difference between 
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small and large problems) than in division (0.7 % difference).  This reflects the fact 

that participants made very few errors on small multiplication problems, compared to 

small division problems, resulting in a clear difference in errors between small and 

large multiplication problems.  Overall 4.75 % of the data was excluded from any 

subsequent analyses due to errors made. 

Reaction Times.  Figure 5.3 presents the mean correct RTs in the 

multiplication and division tasks in terms of format, problem size and Maths group. 

(a)           (b)  

Figure 5.3.  Mean RTs across format, problem size and maths group (Low, Middle or 

High) in (a) the multiplication and (b) the division task (± SEM). 

 

Participants performed the multiplication task (M = 1733.76 ms) faster on average 

than the division task (M = 1958.91 ms) and small problems were answered faster (M 

= 1430.53 ms) than large problems (M = 2262.14 ms).  Regarding stimulus format, 

problems in digit format (M = 1650.53 ms) were answered faster than problems in 

word format (M = 2042.14 ms), however, this effect seemed to be much more 
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prominent for division than multiplication (see Figure 5.3 for comparison).  On 

average, RTs increased from the High Maths (M = 1409 ms) to the Middle Maths (M 

= 1640.24 ms) to the Low Maths (M = 2489.77 ms) group.  An ANOVA showed that 

participants answered multiplication problems significantly faster than division 

problems, F(1, 35) = 5.12, p = .03, and RTs on word problems were overall slower 

than RTs on digit problems, F(1, 35) = 22.67, p < .001.  The effects of problem size, 

F(1, 35) = 29.99, p < .001, and Maths group, F(2, 35) = 4.7, p = .016, were also 

significant (all partial eta squared = ≥ 0.13).  Post-hoc comparisons showed that the 

Low Maths group’s performance was significantly slower than the High Maths group 

(p = .017), whereas RTs for the Middle Maths group did not differ significantly from 

the High (p = .78) or Low (p = .055) Maths groups.  As expected, a number of 

significant interaction effects were found for format.  These were for operation x 

format, F(1, 35) = 27.32, p < .001, operation x format x Maths group, F(2, 35) = 5.32, 

p = .01, and operation x format x size, F(1, 35) = 8.41, p = .006 (all partial eta 

squared ≥ 0.19).  No further interaction effects were found. 

 Since word format costs on RT appeared much more prominently in division 

(M = 611.82 ms difference) than in multiplication (M = 174.44 ms difference), 

difference scores were calculated as the discrepancy in RT between digit and word 

format problems to compare the format effects between the two operations.  Format 

difference scores are presented in Table 5.8.  
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Table 5.8.  Mean disparity in RT between digit and word format problems in the 

multiplication and division tasks. 

Operation Maths  

Group 

Reaction Time difference (ms) 

Multiplication  Small Large 

 Low 191.05 (397.69) -326.56 (1424.63) 

 Middle 290.7 (263.79) 245.44 (658.62) 

 High 279.65 (149.95) 278.38 (809.49) 

 Total 258.63 (278.71) 90.26 (990.14) 

    

Division Low 607.27 (635.13) 1029.35 (1109.14) 

 Middle 359.6 (340.61) 722.19 (536.29) 

 High 415.08 (419.47) 606.42 (726.63)  

 Total 448.82 (465.08) 774.83 (792.36) 

 

 

 A 2 x 2 x 3 ANOVA was conducted on the format difference scores to 

investigate the influences of operation, problem size and maths group.  A main effect 

was found for operation, F(1, 35) = 27.32, p < .001, indicating the greater influence 

of format in division than in multiplication.  Interaction effects were found for 

operation x size, F(1, 35) = 8.413, p = .006, and operation x Maths group, F(2, 35) = 

5.32, p = .01.  Paired samples t-tests (Bonferroni corrected) showed that in 

multiplication, the only advantage gained for digit stimuli was found in the Middle, 

t(14) = -4.27, p = .001, and High Maths groups, t(11) = -4.27, p = .001, and only on 

small number problems (see Table 5.8).  This reflects the High and Middle Maths 

groups’ relatively fast responses on small digit multiplication problems.  Considering 

division, the High Maths group showed an advantage for digit stimuli on small 

problems, t(11) = -3.43, p = .006, but not large problems.  The Middle Maths group 

responded faster on digit problems on small, t(14) = -4.09, p = .001, as well as large 
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problems, t(14) = -5.22, p < .001.  For the Low Maths group, format effects in 

division were short of significance (p ≤ .07).  

 To summarise, the RT data showed overall greater word format costs for 

division than multiplication.  However, the Low Maths group did not show 

significant format effects, with relatively slow RTs across digit as well as word 

format problems.  The problem size effect did not differ significantly with Maths 

group.  Thus while the Low Maths group’s performance was slower overall, the 

disadvantage on large problems was relatively similar for all three maths groups.   

Number of Fixations. Table 5.9 presents the mean number of fixations in the 

multiplication and division tasks.  

Table 5.9.  Means and standard deviations of number of fixations in the 

multiplication and division tasks. 

Operation Problem  

Size 

Maths  

Group 

Number of Fixations  

Multiplication   Digit Word 

 Large  Low 5.96 (5.12) 5.67 (5.03) 

  Middle 2.84 (1.26) 3.95 (1.38) 

  High 2.87 (1.92) 4.27 (2.98) 

  Total 3.75 (3.29) 4.55 (3.28) 

     

 Small  Low  3.44 (2.13) 4.02 (2.29) 

  Middle 2.19 (0.54) 3.26 (0.88) 

  High 2.02 (1.13) 3.13 (1.67) 

  Total 2.5 (1.45) 3.44 (1.64) 

Division     

 Large  Low 5.18 (3.12) 8.3 (5.6) 

  Middle 3.4 (0.95) 5.97 (1.89) 

  High 3.13 (1.33) 5.81 (2.93) 

  Total 3.83 (2.07) 6.59 (3.69) 

     

 Small  Low 4.34 (2.04) 5.44 (2.55) 

  Middle 2.97 (0.64) 4.24 (1.04) 

  High 2.87 (1.15) 4.26 (2.07) 

  Total 3.33 (1.45) 4.59 (1.94) 
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Overall, the fixation count patterns of operation, problem size and format were in 

accordance with the RT data.  Participants made more fixations in the division task 

(M = 4.66) than the multiplication task (M = 3.64) and more fixations on word (M = 

4.86) relative to digit stimuli (M = 3.43).  More fixations were also made on large 

number problems (M = 4.78) than small number problems (M = 3.52).  The overall 

number of fixations seemed to increase as the level of Maths group decreased (High 

M = 3.55, Middle M = 3.6 and Low M = 5.29).  The increase in fixations in the 

division task relative to the multiplication task was significant, F(1, 35) = 19.29, p < 

.001.  Main effects were also found for size, F(1, 35) = 21.29, p < .001, and format, 

F(1, 35) = 67.19, p < .001, showing that more fixations were made on large problems 

and problems in word format (all partial eta squared ≥ .38).  However, the fixation 

count increase for the Low Maths group was short of significance (p = .07).  Similar 

to the RT data, a number of interaction effects were found for format.  The difference 

in fixations between digit and word problems was greater in division, F(1, 35) = 

50.35, p < .001, and this effect seemed to be greater for the High Maths group, F(2, 

35) = 4.92, p = .013.  In division, the word format cost on fixation count was also 

greater on large problems as indicated by significant format x size, F(1, 35) = 10.1, p 

= .003, and operation x format x size, F(1, 35) = 40.17, p < .001, interactions (all 

partial eta squared = ≥ .22).   

 To compare the format effects across the operations and maths groups, 

difference scores were calculated as the discrepancy in number of fixations between 

digit and word format problems (Table 5.10). 
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Table 5.10.  Mean discrepancy in number of fixations between digit and word format 

problems in the multiplication and division tasks. 

Operation Maths  

Group 

Fixation Count difference  

Multiplication  Small Large 

 Low 1.10 (0.86) -.28 (2.1) 

 Middle 1.06 (0.6) 1.12 (0.89) 

 High 1.12 (0.86) 1.4 (1.32) 

 Total 0.94 (0.71) 0.8 (1.59) 

    

Division Low 1.10 (0.81) 2.68 (2.14) 

 Middle 1.26 (0.72) 2.58 (1.25) 

 High 1.39 (1.3) 3.12 (2.88) 

 Total 1.26 (0.94) 2.76 (2.06) 

 

A 2 x 2 x 3 ANOVA was conducted on the format difference scores to investigate the 

format effects in terms of problem size, operation and Maths group.  A main effect 

was found for operation, F(1, 35) = 50.27, p < .001 (partial eta squared = .59), 

indicating the overall greater influence of format in division than in multiplication.  A 

main effect was also found for size, F(1, 35) = 10.13, p = .003 (partial eta squared = 

.224), as well as an interaction for operation x size, F(1, 35) = 40.3, p < .001 (partial 

eta squared = .535), reflecting the greater influence of problem size on fixation in 

division than in multiplication (see Table 5.10).  Interactions were also found for 

operation x Maths group, F(2, 35) = 4.93, p = .013, and operation x size x Maths 

group, F(2, 35) = 4.45, p = .019, showing that on large division problems, the format 

of the operands was most influential on fixation count in the High Maths group (both 

partial eta squared ≥ .2).  This reflects the relatively few fixations made by the High 

Maths group on digit format problems in division, which made the increase in 

fixations on word format problems more evident.   
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Bonferroni corrected paired samples t-tests showed that in multiplication, the 

increase in fixations on word format problems was relatively similar for small (M = 

0.94 difference) and large (M = 0.8 difference) problems (all p > .2).  However, in 

division, the increase in fixations on word format problems was greater on large (M = 

2.76 difference) than small (M = 1.26 difference) problems.  This was the case for the 

High, t(11) = -3.51, p = .005, and Middle, t(14) = -5.35, p < .001, Maths groups, but 

not the Low Maths group (more fixations overall).  For the High and Middle maths 

groups, word format costs on fixation count were thus more evident on large than 

small division problems. 

 Fixation duration.  Table 5.11 presents the means and standard deviations of 

the fixation durations in the multiplication and division tasks.  Average fixations were 

longer on digit (M = 280.32) format than on word format (M = 235.9) problems.  

Overall, participants’ fixations were slightly longer in the multiplication task (M = 

264.88) than in the division task (M = 250.07).  Fixations were also longer on large 

(M = 262.91) than on small problems (M = 252.05).  The ANOVA showed significant 

influences of operation, F(1, 35) = 4.12, p = .05 (partial eta squared = .105), format, 

F(1, 35) = 13.04, p = .001 (partial eta squared = .27) and problem size, F(1, 35) = 

5.75, p = .022 (partial eta squared = .14) on fixation duration.  The fixation duration 

data showed no interaction of operation x format x size.  Instead, for both small and 

large problems, fixations were longer in multiplication than division and longer on 

digit than on word problems (see Table 5.11). 
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Table 5.11 Means and standard deviations of fixation durations in the multiplication 

and division tasks. 

Operation Problem  

Size 

Maths  

Group 

Fixation Duration (ms) 

Multiplication   Digit Word 

 Large  Low 270.51 (108.31) 243.89 (77.43) 

  Middle 344.71 (180) 288.81 (106.58)  

  High 285.63 (174.03) 212.34 (62.57) 

  Total 304.57 (159.84) 251.66 (90.34) 

     

 Small  Low 257.77 (94.88) 230.78 (65.4) 

  Middle 290.42 (94.48) 254.44 (77.13) 

  High 288.49 (175.91) 210.79 (55.76) 

  Total 280.36 (123.39) 233.81 (68.4) 

Division     

 Large  Low 251.73 (94.29) 225.79 (67.31) 

  Middle 298.61 (141.69) 257.97 (78.07) 

  High 267.92 (140.98) 206.96 (37.11) 

  Total 275.35 (127.72) 232.55 (66.54) 

     

 Small  Low 245.02 (76.13) 227.41 (71.46) 

  Middle 296.57 (121.09) 248.79 (69.32) 

  High 257.96 (138.6) 216.15 (42.03) 

  Total 269.46 (115.51) 232.3 (62.65) 

 

  

 Key findings in Part 1 and Part 2:  To summarise, taking the main findings 

from Part 1 and 2, behavioural data and fixation patterns showed effects of operation, 

format and problem size.  Taking addition, a clear advantage was found for digit 

format, whereas in subtraction, the increase in fixations on large problems was 

similar for word and digit format problems.  The Low Maths group was also more 

susceptible to the problem size effect in Part 1.  In Part 2, format effects were much 

more prominent in division than in multiplication.  Word format costs were also more 

evident on large than small division problems.  Problem size seemed to influence the 

three groups similarly in Part 2, however, the Middle and High Maths groups showed 

an advantage for digit problems in multiplication. 
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5.4. Discussion 

 The current study investigated the influence of surface format on arithmetic 

across different operations, problem sizes and individual differences related to 

mathematics experience.  Evidence from RT and eye-tracking showed that input 

format (digits vs number words) affected the problem solving processes in arithmetic 

and supports the argument that arithmetic performance is not abstracted away from 

the format of the operands (e.g. Campbell, 1994; Campbell & Alberts, 2009; 

Campbell & Epp, 2005, Cohen-Kadosh et al., 2008).  The RT and fixation patterns in 

the current study have modelled similar effects as was found for self-reports of 

strategies used in arithmetic (Campbell & Alberts, 2009).  In support of these 

previous findings, word format (e.g. two + three) seemed to hinder retrieval of 

arithmetic facts compared to digit format (e.g. 2 + 3). 

 Furthermore, eye-tracking patterns did not just support RT patterns, but also 

showed subtle effects that were not evident from RT findings alone.  In Part 1, for 

example, the fixation patterns showed a format x size interaction for addition, but not 

subtraction, which supported the argument that retrieval strength is lowest on large 

subtraction problems, regardless of format.  Since this finding is in line with 

Campbell and Alberts’s (2009) reports of strategy use in arithmetic, it suggests: a) 

that fixation patterns can give an index of strategies used in arithmetic and b) that 

self-reports of strategies are reasonably valid.  Accordingly, on large subtraction 

problems, both formats promote procedural strategies (as opposed to retrieval) and 

word format would thus not necessarily hinder retrieval more than digit format 

(Campbell & Alberts, 2009).  The fixation data supported this argument by showing 
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that the fixation increase on large problems was similar for digit and word formats in 

subtraction.   

  Overall, individuals in the Low Maths group seemed to be more influenced 

by the magnitude of the operands in a problem as indicated by behavioural as well as 

fixation data.  This was found to be the case in addition and subtraction, since large 

problems are thought to promote counting-based strategies, as opposed to direct 

retrieval (e.g. Campbell & Fugelsang, 2001).  It is thus likely that an individual’s 

experience with mathematics influences the retrieval strength of arithmetic facts, 

which makes those in the High Maths group less prone to resort to counting 

strategies, and gives them an advantage on large problems, regardless of format.  

High Maths individuals could thus have an advantage for transcoding numerical 

information from different formats.  Overall, these findings make the case for 

considering individual differences in mathematics when investigating interactions of 

format and problem size in arithmetic.   

 In Part 2 of the study, format effects were much more evident in division than 

in multiplication.  In terms of reaction time, the cost of word format was greater for 

division than multiplication (except for the Low Maths group whose response times 

were relatively slow overall).  The fixation data also suggested that in division the 

cost of word format on retrieval was greater on large than small problems, a finding 

that was not evident from the behavioural data alone.  This is in line with the strategy 

report findings of Campbell and Alberts (2009): since direct retrieval is the preferred 

strategy for multiplication regardless of format, the increase in RT on large 

multiplication problems (with relatively weak retrieval strength) is thus quite similar 
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for digit and word format problems.  However in division, problem solving can 

sustain a shift in strategy towards multiplication-reference, which is frequently the 

preferred strategy on large word format problems where retrieval is less likely.  This 

was supported by the fixation count analysis that showed similar format x size 

interactions.   

 Unlike addition and subtraction, the problem size effect did not differ 

significantly with Maths group in multiplication and division.  Thus while the Low 

Maths group’s performance was slower overall, the disadvantage on large problems 

was relatively similar for all three Maths groups.  This is likely to be due to the fact 

that in multiplication and division, with counting being unlikely, strategies are more 

retrieval-based regardless of problem size.  If similar strategies are used on both small 

and large problems, it is thus not surprising that the size effect affected the three 

groups quite similarly.  In addition and subtraction, large problems, due to their 

relatively weak retrieval strength in comparison with small problems, could promote 

counting, an effect that the Low Maths group were more susceptible to.  However, in 

multiplication and division this is not the case since strategies are overall more 

retrieval based. 

 Overall, fixation count seemed to be a particularly sensitive measure of 

interactions between number format, operation, problem size and Maths group.  The 

fixation count findings were largely in support of the strategy reports of Campbell 

and Alberts (2009) and highlighted effects beyond the accuracy or RT data.  On the 

other hand, fixation duration did not seem to be particularly sensitive to interactions 

between format, operation and problem size.  Since arithmetic operations such as 
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subtraction and division might require more eye-movements back and forth than 

addition and multiplication, future research on strategy use in arithmetic could benefit 

from employing measures of gaze direction rather than fixation duration.  Although 

fixation duration has proven to be a useful measure of participants’ strategies in 

solving a parity judgement task (Merkley & Ansari, 2010), arithmetic is likely to 

involve different problem solving strategies, which do not seem to be reflected in 

fixation duration patterns to a great extent. 

 To conclude, the current study added to the current literature on arithmetic 

performance by showing that eye-tracking is sensitive to effects of operation, format, 

problem size and individual differences related to mathematics across each of the four 

operations.  The current findings support previous findings that encoding format 

affects calculation processes per se (e.g. Campbell, 2004) and that operands are not 

necessarily abstracted away from input format (as suggested by McCloskey & 

Macaruso, 1995, for example).  The findings are in line with the format-specific view 

of number processing postulated by models such as Dehaene’s Triple Code Model 

(Dehaene, 1992; Dehaene & Cohen, 1995) and Campbell and Clark’s Encoding 

Complex View (Campbell & Clark, 1988; 1992; Campbell, 1994; see Chapter 1, p. 

16 – 17) which assume interactions of format with problem size and operation.  Since 

clear differences in performance was found between arabic digit and number word 

formats on both behavioural and eye-tracking measures, the findings also suggest that 

eye-tracking provides an additional level of analysis for studying calculation 

processes in arithmetic.  In previous studies of arithmetic, the main indices of strategy 

use have been self-reports, accuracy and RT (e.g. Campbell & Alberts, 2009; 
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Campbell & Penner-Wilger, 2006).  While the current fixation count patterns are 

largely in line with the self-reports of Campbell and Alberts (2009), eye-tracking may 

provide a more reliable measure of strategies than self-reports, which are prone to 

bias.  Also, as Zhang (2010) pointed out, stimulus features that might follow different 

processing routes (e.g. digits and words) might still yield similar RT and accuracy 

patterns, an argument that has been overlooked in some studies that supported the 

format-independent view of number processing (e.g. Ganor-Stern & Tzelgov, 2008). 

The current eye-tracking findings that diverged from behavioural findings support 

this argument by showing interactions of format and problem size that were not 

evident from behavioural data alone, and suggests that format-specific processing 

takes place in arithmetic.  Overall, the format-specific view of number processing 

suggests the close interaction of the encoding conditions (such as format) with the 

answer-retrieval stage in arithmetic.  In Chapter 6 (Experiment 5) this was explored 

further by investigating the event-related potentials that occur during encoding and 

retrieval separately. 
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Chapter 6    

Experiment 5:  The Interaction between Encoding and Answer-retrieval Stages 

of Arithmetic:  Format and Operation Effects at Different Levels of 

Mathematics Experience 

6.1. Introduction 

Campbell and Epp (2005) suggested that solving of arithmetic occurs across 

three stages.  These stages involve the encoding of the operands, retrieving or 

calculating the answer, and reporting the answer.  The results from cognitive 

interference tasks (Chapters 2 and 3) and eye-tracking (Chapter 5) suggest that 

encoding features, such as format, have an influence on basic number encoding, as 

well as answer-retrieval processes. However, considerable debate still exists in the 

literature on the relationship between the encoding and retrieval conditions in 

arithmetic.  The two main viewpoints are the additive and interactive views of 

arithmetic.  The former view argues that encoding and retrieval operate independently 

of one another and is related to the format-independent view of number 

representation, namely that numerical information from various surface formats is 

translated into a uniform abstract code (e.g. Dehaene, 1997; Dehaene & Cohen, 1995; 

McCloskey, 1992; McCloskey & Macaruso, 1995).  After the operands in an equation 

have been translated to an internal abstract code, answers can be retrieved or 

calculated.  The results are then sent to arabic, written or verbal number output codes, 

depending on task requirements (Dehaene’s Triple Code model, Dehaene, 1992; 

McCloskey’s Abstract Code model, McCloskey, 1992, McCloskey & Macaruso, 
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1995).  Since the retrieval/calculation phase operates from the abstract numerical 

code, input conditions such as operand format (e.g. arabic digits or number words), 

should have no influence on subsequent retrieval or calculation.  In support of this 

view, neuropsychological evidence has shown that brain-injured patients have 

operation-specific deficits regardless of input format (e.g. McCloskey & Macaruso, 

1995).  In contrast with the argument of Campbell and Alberts (2009; see Chapter 5), 

the additive viewpoint argues that different formats should not hinder or promote the 

use of different retrieval processes in arithmetic, but these processes should rather 

differ between operations. 

 The opposite viewpoint, namely that the encoding and retrieval/calculation 

phases interact with one another, proposes that the encoding conditions have a direct 

influence on the subsequent calculation processes and is in line with the format-

specific view of number representation.  Campbell’s Encoding Complex model is the 

main supporter of this view (e.g. Campbell & Clark, 1989; 1992; Campbell & 

Alberts, 2009; Campbell et al., 2004).  As discussed in Chapter 5, this view does not 

assume an analogue number code, but rather modality-specific mental number 

representations, which promote the use of different strategies (Campbell & Alberts, 

2009).  Regarding format, arabic digits and number words are thus each represented 

in a separate code, rather than a uniform abstract representation.  Support came from 

Campbell and Colleagues’ studies that showed interactions of arithmetic format with 

operation and problem size.  Format effects differed, for example, between small and 

large number problems, such that word format costs on performance were more 

prevalent on large problems (e.g. Campbell et al., 1999; Campbell & Alberts, 2009) 
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and more prevalent in division than in multiplication (See Chapter 5; Campbell & 

Alberts, 2009).  Campbell and Epp (2005) argue that these interaction effects show 

that differences in performance between digit and word format problems do not just 

arise due to differences in encoding of the formats, but rather as a result of format-

specific influences which occur during the calculation/retrieval stage per se. 

 The current behavioural and eye-tracking results (Experiment 5) are mainly in 

support of the interactive viewpoint of arithmetic, showing similar interactions of 

operation, problem size and format to Campbell and colleagues’ findings.  

Specifically, format seemed to affect the strategies used in arithmetic and this varied 

with problem size.  The findings also show that format-specific influences can be 

further regulated by individual differences related to mathematics experience.  The 

eye-tracking data suggest, for example, that while participants found large number 

equations in word format the most difficult to process, this effect was less 

pronounced for High Maths individuals (e.g. in subtraction).  

 In the study of arithmetic, event-related potential technology is particularly 

useful as it can highlight effects related to different operations, which might not be 

evident from behavioural data alone.  Studies have shown, for example, that during 

addition and subtraction, visuospatial processing takes place suggesting that these 

facts are stored in visuospatial memory areas (Zhou et al., 2006, 2007).  On the other 

hand, knowledge of multiplication is usually represented in verbal memory areas (e.g. 

left anterior activation; Rickard, Romero & Basso et al., 2000; Zhou et al., 2006, 

2007) in accordance with the argument that multiplication is usually solved through 

direct memory retrieval (e.g. Campbell & Alberts, 2009).   
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 The debate on the interaction between the stages of arithmetic still continues 

in the literature, with recent evidence supporting the additive rather than the 

interactive viewpoint (e.g. Zhou, 2011; Zhou, Chen & Qiao et al., 2009).  Aiming to 

resolve the conflict between the two viewpoints, Zhou (2011) presented arithmetic 

equations in two parts to create ‘pure’ encoding and retrieval/calculation phases of 

presentation.  Equations (e.g. 3 + 3 = 6) were presented on-screen in two parts during 

a true/false verification study using event-related potentials (ERPs).  On each trial, 

the first operand appeared initially (e.g. 3) and remained on-screen for 400 ms.  The 

rest of the equation followed on a subsequent screen (e.g. + 3 = 6) and remained for 

600 ms.  This presentation method allowed the operation effects that take place at 

each stage to be investigated separately.  To isolate the effects of operation, equations 

were also presented in separate blocks of addition and multiplication in order for 

participants to anticipate the operations to be solved.  In support of the additive 

viewpoint, Zhou (2011) found that participants encoded arabic digit operands 

differently for addition and multiplication, namely a verbal code was activated for 

multiplication, but an analogue code for addition, from which the appropriate 

multiplication and addition facts could be retrieved.  In other words, an operation 

effect, (reflected as larger left anterior ERP responses for multiplication) was found 

during both the encoding and retrieval stages of presentation.  If the interactive 

viewpoint were supported, no left anterior operation effect should have emerged 

during encoding, since addition and multiplication operands presented in the same 

format (arabic digits in this case) should be encoded in a similar way regardless of 
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operation, with operation-specific effects only emerging during the retrieval phase 

(Zhou, 2011).   

The current study aimed to further investigate the relationship between the 

encoding and the retrieval/calculation stage in arithmetic, while also controlling for 

surface format and mathematics experience.  Whereas the previous chapter suggested 

that digit and word operands influence the strategies used in arithmetic per se, 

separating the encoding and retrieval phases can provide a more in-depth analysis of 

the format and operation effects at each stage of arithmetic problem solving.  In 

Experiment 5, the presentation method of Zhou (2011) was closely followed, but the 

experiment included word as well as digit format problems in order to directly 

investigate the operation effects between the two formats at the encoding and 

retrieval/calculation phase.  While the results of Zhou (2011) supported the additive 

instead of the interactive viewpoint, arithmetic problems were only presented in 

arabic digit format in that study and individual differences in mathematics were not 

taken into account.  The interactive viewpoint of arithmetic was thus rejected based 

on operation-specific, rather than format-specific effects.  Format effects are 

important to consider, however, since they can be informative as to whether or not 

calculation procedures differ with the format of the operands (Campbell & Alberts, 

2009), and in turn how encoding conditions such as format influence subsequent 

retrieval.  By including digit and word versions of arithmetic problems, a direct 

comparison can be made between the operation-specific effects that emerge for each 

format and at each stage of arithmetic problem solving.  Similar results to Zhou’s 

(2011) for both digit and word format equations, namely operation effects at both the 
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encoding and retrieval phases, would lend more support to the additive viewpoint of 

arithmetic, suggesting that input format does not influence subsequent calculation or 

retrieval.  However, if operation effects only emerge during the retrieval/calculation 

phase for equations presented in the same format, the format-specific view can be 

supported suggesting that surface format directly influences retrieval and calculation.  

As the evidence in Chapter 5 suggested an advantage for arithmetic fact retrieval for 

the High/Middle Maths groups, the location of the operation effects as presented by 

Zhou and colleagues (Zhou et al., 2006, 2007; Zhou, 2011) could also differ between 

individuals.  With regards to whether or not direct retrieval or visual 

spatial/magnitude processing take place, such effects can be informative of how the 

groups differ in problem solving strategies and how the mental representation of 

arithmetic facts differs across formats. 

6.2. Method 

6.2.1. Participants 

Eighteen right-handed participants took part in the study with ages ranging 

from 18 to 30 (M = 22.06, SD = 3.02).  All participants reported having normal or 

corrected-to-normal vision.  In Chapter 5, the numeracy test confirmed differences 

between the High and Low Maths groups, whereas the Middle group did not differ 

significantly from the High group (see Chapter 5, p. 124).  Therefore, in the current 

experiment, participants were recruited and allocated so as to only have a ‘High’ and 

‘Low’ Maths group.  Participants who had studied higher level Leaving Certificate 

mathematics with an obtained grade in the A (n = 2), B (n = 5) or C (n = 3) region 

were assigned to the High Maths group (N = 10; 7 men and 3 women).  Participants 
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who had studied ordinary level Leaving Certificate mathematics with an obtained 

grade of a B or lower were assigned to the Low Maths group (N = 8; 5 men and 3 

women).  Four participants in the Low Maths group indicated an obtained grade of a 

B and four indicated an obtained grade of a D. 

6.2.2. Materials and Apparatus 

 Stimuli.  Similar to the method employed by Zhou (2011), 28 single digit 

addition problems and 28 single digit multiplication problems were used as stimuli.  

The same number of word format problems was also included as stimuli. Problems 

ranged from 2 + 3 to 8 + 9 in addition and from 2 x 3 to 8 x 9 in multiplication.  The 

first operand in each problem was the smaller of the two.  Tie problems (e.g. 3 x 3) or 

problems containing ‘1’ or ‘0’ were excluded from the stimulus set due to their 

unique or rule-based encoding characteristics (e.g. Blankenberger, 2001; Campbell & 

Gunter, 2002, LeFevre et al., 1996).  Four of the 28 problems were randomly selected 

to form false arithmetic problems.  False problems were formed by adding or 

subtracting one number from one of the operands as in the study of Zhou (2011).  The 

resulting answer was added to the original problem to form a false answer.  False 

answers still had the same number of digits as the true answers (one or two) to ensure 

that true and false answers were closely matched.  Equations were presented in either 

arabic digit (e.g. 2 + 3) or number word (e.g. two + three) format.  Each test block 

contained 64 stimuli in total.  This included 28 true digit format problems, 28 true 

word format problems, 4 false digit format problems and 4 false word format 

problems.  Stimuli were presented centrally on a computer screen in white print 

against a black background and subtended between 1 and 1.9 degrees of visual angle.  
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Digit and letter sizes corresponded to one another (each character space was 

approximately 3mm wide and 5 mm high).  Each operation contained two test blocks 

resulting in each stimulus presented twice. Trials were presented in a pseudorandom 

order and each participant received the same order of trials.  Stimuli were 

programmed and presented with E-Prime©, which recorded all participant input and 

calculated average response times and accuracy.  The electroencephalography (EEG) 

materials and procedure are described in section 6.2.3. 

 Numeracy Test.  The same numeracy test that was modified from Lipkus et 

al. (2001) was used and the same procedure was followed as for Chapter 5 (see p. 

120).   

6.2.3. Electroencephalography (EEG) materials and procedure 

 EEG was recorded using silver/silver–chloride (Ag/AgCl) electrodes mounted 

on a 32-channel elastic electrode cap.  The extended version of the International 10-

20 system for electrode placement (American Encephalographic Society, 1994) was 

used to collect EEG data from 32 scalp sites.  One electrode was placed on the nasion 

as a reference.  Electrooculography (EOG) was used to record horizontal (HEOG) 

and vertical (VEOG) eye movements.  HEOG electrodes were placed on the outer 

canthus of each eye and VEOG electrodes were placed above and below the left eye.  

The impedance level was kept to below 10kΩ.  A BrainVision© amplifier with a 

band-pass of 0.16-100Hz and a gain of 1000 was used to amplify EEG activity.   

 Stimulus presentations and participant input were logged in real time on the 

EEG recordings.  This was achieved as the E-prime software logged participant 

responses and sent TTL voltage triggers to the EEG acquisition PC representing the 
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different stimulus categories.  For analyses, EEG recordings were notch-filtered off-

line at 50 Hz. Eye-blinks were filtered off-line and a blink reduction algorithm was 

applied to the data, which involved automatic artefact correction (Berg & Scherg, 

1991; Ille, Berg & Scherg, 2002).  The EEG data were digitised at a sampling rate of 

500 Hz.   

6.2.4. Procedure 

Participants signed an informed consent form which stated that the experiment 

aims to investigate processing differences between digits and words (Appendix 1).  

Before commencing the arithmetic task participants completed the numeracy test.  

Scoring and instructions were similar to the other experiments.  Participants were 

given six minutes to complete as many of the answers as possible.   

 After attaching the electrodes and connecting the EEG equipment, participants 

were seated in a darkened cubicle (150cm X 180cm) approximately half a meter from 

the LCD computer monitor.  The cubicle was copper-plated and electrically shielded.  

The experimenter explained that the computerised task that was to follow would 

involve answering ‘true’ or ‘false’ to arithmetic problems presented on-screen.  The 

experimenter remained in the room while the participant read the on-screen 

instructions and completed practice trials.  Half of the participants were instructed to 

use the ‘d’ key (left of keyboard) to respond ‘true’ and the ‘k’ key to respond ‘false’.  

The rest of the participants were instructed to use the ‘k’ key (right of keyboard) to 

respond ‘true’ and the ‘d’ key to respond ‘false’.  After the participant had read the 

instructions and completed the practice trials, a screen appeared which indicated that 

the following test block would either be addition or multiplication.  Test blocks were 
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A NUMBER OF EQUATIONS WILL APPEAR ON 

THE SCREEN 

 

SOMETIMES THE EQUATION WILL BE TRUE: 

E.G. 2 + 2 = 4 

 

SOMETIMES THE EQUATION WILL BE FALSE: 

E.G. 2 + 3 = 4 

 

IF YOU THINK THE EQUATION IS TRUE,  

PRESS THE 'D' KEY ON THE KEYBOARD 

IF YOU THINK THE EQUATION IS FALSE,  

PRESS THE 'K' KEY ON THE KEYBOARD 

EACH EQUATION WILL APPEAR IN TWO 

PARTS 

 

E.G.  '2'   AND    '+ 2 = 4' 

 

THE FIRST NUMBER WILL APPEAR FIRST AND 

THEN DISAPPEAR.  THE REST OF THE 

EQUATION WILL APPEAR THEN.  

AFTER EACH EQUATION A QUESTION MARK 

WILL APPEAR ON THE SCREEN - THIS IS 

WHEN YOU SHOULD RESPOND 

 

EACH EQUATION WILL ONLY BE ON-SCREEN 

FOR A VERY SHORT TIME 

 

PRESS THE SPACEBAR TO SEE SOME 

PRACTICE TRIALS 

counterbalanced across participants.  Each operation contained two test blocks of 64 

stimuli each.  After each block, participants could take a one minute break if desired.  

The following instructions appeared on-screen before the participant commenced the 

tasks: 

 

Stimuli were presented in white font against a black background.  The first operand 

was presented centrally on-screen for 400 ms.  The second part of the problem, which 

included the operation sign, second operand, equal sign and answer, was then 

presented on-screen for 800 ms (each problem was on-screen for 1200 ms in total).  

To accommodate word format problems, which might take longer to read than digit 

format problems, the second part of the equation was presented for 800ms and not 

600ms as was the case in Zhou’s study (2011).  After this, a question mark was 

presented centrally, which remained on-screen until the participant responded by 

pressing the ‘d’ or ‘k’ key.  Trials were presented in a pseudorandom order and 

constrained such that consecutive problems did not contain the same operand or 



CHAPTER 6 

 159 

answer as was the case in the study of Zhou (2011).  Participants were instructed that 

most of the answers would be true, but that some of them would be false and that it 

was their task to try to respond as quickly, but as accurately as possible.  Figure 6.1 

presents examples of the presentation of true digit and word format problems.   

 

 

           

 

 

 

 

400ms    800ms   

 

Figure 6.1. Examples of true digit and word format equations. 

  

6.2.5. Ethical Considerations 

In addition to the ethical considerations set out in Chapter 2, participants were 

asked not to participate if they had sustained prior head injury, suffered from 

epilepsy, any neurological disorders or claustrophobia.  Participants with reading or 

visual difficulties were also excluded from participating.  Prior to the experiment each 

participant received an information sheet on what to expect from the EEG experiment 

(see Appendix 5) and were told that the experiment would also involve a short 

numeracy scale.   
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6.3. Results 

6.3.1. Behavioural data 

 Reaction times were measured as the time taken in milliseconds for the 

participant to indicate whether each on-screen equation was true or false after the 

question mark appeared on-screen.  E-prime© calculated the average response 

latency and number of errors across each stimulus category for each participant.  

Analyses focused on responses to true arithmetic equations following Zhou’s (2011) 

study.  An independent t-test showed that on average, High Maths participants (M = 

12.9, SD = 3.45) outperformed Low Maths participants (M = 7.88, SD = 2.95) on the 

numeracy test, t(16) = 3.27, p = .005.  There were no gender differences in numeracy 

performance. 

6.3.1.1. Accuracy 

 One participant from the Low Maths group was excluded from the accuracy 

and RTs analyses due to too many errors made.  The overall error rate for the High 

maths group on true addition and true multiplication trials were 2.68 % and 5.89 % 

respectively.  The overall error rate for the Low Maths group on true addition and 

true multiplication trials were 4.08 % and 5.36 % respectively.  A 2 x 2 x 2 ANOVA 

was conducted on error rates on true trials with operation, format and maths group as 

factors.  A main effect was found for format, F(1, 15) = 21.74, p < .001, indicating 

that participants made significantly more errors on word format (6.05 %) than on 

digit format (2.38 %) problems.  A main effect was also found for operation F(1, 15) 

= 6.85, p = .019, indicating that more errors were made in multiplication (5.67%) 
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than addition (3.26 %).  Error rates did not differ as a function of maths group.  

Overall, 4.22 % of the data was excluded due to errors made. 

6.3.1.2. Reaction Time (RT)  

 The RTs analyses focused only on correct responses on true arithmetic 

equations.  Figure 6.2 presents the mean RTs in milliseconds across digit and word 

format equations in the addition and multiplication tasks for the High and Low Maths 

groups.  In the Addition task the High Maths group showed overall faster 

performance than the Low Maths group for both digit (High M = 467.04, SD = 243.34 

and Low M = 814.95, SD = 333.56) and word format equations (High M = 605.62, SD 

= 279.92 and Low M = 1048.29, SD = 474.35).  The same pattern was found for 

multiplication with the High Maths group showing faster performance across digit 

(High M = 507.55, SD = 297.064 and Low M = 896.8, SD = 442.97) and word format 

equations (High M = 669.18, SD = 356.41 and Low M = 1140.74, SD = 634.2).  

Overall faster performance was found for digit than word format equations, whereas 

no clear RT differences seemed to occur between addition and multiplication.   

 

 

Figure 6.2. Mean RTs (± SEM) across format and operation for the Low and High 

Maths groups. 

Low Maths                   High Maths 
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A 2 x 2 x 2 mixed between–within groups ANOVA was conducted on the mean RTs 

on true arithmetic trials.  Main effects were found for format, F(1, 15) = 31.16, p < 

.001, and Maths group, F(1, 15) = 4.99, p = .041, with no further main or interaction 

effects.   

 Overall, the reaction time and accuracy data showed similar patterns for 

addition and multiplication, with performance differing more with format and Maths 

group than with operation.  While overall performance improved with the High 

Maths group, the pattern of performance was similar for both groups and for both 

operations, namely faster performance for digit format problems.   

6.3.2. Event-related Potentials (ERPs) 

 EEG data were averaged using Brain Electrical Source Analysis (BESA©) 

software.  Similar to Zhou (2011), the ERP analysis focused on the encoding (first 

operand presentation) and retrieval (second part of equation) stages of arithmetic. 

ERPs were time-locked to the onset of the second operand.  Zhou et al. (2006, 2009) 

found operation effects for digit stimuli emerging in left anterior and right posterior 

electrodes.  The electrodes F3 over the left anterior scalp and P4 over the right 

posterior scalp were thus selected for analyses.  The analyses also focused on 

corresponding electrodes F4 and P3 over the right and left hemisphere, respectively.  

Figure 6.3 presents the 32-channel montage and the scalp locations of the four 

selected electrodes. 
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Figure 6.3.  The 32-channel ERP montage showing the scalp locations of electrodes 

F3, F4, P3 and P4. 

 

6.3.2.1. Amplitude 

 Encoding.  Figures 6.4 and 6.5 present the grand mean waveforms over the 

left and right anterior and posterior scalp for the presentation of the first operand of 

digit and word format equations respectively for the Low Maths group.  Figures 6.6 

and 6.7 present these waveforms for the High Maths group. The scale is set at ± 3 µV 

to allow comparison with components elicited in response to the retrieval/calculation 

phase (presented in Figures 6.8 to 6.11).  The two shaded regions represent the time-

windows 0 to 60 ms and 70 to 140 ms, which were selected for analysis based on 

visible variations in amplitude here from inspecting the grand mean waveforms.  

However, from visually inspecting the grand mean waveforms, no clear components 

seemed to emerge for the presentation of the first operand of each equation which 

remained on-screen for 400 ms.   
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 To investigate operation effects, analyses of variance were conducted on the 

mean amplitudes for the two selected time windows.  In each ANOVA the within-

groups variables were operation (addition or multiplication), electrode position (F3, 

F4, P3 or P4) and format (digits or words), and the between-groups variable was 

Maths group (High or Low).  Post-hoc dependent t-tests (Bonferroni corrected) 

focused on operation effects over the left anterior and right posterior scalp, following 

Zhou (2011). 

 In the interval between 0 and 60ms (first shaded region presented in the 

figures) a significant main effect was found for electrode position, F(3, 48) = 7.35, p 

< .01 (partial eta squared = 0.315).  No further main or interaction effects were found.  

Dependent t-tests showed that there was no operation effect for word or digit 

problems. 

 The same analysis was conducted for the time window between 70 and 

140ms. A main effect was found for electrode position, F(3, 48) = 7.35, p < .001 

(partial eta squared = 0.34), and an interaction effect was found for operation x 

format x maths group, F(1, 16) = 4.62, p = .047, however, the effect size was small 

(partial eta squared = 0.224).  Dependent t-tests (Bonferroni corrected) showed that 

there was no operation effect for digit or word format problems for High or Low 

Maths groups.  Overall, no clear components were found during the encoding phase 

where participants only saw a single operand on-screen. 
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 Retrieval/Calculation. Similar analyses were conducted for the second part 

of the equation presentation (operation sign, second operand, equals sign and answer) 

focusing on electrodes F3, F4, P3 and P4.  Figures 6.8 to 6.11 present the event-

related potentials for the retrieval/calculation phase of the digit and word format 

problems over the left and right anterior and posterior scalp for the Low and High 

Maths groups.  The two shaded regions represent the time-windows 100 to 180 ms 

and 270 to 440 ms post-stimulus, which were selected for analysis based on clear 

variations in amplitude based on the grand mean waveforms.  In comparison with the 

encoding phase, clear components emerged for the retrieval/calculation phase.  From 

visually inspecting the grand mean waveforms, the High Maths group seemed to 

show a left anterior operation effect in the second time window for digit and word 

format problems, whereas the Low Maths group did not seem to show any clear 

amplitude differences between addition and multiplication over the left anterior 

region. 

An ANOVA was conducted on the mean amplitudes in the time window 

between 100 – 180 ms post-stimulus (first shaded region in Figures 6.8 – 6.11)  based 

on the presence of large negativity in this time window from observing the grand 

mean waveforms.  A main effect was found for electrode position, F(3, 48) = 24.73, p 

< .01 (partial eta squared = 0.61).  Interaction effects were found for format x 

electrode, F(3, 48) = 7, p = .001 (partial eta squared = 0.3) as well as format x 

operation x electrode, F(3, 48) = 3.67, p = .018 (partial eta squared = 0.19) showing 

that the location of the operation effect differed between digit and word format 

equations.  No further main or interaction effects were found. 
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 Dependent t-tests showed that for digit stimuli the Low Maths group showed 

an operation effect in the first time window with slightly larger right posterior ERP 

responses for multiplication than for addition, t(7) = -2.74, p = .029.  The High Maths 

group showed no operation effect in this time window, with no significant difference 

in amplitudes between multiplication and addition.  

 To summarise, in the time-window between 100 – 180 ms post-stimulus, no 

left anterior operation effect occurred.  However, the Low Maths group showed a 

small, but significant, operation effect for digit stimuli over the right posterior region. 

 A second analysis of variance was conducted for the time window between 

270 and 440 ms based on visible amplitude variations in the grand mean waveforms.  

A main effect was found for electrode position, F(3, 48) = 28.403, p < .001 (partial 

eta squared = 0.64).  Significant interaction effects were found for operation x Maths 

group, F(1, 16) = 4.83, p = .043 (partial eta squared = 0.23), and format x Maths 

group F(1, 16) = 5.7, p = .03 (partial eta squared = 0.26) suggesting that the format 

and operation effects differed between the two groups.  Overall, the location of the 

operation effect differed with the format of the problems as indicated by significant 

interaction effects for operation x format, F(1, 16) = 9.54, p = .007 (partial eta 

squared = 0.37), operation x electrode, F(3, 48) = 19.46, p < .01 (partial eta squared = 

0.55) and operation x format x electrode, F(3, 48) = 8.73, p < .01 (partial eta squared 

= 0.35).  No further main or interaction effects were found. 

Taking the High Maths group, an operation effect emerged over the left 

anterior scalp for digit, t(9) = 2.99, p = .015, as well as word format problems, t(9) = -
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3.97, p = .003, reflected as greater amplitude responses for multiplication than 

addition.  The Low Maths group showed no left anterior operation effect.   

 Overall, clear operation effects emerged during the retrieval/calculation phase 

of arithmetic, reflected as greater amplitude responses for multiplication than 

addition, an effect that was not found during the encoding phase.  The operation 

effect, found in the time window of 270 – 440 ms, was only found for the High Maths 

group, whereas the Low maths group showed no difference in amplitude in this 

regard.  Furthermore, the High Maths group showed this operation effect for digit as 

well as number word equations.      

6.4. Discussion 

The current study utilised a true/false verification task to investigate operation 

effects in simple arithmetic for digit and word format equations.  To investigate the 

processing that takes place at the encoding and retrieval/calculation stages of 

arithmetic, event-related potentials were investigated separately for the presentation 

of the first operand and then for the presentation of the rest of the equation (Zhou, 

2011).  The results showed that clear differences in processing between addition and 

multiplication only emerged during the answer retrieval phase and not during the 

presentation of the first operand as was found by Zhou (2011).  In this study Zhou 

(2011) argued that in anticipation of the operation that is to follow, addition and 

multiplication problems presented in the same format (digits) are already encoded 

differently during the presentation of only the first operand.  Addition and 

multiplication operands were thus thought to be represented in separate codes from 

which the answer could be retrieved.   Zhou (2011) argued that encoding conditions 
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(such as format) should have no direct influence on retrieval conditions based on the 

observation that digit operands are encoded as either addition or multiplication 

operands.  The encoding and retrieval stages were thought to be additive rather than 

interactive, in which case operation effects should have been more evident during the 

retrieval/calculation phase and not necessarily during encoding (Dehaene, 1992; 

Dehaene & Cohen, 1995; McCloskey, 1992; McCloskey & Macaruso, 1995).  The 

latter view is supported by Campbell and colleagues (e.g. Campbell, 1992, 1994, 

1999; Campbell & Clark, 2009) suggesting that the format of the operands (encoding 

conditions) have a direct influence on the strategies that are used in arithmetic.  This 

view assumes that different formats, rather than different operations are represented 

in separate representational codes (encoding complex view).  According to Zhou 

(2011), if this view (interactive view) were supported, digit operands in either 

addition or multiplication should have been encoded similarly.   

 By including digit as well as word format problems, the current findings are 

thus more in support of the interactive and format-specific view of arithmetic with 

behavioural and ERP patterns suggesting that operands presented in the same format 

are encoded relatively similarly for addition and multiplication.  This view assumes 

that instead of a uniform abstract number code for different numerical formats, each 

format is presented in a separate code, which can hinder or promote the use of 

different strategies in arithmetic (e.g. Campbell & Alberts, 2009).  The basis for this 

argument is that operation effects were generally absent from the overall reaction 

times and event-related potential patterns observed during the encoding phase 

(presentation of the first operand). Clear operation effects in the event-related 
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potentials only emerged during the retrieval/calculation phase of presentation after 

participants had seen the part of the equation containing the operation sign and 

answer.  Zhou (2011) similarly did not find any operation effects in error rates or 

reaction times, with these effects only emerging in the EEG analyses, which 

demonstrates the usefulness of the ERP technique for highlighting effects that are not 

evident from behavioural analyses alone.   

 Overall, no clear components were evident for the encoding of the first 

operand.  Clearer effects of operation were evident for the retrieval/calculation stage 

and the results also suggested that these effects differed between High and Low 

Maths participants.  Taking digit format equations, the operation effects which 

emerged during retrieval/calculation are in support of previous results (Zhou, 2011; 

Zhou et al., 2007). However, the current findings suggest that the left anterior 

operation effect might only hold for High Maths individuals.  Zhou (2011) interpreted 

larger negative left anterior potentials for multiplication to be an indication that 

greater verbal processing takes place for multiplication than addition.  This is in line 

with fMRI findings showing greater activation of language areas for multiplication 

(Rickard et al., 2000; Zhou et al., 2007).    

 The High Maths group also showed this operation effect over the left anterior 

region for word format problems, whereas the Low Maths group showed no 

difference in left anterior amplitudes between addition and multiplication equations.  

This could suggest that for the High Maths participants, multiplication facts were 

represented phonologically regardless of format, which is also in line with the 

argument that in multiplication direct memory retrieval takes place for both digit and 
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word formats (e.g. Campbell & Alberts, 2009; see Chapter 5).  Furthermore, this 

finding suggests that previous findings of an operation effect over left anterior scalp 

might disappear for Low Maths individuals. 

 For Low Maths participants, a modest operation effect occurred for digit 

format equations over the right posterior region in the earlier time window (100 – 180 

ms post-stimulus).  In line with evidence from neuropsychology, an operation effect 

over the right posterior region could suggest that addition involves more visual spatial 

processing and activation of numerical magnitude representations than multiplication 

(e.g. Dehaene et al., 2009; Zhou, 2011).  The fact that this effect was only found for 

the Low Maths group could therefore suggest that, with more mathematics 

experience, visual spatial processing might not necessarily need to occur since 

multiplication as well as addition facts could be readily retrieved from memory, as 

opposed to utilising a different strategy (e.g. counting) to arrive at addition answers.  

The faster RTs of the High Maths group, and the presence of a left anterior operation 

effect, also support the argument that, in general, individuals with greater 

mathematics experience might rely more on direct memory retrieval as a strategy.  

Overall, these findings highlight the importance of investigating effects in arithmetic 

problem solving at different levels of mathematics experience. 

 A possible reason why no clear operation effects were observed during the 

encoding phase in the current experiment could reflect the fact that digit and word 

format problems were presented in the same block.  When the format of the operands 

stays the same, as was the case in Zhou’s (2011) experiment, participants might pay 

more attention to operation than format, since operation switched between blocks, but 
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format stayed the same.  However, if the format of the operands switches 

unpredictably between digits and words as was the case in the current experiment (the 

order was pseudorandom), participants might pay more attention to format, than to 

operation.  Attention to operation is thus only necessitated during the second stage of 

presentation where participants see the operation sign and not necessarily during the 

presentation of a single digit/word operand.  It might thus be useful for future studies 

to present digit and word format problems in separate blocks in order to observe the 

presence or absence of operation effects during encoding.  What the current results do 

seem to suggest is a transcoding advantage that comes with greater mathematics 

experience, with left anterior operation effects during retrieval, found for High Maths 

individuals regardless of operand format.   

 To conclude, by examining the event-related potentials that occur for digit and 

word format equations the current study suggests that operand format influences the 

answer retrieval stages of arithmetic.  The study also highlights group differences, 

which is in support of the previous chapters which suggested that with high 

mathematics experience an advantage is gained for arithmetic fact retrieval, 

regardless of format.   

 Overall, the cost of word format on performance is consistent with the 

previous chapters and also in line with the argument that word format hinders 

retrieval of arithmetic facts (Campbell & Alberts, 2009).  Also, in support of the 

findings of Chapter 5, the findings from Chapter 6 show that High Maths participants 

performed better on the arithmetic tasks in digit, as well as word format; a finding 

that can be interpreted as a transcoding advantage.  On the basis that Experiments 1 – 
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3 (Chapters 2 – 4) suggested that with high mathematics experience, a general 

advantage is gained for extracting numerical information from various formats, the 

eye-tracking and ERP data show that this early advantage could aid these individuals 

in more complex numerical functions such as arithmetic.       
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Chapter 7  

General Discussion 

7.1. Overview  

 Considering the wide range of opinion regarding the mental representation 

and manipulation of numbers, the current thesis aimed to investigate how symbolic 

numerical notation influences numerical cognition, and how mathematics experience 

might regulate this process further.  As discussed in the earlier chapters, the current 

debates concerning the representation of numerical information from different 

formats assume format-specific (e.g. Campbell & Clark, 1988; 1992; Campbell, 

1994) or format-independent processing (e.g. Gallistel & Gelman, 1992; McCloskey, 

1992; McCloskey & Macaruso, 1995). Yet other views postulate the co-existence of 

format-independent and format-dependent processing pathways depending on the 

numerical function that is required in a task (e.g. Dehaene, 1992; Dehaene & Cohen, 

1995; Nieder et al., 2006).  With regards to calculation, for example, it is yet 

uncertain if format effects can merely be attributed to differential encoding processes 

that take place for different formats, or if number format plays a role at all levels of 

numerical processing, including number manipulation which occurs after encoding.  

In addition to this, individual differences related to mathematics experience have 

generally not been considered in studies of adult numerical cognition, even though 

format-specific experience with numbers has been suggested to play a key role in 

processing differences between formats (e.g. Campbell & Alberts, 2009).  Effects of 

format were thus investigated in the current research for individuals of differing 
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levels of mathematics experience across a wide range of tasks to include basic 

numerical processing, as well as more advanced functions such as arithmetic.  The 

following sections highlight the key findings related firstly to format effects and 

secondly to mathematics experience in terms of basic number encoding and 

arithmetic. 

7.2. Format-specific Encoding 

 The first two experiments considered processing differences between digits 

and number words in terms of basic numeral encoding.  During these simple tasks, 

two stimulus features were placed into competition with one another and participants 

were required to respond to one feature and to try to ignore the other stimulus feature.  

The degree to which the processing of the task-irrelevant stimulus feature interfered 

with attending to the task-relevant stimulus feature gave a measure of cognitive 

interference, and in turn a measure of the automaticity of processing of the task-

irrelevant feature.  It was thus possible to compare the processes by which underlying 

number meanings were accessed from digits and number words.   

 Number format was found to be more influential on number comparison 

(Experiment 2) than on subitizing (Experiment 1).  In Experiment 1 (Counting Stroop 

task), overall, similar Stroop interference effects seemed to occur for digit and word 

formats; format effects only emerged when mathematics experience was considered, 

as discussed in section 7.4 below.  When the two highly automatic processes of 

reading and subitizing were placed into competition with one another, incongruent 

number word conditions (e.g. ‘two  two  two’; respond ‘3’) slowed down the 

counting process to much the same extent as incongruent arabic digits (e.g. ‘2  2  2’; 
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respond ‘3’).  In other words, the automaticity of processing of number words and 

arabic digits was relatively similar.  This effect can be accounted for as follows:  The 

numerosity (number of items on-screen) of the items on each trial was represented 

analogically rather than symbolically and format thus had no effect on the numerosity 

of the items (i.e. it is just as easy to count four digits as it is to count four words).  

Participants automatically counted the number of items on-screen regardless of 

whether or not they were a number of identical digits, symbols, or words, 

demonstrating the automaticity of the subitizing process.  The level of ‘competition’ 

imposed by the numerosity of the items was thus similar for digit and word format 

trials.   

With regards to reading, a similar process also seemed to take place for digits 

and number words.  As mentioned in Chapter 1, highly practised number words, 

especially small numbers, can also often follow a conceptual reading route similar to 

digit reading, without the need for letter-sound mapping.  Therefore, with similar 

subitizing and reading processes taking place for the two formats, no significant 

advantage was gained for digit processing in the counting Stroop task.  As will be 

discussed in section 7.4, subtle differences in digit processing did emerge between 

High and Low Maths participants.  However, overall, number words showed similar 

cognitive interference to digits suggesting that both formats can be processed along a 

similar route. 

 In Experiment 2 (Chapter 3), the process of comparing two numbers in terms 

of numerical magnitude seemed to be much more difficult for number words (e.g. 

‘two  seven’; respond ‘7’) than for arabic digits (e.g. ‘2  7’; respond ‘7’).  This was 
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also the case for comparing numbers in terms of physical size (e.g. ‘two five’; 

respond ‘2’ vs. ‘2  5’; respond ‘2’).  The asymmetry in the observed format effects in 

Experiments 1 and 2 is likely to reflect the fact that the numbers used in Experiment 1 

were smaller than those in Experiment 2.  Both experiments used numbers in arabic 

digit and number word format, however, in Experiment 1, only numbers within the 

subitizing range (1 – 4) were used, whereas in Experiment 2, the numbers ranged 

from 2 – 9.  Following the argument from Dehaene (1997) that in language the 

numbers 1 – 3 are widely used and therefore highly practised, in Experiment 1, digits 

as well as number words could thus have been read through a meaning-mediated 

reading route, with letter-sound mapping not necessarily taking place for word 

stimuli.  In Experiment 2, however, it could be the case that for numbers up to 4, 

arabic digits and number words are still processed relatively similarly, whereas for 

numbers that are less practised and that are outside the subitizing range, an advantage 

is found for digits, as this is a more familiar numerical representation.  The digit ‘3’ 

and the word ‘three’ might thus be processed similarly, but the magnitude meaning of 

the digit ‘9’ might be accessed more automatically than that of the word ‘nine’, which 

could account for the advantage on digit trials.  Under time-pressure, the time taken 

to encode two different number words should also be expected to take longer than the 

time to encode two different digits, unlike in Experiment 1 where the number words 

or digits were identical.  When number words were read, accurate numerical and size 

comparisons were still made suggesting that number meaning was still spontaneously 

encoded.  The distance effects also demonstrated that the number meaning of each 

word was encoded distinctly.  However, the process of accessing underlying number 
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meanings seemed to be much slower for number words than for digits, which could 

relate to time-consuming letter-sound mapping that take place for large number words 

(less practised) especially.   

 Overall, these early experiments show that the task used to study format 

effects, can strongly influence inferences made regarding the abstractness of symbolic 

numerical representations, which could account for the wide theoretical disagreement 

on this issue in the literature, with evidence concerning format effects predominantly 

coming from studies of arithmetic (e.g. Campbell, 1994; Campbell & Alberts, 2009; 

Noël et al., 1997).  By taking the findings from the cognitive interference tasks, the 

observed advantage for digits on number comparison is thus not necessarily an 

indication that digits and words follow separate representational pathways, but rather 

that the time taken to transcode from number symbols to number meanings can take 

longer for number words than for arabic digits.  Following Dehaene (1997), in order 

to carry out accurate number comparison, numbers from various formats need to be 

transcoded to the underlying abstract numerical code, a process that might take longer 

for number words than for digits. 

7.3. Format-specific Arithmetic 

 The format-independent viewpoint argues that once numbers have been 

transcoded from different formats to underlying number meanings, any subsequent 

processes that take place should not differ between formats, since both operate from 

the same identical, amodal number representation (e.g. Fias et al., 1996; Zhou, 2011).  

In this view, any performance differences between digits and words are thought to 

reflect differences in encoding processes rather than differences in processing that 
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take place subsequent to encoding, such as calculation strategies.  The processing 

pathways of digits and words might thus differ initially (e.g. digit processing might 

be faster), but once numbers have been translated to an amodal number code, the 

processing for the two formats remains similar.  While the findings from Experiment 

2 could be taken to suggest that different encoding processes for digits and words 

underlie the observed advantage for digits in number comparison, the evidence from 

the studies on arithmetic (Experiments 4 and 5) suggest that the advantage for digit 

format in arithmetic is not merely related to faster encoding, but rather that different 

calculation procedures might take place for digits and number words.  In line with the 

suggestion from Campbell and colleagues (Campbell & Alberts, 2009; Campbell & 

Epp, 2005), the findings from Experiments 4 and 5 suggest that performance 

differences between formats can be related to the use of different calculation 

strategies, which occur subsequent to encoding.   

 In support of the findings of Campbell and Alberts (2009) on strategy use in 

arithmetic, the eye-tracking data presented in Chapter 5 suggested that word format 

discouraged, but digit format encouraged, the use of direct retrieval as a strategy.  

Specifically, in Experiment 4, the fixation count data showed a format x problem size 

interaction for addition, but not for subtraction.  For addition, a greater size effect was 

found for digit than for word format problems, reflecting the fact that very few 

fixations were made on small digit format problems (participants found these 

problems the easiest).  However, for subtraction a similar pattern was found for the 

two formats:  the increase on large number problems was similar for digits and 

number words.  Following Campbell and Alberts (2009), a diminished format effect 
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for large subtraction suggests that the same strategy was used for both formats.  Since 

large subtraction problems are usually more difficult, participants resort to counting-

based strategies rather than direct retrieval, regardless of format, which makes format 

effects less prominent here.  If the format-independent viewpoint had been supported, 

one would not expect such interactions of format, operation and problem size in the 

observed fixation patterns.  Instead, if the two formats followed similar processing 

pathways, the use of a similar strategy should be expected for both formats, and the 

observed differences in terms of the problem size effects should not be expected for 

addition.  

This argument was further supported by the findings for multiplication and 

division in Experiment 4 Part 2, namely similar behavioural and eye-tracking patterns 

for digits and words in the former, but clear word-format costs on performance in the 

latter.  In line with the format-specific view of Campbell and colleagues, the reason 

for a smaller format effect in multiplication is that the same strategy is used for both 

formats, namely direct retrieval.  Under time pressure, multiplication necessitates 

direct retrieval, since another strategy (e.g. repeated addition, division-reference, 

counting etc.) would be too inefficient.  Word-format is thus not particularly costly in 

multiplication since both digit and word format problems are solved via retrieval.  In 

division, however, there is opportunity for a switch to an alternative efficient strategy, 

namely the multiplication-reference strategy (e.g. 2 x 3 = 6, therefore, 6 ÷ 3 = 2), 

which seems to be the case for division problems in word format.  Similar to the 

findings for addition, if format differences were merely related to encoding 

differences, similar word format costs should be expected in both operations.  In other 
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words, one might expect overall weaker performance for word-format problems due 

to slower encoding/weaker retrieval strength, but not that word format should interact 

with operation and problem size to promote the use of different strategies in 

comparison to that of digit format problems, as was suggested by the eye-tracking 

patterns.   

 As a whole, these findings highlighted the importance of investigating format 

effects across a wide range of numerical tasks including all arithmetic operations.  

Prior to the study of Campbell and Alberts (2009), interactions of format, operation 

and problem size had not been investigated for operations other than addition.  

Experiment 4 was also the first to investigate such effects by means of eye-tracking in 

an attempt to eliminate self-report bias in relation to strategy use and suggested that it 

is a useful means of studying calculation processes in arithmetic.  In relation to the 

format-specific view of arithmetic, the observed operation x format x problem size 

interactions are in support of the interactive view of arithmetic, which argues for the 

close interaction of encoding conditions with answer-retrieval conditions in 

arithmetic.  

 The final experiment (Experiment 5) provided further support from event-

related potentials for the interactive view of arithmetic by showing that format and 

operation effects were mostly attributable to the answer-retrieval stage of arithmetic, 

suggesting that format influences retrieval strategies specifically.  By isolating a pure 

encoding stage (presentation of the first operand) from the presentation of the rest of 

the equation (e.g. ‘2’ and ‘+ 3 = 5’), the aim of the experiment was to investigate if 

the two stages of encoding and retrieval were additive (e.g. McCloskey & Macaruso, 



CHAPTER 7 

 189 

1995; Zhou, 2011) or interactive (e.g. Campbell & Clark, 1989; 1992; Campbell & 

Alberts, 2009).  During this true/false verification task, addition and multiplication 

equations were presented in separate blocks in order to investigate if participants 

could anticipate the addition/multiplication operation that was to follow even during 

the phase of encoding the first operand when only a single digit or word was 

presented on-screen.  In the case of the additive viewpoint, similar effects of 

operation and format are expected to occur during encoding and retrieval.  In this 

case, numbers (e.g. digits) are thought to be encoded as distinctly addition or 

distinctly multiplication operands (regardless of format), from which the appropriate 

arithmetic facts can be retrieved or calculated.  If this view were to be supported, 

amplitude responses during the encoding phase (when only the first operand is seen) 

should vary with operation, but not necessarily with format, since numerical 

information from all formats is thought to be transcoded to an underlying uniform 

code.  Thus, if addition and multiplication operands (presented in the same format) 

are encoded separately, this should be evident during both the encoding and retrieval 

stages, suggesting that the two stages operate serially, rather than interactively.   

 In the case of the alternative view, namely that the encoding and retrieval 

stages interact with one another, the differences in performance between addition and 

multiplication should rather relate to the answer retrieval stage specifically, and not 

necessarily to the ‘pure’ encoding stage when only a single digit or word is presented 

on-screen (Zhou, 2011).  Encoding features, such as format, are also thought to play 

an important role on any subsequent retrieval processes with operand encoding 

relating more to format than to operation (e.g. Campbell’s Encoding Complex 
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model).  In this view, addition or multiplication operands presented in the same 

format are thus encoded similarly and operation effects are only expected to emerge 

during answer retrieval.   

 The findings from Experiment 5 are in support of this view and suggested that 

the encoding and retrieval stages operate interactively rather than serially.  The ERP 

data showed that effects of operation were generally absent from the encoding phase 

(where participants only saw a single digit or number word on-screen), but only 

emerged during retrieval (when participants saw the rest of the equation including the 

operation sign).  This suggests that the observed differences in performance between 

digits and words can be attributable to effects that occur during the answer-retrieval 

stages specifically, such as strategy choice as was suggested from the eye-tracking 

evidence in Experiment 4. 

 The benefit of more sensitive measures, such as eye-tracking and ERP 

technology, is that they can highlight effects that are not evident from behavioural 

measures (e.g. accuracy and RT) alone.  As pointed out by Zhang et al. (2010) stimuli 

that result in similar behavioural effects might still be processed along separate 

representational pathways, suggesting that more sensitive measures are needed.  In 

Experiment 4, Part 1, for example, format x size interactions were not clear from RT 

or accuracy data, but the fixation patterns suggested interactions of operation, format 

and problem size that are in accordance with the reports of Campbell and Alberts 

(2009) on strategy use in arithmetic.  Similarly, in Experiment 5, no clear operation 

effects were evident from the RT data (as was the case in the study of Zhou, 2011), 

but the ERP patterns suggested that for High Maths participants solving 
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multiplication relies more on verbal processing than addition (e.g. Zhou, 2011).  The 

ERP data have also shown that the effects of format and operation can occur at the 

retrieval stage specifically and not necessarily due to mere encoding differences. 

 It is worth mentioning that the lack of operation or format effects during the 

encoding condition could have related to the fact that digit and word format equations 

were presented in the same test block, as discussed in Chapter 6 (p. 178 – 179), and 

similarly for Chapter 5, which followed the procedure of Campbell and Alberts 

(2009) who presented digit equations on odd and word equations on even trials.  In 

situations where format stays the same throughout the experiment, as was the case for 

Zhou’s (2011) study, arithmetic operands might well be encoded as distinctly 

multiplication or addition, since less attention needs to be paid to other encoding 

features such as format.  Also, the degree to which the encoding and retrieval stages 

could be separately investigated in this task is also questionable.  While the 

presentation of a single numeral (first operand) can be thought of as a purely 

encoding stage, effects related to number encoding could also be attributed to the 

‘retrieval’ stage when participants see the rest of the equation.  It is thus difficult to 

isolate effects related to the encoding of the second operand from effects related to 

answer retrieval/calculation specifically.  What the current results do show, however, 

is that effects of format and operation were minimal for the presentation of the first 

operand, suggesting that encoding and retrieval does not necessarily operate serially.  

In the current tasks, format also seemed to interact with operation and problem size in 

arithmetic, suggesting that performance differences between digits and number words 

reflect more than just differential encoding processes. 
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 With regards to the debate on the influence of format in numerical cognition, 

the current findings emphasise the importance of investigating format effects across a 

wide range of tasks in order to gain a comprehensive view of how numbers from 

different formats are represented.  Overall, format seemed to be more salient for some 

numerical functions than others, suggesting that numerical processing is sometimes 

abstracted away from input format, but sometimes different formats follow separate 

processing routes, depending on the numerical function that is required under task-

demands.   

7.4. The Influence of Mathematics Experience on Format-specific Numerical 

Cognition 

 The studies used in the current research were designed to also consider 

individual differences related to experience with numbers and how this might regulate 

the influence of surface format in numerical cognition, a factor that has not yet been 

considered in previous accounts.  Since the influence of format has been suggested to 

reflect an individual’s experience with the specific format in question (e.g. Campbell 

& Alberts, 2009), and since recent reports show a concern over adult numeracy (e.g. 

Jukes & Gilchrist, 2006; Lipkus et al., 2001), mathematics experience seemed an 

important variable to consider.  The main objective was to compare the numerical 

cognition of individuals with relatively more experience with numbers to that of 

individuals with less experience with numbers, in order to see if individuals with 

greater mathematics experience show an advantage for accessing number meanings 

from various formats.   
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It is worth mentioning at the outset of this discussion on mathematics 

experience, the difficulty that was encountered, firstly, in defining mathematics 

experience and secondly, in recruiting individuals to participate in mathematical 

research.  While efforts were made to divide participants into groups of ‘high’ and 

‘low’ levels of experience with mathematics, it must be kept in mind that numerical 

competency can be a reflection of many interwoven factors (e.g. Mazzocco, 2008).  

The definition of ‘mathematics experience’ was thus kept broad, to take into account 

factors such as an individual’s numerical ability, numerical self-efficacy, mathematics 

education history and working memory capacity.  The main differences between the 

groups of mathematics experience was that those in the High Maths group had 

reported better performance in the Irish Leaving Certificate mathematics examination 

and also performed better on the numeracy measure that was administered in each 

experiment.  However, Experiments 1 and 2 showed that the High Maths group also 

generally reported greater numerical self-efficacy and better working memory 

performance.  The observed group differences in the current experiments could thus 

relate to an individual’s exposure to numbers through education or to an individual’s 

numerical aptitude in general, or to a combination of both factors.    

Secondly, in cases where group differences were less clear, such as in 

Experiment 3, it could be a reflection of the sampling method.  The measure of 

assigning participants to High and Low Maths groups could have been more robust in 

some cases due to the difficulty in recruiting participants.  Individuals were often 

reluctant to participate in numerical cognition research, which seemed to be related to 

the fact that participants knew the experiments would include a time-restricted 
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numeracy assessment or arithmetic equations, in some cases.  In Experiment 3, for 

example, it could thus be the case that highly numerically competent individuals were 

included in the Low Maths group, since less numerically competent individuals were 

less likely to participate.  Unlike Experiments 1 and 2, the two groups in Experiment 

3 also did not show significant self-efficacy or working memory differences, further 

suggesting that group differences could have been more robust here.  Also, in 

Experiments 1, 3, and 4 men showed an advantage for numeracy performance 

compared to women, whereas no gender differences were found in the other 

experiments, which suggest that this effect could be related to a sampling issue.   

Notwithstanding this difficulty in defining mathematics experience, a number 

of findings from the experiments on basic numerical encoding (Experiments 1 – 3) 

suggest that the observed performance of individuals in the High Maths group was 

related to an advantage for processing numerical information specifically and that it 

was not merely a reflection of general memory efficiency or aptitude.  Firstly, in the 

earlier experiments, the performance of the High and Low Maths groups did not 

differ in reaction time on neutral trials, but only on trials that featured numerical 

information.  Secondly, with high mathematics experience, an advantage was found 

for numerical comparison (e.g. ‘3  5’; which number is higher?), but not for physical 

comparison (e.g. ‘3  5’; which number is physically bigger?), in which case the two 

groups performed relatively similarly.  Finally, the High Maths group showed an 

advantage for accessing numerical meanings from language in general, as was found 

for quantifier words (Experiment 3).  Again, no difference in performance was found 

for responding to neutral word stimuli, whereas the High Maths group responded 
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faster on trials that contained quantifier words.  Overall, these findings are in support 

of the accounts that postulate the existence of our number concept as a specific 

semantic domain that is independent of other abilities (e.g. Butterworth et al., 2001; 

Caramazza & Shelton, 1998; Koechlin et al., 1998).  The fact that the High Maths 

group showed such a specific processing advantage for numerical stimuli from 

various formats supports this claim and suggests that if the semantic referent 

(number) is strongly represented in memory, it aids the transcoding of numerical 

information from various formats, and not just the well-practised digit format.  Thus, 

while performance on word format trials was generally weaker than on digit format 

trials, the High Maths participants showed better performance for both formats, in 

comparison with the Low Maths participants.  

However, format did seem to interact with Maths group on conditions where 

format effects were generally diminished, with no clear overall performance 

differences between arabic digits and number words.  In such cases, where digit and 

number word processing was relatively similar, arguably reflecting the use of similar 

strategies for both formats (e.g. Experiment 4), the High Maths group showed an 

advantage for processing arabic digits.  This was the case, for example, in Experiment 

1, where no overall effect of format was noted, but the High Maths group showed 

more automatic processing, evidenced by cognitive interference, for digit stimuli 

compared to the Low Maths group.  Similarly, in Chapter 5 Part 2, where overall 

performance on multiplication was relatively similar for digit and word format 

problems, individuals in the High Maths group showed an advantage for digit format.  

By considering mathematics experience, these findings show that the influence of 
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format in numerical cognition can, at least to some extent, be regulated by an 

individual’s experience with numbers.   

Overall, Experiments 1 – 3 suggest that with greater mathematics experience 

an advantage can emerge for accessing number meanings, especially from digit 

format, but also to a lesser extent for number words and quantifiers.  As expected, 

differences in performance were also noted in arithmetic performance, which showed 

that effects of operation, problem size and format differed across the groups.  The 

evidence from reaction time and eye-tracking in Chapter 5 Part 1 (addition and 

subtraction) suggest that the Low Maths group were more influenced by the 

magnitude of the operands in an arithmetic problem than the High Maths group.  A 

greater problem size effect thus emerged for individuals with less mathematics 

experience, showing that these individuals found large problems much more difficult 

than individuals with more mathematics experience.  This could suggest that 

individuals with greater mathematics experience have an overall arithmetic fact 

retrieval advantage, which makes them less prone to resort to counting based 

strategies on large, more difficult problems.  The performance for individuals with 

less mathematics experience on small problems overlapped with that of individuals 

with more mathematics experience on large problems, demonstrating the problem-

solving efficiency of those with more mathematics experience.  With regards to 

format, this advantage emerged for digit as well as word format equations, in 

accordance with the findings from the first three experiments, which suggested a 

general transcoding advantage that accompanies high mathematics experience. 
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For multiplication and division (Experiment 4 Part 2), the influence of 

problem size was relatively similar across each the groups.  While individuals with 

high mathematics experience answered faster overall, the increase in RT and fixations 

on large equations was relatively similar for all groups.  In line with the suggestions 

put forward in section 7.3 regarding strategy use, this suggests that in solving 

multiplication and division, strategies generally are more retrieval-based overall, in 

comparison with addition and multiplication.  Thus, since counting-based strategies 

would be too inefficient, especially under time constraints, even individuals with less 

mathematics experience seemed to use retrieval based strategies, and not calculation, 

on large problems.   

 The final experiment (Experiment 5) further highlighted the importance of 

considering individual differences when investigating event-related potential effects 

of operation and format in arithmetic.  The findings from Experiment 5 showed that 

the left anterior operation effect (e.g. Zhou, 2011; Zhou et. al. 2006, 2007) can differ 

with mathematics experience, arguably reflecting the use of different calculation 

strategies.  Zhou and colleagues (2006, 2007; Zhou, 2011) demonstrated the 

operation effect for digit format equations as greater left anterior and right posterior 

amplitude responses for multiplication than addition.  However, the findings from 

Experiment 5 showed that the operation effect over the left anterior region, thought to 

reflect the greater involvement of verbal memory in multiplication, was only found 

for the High Maths group.  This effect was also found for digit as well as word format 

problems, suggesting similar processes for the two formats, namely verbal memory 

retrieval.  On the other hand, the operation effect over the right posterior scalp, 
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thought to be a reflection of more visual spatial and magnitude processing for 

addition than multiplication, was only found for the Low Maths group (although this 

component emerged earlier than that reported by Zhou and colleagues).  In 

accordance with the evidence from Experiment 4, this can be interpreted as an 

advantage for arithmetic fact retrieval that accompanies high mathematics experience.  

The lack of a right posterior operation effect suggests that greater magnitude 

processing might not necessarily take place for addition than multiplication for 

individuals with high mathematics experience.  In light of faster overall RTs, it was 

thus likely that these individuals solved both addition and multiplication problems 

through retrieval strategies, without the need for greater magnitude processing in 

addition.   

7.5. Implications of the Current Research 

 With regards to number representation and manipulation, the current thesis 

highlighted a number of characteristics that seem to underlie proficient adult 

numeracy.  Firstly, individuals who were more numerate seemed to show an overall 

transcoding advantage, namely more automatic access to underlying number 

meanings from different symbolic notations, but especially arabic digits.  Secondly, 

these individuals seemed to show an overall advantage for arithmetic fact retrieval, 

regardless of format and problem size.  In arithmetic, processing thus seemed to be 

generally more memory- than calculation-based, in comparison with individuals with 

less mathematics experience.  Thirdly, the advantage of individuals with high 

mathematics experience seemed to be specifically numerical and not related to other 

advantages (e.g. response speed). 
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 In light of the recent concerns over declining adult numeracy the current 

findings link adult numerical proficiency to simple numerical functions such as 

translating from symbols to quantities.  While all the participants in the current 

research were educated, numerate and literate adults, the fact that the benefits of 

mathematics experience was already evident at such a basic level suggests that 

mathematics experience creates a strong symbol–number concept which forms the 

basis for more complex numerical functions such as arithmetic.  

 In support of the recent findings on adult numeracy (e.g. Lipkus et al., 2009), 

the current findings also showed that even highly educated individuals often struggle 

with basic numerical and probability concepts (numeracy test).  The relatively simple 

numeracy test used here proved to be challenging for some individuals, which 

showed that in the absence of explicit instruction, some individuals do not know 

which strategy or operation to use in order to solve such basic problems.  Some 

individuals might thus not have acquired the necessary mathematical skills in 

education, which helps them apply numerical concepts to novel situations in 

adulthood.  Overall, the evidence could suggest that in education, more attention 

should be focused early on translating between different symbolic formats and 

generalising to novel situations as these basic numerical functions seem to play an 

important role in more complex numerical functions such as arithmetic.   

 Lipkus et al. (2001) suggested that in everyday numeracy, which requires 

applying learned number concepts to practical situations, errors usually occur when 

individuals are required to switch between metrics.  This occurs, for example, when 

participants switch from proportions (e.g. ½) to percentages (e.g. 50 %), similar to the 
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difficulty that is encountered when transcoding between arabic digits and number 

words in arithmetic.  In light of this, in training individuals to become more 

numerate, education methods should gain from recognising a) the importance of 

being able to switch between different symbolic formats and b) the importance of 

being able to generalise mathematical concepts to novel situations.  

7.6. Limitations of the Current Research and Outlook for Future Research 

 While the advantage for digit format problems in arithmetic have been 

demonstrated across a number of languages, including French, Dutch, English and 

Chinese (Noël et al., 1997; Campbell et al., 1999), the observed format differences 

related to more basic number processing (Experiments 1 and 2) may only be 

applicable to the English language.  As Zhang et al. (2010) pointed out, the visual-

verbal number form that is usually compared with arabic digits is relatively rare in 

languages such as Chinese, for example.  In this case, the advantage for digit format 

might thus be more obvious than in English.  Cultural variables should also be 

expected to play a role in format-specific processing.  In Chinese education, for 

example, emphasis is placed on extensive reciting of multiplication tables, which 

renders verbal-numerical number forms more salient than visual-verbal number forms 

(Zhang et al., 2010).  Future research should thus take into account cross-language 

format effects that might relate more to modality of input (e.g. auditory or visual) 

than to surface format.  

 Leading theorists in the field of mathematical research emphasise the defining 

role of practice and memory in numerical proficiency and highlight it as the best 

predictor of mathematics achievement (e.g. Butterworth, 1999; Dehaene, 1997).  
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However, with regards to mathematics experience, it is beyond the scope of the thesis 

to say whether or not the observed advantage of the High Maths participants relates to 

practice and learning or whether it reflects numerical aptitude.  While automaticity of 

processing (for numbers in this case), as was observed in Experiments 1 – 3, is 

thought to stem from extensive practice and memory for specific stimuli (e.g. 

Ashcraft, 2006), the advantage of the High Maths participants could also have 

reflected superior working memory efficiency or motivational variables, such as self-

efficacy beliefs, as suggested by Experiments 1 and 2.  Referring back to the issues 

related to defining mathematics experience and recruiting participants for 

participation in mathematics research (p. 193), it seems difficult to isolate practice 

and memory for numbers from other variables such as aptitude or general memory 

efficiency.   

 What is lacking in the adult mathematical cognition research is a 

consideration of individual differences related to mathematics experience, especially 

in basic number processing such as subitizing and number comparison.  The current 

research has highlighted the importance of considering individual differences by 

showing that some of the effects observed in the literature might only hold for some 

individuals depending on their level of mathematics experience.  The direction of 

future research should thus aim to employ more robust measures of adult 

mathematics experience and also consider other individual differences variables and 

how this might influence format-specific number processing. 
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7.7. Conclusions 

 In order to accurately understand and manipulate numbers, it is necessary to 

read, write and transcode numbers from various different symbolic formats (Dehaene, 

1994).  The importance of these basic functions are noted in early number processes 

such as number comparison, as well as more complex processes such as arithmetic, 

with theoretical accounts differing on how numbers from different formats are 

mentally represented.  The current results are in support of views that assume the co-

existence of format-specific and format independent numerical processing pathways 

(e.g. Dehaene’s Triple Code Model).  Arabic digits and number words might thus be 

represented in distinct pathways in the brain; however, for some numerical functions, 

information from both formats might require a similar processing route in order to 

arrive at a solution.   

 While most mathematically educated individuals can perform these basic 

transcoding functions, individuals who are more numerate show an advantage for 

accessing number meanings from not just the highly familiar digit format, but also 

from word format, and to a lesser extent quantifier words.  This is in line with the 

argument for a language-independent number domain in semantic memory, and also 

supports the argument that accessing numerical information from different symbolic 

inputs (transcoding) is essential for numerical proficiency in adulthood, a property 

that seems to underlie the enhanced performance of highly mathematics experienced 

individuals.  As a whole, the current research highlights the diversity of adult 

numeracy, and how this is evident from very basic numerical tasks, such as number 

comparison and subitizing, to more complex numerical tasks, such as addition, 
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subtraction, multiplication and division.  The findings show that individual 

differences related to mathematics are an important consideration for theoretical 

accounts of number processing.   
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Appendices 

Appendix 1:  Participant Consent Form 

 

 

PARTICIPANT CONSENT FORM 

  

Examining Cognitive Biases in Numerical Information Processing 

 

Researcher 

Justé Koller 

[contact details] 

 

Supervisor 

Dr Fiona Lyddy 

[contact details] 

 

This study will be conducted by Justé Koller, a postgraduate student at the 

Department of Psychology, NUI Maynooth.  The purpose of this research is to 

investigate processing differences for different numerical surface formats, such as 

digits (e.g. 3) and number words (e.g. ‘three’).  The study involves completing a 

number of simple computerised tasks.   

 

All data will be kept entirely confidential and held on a secure computer.  Data will 

be immediately coded and identifiable only by a participant code number. 

 

The findings of the study may be published in the form of a research report. No 

individual responses will be reported and only group findings will be described. 

 

Participation in the study is voluntary and you may refuse to participate or withdraw 

at any stage during the experiment.  You may also withdraw your data from the study 

up until the report is published. 

 

Any questions or concerns you may have about the study will be addressed by the 

experimenter. 

 

Please note that the study does not involve any counselling or medical treatment and 

no form of medical diagnosis will be made. 

 

By signing this consent form you indicate that you are 18 years of age or older and 

you have read the consent form and all your concerns have been addressed. You 

understand that you may withdraw from the study at any time, that you may withdraw 

your data and that all data will be kept confidential.   
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If during your participation in this study you feel the information and guidelines that 

you were given have been neglected or disregarded in any way, or if you are unhappy 

about the process please contact the Secretary of the National University of Ireland 

Maynooth Ethics Committee at research.ethics@nuim.ie. Please be assured that you 

concerns will be dealt with in a sensitive manner. 

 

If the experiment caused you any discomfort or stress please contact Dr. Fiona 

Lyddy, head of the psychology department, NUI Maynooth. 

 

__________________________   __________________________ 

Participant      Researcher 

 

___________________________    

Date 

 

 

 

 



 221 

Appendix 2:  Numeracy Test (adapted from Lipkus et al., 2001) 

 

 

Please attempt the following questions as accurately and as quickly as you can. 

The experimenter will contact you in a couple of minutes. 

 

 

1)  Imagine that we rolled a fair, six-sided die 1 000 times. Out of 1 000 rolls, how 

many times do you think the die would come up even (2, 4, or 6)? 

 

 

 

2)  Which of the following numbers represents the biggest risk of getting a disease? 

    ____ 1 % 

    ____ 10% 

    ____ 5% 

 

 

 

3)  Which of the following numbers represents the biggest risk of getting a disease? 

     ____ 1 in 100 

     ____ 1 in 1000 

     ____ 1 in 10 

 

 

 

4)  If Person A’s risk of getting a disease is 1% in ten years, and person B’s risk is 

double that of A’s, what is B’s risk? 

 

   

5) If Person A’s chance of getting a disease is 1 in 100 in ten years, and person B’s 

risk is double that of A’s , what is B’s risk? 

 

    

 

6) If the chance of getting a disease is 20 out of 100, this would be the same as having 

a ______% chance of getting the disease. 

 

 

 

7)  If the chance of getting a disease is 10%, how many people would be expected to 

get the disease: 

    

 A: out of 100?   

 B: out of 1000?  
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8)  In a competition, the chance of winning a car is 1 in 1000.  What percent of tickets 

win a car? 

 

 

9)  In the lottery, the chances of winning a € 10 000 prize is 1 %.  How many people 

would win a € 10 000 prize if 1 000 people each buy a single lottery ticket? 

 

 

 

10)  The chance of getting a viral infection is .0005. Out of 10 000 people, about how 

many of them are expected to get infected? 

 

 

 

11) If I get 6 hours sleep a night, what percentage of the week am I asleep? 

 

 

 

 

12) If a product has been marked down from € 144 to € 132 in a sale, how much 

money is saved, presented as a fraction? 

 

 

 

13) If I leave a waiter a € 4 tip for a € 25 bill, what percentage tip did I give?  

  

 

 

 

14) Travel insurance for a holiday will cost me € 21.00 with company A.  Travel 

insurance with company B is 25% cheaper than this company A price.  How much 

will it cost me to take out insurance with company B? 

 

 

 

 

15) At a restaurant the bill came to € 42. I gave the waiter € 50 as payment.  After 

deducting a 10% tip, how much change will I have? 

 

 

 

16) I buy a concert ticket online for € 49.00. This however does not include taxes and   

charges for mailing the ticket.  If 2/7 of the original price goes to these charges, how 

much will I pay in the end? 
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Appendix 3:  The Subjective Numeracy Scale (Fagerlin et al., 2007) 

 

 

 

 

1. How good are you at working with fractions?  

�1 �2 �3 �4 �5 �6 

Not at all good                                            Extremely good  

 

 

2. How good are you at working with percentages?  

�1 �2 �3 �4 �5 �6 

Not at all good                                            Extremely good  

 

 

3. How good are you at calculating a 15% tip?  

�1 �2 �3 �4 �5 �6 

Not at all good                                            Extremely good  

 

 

4. How good are you at figuring out how much a shirt will cost if it is 25% off? 

�1 �2 �3 �4 �5 �6 

Not at all good                                            Extremely good  

 

 

 

For each of the following questions, please check the box that best reflects how good 

you are at doing the following things: 
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1. When reading the newspaper, how helpful do you find tables and graphs that are 

parts of a story?  

�1 �2 �3 �4 �5 �6 

Not at all helpful                                        Extremely helpful 

 

 

2. When people tell you the chance of something happening, do you prefer that they 

use words (e.g. “iit rarely happens”) or numbers (e.g. “ there is a 1% chance”)? (1 = 

always prefer words; 6 = always prefer numbers)?  

�1 �2 �3 �4 �5 �6 

Not at all good                                            Extremely good  

 

 

3. When people tell you the chance of something happening, do you prefer that they 

use words (e.g. “iit rarely happens”) or numbers (e.g. “ there is a 1% chance”)?  

�1 �2 �3 �4 �5 �6 

Always prefer words                              Always prefer numbers  

 

 

4. How often do you find numerical information to be useful? 

�1 �2 �3 �4 �5 �6 

Never                                                     Very often  

 

 

 

 

 

 

For each of the following questions, please check the box that best reflects 
your answer: 



 225 

Appendix 4:  Eye Tracking Information Sheet 

 

What is eye tracking? 

People pay attention to some parts of a visual scene more than others. By examining 

the movements of their eyes we can tell which parts of the visual scene are of most 

interest and we can infer how people extract information from a visual scene. For 

example, when we present an equation on a computer screen, by examining which 

parts of the equation the eyes are drawn to, and for how long, we can infer how 

people are extracting information from the equation in their attempt to solve it.  

 

What will I have to do during the experiment? 

During the experiment, you will be seated in a comfortable chair with your chin on a 

chin-rest placed in front of a computer screen. The computer screen contains a small 

camera which records the eyes’ movements.  It is a reasonably comfortable procedure 

and it does not hurt or feel uncomfortable. The computer screen will show words or 

digits and you will respond by pressing a key on the keyboard as instructed. As it is 

important to keep relatively still, you will be also advised to refrain from blinks and 

head and body movements to facilitate accurate recording. You will receive full 

instructions before the start of the recording and have a trial run to familiarise you 

with the task. This experiment will investigate eye movements and duration of 

looking when certain numerical stimuli are presented.  An eye tracker, a camera and 

computer apparatus that records eye movements will be used in this experiment.  This 

research aims to inform us of the differences in the processing of different numerical 

stimuli.  The apparatus will record your eye movements and the duration of your 

eyes’ gaze as you look at numbers and words presented on a computer screen. 

 

How long will the eye tracking sessions last? 

The task and recording itself will usually last about 20-30 min. The whole experiment 

including a practice session will generally last no more than two hours. 

 

Is the eye tracker safe? 

This type of recording is considered completely safe and is non-invasive.  

 

Are there any reasons why I should not participate? 

Given the nature of the study, you should not participate if you have had a prior head 

injury or neurological illness, if you have epilepsy, or any difficulties with reading or 

vision. If you feel you may have a concern affecting whether you should participate 

please bring this to the attention of the researcher, who will be able to advise you.  

 

Will I be rewarded for taking part? 

There is no fee attached to participation in the study.  

 

What if I change my mind during the study? 

Your participation in the research is entirely voluntary. You have the right to 

withdraw from the study at any point, without having to give a reason and without 

your future study being affected in any way. 
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What will happen to the information from the study? 

The recorded data and information for all the participants will be analysed and the 

results will be published in a postgraduate thesis and we hope in research literature in 

peer-reviewed journals. Any results about you personally will be held in the strictest 

confidence and not disclosed to anyone outside the project. The results will be 

described completely anonymously and no participant is named.  

 

What if I have further questions? 

Please do not hesitate to contact us at any time. You will be provided with full details 

of whom you may contact in relation to the study. We will be happy to answer any 

questions you may have. 

 

Additional information: 

Prior to participating in this study, you will be required to have read and fully 

understood this 'Eye Tracker Participant Information Sheet', and to complete and sign 

the attached 'Research Consent Form'. The recordings will take place in the eye 

tracker lab of the Psychology department (unless you are informed otherwise) at a 

time convenient for participants. 

 

 

 

Department of Psychology, NUI Maynooth  

 

 

 

Note: This Information Sheet is adapted from one on EEG recording from the 

Department of Psychology, University of Sheffield.  
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Appendix 5:  EEG and ERPs Information Sheet 

 

What are EEG and ERPs? 

EEG (electroencephalogram) is a simple way of measuring the electrical activity of 

the brain or so-called ‘brain waves’. Using it can tell us where, when and how the 

brain responds to a stimulus that we present. If it is recorded when a particular event 

occurs, then averaging a number of recordings will allow us to obtain the typical 

response of the brain related to the occurrence of this particular event. This is called 

the evoked (or event-related) potential (EP/ERP) technique. 

 

What will the EEG recording involve? 

This technique involves placing on the head a ‘net’ of small non-intrusive pads or 

electrodes. The Department uses a 32-channel cap of electrodes that are placed on 

your head by the experimenter. The pads are coated in a gel to improve the 

conductivity of brain signals. It is a reasonably comfortable procedure and it does not 

hurt or feel uncomfortable, although you will have to sit relatively still for about an 

hour while the pads are being attached in the correct places. Your hair will get 

slightly wet while applying the pads and you will be allowed to wash your hair in a 

sink in the Lab after the experiment. Once the pads are applied, you will be 

positioned in front of a computer screen. The experimenter will monitor the progress 

of the task in the adjacent room. You will always be able to communicate to the 

experimenter if you need to. 

 

 

 

 

 

 

 

 

What will I have to do during EEG recording? 

During recording, you will be seated in a comfortable chair and placed in front of a 

computer screen. The computer screen will show words or digits and you will 

respond by pressing a key on the keyboard as instructed. As it is important to keep 

relatively still, you will be also advised to refrain from blinks and head and body 

movements to facilitate accurate recording. You will receive full instructions before 

the start of the recording and have a trial run to familiarise you with the task. This 

experiment will investigate the changes in electrical activity in the brain when certain 

numerical stimuli are presented.  It is expected that this research will help our 

understanding of the processing differences of different numerical formats such as 

digits (e.g. 3) and words (e.g. THREE).   

 

How long will the EEG sessions last? 

The task and recording itself will usually last about 20-30 min. The whole experiment 

including the appliance of the pads and the practice session will generally last no 

more than two hours. 
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Is the EEG safe? 

This type of recording is considered completely safe. It does not involve exposure to 

radiation; neither does it involve any injections. The pads attached to the scalp only 

record the ongoing activity of the brain. You will be in a normally illuminated room 

and able to speak to us throughout. The study can be stopped at any time if you wish. 

The type of EEG to be employed is in routine use in the Department of Psychology, 

NUI Maynooth, as it is in many other universities worldwide.  

 

Will I be rewarded for taking part? 

There is no fee attached to participation in the study.  

 

Are there any reasons why I should not participate? 

Given the nature of the study, you should not participate if you have had a prior head 

injury or neurological illness, if you have epilepsy, or any difficulties with reading or 

vision. If you feel you may have a concern affecting whether you should participate 

please bring this to the attention of the researcher, who will be able to advise you.  

 

What if I change my mind during the study? 

Your participation in the research is entirely voluntary. You have the right to 

withdraw from the study at any point, without having to give a reason and without 

your future study being affected in any way. 

 

What will happen to the information from the study? 

The EEG recorded data and information for all the participants will be analysed and 

the results will be published in a postgraduate thesis and we hope in research 

literature in peer-reviewed journals. Any results about you personally will be held in 

the strictest confidence and not disclosed to anyone outside the project. The results 

will be described completely anonymously and no participant is named.  

 

What if I have further questions? 

Please do not hesitate to contact us at any time. You will be provided with full details 

of whom you may contact in relation to the study. We will be happy to answer any 

questions you may have. 

 

Additional information: 

Prior to participating in this EEG study, you will be required to have read and fully 

understood this 'EEG Participant Information Sheet', and to complete and sign the 

attached 'Research Consent Form'. The EEG recordings will take place in the EEG 

lab of Psychology department at a time convenient for participants. 

 

Department of Psychology, NUI Maynooth  

 

Note: This Information Sheet was adapted from an information sheet on EEG of the 

Department of Psychology, University of Sheffield.  

 
 


